JP2015129205A - Novel mesogen-silicon compound copolymer, and method of producing the copolymer - Google Patents

Novel mesogen-silicon compound copolymer, and method of producing the copolymer Download PDF

Info

Publication number
JP2015129205A
JP2015129205A JP2014000126A JP2014000126A JP2015129205A JP 2015129205 A JP2015129205 A JP 2015129205A JP 2014000126 A JP2014000126 A JP 2014000126A JP 2014000126 A JP2014000126 A JP 2014000126A JP 2015129205 A JP2015129205 A JP 2015129205A
Authority
JP
Japan
Prior art keywords
formula
group
different
mesogen
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014000126A
Other languages
Japanese (ja)
Other versions
JP6107671B2 (en
Inventor
晃 打它
Akira Uda
晃 打它
揚一郎 市岡
Yoichiro ICHIOKA
揚一郎 市岡
柳澤 秀好
Hideyoshi Yanagisawa
秀好 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2014000126A priority Critical patent/JP6107671B2/en
Publication of JP2015129205A publication Critical patent/JP2015129205A/en
Application granted granted Critical
Publication of JP6107671B2 publication Critical patent/JP6107671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel mesogen-silicon compound copolymer suitable as resin material for a heat radiation material or a semiconductor device and an electronic component, and a method of producing the copolymer.SOLUTION: This invention provides a mesogen-silicon compound copolymer with a weight average molecular weight of 450-500,000 having a structure represented by the following average composition formula (1), where Ris a divalent group selected from a structure represented by the following formula; and Z, X are divalent organic groups each comprising a silicon atom.

Description

本発明は、新規メソゲン・ケイ素化合物共重合体、及び該共重合体の製造方法に関する。   The present invention relates to a novel mesogen / silicon compound copolymer and a method for producing the copolymer.

近年、電子デバイスの発展が著しいが、性能の向上に伴って発熱量が増大している。熱はデバイスに悪影響を与えるため、熱を外部に効率よく放出することが重要な課題となっている。その課題の解決法として、樹脂中への高熱伝導性の無機化合物粒子の充填が広く行われており、その結果、樹脂単体と比べて、より効率的に熱伝導を行えるようになる。しかし、一定量の樹脂に対して、無機化合物粒子の充填量には限界があるため、この方法では熱伝導性の向上に限界があった。更に無機化合物が高価という欠点もあった。   In recent years, the development of electronic devices has been remarkable, but the amount of heat generation has increased with the improvement of performance. Since heat adversely affects the device, it is an important issue to efficiently release the heat to the outside. As a solution to this problem, the filling of inorganic compound particles with high thermal conductivity into a resin is widely performed, and as a result, heat conduction can be performed more efficiently than a resin alone. However, since there is a limit to the filling amount of inorganic compound particles with respect to a certain amount of resin, this method has a limit in improving thermal conductivity. In addition, the inorganic compound is expensive.

このような背景から樹脂自体の熱伝導性向上が望まれていた。熱伝導性を向上させるには、樹脂中にメソゲン基と呼ばれる樹脂同士が重なり合いやすい部位を持たせることで達成できる。しかしながら、樹脂中のメソゲン基が多くなるほど融点の上昇、樹脂の溶媒への難溶化、といった取り扱いが悪化する欠点があった。そのため、メソゲン基を単純に増加させるだけでは、利用価値のある高熱伝導性樹脂を開発することはできなかった。   From such a background, it has been desired to improve the thermal conductivity of the resin itself. Improvement in thermal conductivity can be achieved by providing the resin with a portion where the resins called mesogenic groups tend to overlap each other. However, as the number of mesogenic groups in the resin increases, there is a drawback that handling becomes worse, such as an increase in melting point and a poor solubility of the resin in a solvent. For this reason, it has not been possible to develop a highly thermally conductive resin having utility value by simply increasing the number of mesogenic groups.

特許文献1(特開2011−84714号公報)には、メソゲン基とスペーサーとを共重合させた熱可塑性樹脂が開示されている。該高分子化合物はメソゲンのスタッキングにより、熱伝導性に優れることが記載されている。しかしながら、メソゲン基を持つ樹脂はメソゲン基のスタッキングにより、固くて脆くなり、更に溶媒に難溶化することが知られており、上記の樹脂も例外ではない。このような樹脂は脆いために利用箇所が限定されたり、溶媒に溶けづらくなるために押出成型のような無溶媒での使用に限られてきたりするのが問題となっている。   Patent Document 1 (Japanese Patent Laid-Open No. 2011-84714) discloses a thermoplastic resin obtained by copolymerizing a mesogenic group and a spacer. It is described that the polymer compound is excellent in thermal conductivity due to mesogen stacking. However, it is known that a resin having a mesogenic group becomes hard and brittle due to stacking of the mesogenic group, and further hardly soluble in a solvent, and the above resin is no exception. Since such a resin is brittle, there are problems in that its use location is limited, and since it is difficult to dissolve in a solvent, it is limited to use without solvent such as extrusion.

特開2011−84714号公報JP 2011-84714 A

本発明は、上記事情に鑑みなされたもので、例えば放熱材料、又は半導体装置及び電子部品のための樹脂材料として好適に使用することができる新規なメソゲン・ケイ素化合物共重合体、及び該共重合体の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances. For example, a novel mesogen-silicon compound copolymer that can be suitably used as a heat dissipation material or a resin material for semiconductor devices and electronic components, and the copolymer It aims at providing the manufacturing method of unification.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、下記方法によって製造し得る、下記平均組成式(1)で表される構造を有する重量平均分子量が450〜500,000の新規なメソゲン・ケイ素化合物共重合体が、熱伝導性に優れ、更に汎用されている溶媒への溶解性が顕著に優れることから、放熱材料、又は半導体装置及び電子部品のための樹脂材料として好適に使用し得ることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have a weight average molecular weight of 450 to 500,000 having a structure represented by the following average composition formula (1), which can be produced by the following method. The new mesogen-silicon compound copolymer has excellent thermal conductivity and remarkably excellent solubility in commonly used solvents, so it can be used as a heat dissipation material or a resin material for semiconductor devices and electronic components. It has been found that it can be suitably used, and the present invention has been made.

従って、本発明は、下記新規メソゲン・ケイ素化合物共重合体及び該共重合体の製造方法を提供する。
〔1〕
下記平均組成式(1)で表される構造を有する重量平均分子量が450〜500,000のメソゲン・ケイ素化合物共重合体。
(式中、R1、R5はそれぞれ同一でも異なっていてもよい炭素原子数1〜20の2価炭化水素基を示す。また、R2は下記式
で示される構造から選ばれる2価の基である。pは0又は1である。R3及びR4はそれぞれ炭素原子数1〜4の1価炭化水素基、アルコキシ基又は(メタ)アクリル基であり、相互に異なっていても同一でもよい。また、q、rはそれぞれ0、1又は2である。但し、p=0の場合にq、rは同時に0ではない。l、mはそれぞれ1未満の正数を示し、n、oはそれぞれ0又は0.5以下の正数を示す。更にl、m、n、oはl+m+n+o=1を満たす。Z、Xはそれぞれ同一でも異なっていてもよいケイ素原子を含む2価の有機基を示す。)
〔2〕
前記平均組成式(1)中、Zが下記一般式(2)で示される基であり、oが0であることを特徴とする〔1〕に記載のメソゲン・ケイ素化合物共重合体。
(式中、aは0〜60の整数であり、bは0〜60の整数である。R6及びR7はそれぞれ炭素原子数1〜20の1価炭化水素基であり、相互に異なっていても同一でもよい。但し、R6、R7は同時にメチル基ではない。)
〔3〕
〔1〕又は〔2〕に記載のメソゲン・ケイ素化合物共重合体の製造方法であって、下記一般式(3)で表される化合物、及び場合により下記一般式(4)で表される化合物を低級脂肪酸の無水物と反応させ、アセチル化した後に、それらと下記一般式(5)及び/又は下記一般式(6)で表される化合物とを脱酸重縮合反応させることを特徴とするメソゲン・ケイ素化合物共重合体の製造方法。
(式中、R2は下記式
で示される構造から選ばれる2価の基である。pは0又は1である。R3及びR4はそれぞれ炭素原子数1〜4のアルキル基、アルコキシ基又は(メタ)アクリル基であり、相互に異なっていても同一でもよい。また、q、rはそれぞれ0、1又は2である。但し、p=0の場合にq、rは同時に0ではない。)
(式中、R1は同一でも異なっていてもよい炭素原子数1〜20の2価炭化水素基を示す。Zはケイ素原子を含む2価の有機基を示す。)
(式中、R5は同一でも異なっていてもよい炭素原子数1〜20の2価炭化水素基を示す。Xはケイ素原子を含む2価の有機基を示す。但し、式(6)で表される化合物は、式(5)で表される化合物とは異なる化合物である。)
Accordingly, the present invention provides the following novel mesogen / silicon compound copolymer and a method for producing the copolymer.
[1]
A mesogen / silicon compound copolymer having a structure represented by the following average composition formula (1) and having a weight average molecular weight of 450 to 500,000.
(In the formula, R 1 and R 5 each represent a divalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different. R 2 represents the following formula:
Is a divalent group selected from the structure represented by: p is 0 or 1. R 3 and R 4 are each a monovalent hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group, or a (meth) acryl group, and may be different or the same. Q and r are 0, 1 or 2, respectively. However, q and r are not 0 at the same time when p = 0. l and m each represent a positive number less than 1, and n and o each represents a positive number of 0 or 0.5 or less. Further, l, m, n, and o satisfy l + m + n + o = 1. Z and X each represent a divalent organic group containing a silicon atom which may be the same or different. )
[2]
In the average composition formula (1), Z is a group represented by the following general formula (2), and o is 0. The mesogen / silicon compound copolymer according to [1], wherein
(In the formula, a is an integer of 0 to 60, and b is an integer of 0 to 60. R 6 and R 7 are each a monovalent hydrocarbon group having 1 to 20 carbon atoms, and are different from each other. (However, R 6 and R 7 are not methyl groups at the same time.)
[3]
A method for producing a mesogen / silicon compound copolymer according to [1] or [2], wherein the compound is represented by the following general formula (3), and optionally the compound represented by the following general formula (4): Is reacted with an anhydride of a lower fatty acid and acetylated, followed by deoxidation polycondensation reaction of the compound with the compound represented by the following general formula (5) and / or the following general formula (6). A method for producing a mesogen / silicon compound copolymer.
(In the formula, R 2 represents the following formula:
Is a divalent group selected from the structure represented by: p is 0 or 1. R 3 and R 4 are each an alkyl group having 1 to 4 carbon atoms, an alkoxy group, or a (meth) acryl group, and may be different or the same. Q and r are 0, 1 or 2, respectively. However, q and r are not 0 at the same time when p = 0. )
(In the formula, R 1 represents a divalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different. Z represents a divalent organic group containing a silicon atom.)
(In the formula, R 5 represents a divalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different. X represents a divalent organic group containing a silicon atom, provided that in formula (6) (The compound represented is a compound different from the compound represented by Formula (5).)

本発明の新規なメソゲン・ケイ素化合物共重合体は、熱伝導性に優れ、更に汎用されている溶媒への溶解性が顕著に優れることから、放熱材料、又は半導体装置及び電子部品のための樹脂材料として好適に用いることができる。   The novel mesogen-silicon compound copolymer of the present invention is excellent in thermal conductivity and remarkably excellent in solubility in a widely used solvent. Therefore, a heat dissipation material, or a resin for semiconductor devices and electronic components It can be suitably used as a material.

実施例1で得られた樹脂(1)の1H−NMRスペクトルである。1 is a 1 H-NMR spectrum of a resin (1) obtained in Example 1.

本発明のメソゲン・ケイ素化合物共重合体は、下記平均組成式(1)で表される構造を有し、重量平均分子量が450〜500,000のものである。
(式中、R1、R5はそれぞれ同一でも異なっていてもよい炭素原子数1〜20の2価炭化水素基を示す。また、R2は下記式
で示される構造から選ばれる2価の基である。pは0又は1である。R3及びR4はそれぞれ炭素原子数1〜4の1価炭化水素基、アルコキシ基又は(メタ)アクリル基であり、相互に異なっていても同一でもよい。また、q、rはそれぞれ0、1又は2である。但し、p=0の場合にq、rは同時に0ではない。l、mはそれぞれ1未満の正数を示し、n、oはそれぞれ0又は0.5以下の正数を示す。更にl、m、n、oはl+m+n+o=1を満たす。Z、Xはそれぞれ同一でも異なっていてもよいケイ素原子を含む2価の有機基を示す。)
The mesogen / silicon compound copolymer of the present invention has a structure represented by the following average composition formula (1), and has a weight average molecular weight of 450 to 500,000.
(In the formula, R 1 and R 5 each represent a divalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different. R 2 represents the following formula:
Is a divalent group selected from the structure represented by: p is 0 or 1. R 3 and R 4 are each a monovalent hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group, or a (meth) acryl group, and may be different or the same. Q and r are 0, 1 or 2, respectively. However, q and r are not 0 at the same time when p = 0. l and m each represent a positive number less than 1, and n and o each represents a positive number of 0 or 0.5 or less. Further, l, m, n, and o satisfy l + m + n + o = 1. Z and X each represent a divalent organic group containing a silicon atom which may be the same or different. )

上記式(1)中、R1、R5はそれぞれ同一でも異なっていてもよく、直鎖状、分岐状又は環状の、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、アラルキレン基や、これらの2種又はそれ以上が結合した基等の炭素原子数1〜20、特に1〜16の2価炭化水素基であり、原料入手の面から炭素原子数2〜10の2価炭化水素基が好ましい。R1、R5として、具体的には、
−CH2−、−(CH22−、−(CH23−、−(CH24−、−(CH25−、
−(CH26−、−(CH28−、−(CH210−、−(CH215−、
−(CH220−、−CH(CH3)−、−C(CH3)(CH3)−、
−CH2−CH(CH3)−、−CH2CH(CH3)CH2−、−CH=CH−、
−C≡C−、−CH=CH−CH=CH−、−CH=CH−C≡C−、
−CH2−CH(CH3)−CH(CH3)−、−CH2−CH(CH2CH2CH3)−、
−CH2−C(CH2CH2CH3)(CH2CH2CH3)−、
−CH2−C(CH2CH(CH3)CH3)(CH2CH2CH3)−、
−CH2−C(CH2CH(CH3)CH3)(CH2C(CH3)(CH3)CH3)−、
(式中、波線は結合手を示す。)
等が例示できる。
In the above formula (1), R 1 and R 5 may be the same or different, and may be a linear, branched or cyclic alkylene group, alkenylene group, alkynylene group, arylene group, aralkylene group, It is a divalent hydrocarbon group having 1 to 20 carbon atoms, particularly 1 to 16 carbon atoms, such as a group in which two or more are bonded, and a divalent hydrocarbon group having 2 to 10 carbon atoms is preferable from the viewpoint of obtaining raw materials. . As R 1 and R 5 , specifically,
-CH 2 -, - (CH 2 ) 2 -, - (CH 2) 3 -, - (CH 2) 4 -, - (CH 2) 5 -,
- (CH 2) 6 -, - (CH 2) 8 -, - (CH 2) 10 -, - (CH 2) 15 -,
- (CH 2) 20 -, - CH (CH 3) -, - C (CH 3) (CH 3) -,
-CH 2 -CH (CH 3) - , - CH 2 CH (CH 3) CH 2 -, - CH = CH-,
-C≡C-, -CH = CH-CH = CH-, -CH = CH-C≡C-,
-CH 2 -CH (CH 3) -CH (CH 3) -, - CH 2 -CH (CH 2 CH 2 CH 3) -,
-CH 2 -C (CH 2 CH 2 CH 3) (CH 2 CH 2 CH 3) -,
-CH 2 -C (CH 2 CH ( CH 3) CH 3) (CH 2 CH 2 CH 3) -,
-CH 2 -C (CH 2 CH ( CH 3) CH 3) (CH 2 C (CH 3) (CH 3) CH 3) -,
(In the formula, a wavy line indicates a bond.)
Etc. can be illustrated.

また、R2は下記式
で示される構造から選ばれる2価の基である。
pは0又は1である。
R 2 is the following formula
Is a divalent group selected from the structure represented by:
p is 0 or 1.

3及びR4はそれぞれ炭素原子数1〜4の1価炭化水素基、アルコキシ基又は(メタ)アクリル基であり、相互に異なっていても同一でもよい。R3及びR4の具体例としては、メチル基、エチル基、イソプロピル基、tert−ブチル基等のアルキル基、ビニル基、アリル基、メタリル基等のアルケニル基、メトキシ基、エトキシ基、イソプロピルオキシ基等のアルコキシ基、アクリル基、メタクリル基などが挙げられる。これらの中でもメトキシ基、エトキシ基、アリル基、メタリル基が熱硬化性を付与する官能基の導入の点から好ましい。また、q、rはそれぞれ0、1又は2であり、好ましくは0又は1である。但し、pが0の場合にq、rは同時に0ではない。 R 3 and R 4 are each a monovalent hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group, or a (meth) acryl group, and may be different or the same. Specific examples of R 3 and R 4 include alkyl groups such as methyl group, ethyl group, isopropyl group and tert-butyl group, alkenyl groups such as vinyl group, allyl group and methallyl group, methoxy group, ethoxy group and isopropyloxy. An alkoxy group such as a group, an acryl group, a methacryl group and the like can be mentioned. Among these, a methoxy group, an ethoxy group, an allyl group, and a methallyl group are preferable from the viewpoint of introduction of a functional group imparting thermosetting properties. Moreover, q and r are 0, 1 or 2, respectively, preferably 0 or 1. However, when p is 0, q and r are not 0 at the same time.

lは1未満の正数、好ましくは0.1〜0.7の正数、更に好ましくは0.2〜0.5の正数であり、mは1未満の正数、好ましくは0.1〜0.7の正数、更に好ましくは0.2〜0.5の正数であり、nは0又は0.5以下の正数、好ましくは0.05〜0.4の正数であり、oは0又は0.5以下の正数、好ましくは0.05〜0.2の正数である。但し、l、m、n、oはl+m+n+o=1を満たす。   l is a positive number less than 1, preferably 0.1 to 0.7, more preferably 0.2 to 0.5, and m is a positive number less than 1, preferably 0.1. A positive number of ˜0.7, more preferably a positive number of 0.2 to 0.5, and n is a positive number of 0 or 0.5 or less, preferably a positive number of 0.05 to 0.4. , O is a positive number of 0 or 0.5 or less, preferably a positive number of 0.05 to 0.2. However, l, m, n, and o satisfy l + m + n + o = 1.

Z、Xはそれぞれ同一でも異なっていてもよいケイ素原子を含む直鎖状又は分岐状の2価の有機基であり、例えば、下記一般式(2)で示される基が挙げられる。
(式中、aは0〜60の整数であり、bは0〜60の整数である。R6及びR7はそれぞれ炭素原子数1〜20の1価炭化水素基であり、相互に異なっていても同一でもよい。但し、R6、R7は同時にメチル基ではない。)
Z and X are linear or branched divalent organic groups containing silicon atoms which may be the same or different, and examples thereof include a group represented by the following general formula (2).
(In the formula, a is an integer of 0 to 60, and b is an integer of 0 to 60. R 6 and R 7 are each a monovalent hydrocarbon group having 1 to 20 carbon atoms, and are different from each other. (However, R 6 and R 7 are not methyl groups at the same time.)

上記式(2)中、R6、R7はそれぞれ炭素原子数1〜20、好ましくは1〜6の1価炭化水素基である。1価炭化水素基として、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、オクチル基、デシル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基、プロペニル基等のアルケニル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基などが挙げられ、これらの中でもメチル基、デシル基、フェニル基が耐熱性の観点から好ましい。但し、R6、R7は同時にメチル基ではない。
aは0〜60の整数、好ましくは1〜10の整数であり、bは0〜60の整数、好ましくは0〜10の整数である。
In the above formula (2), R 6 and R 7 are each a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms. Specific examples of the monovalent hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, an octyl group, and a decyl group. Alkyl group, cycloalkyl group such as cyclohexyl group, alkenyl group such as vinyl group, allyl group, propenyl group, aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group, benzyl group, phenylethyl group, phenylpropyl And an aralkyl group such as a group. Among these, a methyl group, a decyl group, and a phenyl group are preferable from the viewpoint of heat resistance. However, R 6 and R 7 are not methyl groups at the same time.
a is an integer of 0 to 60, preferably an integer of 1 to 10, and b is an integer of 0 to 60, preferably an integer of 0 to 10.

式(2)で示される基としては、以下のものが挙げられる。
(式中、Meはメチル基である。)
Examples of the group represented by the formula (2) include the following.
(In the formula, Me is a methyl group.)

本発明のメソゲン・ケイ素化合物共重合体は、テトラヒドロフランを展開溶媒としてゲルパーミエーションクロマトグラフィーにて測定したポリスチレン換算の重量平均分子量が450〜500,000、好ましくは1,000〜200,000、更に好ましは2,000〜100,000である共重合体である。重量平均分子量が小さすぎると樹脂が脆く、取り扱い性に難が出ることがあり、大きすぎると溶媒への溶解性が悪化する。   The mesogen / silicon compound copolymer of the present invention has a polystyrene-reduced weight average molecular weight of 450 to 500,000, preferably 1,000 to 200,000, as measured by gel permeation chromatography using tetrahydrofuran as a developing solvent. Preference is given to copolymers which are between 2,000 and 100,000. If the weight average molecular weight is too small, the resin is fragile and the handleability may be difficult. If it is too large, the solubility in a solvent is deteriorated.

上記式(1)で表される繰返し単位を含有するメソゲン・ケイ素化合物共重合体において、各単位はランダムに結合していても、ブロック重合体として結合していてもよいが、ランダム構造であることが好ましい。
このようなメソゲン・ケイ素化合物共重合体としては、以下のものが挙げられる。
In the mesogen-silicon compound copolymer containing the repeating unit represented by the above formula (1), each unit may be bonded randomly or may be bonded as a block polymer, but has a random structure. It is preferable.
Examples of such mesogen / silicon compound copolymers include the following.

(式中、Meはメチル基である。) (In the formula, Me is a methyl group.)

次に、本発明のメソゲン・ケイ素化合物共重合体の製造方法を示すが、この限りではない。
本発明のメソゲン・ケイ素化合物共重合体は、下記一般式(3)、下記一般式(4)、下記一般式(5)、下記一般式(6)で表される化合物から選択される化合物を用いて、以下に示す方法により、製造することができる。なお、前記式(1)において、nが0のときは下記式(4)で表わされる化合物、oが0のときは下記式(6)で表わされる化合物を用いることなく製造される。
Next, although the manufacturing method of the mesogen silicon compound copolymer of this invention is shown, it is not this limitation.
The mesogen / silicon compound copolymer of the present invention comprises a compound selected from compounds represented by the following general formula (3), the following general formula (4), the following general formula (5), and the following general formula (6). And can be produced by the method shown below. In the formula (1), when n is 0, it is produced without using a compound represented by the following formula (4), and when o is 0, it is produced without using a compound represented by the following formula (6).

下記一般式(3)及び下記一般式(4)で表される化合物を無水酢酸等の低級脂肪酸の無水物と反応させ、アセチル化した後に、それらと下記一般式(5)及び/又は下記一般式(6)で表される化合物とを脱酸(酢酸)重縮合反応させることで、本発明のメソゲン・ケイ素化合物共重合体を製造することができる。
(式中、R2、R3、R4、p、q、rは上記と同じである。)
The compounds represented by the following general formula (3) and the following general formula (4) are reacted with an anhydride of a lower fatty acid such as acetic anhydride and acetylated, and then are combined with the following general formula (5) and / or the following general formula The mesogen / silicon compound copolymer of the present invention can be produced by subjecting the compound represented by the formula (6) to a deoxidation (acetic acid) polycondensation reaction.
(In the formula, R 2 , R 3 , R 4 , p, q and r are the same as above.)

このような式(4)で表される化合物の例として、以下のものが挙げられる。
(式中、Meはメチル基、Etはエチル基である。)
Examples of such a compound represented by the formula (4) include the following.
(In the formula, Me is a methyl group, and Et is an ethyl group.)

(式中、R1、Zは上記と同じである。) (In the formula, R 1 and Z are the same as above.)

(式中、R5、Xは上記と同じである。)
但し、式(6)で表される化合物は、式(5)で表される化合物とは異なる化合物である。
(In the formula, R 5 and X are the same as above.)
However, the compound represented by Formula (6) is a compound different from the compound represented by Formula (5).

このような式(5)、(6)で表される化合物の例として、以下のものが挙げられる。
Examples of such compounds represented by formulas (5) and (6) include the following.

(式中、Meはメチル基である。) (In the formula, Me is a methyl group.)

本発明のメソゲン・ケイ素化合物共重合体の製造方法としては、式(3)、(4)で表される化合物を、無水酢酸、無水プロピオン酸、無水酪酸、無水吉草酸等の低級脂肪酸の無水物を用いてそれぞれ個別に、又は一括して酢酸エステルとした後、別の反応槽又は同一の反応槽で、式(5)、(6)で表される化合物と脱酸(酢酸)重縮合反応させる方法が挙げられる。なお、上述したように、式(4)で表される化合物と式(6)で表される化合物は用いても用いなくてもよい。   As a method for producing the mesogen / silicon compound copolymer of the present invention, the compounds represented by the formulas (3) and (4) may be prepared by adding anhydrous fatty acids such as acetic anhydride, propionic anhydride, butyric anhydride, and valeric anhydride. The product is individually or collectively converted into an acetate ester, and then deoxidized (acetic acid) polycondensation with the compounds represented by formulas (5) and (6) in another reaction tank or the same reaction tank. The method of making it react is mentioned. As described above, the compound represented by formula (4) and the compound represented by formula (6) may or may not be used.

式(4)で表される化合物を使用する場合の導入量は、式(3)及び(4)で表される化合物の合計添加量の内、5〜50mol%であることが好ましく、より好ましくは10〜30mol%である。式(4)で表される化合物の導入量が少ない場合は官能基導入量が減少し、官能基導入による物性の変化が表れにくいおそれがあり、式(4)で表される化合物の導入量が多い場合は熱伝導率が低下することがある。   When the compound represented by the formula (4) is used, the introduction amount is preferably 5 to 50 mol%, more preferably, of the total amount of the compounds represented by the formulas (3) and (4). Is 10-30 mol%. When the introduction amount of the compound represented by formula (4) is small, the introduction amount of the functional group is decreased, and there is a possibility that the change in physical properties due to the introduction of the functional group may not easily occur. The introduction amount of the compound represented by formula (4) When there is much, thermal conductivity may fall.

式(5)、(6)で表される化合物の導入量は、式(3)及び(4)で表される化合物と等モルとなるように添加すればよく、式(3)及び式(4)で表される化合物と式(5)及び式(6)で表される化合物とのモル比[式(3)+式(4)]/[式(5)+式(6)]は、0.90〜1.10であることが好ましく、より好ましくは0.95〜1.05である。式(3)+式(4)で表される化合物と式(5)+式(6)で表される化合物の導入量のモル比が異なりすぎると、高分子量の樹脂が得られない可能性がある。
なお、上記式(5)及び式(6)で表される化合物は、式(3)及び式(4)で表される化合物と低級脂肪酸の無水物とを反応させる前に添加していてもよい。
The introduction amount of the compounds represented by the formulas (5) and (6) may be added so as to be equimolar with the compounds represented by the formulas (3) and (4). The molar ratio of the compound represented by 4) and the compound represented by Formula (5) and Formula (6) [Formula (3) + Formula (4)] / [Formula (5) + Formula (6)] is 0.90 to 1.10, more preferably 0.95 to 1.05. If the molar ratio of the introduction amount of the compound represented by formula (3) + formula (4) and the compound represented by formula (5) + formula (6) is too different, a high molecular weight resin may not be obtained. There is.
The compounds represented by the above formulas (5) and (6) may be added before reacting the compounds represented by the formulas (3) and (4) with the anhydride of the lower fatty acid. Good.

低級脂肪酸の無水物の使用量は、上記式(3)及び式(4)で表される化合物中のフェノール性水酸基の合計に対し、1.01〜1.50倍当量であることが好ましく、より好ましくは1.02〜1.20倍当量である。   The amount of the lower fatty acid anhydride used is preferably 1.01 to 1.50 times equivalent to the total of phenolic hydroxyl groups in the compounds represented by the above formulas (3) and (4). More preferably, it is 1.02-1.20 times equivalent.

上記式(3)及び式(4)で表される化合物と低級脂肪酸の無水物との反応は、通常100〜180℃、更には130〜150℃の温度で、0.5〜2時間、特に1〜1.5時間行われることが好ましい。反応温度が高すぎると低級脂肪酸の無水物が揮発してしまう場合があり、低すぎると反応の進行が極度に遅くなる場合がある。   The reaction between the compounds represented by the above formulas (3) and (4) and the lower fatty acid anhydride is usually 100 to 180 ° C., more preferably 130 to 150 ° C., for 0.5 to 2 hours, particularly It is preferable to be performed for 1 to 1.5 hours. If the reaction temperature is too high, the anhydride of the lower fatty acid may volatilize, and if it is too low, the progress of the reaction may become extremely slow.

また、反応は無溶媒条件もしくは溶媒存在下で行うのが好ましく、使用溶媒としては、トルエン、ベンゼン、キシレン、クロロホルム、四塩化炭素、エチルシクロヘキサン、イソドデカン、イソノナン、テトラヒドロフラン、1,4−ジオキサン、シクロペンタノン、酢酸エチル、アセトン等が例示できる。また、反応温度を上げるために無溶媒条件で行うのが特に好ましい。   The reaction is preferably carried out in the absence of solvent or in the presence of a solvent. Solvents used include toluene, benzene, xylene, chloroform, carbon tetrachloride, ethylcyclohexane, isododecane, isononane, tetrahydrofuran, 1,4-dioxane, cyclohexane. Examples include pentanone, ethyl acetate, and acetone. Further, it is particularly preferable to carry out the reaction under solvent-free conditions in order to increase the reaction temperature.

上記製造方法において、脱酸(酢酸)重縮合反応には、触媒を用いてもよく、触媒としては、例えば、酸化ゲルマニウム等のゲルマニウム化合物、シュウ酸第一スズ、酢酸第一スズ、アルキルスズ酸化物、ジアリールスズ酸化物等のスズ化合物、二酸化チタン、チタンアルコオキシド類、アルコオキシチタンケイ酸塩のようなチタン化合物、酢酸ナトリウム、酢酸カリウム、酢酸カルシウム、酢酸亜鉛、酢酸第一鉄のような有機酸の金属塩、BF3、AlCl3のようなルイス酸類、アミン類、アミド類、塩酸、硫酸等の無機酸等が挙げられる。触媒量は適宜調整すればよいが、通常、用いる総樹脂に対し0.1〜10mol%、好ましくは0.5〜5mol%用いられる。 In the above production method, a catalyst may be used for the deoxidation (acetic acid) polycondensation reaction. Examples of the catalyst include germanium compounds such as germanium oxide, stannous oxalate, stannous acetate, and alkyltin oxide. , Tin compounds such as diaryl tin oxide, titanium compounds such as titanium dioxide, titanium alkoxides, alkoxytitanium silicate, organic compounds such as sodium acetate, potassium acetate, calcium acetate, zinc acetate, ferrous acetate Examples include acid metal salts, Lewis acids such as BF 3 and AlCl 3 , amines, amides, inorganic acids such as hydrochloric acid and sulfuric acid, and the like. The amount of the catalyst may be appropriately adjusted, but is usually 0.1 to 10 mol%, preferably 0.5 to 5 mol%, based on the total resin used.

重縮合反応は、通常50〜350℃、好ましくは240〜350℃の温度で、窒素等の不活性ガスの存在下、常圧又は減圧下に、通常0.5〜24時間、好ましくは1〜5時間行われる。減圧下での到達真空度は1kPa以下が好ましく、0.6kPa以下がより好ましく、0.3kPa以下が特に好ましい。   The polycondensation reaction is usually at a temperature of 50 to 350 ° C., preferably 240 to 350 ° C., in the presence of an inert gas such as nitrogen, and under normal pressure or reduced pressure, usually for 0.5 to 24 hours, preferably 1 to It takes 5 hours. The ultimate degree of vacuum under reduced pressure is preferably 1 kPa or less, more preferably 0.6 kPa or less, and particularly preferably 0.3 kPa or less.

一般的に、メソゲンを多く保有する樹脂は、メソゲンのスタッキングにより溶媒に難溶性を示す。しかしながら、本発明のメソゲン・ケイ素化合物共重合体は、汎用されている溶媒への溶解性が顕著に優れている。具体的に、溶媒としては、トルエン、ベンゼン、キシレン、スチレン、フェノール、クロロホルム、四塩化炭素、ヘキサン、シクロヘキサン、エチルシクロヘキサン、イソドデカン、イソノナン、テトラヒドロフラン、1,4−ジオキサン、シクロペンタノン、ジエチルアミン、トリエチルアミン、酢酸エチル、アセトン等が例示できる。   In general, a resin having a large amount of mesogen exhibits poor solubility in a solvent due to mesogen stacking. However, the mesogen / silicon compound copolymer of the present invention is remarkably excellent in solubility in commonly used solvents. Specifically, the solvents include toluene, benzene, xylene, styrene, phenol, chloroform, carbon tetrachloride, hexane, cyclohexane, ethylcyclohexane, isododecane, isononane, tetrahydrofuran, 1,4-dioxane, cyclopentanone, diethylamine, triethylamine. , Ethyl acetate, acetone and the like.

本発明のメソゲン・ケイ素化合物共重合体は、例えば放熱材料、又は半導体装置及び電子部品のための樹脂材料として好適に用いることができる。樹脂材料としての使用態様は、例えば、半導体装置の製造に使用される封止剤あるいは接着剤;ダイオード、トランジスタ、IC、及びLSI等の電子部品表面の保護膜材料、例えば、半導体素子表面のジャンクションコート膜、パッシベーション膜及びバッファーコート膜;LSI等のα線遮蔽膜;多層配線の層間絶縁膜;プリントサーキットボードのコンフォーマルコート;イオン注入マスク;太陽電池の表面保護膜などが挙げられる。   The mesogen / silicon compound copolymer of the present invention can be suitably used as, for example, a heat dissipation material or a resin material for semiconductor devices and electronic components. Examples of the usage as a resin material include: a sealant or an adhesive used in the manufacture of a semiconductor device; a protective film material on the surface of an electronic component such as a diode, transistor, IC, and LSI; Coating film, passivation film and buffer coating film; α-ray shielding film such as LSI; Interlayer insulating film of multilayer wiring; Conformal coating of printed circuit board; Ion implantation mask;

以下、実施例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。なお、下記例中、Meはメチル基を示す。また、下記例中の樹脂はランダム共重合体である。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, Me represents a methyl group. Moreover, the resin in the following example is a random copolymer.

実施例において使用した化合物を以下に示す。
The compounds used in the examples are shown below.

[実施例1]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器を具備した500mLフラスコ内に、上記式(S−1)で示される化合物50.00g(0.269モル)、上記式(S−2)で示される化合物74.75g(0.296モル)、及び無水酢酸57.57g(0.564モル)を加えた後、窒素ガス雰囲気で150℃に加温し、1時間撹拌を行った。その後、240℃まで加温し、更に2時間撹拌を行って、理論酢酸生成量の9割程度の酢酸を留出させた後、240℃のまま減圧し、溶融重合を1.5時間行った。その結果、得られた樹脂を樹脂(1)とした。この樹脂をGPCカラム TSKgel Super HZM−H(東ソー社製)を用い、流量0.6ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(1)の重量平均分子量は2,500であった。このものを1H−核磁気共鳴スペクトル分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均組成式で示される構造を有する化合物であることがわかった。1H−NMRスペクトルを図1に示す。
[Example 1]
In a 500 mL flask equipped with a stirrer, a thermometer, a nitrogen displacement device, a Dean-Stark device and a reflux condenser, 50.00 g (0.269 mol) of the compound represented by the above formula (S-1), After adding 74.75 g (0.296 mol) of the compound represented by S-2) and 57.57 g (0.564 mol) of acetic anhydride, the mixture was heated to 150 ° C. in a nitrogen gas atmosphere and stirred for 1 hour. went. Thereafter, the mixture was heated to 240 ° C., and further stirred for 2 hours to distill off about 90% of the theoretical acetic acid production amount, and then reduced in pressure at 240 ° C., and melt polymerization was carried out for 1.5 hours. . As a result, the obtained resin was designated as resin (1). Gel permeation chromatography using GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) as a standard and monodisperse polystyrene as a standard under analysis conditions of flow rate 0.6 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. The weight average molecular weight of the resin (1) was 2,500 as measured by chromatography (GPC). As a result of 1 H-nuclear magnetic resonance spectrum analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis) of this product, it was found to be a compound having a structure represented by the following average composition formula. . The 1 H-NMR spectrum is shown in FIG.

[実施例2]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器を具備した500mLフラスコ内に、上記式(S−1)で示される化合物50.00g(0.269モル)、上記式(S−2)で示される化合物93.44g(0.336モル)、上記式(S−3)で示される化合物20.69g(0.067モル)、及び無水酢酸71.96g(0.705モル)を加えた後、窒素ガス雰囲気で150℃に加温し、1時間撹拌を行った。その後、240℃まで加温し、更に2時間撹拌を行って、理論酢酸生成量の9割程度の酢酸を留出させた後、240℃のまま減圧し、溶融重合を1.5時間行った。その結果、得られた樹脂を樹脂(2)とした。この樹脂をGPCカラム TSKgel Super HZM−H(東ソー社製)を用い、流量0.6ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(2)の重量平均分子量は3,000であった。このものを1H−核磁気共鳴スペクトル分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均組成式で示される構造を有する化合物であることがわかった。
[Example 2]
In a 500 mL flask equipped with a stirrer, a thermometer, a nitrogen displacement device, a Dean-Stark device and a reflux condenser, 50.00 g (0.269 mol) of the compound represented by the above formula (S-1), 93.44 g (0.336 mol) of the compound represented by S-2), 20.69 g (0.067 mol) of the compound represented by the above formula (S-3), and 71.96 g (0.705 mol) of acetic anhydride. Then, the mixture was heated to 150 ° C. in a nitrogen gas atmosphere and stirred for 1 hour. Thereafter, the mixture was heated to 240 ° C., and further stirred for 2 hours to distill off about 90% of the theoretical acetic acid production amount, and then reduced in pressure at 240 ° C., and melt polymerization was carried out for 1.5 hours. . As a result, the obtained resin was named Resin (2). Gel permeation chromatography using GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) as a standard and monodisperse polystyrene as a standard under analysis conditions of flow rate 0.6 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. The weight average molecular weight of the resin (2) was 3,000 as measured by chromatography (GPC). As a result of 1 H-nuclear magnetic resonance spectrum analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis) of this product, it was found to be a compound having a structure represented by the following average composition formula. .

[実施例3]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器を具備した500mLフラスコ内に、上記式(S−1)で示される化合物50.00g(0.269モル)、上記式(S−2)で示される化合物93.44g(0.336モル)、上記式(S−4)で示される化合物23.52g(0.067モル)、及び無水酢酸71.96g(0.705モル)を加えた後、窒素ガス雰囲気で150℃に加温し、1時間撹拌を行った。その後、240℃まで加温し、更に2時間撹拌を行って、理論酢酸生成量の9割程度の酢酸を留出させた後、240℃のまま減圧し、溶融重合を1.5時間行った。その結果、得られた樹脂を樹脂(3)とした。この樹脂をGPCカラム TSKgel Super HZM−H(東ソー社製)を用い、流量0.6ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(3)の重量平均分子量は3,600であった。このものを1H−核磁気共鳴スペクトル分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均組成式で示される構造を有する化合物であることがわかった。
[Example 3]
In a 500 mL flask equipped with a stirrer, a thermometer, a nitrogen displacement device, a Dean-Stark device and a reflux condenser, 50.00 g (0.269 mol) of the compound represented by the above formula (S-1), 93.44 g (0.336 mol) of the compound represented by S-2), 23.52 g (0.067 mol) of the compound represented by the above formula (S-4), and 71.96 g (0.705 mol) of acetic anhydride. Then, the mixture was heated to 150 ° C. in a nitrogen gas atmosphere and stirred for 1 hour. Thereafter, the mixture was heated to 240 ° C., and further stirred for 2 hours to distill off about 90% of the theoretical acetic acid production amount, and then reduced in pressure at 240 ° C., and melt polymerization was carried out for 1.5 hours. . As a result, the obtained resin was designated as resin (3). Gel permeation chromatography using GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) as a standard and monodisperse polystyrene as a standard under analysis conditions of flow rate 0.6 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. The weight average molecular weight of the resin (3) was 3,600 as measured by chromatography (GPC). As a result of 1 H-nuclear magnetic resonance spectrum analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis) of this product, it was found to be a compound having a structure represented by the following average composition formula. .

[実施例4]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器を具備した500mLフラスコ内に、上記式(S−1)で示される化合物50.00g(0.269モル)、上記式(S−2)で示される化合物59.80g(0.215モル)、上記式(S−5)で示される化合物34.48g(0.054モル)、及び無水酢酸57.57g(0.564モル)を加えた後、窒素ガス雰囲気で150℃に加温し、1時間撹拌を行った。その後、240℃まで加温し、更に2時間撹拌を行って、理論酢酸生成量の9割程度の酢酸を留出させた後、240℃のまま減圧し、溶融重合を1.5時間行った。その結果、得られた樹脂を樹脂(4)とした。この樹脂をGPCカラム TSKgel Super HZM−H(東ソー社製)を用い、流量0.6ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(4)の重量平均分子量は2,500であった。このものを1H−核磁気共鳴スペクトル分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均組成式で示される構造を有する化合物であることがわかった。
[Example 4]
In a 500 mL flask equipped with a stirrer, a thermometer, a nitrogen displacement device, a Dean-Stark device and a reflux condenser, 50.00 g (0.269 mol) of the compound represented by the above formula (S-1), 59.80 g (0.215 mol) of the compound represented by S-2), 34.48 g (0.054 mol) of the compound represented by the above formula (S-5), and 57.57 g (0.564 mol) of acetic anhydride. Then, the mixture was heated to 150 ° C. in a nitrogen gas atmosphere and stirred for 1 hour. Thereafter, the mixture was heated to 240 ° C., and further stirred for 2 hours to distill off about 90% of the theoretical acetic acid production amount, and then reduced in pressure at 240 ° C., and melt polymerization was carried out for 1.5 hours. . As a result, the obtained resin was designated as resin (4). Gel permeation chromatography using GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) as a standard and monodisperse polystyrene as a standard under analysis conditions of flow rate 0.6 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. The weight average molecular weight of the resin (4) was 2,500 as measured by chromatography (GPC). As a result of 1 H-nuclear magnetic resonance spectrum analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis) of this product, it was found to be a compound having a structure represented by the following average composition formula. .

[実施例5]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器を具備した500mLフラスコ内に、上記式(S−1)で示される化合物50.00g(0.269モル)、上記式(S−6)で示される化合物216.70g(0.296モル)、及び無水酢酸57.57g(0.564モル)を加えた後、窒素ガス雰囲気で150℃に加温し、1時間撹拌を行った。その後、240℃まで加温し、更に2時間撹拌を行って、理論酢酸生成量の9割程度の酢酸を留出させた後、240℃のまま減圧し、溶融重合を1.5時間行った。その結果、得られた樹脂を樹脂(5)とした。この樹脂をGPCカラム TSKgel Super HZM−H(東ソー社製)を用い、流量0.6ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(5)の重量平均分子量は4,900であった。このものを1H−核磁気共鳴スペクトル分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均組成式で示される構造を有する化合物であることがわかった。
[Example 5]
In a 500 mL flask equipped with a stirrer, a thermometer, a nitrogen displacement device, a Dean-Stark device and a reflux condenser, 50.00 g (0.269 mol) of the compound represented by the above formula (S-1), After adding 216.70 g (0.296 mol) of the compound represented by S-6) and 57.57 g (0.564 mol) of acetic anhydride, the mixture was heated to 150 ° C. in a nitrogen gas atmosphere and stirred for 1 hour. went. Thereafter, the mixture was heated to 240 ° C., and further stirred for 2 hours to distill off about 90% of the theoretical acetic acid production amount, and then reduced in pressure at 240 ° C., and melt polymerization was carried out for 1.5 hours. . As a result, the obtained resin was designated as resin (5). Gel permeation chromatography using GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) as a standard and monodisperse polystyrene as a standard under analysis conditions of flow rate 0.6 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. The weight average molecular weight of the resin (5) was 4,900 as measured by chromatography (GPC). As a result of 1 H-nuclear magnetic resonance spectrum analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis) of this product, it was found to be a compound having a structure represented by the following average composition formula. .

[溶解性試験]
上記実施例で得られた樹脂を各々細かく砕き、それらを表1に示す各溶媒100質量部に50質量部加え、撹拌装置(株式会社シンキー製 自転公転方式スーパーミキサー ARE−250)により、2,000rpmで20分間、室温(23℃)にて撹拌を行い、その溶解性を目視により調べた。結果を表1に示す。
◎:溶解 ○:分散
[Solubility test]
Each of the resins obtained in the above examples was finely crushed, added to 50 parts by mass of each solvent shown in Table 1, and then stirred with a stirring device (spinning rotation revolution super mixer ARE-250 manufactured by Shinky Corporation). Stirring was performed at 000 rpm for 20 minutes at room temperature (23 ° C.), and the solubility was visually examined. The results are shown in Table 1.
◎: Dissolution ○: Dispersion

Claims (3)

下記平均組成式(1)で表される構造を有する重量平均分子量が450〜500,000のメソゲン・ケイ素化合物共重合体。
(式中、R1、R5はそれぞれ同一でも異なっていてもよい炭素原子数1〜20の2価炭化水素基を示す。また、R2は下記式
で示される構造から選ばれる2価の基である。pは0又は1である。R3及びR4はそれぞれ炭素原子数1〜4の1価炭化水素基、アルコキシ基又は(メタ)アクリル基であり、相互に異なっていても同一でもよい。また、q、rはそれぞれ0、1又は2である。但し、p=0の場合にq、rは同時に0ではない。l、mはそれぞれ1未満の正数を示し、n、oはそれぞれ0又は0.5以下の正数を示す。更にl、m、n、oはl+m+n+o=1を満たす。Z、Xはそれぞれ同一でも異なっていてもよいケイ素原子を含む2価の有機基を示す。)
A mesogen / silicon compound copolymer having a structure represented by the following average composition formula (1) and having a weight average molecular weight of 450 to 500,000.
(In the formula, R 1 and R 5 each represent a divalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different. R 2 represents the following formula:
Is a divalent group selected from the structure represented by: p is 0 or 1. R 3 and R 4 are each a monovalent hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group, or a (meth) acryl group, and may be different or the same. Q and r are 0, 1 or 2, respectively. However, q and r are not 0 at the same time when p = 0. l and m each represent a positive number less than 1, and n and o each represents a positive number of 0 or 0.5 or less. Further, l, m, n, and o satisfy l + m + n + o = 1. Z and X each represent a divalent organic group containing a silicon atom which may be the same or different. )
前記平均組成式(1)中、Zが下記一般式(2)で示される基であり、oが0であることを特徴とする請求項1に記載のメソゲン・ケイ素化合物共重合体。
(式中、aは0〜60の整数であり、bは0〜60の整数である。R6及びR7はそれぞれ炭素原子数1〜20の1価炭化水素基であり、相互に異なっていても同一でもよい。但し、R6、R7は同時にメチル基ではない。)
2. The mesogen / silicon compound copolymer according to claim 1, wherein in the average composition formula (1), Z is a group represented by the following general formula (2), and o is 0.
(In the formula, a is an integer of 0 to 60, and b is an integer of 0 to 60. R 6 and R 7 are each a monovalent hydrocarbon group having 1 to 20 carbon atoms, and are different from each other. (However, R 6 and R 7 are not methyl groups at the same time.)
請求項1又は2に記載のメソゲン・ケイ素化合物共重合体の製造方法であって、下記一般式(3)で表される化合物、及び場合により下記一般式(4)で表される化合物を低級脂肪酸の無水物と反応させ、アセチル化した後に、それらと下記一般式(5)及び/又は下記一般式(6)で表される化合物とを脱酸重縮合反応させることを特徴とするメソゲン・ケイ素化合物共重合体の製造方法。
(式中、R2は下記式
で示される構造から選ばれる2価の基である。pは0又は1である。R3及びR4はそれぞれ炭素原子数1〜4のアルキル基、アルコキシ基又は(メタ)アクリル基であり、相互に異なっていても同一でもよい。また、q、rはそれぞれ0、1又は2である。但し、p=0の場合にq、rは同時に0ではない。)
(式中、R1は同一でも異なっていてもよい炭素原子数1〜20の2価炭化水素基を示す。Zはケイ素原子を含む2価の有機基を示す。)
(式中、R5は同一でも異なっていてもよい炭素原子数1〜20の2価炭化水素基を示す。Xはケイ素原子を含む2価の有機基を示す。但し、式(6)で表される化合物は、式(5)で表される化合物とは異なる化合物である。)
A method for producing a mesogen / silicon compound copolymer according to claim 1 or 2, wherein a compound represented by the following general formula (3) and, optionally, a compound represented by the following general formula (4) are lower After reacting with an anhydride of fatty acid and acetylating, deoxidation polycondensation reaction of these with a compound represented by the following general formula (5) and / or the following general formula (6) is performed. A method for producing a silicon compound copolymer.
(In the formula, R 2 represents the following formula:
Is a divalent group selected from the structure represented by: p is 0 or 1. R 3 and R 4 are each an alkyl group having 1 to 4 carbon atoms, an alkoxy group, or a (meth) acryl group, and may be different or the same. Q and r are 0, 1 or 2, respectively. However, q and r are not 0 at the same time when p = 0. )
(In the formula, R 1 represents a divalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different. Z represents a divalent organic group containing a silicon atom.)
(In the formula, R 5 represents a divalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different. X represents a divalent organic group containing a silicon atom, provided that in formula (6) (The compound represented is a compound different from the compound represented by Formula (5).)
JP2014000126A 2014-01-06 2014-01-06 Novel mesogen / silicon compound copolymer and method for producing the copolymer Active JP6107671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000126A JP6107671B2 (en) 2014-01-06 2014-01-06 Novel mesogen / silicon compound copolymer and method for producing the copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000126A JP6107671B2 (en) 2014-01-06 2014-01-06 Novel mesogen / silicon compound copolymer and method for producing the copolymer

Publications (2)

Publication Number Publication Date
JP2015129205A true JP2015129205A (en) 2015-07-16
JP6107671B2 JP6107671B2 (en) 2017-04-05

Family

ID=53760195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000126A Active JP6107671B2 (en) 2014-01-06 2014-01-06 Novel mesogen / silicon compound copolymer and method for producing the copolymer

Country Status (1)

Country Link
JP (1) JP6107671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021518464A (en) * 2018-03-22 2021-08-02 モメンティブ パフォーマンス マテリアルズ インコーポレイテッドMomentive Performance Materials Inc. Thermally conductive silicone polymer composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465795A (en) * 1977-11-04 1979-05-26 Asahi Chem Ind Co Ltd Preparation of aromatic polyester
JPH02272022A (en) * 1989-03-06 1990-11-06 General Electric Co <Ge> Aromatic polyester-siloxane block copolymer and its manufacture
JPH1020531A (en) * 1996-06-28 1998-01-23 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2011084714A (en) * 2009-09-16 2011-04-28 Kaneka Corp High thermal conductive thermoplastic resin composition for extrusion molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465795A (en) * 1977-11-04 1979-05-26 Asahi Chem Ind Co Ltd Preparation of aromatic polyester
JPH02272022A (en) * 1989-03-06 1990-11-06 General Electric Co <Ge> Aromatic polyester-siloxane block copolymer and its manufacture
JPH1020531A (en) * 1996-06-28 1998-01-23 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2011084714A (en) * 2009-09-16 2011-04-28 Kaneka Corp High thermal conductive thermoplastic resin composition for extrusion molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021518464A (en) * 2018-03-22 2021-08-02 モメンティブ パフォーマンス マテリアルズ インコーポレイテッドMomentive Performance Materials Inc. Thermally conductive silicone polymer composition

Also Published As

Publication number Publication date
JP6107671B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5369629B2 (en) Crosslinkable silicon compound, method for producing the same, crosslinkable composition, siloxane polymer, silicone film, silicon compound as a raw material for the crosslinkable silicon compound, and method for producing the same
JP4958106B2 (en) Dispersant, epoxy resin composition containing dispersant, and method for producing the same
KR102590185B1 (en) Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device
JP2006077234A (en) Resin composition for sealing led device, and cured product of the composition
EP2159249B1 (en) Hydrosilylated polymer, heat-resistant resin composition, and heat-resistant film
JP4548855B2 (en) Thermosetting polyimide silicone resin composition and cured film thereof
TW201237071A (en) Compound having hindered amine skeleton, and resin composition
JP6170129B2 (en) Resin-linear organosiloxane block copolymer composition
JP6198685B2 (en) Polybenzoxazine-silica composite and method for producing the same
JP2011190413A (en) Siloxane polymer crosslinking-cured product
JP5345904B2 (en) Liquid composition and electronics packaging material
TW201211114A (en) Modified siloxane polymer composition, encapsulant obtained from the modified siloxane polymer composition, and electronic device including the encapsulant
JP2015155541A (en) Siloxane polymer crosslinked cured product
JP6107671B2 (en) Novel mesogen / silicon compound copolymer and method for producing the copolymer
KR20170134509A (en) High-RI Siloxane Monomers, Their Polymerization and Uses
JP2009249312A (en) Silane compound
JP6107670B2 (en) Novel mesogen / silicon compound copolymer and method for producing the copolymer
JP6065858B2 (en) Resin composition, mesogenic group-containing cured product and method for producing the same
JP6164123B2 (en) Curable composition, mesogenic group-containing cured product and method for producing the same
TW201902988A (en) Silicone-modified polyimide resin composition suitable for the use of primer that has excellent coatability
JP2006022152A (en) Curable resin composition
TWI746448B (en) Epoxy resin molding material, molded product and cured product
JP2008280534A (en) Resin composition for sealing optic-related device, its cured product, and sealing method of semiconductor element
WO2013062303A1 (en) Modified silicone resin composition
JP2003138104A (en) Epoxy resin composition for sealing semiconductor and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6107671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150