JP2015124683A - Fuel injection control device for engine - Google Patents

Fuel injection control device for engine Download PDF

Info

Publication number
JP2015124683A
JP2015124683A JP2013269413A JP2013269413A JP2015124683A JP 2015124683 A JP2015124683 A JP 2015124683A JP 2013269413 A JP2013269413 A JP 2013269413A JP 2013269413 A JP2013269413 A JP 2013269413A JP 2015124683 A JP2015124683 A JP 2015124683A
Authority
JP
Japan
Prior art keywords
fuel injection
engine
fuel
increase correction
injection control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013269413A
Other languages
Japanese (ja)
Other versions
JP6288419B2 (en
Inventor
松村 航
Ko Matsumura
航 松村
敏行 宮田
Toshiyuki Miyata
敏行 宮田
上田 克則
Katsunori Ueda
克則 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2013269413A priority Critical patent/JP6288419B2/en
Priority to US14/581,534 priority patent/US9334821B2/en
Publication of JP2015124683A publication Critical patent/JP2015124683A/en
Application granted granted Critical
Publication of JP6288419B2 publication Critical patent/JP6288419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/061Introducing corrections for particular operating conditions for engine starting or warming up the corrections being time dependent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • F01N11/005Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus the temperature or pressure being estimated, e.g. by means of a theoretical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0418Methods of control or diagnosing using integration or an accumulated value within an elapsed period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0421Methods of control or diagnosing using an increment counter when a predetermined event occurs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1626Catalyst activation temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection control device for an engine, which is enabled to suppress a NOx emission amount by performing a proper increase correction of a fuel at a restarting time after stop period of the engine.SOLUTION: A fuel injection control device is constituted to comprise: an injection amount control part 61 for controlling a fuel injection amount; a supply oxygen amount detector 62 for detecting the supply oxygen amount; an activation determination part 63 for determining whether or not an exhaust emission control catalyst 52 is in an active state; and an increase correction part 64 for performing an increase correction of a fuel injection quantity in accordance with the detection result of the supply oxygen amount detector 62 and the determination result of the activation determination part 63.

Description

本発明は、エンジンが備える排気浄化触媒の状態に応じて燃料噴射量を適宜調整するエンジンの燃料噴射制御装置に関する。   The present invention relates to an engine fuel injection control device that appropriately adjusts a fuel injection amount in accordance with a state of an exhaust purification catalyst provided in an engine.

従来、車両に搭載されたエンジンの排気通路には、燃焼に伴って排出されるHC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)等の物質を浄化することを目的として三元触媒等の排気浄化触媒が設けられている。この排気浄化触媒は、リーン雰囲気(酸化雰囲気)にあるときには酸素(O)を吸蔵してNOxの還元反応を促進させ、リッチ雰囲気(還元雰囲気)にあるときには吸蔵したOを放出してHC、CO等の酸化反応を促進する機能を有している。 Conventionally, in an exhaust passage of an engine mounted on a vehicle, for the purpose of purifying substances such as HC (hydrocarbon), CO (carbon monoxide), and NOx (nitrogen oxide) discharged with combustion. An exhaust purification catalyst such as a three-way catalyst is provided. This exhaust purification catalyst occludes oxygen (O 2 ) when it is in a lean atmosphere (oxidizing atmosphere) and promotes the reduction reaction of NOx, and releases O 2 that is occluded when it is in a rich atmosphere (reducing atmosphere). And has a function of promoting an oxidation reaction such as CO.

またエンジンにおける燃料消費量の低減や、排気浄化触媒の保護の観点から、車両走行中、例えば、車両の減速時等に燃料供給を停止する、いわゆる燃料カットが実施されるようになってきている。この燃料カット中は、実質的に空気のみが排気通路に排出されるため、排気浄化触媒に多量の酸素が供給されて吸蔵される。この状態で、燃料供給を復帰(燃料復帰)させた場合、排気浄化触媒においてNOxを十分に還元することができず、多くのNOxを含む排ガスを大気中に排出してしまう虞がある。   Also, from the viewpoint of reducing the fuel consumption in the engine and protecting the exhaust purification catalyst, so-called fuel cut, which stops fuel supply when the vehicle is running, for example, when the vehicle is decelerating, has been implemented. . During this fuel cut, substantially only air is discharged into the exhaust passage, so a large amount of oxygen is supplied to the exhaust purification catalyst and stored. In this state, when the fuel supply is returned (fuel return), NOx cannot be sufficiently reduced in the exhaust purification catalyst, and there is a possibility that exhaust gas containing a large amount of NOx is discharged into the atmosphere.

このような問題を解消するために、例えば、燃料供給を復帰させる際、燃料カットの期間の長さに応じて一時的に燃料を増量補正して空燃比をストイキよりもリッチ側となるようにする制御(リッチ化制御)を実行する技術が知られている(例えば、特許文献1,2参照)。これにより、排気浄化触媒に吸蔵されている酸素を離脱させ(Oパージ)、大気中へのNOx排出量を抑制することができる。 In order to solve such a problem, for example, when returning the fuel supply, the fuel is temporarily increased in accordance with the length of the fuel cut period so that the air-fuel ratio becomes richer than the stoichiometric ratio. A technique for executing control (enrichment control) is known (see, for example, Patent Documents 1 and 2). Thereby, the oxygen stored in the exhaust purification catalyst can be released (O 2 purge), and the amount of NOx discharged into the atmosphere can be suppressed.

特開2006−118433号公報JP 2006-118433 A 特開平5−141293号公報JP-A-5-141293

ところで、近年、駆動源としてエンジンと共にモータを備えたハイブリッド自動車が実用化されている。ハイブリッド自動車には、エンジン及びモータを駆動させて走行する第1の走行モードと、モータのみを駆動させて走行する第2の走行モードとが、車両の走行状態に応じて自動的に切り替えられるようになっているものがある。   By the way, in recent years, hybrid vehicles having a motor as well as an engine as a drive source have been put into practical use. In the hybrid vehicle, a first traveling mode in which the engine and the motor are driven and a second traveling mode in which only the motor is driven are switched automatically according to the traveling state of the vehicle. There is something that is.

このような車両においては、走行モードを第1の走行モードから第2の走行モードに切り替える際、すなわち走行中にエンジンを停止させる際、燃料供給を停止した状態で惰性により回転する期間(燃料カット期間)が生じる。   In such a vehicle, when the driving mode is switched from the first driving mode to the second driving mode, that is, when the engine is stopped during driving, a period during which the vehicle is rotated by inertia while the fuel supply is stopped (fuel cutting) Period) occurs.

この燃料カット期間にも、上述のように多くのNOxを含む排ガスを大気中に排出してしまう虞がある。このため、第2の走行モードから第1の走行モードに切り替わる際にも、燃料の増量補正を行うことが有効である。   Even during this fuel cut period, there is a risk that exhaust gas containing a large amount of NOx will be discharged into the atmosphere as described above. For this reason, it is effective to perform fuel increase correction even when the second travel mode is switched to the first travel mode.

しかしながら、ハイブリッド自動車では、エンジンが停止している期間、具体的には第2の走行モードで走行している期間が比較的長くなる場合があり、その間に、排気浄化触媒の温度が低下して不活性状態となると、排気浄化触媒に吸蔵されている酸素が離脱してしまう。そして、このような状態で、燃料供給を復帰させ、その際に燃料カット期間の長さに応じて燃料の増量補正を行うと、燃料過剰になり好ましくない。   However, in a hybrid vehicle, the period during which the engine is stopped, specifically, the period during which the vehicle is traveling in the second traveling mode may be relatively long, during which the temperature of the exhaust purification catalyst decreases. When inactive, oxygen stored in the exhaust purification catalyst is released. In such a state, it is not preferable to restore the fuel supply and correct the fuel increase according to the length of the fuel cut period.

本発明は、このような事情に鑑みてなされたものであり、エンジンの停止期間後の再始動時に、燃料の適切な増量補正を行い、NOx排出量を抑制することができるエンジンの燃料噴射制御装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and performs fuel injection control for an engine that can appropriately increase the amount of fuel and suppress NOx emission when restarting after an engine stop period. An object is to provide an apparatus.

上記課題を解決する本発明の第1の態様は、排気通路に排気浄化触媒を備えるエンジンの燃料噴射制御装置において、燃料噴射弁から噴射される燃料噴射量を制御する噴射量制御部と、前記燃料噴射弁による燃料噴射の停止から前記エンジンの停止までの間に前記排気浄化触媒に供給される供給酸素量を検出する供給酸素量検出部と、前記エンジンの再始動時に前記排気浄化触媒が活性状態であるか否かを判定する活性判定部と、前記供給酸素量検出部の検出結果及び前記活性判定部の判定結果に応じて、前記エンジンの再始動時に前記燃料噴射弁から噴射される燃料噴射量の増量補正を行う増量補正部と、を備えることを特徴とするエンジンの噴射量制御装置にある。   According to a first aspect of the present invention for solving the above-described problem, in an engine fuel injection control device including an exhaust purification catalyst in an exhaust passage, an injection amount control unit that controls a fuel injection amount injected from a fuel injection valve; A supply oxygen amount detection unit that detects the amount of oxygen supplied to the exhaust purification catalyst between the stop of fuel injection by the fuel injection valve and the stop of the engine; and the exhaust purification catalyst is activated when the engine is restarted The fuel that is injected from the fuel injection valve when the engine is restarted according to the detection result of the activity determination unit that determines whether or not the engine is in a state, and the detection result of the supply oxygen amount detection unit and the determination result of the activity determination unit An engine injection amount control apparatus comprising: an increase correction unit that performs an increase correction of the injection amount.

本発明の第2の態様は、第1の態様のエンジンの燃料噴射制御装置において、前記供給酸素量検出部は、前記エンジンの停止時に実行される燃料カットの時間に基づいて前記供給酸素量を推定することを特徴とするエンジンの燃料噴射制御装置にある。   According to a second aspect of the present invention, in the fuel injection control device for an engine according to the first aspect, the supply oxygen amount detection unit calculates the supply oxygen amount based on a fuel cut time that is executed when the engine is stopped. The fuel injection control device for an engine is characterized by estimating.

本発明の第3の態様は、第1又は2の態様のエンジンの燃料噴射制御装置において、前記供給酸素量検出部は、前記排気浄化触媒の下流に設けられる下流側空燃比検出手段の出力値に基づいて前記供給酸素量を推定することを特徴とするエンジンの燃料噴射制御装置にある。   According to a third aspect of the present invention, in the fuel injection control device for an engine according to the first or second aspect, the supply oxygen amount detection unit is an output value of a downstream air-fuel ratio detection means provided downstream of the exhaust purification catalyst. The fuel injection control device for an engine is characterized in that the supply oxygen amount is estimated based on the above.

本発明の第4の態様は、第1から3の何れか一つの態様のエンジンの燃料噴射制御装置において、前記活性判定部は、前記エンジンの停止期間に基づいて、前記排気浄化触媒が活性状態であるか否かの判定を行うことを特徴とするエンジンの燃料噴射制御装置にある。   According to a fourth aspect of the present invention, in the fuel injection control device for an engine according to any one of the first to third aspects, the activity determination unit is configured to activate the exhaust purification catalyst based on a stop period of the engine. It is in the fuel injection control device for an engine characterized in that it is determined whether or not.

本発明の第5の態様は、第1から4の何れか一つの態様のエンジンの燃料噴射制御装置において、前記増量補正部は、前記増量補正として、前記供給酸素量検出部の検出結果及び前記活性判定部の判定結果に応じて増量補正係数を設定し、前記噴射量制御部が、この増量補正係数に基づいて前記燃料噴射弁から燃料を噴射させることを特徴とする燃料噴射制御装置にある。   According to a fifth aspect of the present invention, in the fuel injection control device for an engine according to any one of the first to fourth aspects, the increase correction unit includes the detection result of the supply oxygen amount detection unit and the increase correction as the increase correction. An increase correction coefficient is set according to the determination result of the activity determination unit, and the fuel injection control device causes the fuel injection valve to inject fuel based on the increase correction coefficient. .

本発明の第6の態様は、第1から5の何れか一つの態様のエンジンの燃料噴射制御装置において、前記増量補正部は、前記排気浄化触媒の空燃比が所定値よりもリッチ側となると、前記増量補正を終了することを特徴とするエンジンの燃料噴射制御装置にある。   According to a sixth aspect of the present invention, in the fuel injection control device for an engine according to any one of the first to fifth aspects, the increase correction unit is configured such that the air-fuel ratio of the exhaust purification catalyst becomes richer than a predetermined value. The engine fuel injection control device is characterized by terminating the increase correction.

本発明の第7の態様は、第6の態様のエンジンの燃料噴射制御装置において、前記増量補正部は、前記排気浄化触媒の下流に設けられる下流側空燃比検出手段の出力値に基づいて前記排気浄化触媒の空燃比が所定値よりもリッチ側であるか否かの判定を行うことを特徴とするエンジンの燃料噴射制御装置にある。   According to a seventh aspect of the present invention, in the fuel injection control device for an engine according to the sixth aspect, the increase correction unit is based on an output value of a downstream air-fuel ratio detection means provided downstream of the exhaust purification catalyst. In the engine fuel injection control device, it is determined whether or not the air-fuel ratio of the exhaust purification catalyst is richer than a predetermined value.

かかる本発明では、エンジンの停止期間後の再始動時に、燃料を適切に増量して排気浄化触媒の酸素パージを行うことができる。したがって、エンジン再始動時であっても、排気浄化触媒においてNOxを十分に還元することができ、大気中へのNOx排出量を抑制することができる。   In the present invention, when restarting after the engine stop period, the amount of fuel can be appropriately increased to perform oxygen purging of the exhaust purification catalyst. Therefore, even when the engine is restarted, NOx can be sufficiently reduced in the exhaust purification catalyst, and the amount of NOx discharged into the atmosphere can be suppressed.

車両の一例であるハイブリッド車両の全体構成を示す概略図である。1 is a schematic diagram illustrating an overall configuration of a hybrid vehicle that is an example of a vehicle. 本発明に係るエンジン及びその燃料噴射制御装置の概略構成を示す図である。It is a figure which shows schematic structure of the engine which concerns on this invention, and its fuel-injection control apparatus. 本発明の一実施形態に係る燃料増量補正制御に伴う各種パラメータの挙動を示すタイムチャートである。It is a time chart which shows the behavior of various parameters accompanying fuel increase correction control concerning one embodiment of the present invention. 本発明の一実施形態に係る燃料増量補正制御の一例を示すフローチャートである。It is a flowchart which shows an example of the fuel increase correction control which concerns on one Embodiment of this invention.

以下、本発明の一実施形態について図面を参照して詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

まずは、本実施形態に係るエンジンの燃料噴射装置を備える車両の一例について説明する。図1に示すように、本実施形態に係る車両10は、ハイブリッド自動車であり、走行用モータであるフロントモータ30と、エンジン40とを、走行用の駆動源として備えている。フロントモータ30の駆動力は前駆動伝達機構11を介して前輪12に伝達される。フロントモータ30は、モータコントロールユニット(MCU)13を介してバッテリ14が接続されている。   First, an example of a vehicle including an engine fuel injection device according to the present embodiment will be described. As shown in FIG. 1, a vehicle 10 according to the present embodiment is a hybrid vehicle, and includes a front motor 30 that is a traveling motor and an engine 40 as a driving source for traveling. The driving force of the front motor 30 is transmitted to the front wheels 12 via the front drive transmission mechanism 11. The front motor 30 is connected to a battery 14 via a motor control unit (MCU) 13.

エンジン40は、燃料タンク17から供給される燃料が燃焼されることにより駆動される。このエンジン40には出力系18を介してジェネレータ35に接続されている。ジェネレータ35は、ジェネレータコントロールユニット(GCU)19を介してバッテリ14に接続されている。また出力系18は、ジェネレータ35に接続される一方で、クラッチ20を介して前駆動伝達機構11にも接続されている。   The engine 40 is driven by burning the fuel supplied from the fuel tank 17. The engine 40 is connected to the generator 35 via the output system 18. The generator 35 is connected to the battery 14 via a generator control unit (GCU) 19. The output system 18 is also connected to the front drive transmission mechanism 11 through the clutch 20 while being connected to the generator 35.

図2に示すように、エンジン40は、例えば、吸気管噴射型の多気筒エンジンであり、エンジン40を構成するシリンダヘッド41には複数の(例えば、3つ)の気筒42が並設されている。各気筒(燃焼室)42には、図示しないが、それぞれ点火プラグが配されると共に、吸気ポート及び排気ポートが設けられている。   As shown in FIG. 2, the engine 40 is, for example, an intake pipe injection type multi-cylinder engine, and a plurality of (for example, three) cylinders 42 are arranged in parallel on a cylinder head 41 constituting the engine 40. Yes. Although not shown, each cylinder (combustion chamber) 42 is provided with an ignition plug and an intake port and an exhaust port.

シリンダヘッド41の吸気ポートには吸気マニホールド43が接続され、吸気マニホールド43には吸気管44が接続されている。吸気マニホールド43には、各気筒42に対応する複数の燃料噴射弁45が設けられている。これら燃料噴射弁45はデリバリパイプ46を介して燃料タンク(図示なし)に接続されており、燃料タンクから供給される燃料が燃料噴射弁45によって吸気マニホールド43或いは各気筒42内に適宜噴射される。また吸気管(吸気通路)44には、吸入空気量を調整するスロットルバルブ47と、スロットルバルブ47の開き度合いを検出するスロットルポジションセンサ(TPS)48とが設けられている。さらにスロットルバルブ47の上流側の吸気管44には、吸気流量を検出するエアフローセンサ49が設けられている。   An intake manifold 43 is connected to the intake port of the cylinder head 41, and an intake pipe 44 is connected to the intake manifold 43. The intake manifold 43 is provided with a plurality of fuel injection valves 45 corresponding to the respective cylinders 42. These fuel injection valves 45 are connected to a fuel tank (not shown) via a delivery pipe 46, and fuel supplied from the fuel tank is appropriately injected into the intake manifold 43 or each cylinder 42 by the fuel injection valve 45. . The intake pipe (intake passage) 44 is provided with a throttle valve 47 that adjusts the intake air amount and a throttle position sensor (TPS) 48 that detects the degree of opening of the throttle valve 47. Further, an air flow sensor 49 that detects an intake air flow rate is provided in the intake pipe 44 on the upstream side of the throttle valve 47.

一方、シリンダヘッド41の排気ポートには、排気マニホールド50が接続され、排気マニホールド50には排気管(排気通路)51が接続されている。排気管51には、排気浄化用触媒としての三元触媒52が介装されている。   On the other hand, an exhaust manifold 50 is connected to the exhaust port of the cylinder head 41, and an exhaust pipe (exhaust passage) 51 is connected to the exhaust manifold 50. The exhaust pipe 51 is provided with a three-way catalyst 52 as an exhaust purification catalyst.

ここで、三元触媒52は、例えば、担体に銅(Cu)、コバルト(Co)、銀(Ag)、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)の少なくとも何れかの貴金属が担持されたものである。あるいは、助触媒として、酸素吸蔵機能(Oストレージ機能)を有するセリウム(Ce)、ジルコニア(Zr)の少なくとも何れかを有している。この種の助触媒は、排気空燃比(排気A/F)がリーン空燃比(リーンA/F)である高酸素濃度雰囲気(酸化雰囲気)中において酸素(O)を捕捉(ストレージ:吸着・吸蔵等)すると、排気A/Fがリッチ空燃比(リッチA/F)となり低酸素濃度雰囲気(還元雰囲気)となるまで捕捉O(ストレージO)を解離Oの状態で保持し、還元雰囲気中において解離Oを離脱し放出する特性や、NOxやSOx等の酸化物も一時的に捕捉する機能を有している。 Here, for example, the three-way catalyst 52 supports a noble metal of at least one of copper (Cu), cobalt (Co), silver (Ag), platinum (Pt), rhodium (Rh), and palladium (Pd) on a carrier. It has been done. Alternatively, the promoter has at least one of cerium (Ce) and zirconia (Zr) having an oxygen storage function (O 2 storage function). This type of cocatalyst captures oxygen (O 2 ) in a high oxygen concentration atmosphere (oxidation atmosphere) in which the exhaust air / fuel ratio (exhaust A / F) is a lean air / fuel ratio (lean A / F) (storage: adsorption / adsorption). Occlusion etc.), the trapped O 2 (storage O 2 ) is held in a dissociated O state until the exhaust A / F becomes a rich air-fuel ratio (rich A / F) and becomes a low oxygen concentration atmosphere (reducing atmosphere), and a reducing atmosphere It has a characteristic of releasing and releasing dissociated O in the inside, and a function of temporarily capturing oxides such as NOx and SOx.

三元触媒52の上流側の排気管51には、リニア空燃比センサ(LAFS)53が設けられている。LAFS53は、排気A/Fを検出するものであり、この検出結果に基づいて定常運転時のフィードバック制御が実行される。なお、LAFS53に代えて、排気の酸素濃度を検出するフロントOセンサを用いることもできる。 A linear air-fuel ratio sensor (LAFS) 53 is provided in the exhaust pipe 51 upstream of the three-way catalyst 52. The LAFS 53 detects exhaust A / F, and feedback control during steady operation is executed based on the detection result. Instead of the LAFS 53, a front O 2 sensor that detects the oxygen concentration of the exhaust gas can be used.

また三元触媒52の下流側の排気管51には下流側空燃比検出手段としてのリアOセンサ54が設けられている。リアOセンサ54は、三元触媒52を通過した排気中のO濃度を検出する。 The exhaust pipe 51 downstream of the three-way catalyst 52 is provided with a rear O 2 sensor 54 as downstream air-fuel ratio detection means. The rear O 2 sensor 54 detects the O 2 concentration in the exhaust gas that has passed through the three-way catalyst 52.

ECU(電子コントロールユニット)60は、入出力装置、記憶装置(ROM、RAM等)、中央処理装置(CPU)、タイマカウンタ等を備え、このECU60によりエンジン40の総合的な制御が行われる。このECU60の入力側には、上述したスロットルポジションセンサ(TPS)48、エアフローセンサ49、LAFS53、リアOセンサ54の他、図示は省略するが、クランク角センサや、水温センサ等の各種センサ類が接続され、これらセンサ類からの検出情報が入力される。 The ECU (electronic control unit) 60 includes an input / output device, a storage device (ROM, RAM, etc.), a central processing unit (CPU), a timer counter, and the like, and the ECU 60 performs comprehensive control of the engine 40. On the input side of the ECU 60, in addition to the throttle position sensor (TPS) 48, the airflow sensor 49, the LAFS 53, and the rear O 2 sensor 54, various sensors such as a crank angle sensor and a water temperature sensor are not shown. Are connected, and detection information from these sensors is input.

一方、ECU60の出力側には、上述した燃料噴射弁45や、スロットルバルブ47、点火コイル(図示なし)等の各種出力デバイスが接続されている。これら各種出力デバイスは、上記のような各種センサ類からの検出情報に基づきECU60によって適宜制御される。例えば、燃料噴射弁45から噴射される燃料噴射量も、上記のような各種センサ類からの検出情報に基づいてECU60によって適宜制御される。つまり本願発明に係るエンジンの燃料噴射制御装置は、このECU60と各種センサ類とで構成される。そして、以下に説明するように、エンジン40の停止期間後の再始動時に燃料増量補正を行い、燃料噴射弁45からの燃料噴射量を適切に制御している。   On the other hand, the output side of the ECU 60 is connected to various output devices such as the fuel injection valve 45, the throttle valve 47, and an ignition coil (not shown). These various output devices are appropriately controlled by the ECU 60 based on detection information from the various sensors as described above. For example, the fuel injection amount injected from the fuel injection valve 45 is also appropriately controlled by the ECU 60 based on detection information from the various sensors as described above. That is, the engine fuel injection control device according to the present invention is composed of the ECU 60 and various sensors. Then, as will be described below, the fuel increase correction is performed at the time of restart after the stop period of the engine 40 to appropriately control the fuel injection amount from the fuel injection valve 45.

図2に示すように、ECU60は、燃料噴射制御部61と、供給酸素量検出部62と、活性判定部63と、増量補正部64と、を備えている。   As shown in FIG. 2, the ECU 60 includes a fuel injection control unit 61, a supply oxygen amount detection unit 62, an activity determination unit 63, and an increase correction unit 64.

燃料噴射制御部61は、車両10の走行状態、例えば、走行モードに基づいて、燃料噴射弁45から噴射される燃料噴射量を適宜制御する。   The fuel injection control unit 61 appropriately controls the fuel injection amount injected from the fuel injection valve 45 based on the traveling state of the vehicle 10, for example, the traveling mode.

ここで、本実施形態に係る車両10は、要求負荷等に応じて、第1の走行モードと、第2の走行モードとが適宜切り替えられるようになっている。第1の走行モードは、フロントモータ30とエンジン40との両方を駆動して走行するモードであり、具体的には、エンジン40を駆動してフロントモータ30の電力供給源として用いるシリーズ走行モードと、フロントモータ30とエンジン40との両方の駆動力により車両の各車輪を駆動させるパラレル走行モードと、が挙げられる。一方、第2の走行モードは、フロントモータ30のみを駆動するEV走行モードである。すなわち第2の走行モード(EV走行モード)では、エンジン40への燃料供給を停止(燃料カット)して、エンジン40を停止させた状態でフロントモータ30の駆動力のみによって車両10を走行させる。   Here, in the vehicle 10 according to the present embodiment, the first travel mode and the second travel mode are appropriately switched according to the required load and the like. The first traveling mode is a mode that travels by driving both the front motor 30 and the engine 40. Specifically, the first traveling mode is a series traveling mode that drives the engine 40 and is used as a power supply source of the front motor 30; And a parallel traveling mode in which each wheel of the vehicle is driven by the driving force of both the front motor 30 and the engine 40. On the other hand, the second travel mode is an EV travel mode in which only the front motor 30 is driven. That is, in the second travel mode (EV travel mode), the fuel supply to the engine 40 is stopped (fuel cut), and the vehicle 10 is traveled only by the driving force of the front motor 30 with the engine 40 stopped.

燃料噴射制御部61は、このような各走行モードに対応して燃料噴射弁45からの燃料噴射量を適宜調整する。本実施形態では、燃料噴射制御部61は、燃料噴射量設定手段61aと、燃料噴射弁制御手段61bと、を有する。燃料噴射量設定手段61aは、車両10の走行状態(例えば、走行モード)に応じて目標燃料噴射量を設定する。燃料噴射弁制御手段61bは、燃料噴射量設定手段61aによって設定された目標燃料噴射量を噴射するように、燃料噴射弁45の開弁時間を適宜制御する。   The fuel injection control unit 61 appropriately adjusts the fuel injection amount from the fuel injection valve 45 corresponding to each of the travel modes. In the present embodiment, the fuel injection control unit 61 includes a fuel injection amount setting unit 61a and a fuel injection valve control unit 61b. The fuel injection amount setting means 61a sets a target fuel injection amount according to the traveling state (for example, traveling mode) of the vehicle 10. The fuel injection valve control means 61b appropriately controls the valve opening time of the fuel injection valve 45 so as to inject the target fuel injection amount set by the fuel injection amount setting means 61a.

例えば、車両10の走行モードが、第1の走行モード(例えば、シリーズ走行モード)から第2の走行モードであるEV走行モードに切り替わる場合、燃料噴射制御部61は、所定のタイミングで燃料カットを実行する。すなわち、所定のタイミングで燃料噴射量設定手段61aが目標燃料噴射量を零に設定し、それに応じて燃料噴射弁制御手段61bは燃料噴射弁45を閉弁状態に保持し、エンジン40への燃料供給をカットする(燃料カット)。   For example, when the travel mode of the vehicle 10 is switched from the first travel mode (for example, the series travel mode) to the EV travel mode that is the second travel mode, the fuel injection control unit 61 performs the fuel cut at a predetermined timing. Run. That is, at a predetermined timing, the fuel injection amount setting means 61a sets the target fuel injection amount to zero, and accordingly, the fuel injection valve control means 61b holds the fuel injection valve 45 in the closed state, and the fuel to the engine 40 is Cut the supply (fuel cut).

この燃料カットが行われると、エンジン40は惰性でしばらく回転し(燃料カット期間)、その後、エンジン40は完全に停止する。これにより、走行モードがシリーズ走行モードからEV走行モード(エンストモード)に移行する。なお、上記燃料カット期間は、燃料カット開始時の車両10の走行状態、例えば、車速等によって適宜変化することになる。   When this fuel cut is performed, the engine 40 is inertial and rotates for a while (fuel cut period), and then the engine 40 is completely stopped. As a result, the travel mode shifts from the series travel mode to the EV travel mode (engine stall mode). Note that the fuel cut period changes appropriately depending on the traveling state of the vehicle 10 at the start of the fuel cut, for example, the vehicle speed or the like.

供給酸素量検出部62は、燃料噴射弁45による燃料噴射の停止からエンジン40の停止までの間に排気浄化触媒である三元触媒52に供給される供給酸素量を検出する。言い換えれば、供給酸素量検出部62は、燃料カットが実行されてエンジン40が停止する際、例えば、上述のように車両10の走行モードがシリーズ走行モードからEV走行モードに切り替えられる際、燃料カット期間に三元触媒52に対して供給される供給酸素量を検出する。具体的には、供給酸素量検出部62は、上記燃料カット期間の長さに基づいて供給酸素量を推定する。本実施形態では、燃料カット期間の長さに基づいて供給酸素量が所定量以上であるか否かを推定している。例えば、燃料カット期間の長さが所定期間以上であれば、三元触媒52供給酸素量が所定量以上であると推定する。   The supply oxygen amount detection unit 62 detects the supply oxygen amount supplied to the three-way catalyst 52, which is an exhaust purification catalyst, between the stop of fuel injection by the fuel injection valve 45 and the stop of the engine 40. In other words, the supply oxygen amount detection unit 62 performs the fuel cut when the fuel cut is executed and the engine 40 stops, for example, when the travel mode of the vehicle 10 is switched from the series travel mode to the EV travel mode as described above. The amount of oxygen supplied to the three-way catalyst 52 during the period is detected. Specifically, the supply oxygen amount detection unit 62 estimates the supply oxygen amount based on the length of the fuel cut period. In this embodiment, it is estimated whether the supply oxygen amount is equal to or greater than a predetermined amount based on the length of the fuel cut period. For example, if the length of the fuel cut period is equal to or greater than a predetermined period, it is estimated that the amount of oxygen supplied to the three-way catalyst 52 is equal to or greater than the predetermined amount.

三元触媒52には、エンジン40が惰性で回転している燃料カット期間に大量の酸素(O)が供給され、三元触媒52で吸蔵される。したがって燃料カット期間の長さが長くなる程、三元触媒52に供給される供給酸素量は増加する。このため、燃料カット期間に基づいて供給酸素量を推定することで、供給酸素量を比較的正確に推定することができる。 A large amount of oxygen (O 2 ) is supplied to the three-way catalyst 52 and stored in the three-way catalyst 52 during the fuel cut period in which the engine 40 is rotating by inertia. Therefore, the amount of oxygen supplied to the three-way catalyst 52 increases as the length of the fuel cut period increases. For this reason, it is possible to estimate the supply oxygen amount relatively accurately by estimating the supply oxygen amount based on the fuel cut period.

また三元触媒52の吸蔵酸素は、供給酸素量が所定量を超えると飽和状態となる。このため、本実施形態では、供給酸素量検出部62は、上述のように供給酸素量が所定量以上であるか否かを検出(推定)している。   Further, the stored oxygen of the three-way catalyst 52 becomes saturated when the amount of supplied oxygen exceeds a predetermined amount. Therefore, in the present embodiment, the supply oxygen amount detection unit 62 detects (estimates) whether or not the supply oxygen amount is a predetermined amount or more as described above.

なお供給酸素量検出部62は、本実施形態では、燃料カット期間に基づいて供給酸素量を推定するようにしたが、リアOセンサ54の検出結果に基づいて供給酸素量を推定するようにしてもよい。例えば、リアOセンサ54の検出値が所定値よりも小さい場合、すなわち三元触媒52の排気空燃比がリーンである場合に、三元触媒52供給酸素量が所定量以上であると推定するようにしてもよい。勿論、燃料カット期間の長さと、リアOセンサ54の検出結果と、に基づいて供給酸素量を推定するようにしてもよい。これにより、供給酸素量をさらに正確に推定することができる。 In this embodiment, the supply oxygen amount detection unit 62 estimates the supply oxygen amount based on the fuel cut period. However, the supply oxygen amount detection unit 62 estimates the supply oxygen amount based on the detection result of the rear O 2 sensor 54. May be. For example, when the detected value of the rear O 2 sensor 54 is smaller than a predetermined value, that is, when the exhaust air-fuel ratio of the three-way catalyst 52 is lean, it is estimated that the amount of oxygen supplied to the three-way catalyst 52 is greater than or equal to a predetermined amount. You may do it. Of course, the supplied oxygen amount may be estimated based on the length of the fuel cut period and the detection result of the rear O 2 sensor 54. Thereby, the amount of supplied oxygen can be estimated more accurately.

活性判定部63は、エンジン40の再始動時に排気浄化触媒である三元触媒52が活性状態であるか否かを判定する。すなわち、活性判定部63は、エンジン40の再始動時に三元触媒52の活性状態が維持されているか否かを判定している。   The activity determination unit 63 determines whether or not the three-way catalyst 52 that is an exhaust purification catalyst is in an active state when the engine 40 is restarted. That is, the activity determination unit 63 determines whether or not the active state of the three-way catalyst 52 is maintained when the engine 40 is restarted.

ここで、エンジン40の再始動時とは、本実施形態では、エンジン40の走行モードが第1の走行モード(シリーズ走行モード)から第2の走行モード(EV走行モード)に切り替わった後、再び、第1の走行モード(シリーズ走行モード)に切り替わるタイミングである。そして活性判定部63は、走行モードがEV走行モードからシリーズ走行モードに切り替わる際、このEV走行モード(エンストモード)の継続時間、すなわち燃料カット期間後にエンジン40が停止していた期間に基づいて、三元触媒52が活性状態であるか否かを判定している。   Here, when the engine 40 is restarted, in the present embodiment, after the travel mode of the engine 40 is switched from the first travel mode (series travel mode) to the second travel mode (EV travel mode), the engine 40 again. This is the timing for switching to the first travel mode (series travel mode). Then, when the travel mode is switched from the EV travel mode to the series travel mode, the activity determination unit 63 is based on the duration of the EV travel mode (engine stall mode), that is, based on the period in which the engine 40 is stopped after the fuel cut period. It is determined whether or not the three-way catalyst 52 is in an active state.

三元触媒52は、その温度が所定温度以上であれば活性状態となる。また三元触媒52の温度は、エンジン40が停止していた期間が長くなるほど低くなる。したがって、三元触媒52の活性状態は、エンジン40が停止していた期間(EV走行モードの継続期間)が所定期間以下であれば、三元触媒52が活性状態であると判定し、所定時間より長ければ活性状態でないと判定する。これにより次回始動時の燃料増量補正の要否を確実に判定でき、無駄な燃料増量補正による燃費悪化を防ぐことがきる。   The three-way catalyst 52 becomes active when its temperature is equal to or higher than a predetermined temperature. Further, the temperature of the three-way catalyst 52 becomes lower as the period during which the engine 40 is stopped becomes longer. Therefore, the active state of the three-way catalyst 52 determines that the three-way catalyst 52 is in an active state if the period during which the engine 40 is stopped (the duration of the EV traveling mode) is equal to or shorter than the predetermined period, If it is longer, it is determined not to be active. As a result, it is possible to reliably determine whether or not the fuel increase correction is necessary at the next start, and it is possible to prevent deterioration in fuel consumption due to useless fuel increase correction.

なお、本実施形態では、活性判定部63は、エンジン40の停止期間の長さに基づいて三元触媒52の活性状態を判定しているが、勿論、温度センサ等によって三元触媒52の温度を検出し、この検出結果に基づいて活性状態を判定することもできる。また、温度センサ等を用いずに、エンジン40の冷却水温度等から三元触媒52の温度を推定してもよい。   In the present embodiment, the activity determination unit 63 determines the active state of the three-way catalyst 52 based on the length of the stop period of the engine 40. Of course, the temperature of the three-way catalyst 52 is measured by a temperature sensor or the like. And the active state can be determined based on the detection result. Further, the temperature of the three-way catalyst 52 may be estimated from the coolant temperature of the engine 40 or the like without using a temperature sensor or the like.

増量補正部64は、供給酸素量検出部62の検出結果及び活性判定部63の判定結果に応じて、エンジン40の再始動時に燃料噴射弁45から噴射される燃料噴射量の増量補正を行う。   The increase correction unit 64 performs an increase correction of the fuel injection amount injected from the fuel injection valve 45 when the engine 40 is restarted according to the detection result of the supply oxygen amount detection unit 62 and the determination result of the activity determination unit 63.

具体的には、供給酸素量検出部62によって三元触媒52に供給された供給酸素量が所定量以上であると検出(推定)され、且つ活性判定部63によって三元触媒52が活性状態であると判定された場合に、増量補正部64が「増量補正」を実行する。増量補正部64は、本実施形態では、上記「増量補正」として、増量補正係数(リッチ化係数)を設定する。この増量補正係数は、適宜設定されればよく、例えば、供給酸素量が多いほど大きい値に設定してもよいし、供給酸素量に拘わらず一定の値に設定してもよい。   Specifically, the supply oxygen amount detection unit 62 detects (estimates) that the supply oxygen amount supplied to the three-way catalyst 52 is a predetermined amount or more, and the activity determination unit 63 determines that the three-way catalyst 52 is in an active state. If it is determined that there is, the increase correction unit 64 executes “increase correction”. In the present embodiment, the increase correction unit 64 sets an increase correction coefficient (enrichment coefficient) as the “increase correction”. The increase correction coefficient may be set as appropriate. For example, the increase correction coefficient may be set to a larger value as the supply oxygen amount increases, or may be set to a constant value regardless of the supply oxygen amount.

そして燃料噴射制御部61は、増量補正部64によって設定された増量補正係数に基づいて燃料噴射弁45から燃料を噴射させる。すなわち燃料噴射量設定手段61aによって設定された目標燃料噴射量を、増量補正係数に基づいて補正し、燃料噴射弁制御手段61bが、補正された目標燃料噴射量となるように燃料噴射弁45の動作(開弁時間)を適宜制御する。   Then, the fuel injection control unit 61 injects fuel from the fuel injection valve 45 based on the increase correction coefficient set by the increase correction unit 64. That is, the target fuel injection amount set by the fuel injection amount setting means 61a is corrected based on the increase correction coefficient, and the fuel injection valve control means 61b is used to correct the target fuel injection amount of the fuel injection valve 45. The operation (valve opening time) is appropriately controlled.

このようにエンジン40の再始動時に、増量補正部64によって設定された増量補正係数に基づいて燃料噴射弁45から噴射される燃料噴射量を適宜補正するようにしたので、三元触媒52に捕捉されている酸素(捕捉O)を良好に離脱(Oパージ)させることができ、大気中へのNOx排出量を効果的に抑制することができる。さらに本発明では、エンジン40の停止期間に基づいて排気浄化触媒である三元触媒52の活性状態を判定し、その判定結果に基づいてエンジン40の再始動時に増量補正を実行しているため、増量補正による燃料噴射量の過剰な増量を抑制することができる。 As described above, when the engine 40 is restarted, the fuel injection amount injected from the fuel injection valve 45 is appropriately corrected based on the increase correction coefficient set by the increase correction unit 64, so that it is captured by the three-way catalyst 52. Oxygen (trapped O 2 ) that has been released can be satisfactorily released (O 2 purge), and NOx emission into the atmosphere can be effectively suppressed. Furthermore, in the present invention, the activation state of the three-way catalyst 52 that is the exhaust purification catalyst is determined based on the stop period of the engine 40, and the increase correction is executed when the engine 40 is restarted based on the determination result. An excessive increase in the fuel injection amount due to the increase correction can be suppressed.

また増量補正部64は、三元触媒52の空燃比が所定値よりもリッチ側となると、増量補正を終了する。本実施形態では、増量補正部64は、下流側空燃比センサであるリアOセンサ54の出力値に基づいて三元触媒52の空燃比が所定値よりもリッチ側であるか否かの判定を行い、リッチ側であれば増量補正を終了する(増量補正係数を初期値に戻す)。 The increase correction unit 64 ends the increase correction when the air-fuel ratio of the three-way catalyst 52 becomes richer than the predetermined value. In the present embodiment, the increase correction unit 64 determines whether or not the air-fuel ratio of the three-way catalyst 52 is richer than a predetermined value based on the output value of the rear O 2 sensor 54 that is the downstream air-fuel ratio sensor. If it is rich, the increase correction is terminated (the increase correction coefficient is returned to the initial value).

このように三元触媒52の空燃比に基づいて増量補正を終了することで、より適切なタイミングで増量補正を終了させることができる。   In this way, by completing the increase correction based on the air-fuel ratio of the three-way catalyst 52, the increase correction can be ended at a more appropriate timing.

次いで、図3のタイムチャート及び図4のフローチャートを参照して本実施形態に係るエンジンの燃料噴射制御(増量補正制御)の一例について説明する。   Next, an example of fuel injection control (increase correction control) of the engine according to the present embodiment will be described with reference to the time chart of FIG. 3 and the flowchart of FIG.

図3及び図4に示すように、時刻T1(ステップS1)でエンジン40の制御モードとして燃料カットモードが選択されると(燃料カットが実行されると)、エンジン40は惰性でしばらく回転した後に回転数(Ne)が徐々に低下し、時刻T2で完全に停止(ストール)する。すなわち、時刻T2(ステップS2)で車両の走行モードが第1の走行モード(シリーズ走行モード)から第2の走行モード(EV走行モード)に移行すると共に、エンジン40の制御モードが燃料カットモードからエンストモードに移行する。なおこの例では、リアOセンサ54の出力値(例えば、電圧値)は、時刻T1で燃料カットを実行した後、比較的早い段階で低下している。すなわち三元触媒52の排気空燃比は燃料カットを実行した後、比較的早い段階でリーン化している。 As shown in FIGS. 3 and 4, when the fuel cut mode is selected as the control mode of the engine 40 at time T1 (step S1) (when the fuel cut is executed), the engine 40 is inertial and rotates for a while. The rotational speed (Ne) gradually decreases and completely stops (stall) at time T2. That is, at time T2 (step S2), the vehicle travel mode shifts from the first travel mode (series travel mode) to the second travel mode (EV travel mode), and the control mode of the engine 40 changes from the fuel cut mode. Transition to the engine stall mode. In this example, the output value (for example, voltage value) of the rear O 2 sensor 54 decreases at a relatively early stage after the fuel cut is performed at time T1. That is, the exhaust air-fuel ratio of the three-way catalyst 52 is leaned at a relatively early stage after the fuel cut is executed.

その後、時刻T3のタイミングで、要求負荷等に応じて車両10の走行モードが第2の走行モード(EV走行モード)から第1の走行モード(シリーズ走行モード)に切り替わると、それと同時にエンジン40の制御モードがエンストモードから始動モードに移行する。始動モードに移行すると、エンジン40のクランキングが開始される。始動モードは、時刻T4でエンジン40が所定の回転数(Ne)に達すると解除され、通常の運転モードに移行する。   Thereafter, when the travel mode of the vehicle 10 is switched from the second travel mode (EV travel mode) to the first travel mode (series travel mode) according to the required load or the like at the time T3, at the same time, the engine 40 The control mode shifts from the engine stall mode to the start mode. When shifting to the start mode, cranking of the engine 40 is started. The start mode is canceled when the engine 40 reaches a predetermined rotational speed (Ne) at time T4, and the operation mode is shifted to a normal operation mode.

そして時刻T4で始動モードが解除されるのと当時に、上述した燃料の増量補正を適宜実行する。詳細には、ステップS3で燃料カット期間(T1−T2間)の長さが所定期間以上か否かを判定し、燃料カット期間が所定期間以上であれば(ステップS3:Yes)、さらに、ステップS4でエンジン40の停止期間(T2−T3間)が所定期間以下であるか否かを判定する。そしてエンジン40の停止期間が所定期間以下であれば(ステップS4:Yes)、ステップS5で燃料の増量補正を実行し、図3中に実線で示すようにリッチ化係数を増加させる。これにより、三元触媒52の排気空燃比がリッチ化する。すなわち図3中に実線で示すようにリアOセンサ54の出力値が増加する。 Then, at the time when the start mode is canceled at time T4, the above-described fuel increase correction is appropriately executed. Specifically, in step S3, it is determined whether or not the length of the fuel cut period (between T1 and T2) is equal to or longer than a predetermined period. If the fuel cut period is equal to or longer than the predetermined period (step S3: Yes), a further step is performed. In S4, it is determined whether or not the stop period of engine 40 (between T2 and T3) is equal to or shorter than a predetermined period. If the stop period of the engine 40 is equal to or shorter than the predetermined period (step S4: Yes), the fuel increase correction is executed in step S5, and the enrichment coefficient is increased as shown by the solid line in FIG. As a result, the exhaust air-fuel ratio of the three-way catalyst 52 becomes rich. That is, the output value of the rear O 2 sensor 54 increases as shown by the solid line in FIG.

その後、時刻T5(ステップS6)でリアOセンサ54の出力値が所定値(例えば、所定電圧Va)に達すると(ステップS6:Yes)、リッチ化係数を徐々に減少させて増量補正を終了する。本実施形態では、三元触媒52の排気空燃比がストイキよりもリッチ側となった時点で増量補正を終了している。なお燃料カット期間の長さが所定期間よりも短い場合(ステップS3:No)、またエンジン40の停止期間が所定期間よりも長い場合には(ステップS4:No)、燃料の増量補正を実行することなく一連の処理を終了する。 Thereafter, when the output value of the rear O 2 sensor 54 reaches a predetermined value (for example, the predetermined voltage Va) at time T5 (step S6) (step S6: Yes), the enrichment coefficient is gradually decreased to complete the increase correction. To do. In the present embodiment, the increase correction is finished when the exhaust air-fuel ratio of the three-way catalyst 52 becomes richer than the stoichiometric ratio. When the length of the fuel cut period is shorter than the predetermined period (step S3: No), and when the stop period of the engine 40 is longer than the predetermined period (step S4: No), the fuel increase correction is executed. A series of processing is terminated without any processing.

以上のように本実施形態では、車両10の走行モードが第2の走行モード(EV走行モード)から第1の走行モード(シリーズ走行モード)に切り替わり、エンジン40が再始動される際、燃料カット期間の長さと、エンジン40の停止期間の長さと、に基づいて、燃料の増量制御を適宜実行している。これにより、図3中に実線で示すように、NOx排出量を効果的に抑制することができる。特に、エンジン40の停止期間の長さに基づいて、燃料の増量制御を実行しているため、燃料噴射量の過剰増量も抑制することができる。   As described above, in the present embodiment, when the travel mode of the vehicle 10 is switched from the second travel mode (EV travel mode) to the first travel mode (series travel mode) and the engine 40 is restarted, fuel cut is performed. Fuel increase control is appropriately executed based on the length of the period and the length of the stop period of the engine 40. Thereby, as shown by the solid line in FIG. 3, the NOx emission amount can be effectively suppressed. In particular, since the fuel increase control is executed based on the length of the stop period of the engine 40, an excessive increase in the fuel injection amount can also be suppressed.

なお燃料の増量補正を実行しない場合には、時刻T3でエンジン40の再始動を開始した後、三元触媒52の排気空燃比が増加するまでに相当の時間を要する。すなわち図中点線で示すように、リアOセンサ54の出力値は時刻T5よりも遅い時刻T6で所定値に達することになる。その間、NOx排出量は、図3中点線で示すように大幅に増加してしまう。 When the fuel increase correction is not executed, it takes a considerable time until the exhaust air-fuel ratio of the three-way catalyst 52 increases after the restart of the engine 40 is started at time T3. That is, as indicated by the dotted line in the figure, the output value of the rear O 2 sensor 54 reaches a predetermined value at time T6 later than time T5. In the meantime, the NOx emission amount greatly increases as shown by the dotted line in FIG.

以上、本発明の一実施形態について説明したが、本発明は、上述した実施形態に限定されるものではない。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment.

例えば、上述の実施形態では、エンジンとモータとを備えるハイブリッド車両を例示して本発明について説明したが、勿論、本発明は、エンジンのみを備える車両にも適用することができる。エンジンの駆動力によって走行する自動車等の車両には、近年、いわゆるアイドリングストップと呼ばれる技術を採用したものがある。このアイドリングストップは、停止発進に合わせ、自動的にエンジンをストップ・スタートさせる技術である。またこのアイドリングストップ技術としては、車両を停止させる際、車両が完全に停止する前に燃料カットを実行するものもある。そして本発明は、このようなアイドリングストップ技術を採用している車両にも適用することができ、上述したハイブリッド車両の場合と同様の作用効果を得ることができる。   For example, in the above-described embodiment, the present invention has been described by exemplifying a hybrid vehicle including an engine and a motor. However, the present invention can also be applied to a vehicle including only an engine. In recent years, some vehicles such as automobiles that run by the driving force of an engine employ a so-called idling stop technique. This idling stop is a technology that automatically stops and starts the engine when the vehicle starts to stop. In addition, as the idling stop technology, there is a technique that, when stopping the vehicle, performs a fuel cut before the vehicle completely stops. The present invention can also be applied to a vehicle that employs such an idling stop technique, and the same effects as those of the hybrid vehicle described above can be obtained.

また、上述の実施形態では燃料カットによりエンジン40が惰性回転する車両を例示して本発明について説明したが、例えば、エンジン40をジェネレータ35でモータリングし、その際の燃料カット時間により次回エンジン始動時の燃料噴射量を増量補正してもよい。   In the above-described embodiment, the present invention has been described by exemplifying a vehicle in which the engine 40 rotates by fuel cut. For example, the engine 40 is motored by the generator 35, and the next engine start is performed by the fuel cut time at that time. The fuel injection amount at the time may be corrected to increase.

10 車両
11 前駆動伝達機構
12 前輪
14 バッテリ
17 燃料タンク
18 出力系
20 クラッチ
30 フロントモータ
35 ジェネレータ
40 エンジン
41 シリンダヘッド
42 気筒
43 吸気マニホールド
44 吸気管
45 燃料噴射弁
46 デリバリパイプ
47 スロットルバルブ
48 スロットルポジションセンサ(TPS)
49 エアフローセンサ
50 排気マニホールド
51 排気管
52 三元触媒
53 リニア空燃比センサ(LAFS)
54 リアOセンサ
61 燃料噴射制御部
61a 燃料噴射量設定手段
61b 燃料噴射弁制御手段
62 供給酸素量検出部
63 活性判定部
64 増量補正部
DESCRIPTION OF SYMBOLS 10 Vehicle 11 Front drive transmission mechanism 12 Front wheel 14 Battery 17 Fuel tank 18 Output system 20 Clutch 30 Front motor 35 Generator 40 Engine 41 Cylinder head 42 Cylinder 43 Intake manifold 44 Intake pipe 45 Fuel injection valve 46 Delivery pipe 47 Throttle valve 48 Throttle position Sensor (TPS)
49 Airflow sensor 50 Exhaust manifold 51 Exhaust pipe 52 Three-way catalyst 53 Linear air-fuel ratio sensor (LAFS)
54 Rear O 2 sensor 61 Fuel injection control unit 61a Fuel injection amount setting means 61b Fuel injection valve control means 62 Supply oxygen amount detection part 63 Activity determination part 64 Increase correction part

Claims (7)

排気通路に排気浄化触媒を備えるエンジンの燃料噴射制御装置において、
燃料噴射弁から噴射される燃料噴射量を制御する噴射量制御部と、
前記燃料噴射弁による燃料噴射の停止から前記エンジンの停止までの間に前記排気浄化触媒に供給される供給酸素量を検出する供給酸素量検出部と、
前記エンジンの再始動時に前記排気浄化触媒が活性状態であるか否かを判定する活性判定部と、
前記供給酸素量検出部の検出結果及び前記活性判定部の判定結果に応じて、前記エンジンの再始動時に前記燃料噴射弁から噴射される燃料噴射量の増量補正を行う増量補正部と、
を備えることを特徴とするエンジンの噴射量制御装置。
In an engine fuel injection control device including an exhaust purification catalyst in an exhaust passage,
An injection amount control unit for controlling the fuel injection amount injected from the fuel injection valve;
A supply oxygen amount detection unit for detecting a supply oxygen amount supplied to the exhaust purification catalyst between a stop of fuel injection by the fuel injection valve and a stop of the engine;
An activity determination unit that determines whether or not the exhaust purification catalyst is in an active state when the engine is restarted;
An increase correction unit that performs an increase correction of the fuel injection amount injected from the fuel injection valve when the engine is restarted according to the detection result of the supply oxygen amount detection unit and the determination result of the activity determination unit;
An engine injection amount control apparatus comprising:
請求項1に記載のエンジンの燃料噴射制御装置において、
前記供給酸素量検出部は、前記エンジンの停止時に実行される燃料カットの時間に基づいて前記供給酸素量を推定することを特徴とするエンジンの燃料噴射制御装置。
The engine fuel injection control apparatus according to claim 1,
The engine fuel injection control device, wherein the supply oxygen amount detection unit estimates the supply oxygen amount based on a fuel cut time that is executed when the engine is stopped.
請求項1又は2に記載のエンジンの燃料噴射制御装置において、
前記供給酸素量検出部は、前記排気浄化触媒の下流に設けられる下流側空燃比検出手段の出力値に基づいて前記供給酸素量を推定することを特徴とするエンジンの燃料噴射制御装置。
The engine fuel injection control device according to claim 1 or 2,
The engine fuel injection control apparatus, wherein the supply oxygen amount detection unit estimates the supply oxygen amount based on an output value of a downstream air-fuel ratio detection means provided downstream of the exhaust purification catalyst.
請求項1から3の何れか一項に記載のエンジンの燃料噴射制御装置において、
前記活性判定部は、前記エンジンの停止期間に基づいて、前記排気浄化触媒が活性状態であるか否かの判定を行うことを特徴とするエンジンの燃料噴射制御装置。
The engine fuel injection control device according to any one of claims 1 to 3,
The engine fuel injection control apparatus according to claim 1, wherein the activity determination unit determines whether or not the exhaust purification catalyst is in an active state based on a stop period of the engine.
請求項1から4の何れか一項に記載のエンジンの燃料噴射制御装置において、
前記増量補正部は、前記増量補正として、前記供給酸素量検出部の検出結果及び前記活性判定部の判定結果に応じて増量補正係数を設定し、
前記噴射量制御部が、この増量補正係数に基づいて前記燃料噴射弁から燃料を噴射させることを特徴とする燃料噴射制御装置。
The fuel injection control device for an engine according to any one of claims 1 to 4,
The increase correction unit sets an increase correction coefficient as the increase correction according to the detection result of the supply oxygen amount detection unit and the determination result of the activity determination unit,
The fuel injection control device, wherein the fuel injection control unit causes the fuel injection valve to inject fuel based on the increase correction coefficient.
請求項1から5の何れか一項に記載のエンジンの燃料噴射制御装置において、
前記増量補正部は、前記排気浄化触媒の空燃比が所定値よりもリッチ側となると、前記増量補正を終了することを特徴とするエンジンの燃料噴射制御装置。
The engine fuel injection control device according to any one of claims 1 to 5,
The engine fuel injection control apparatus according to claim 1, wherein the increase correction unit ends the increase correction when the air-fuel ratio of the exhaust purification catalyst becomes richer than a predetermined value.
請求項6に記載のエンジンの燃料噴射制御装置において、
前記増量補正部は、前記排気浄化触媒の下流に設けられる下流側空燃比検出手段の出力値に基づいて前記排気浄化触媒の空燃比が所定値よりもリッチ側であるか否かの判定を行うことを特徴とするエンジンの燃料噴射制御装置。
The fuel injection control device for an engine according to claim 6,
The increase correction unit determines whether or not the air-fuel ratio of the exhaust purification catalyst is richer than a predetermined value based on the output value of the downstream air-fuel ratio detection means provided downstream of the exhaust purification catalyst. A fuel injection control device for an engine.
JP2013269413A 2013-12-26 2013-12-26 Engine fuel injection control device Active JP6288419B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013269413A JP6288419B2 (en) 2013-12-26 2013-12-26 Engine fuel injection control device
US14/581,534 US9334821B2 (en) 2013-12-26 2014-12-23 Fuel injection control apparatus for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013269413A JP6288419B2 (en) 2013-12-26 2013-12-26 Engine fuel injection control device

Publications (2)

Publication Number Publication Date
JP2015124683A true JP2015124683A (en) 2015-07-06
JP6288419B2 JP6288419B2 (en) 2018-03-07

Family

ID=53481177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013269413A Active JP6288419B2 (en) 2013-12-26 2013-12-26 Engine fuel injection control device

Country Status (2)

Country Link
US (1) US9334821B2 (en)
JP (1) JP6288419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135276A1 (en) * 2018-01-05 2019-07-11 日産自動車株式会社 Method for controlling air-fuel ratio of internal combustion engine, and air-fuel ratio control device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6296228B2 (en) * 2013-12-13 2018-03-20 三菱自動車工業株式会社 Control device for hybrid vehicle
JP6269427B2 (en) * 2014-10-03 2018-01-31 トヨタ自動車株式会社 Control device for internal combustion engine
EP3184786B1 (en) * 2014-12-02 2018-10-10 Nissan Motor Co., Ltd Controlling device for internal combustion engines
JP6120019B2 (en) * 2015-02-19 2017-04-26 トヨタ自動車株式会社 Control device for internal combustion engine
JP6323387B2 (en) * 2015-04-21 2018-05-16 株式会社デンソー Travel control device
JP2024010982A (en) * 2022-07-13 2024-01-25 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054826A (en) * 1998-08-11 2000-02-22 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2003166414A (en) * 2001-11-30 2003-06-13 Toyota Motor Corp Control device of internal combustion engine
JP2003172176A (en) * 2001-12-06 2003-06-20 Toyota Motor Corp Fuel feed control method and device for internal combustion engine
JP2007309243A (en) * 2006-05-19 2007-11-29 Mitsubishi Motors Corp Catalyst temperature estimating device
JP2009036117A (en) * 2007-08-02 2009-02-19 Toyota Motor Corp Air-fuel ratio controller of internal combustion engine
JP2010096037A (en) * 2008-10-14 2010-04-30 Honda Motor Co Ltd Control system for internal combustion engine
JP2010179864A (en) * 2009-02-09 2010-08-19 Nissan Motor Co Ltd Control device for hybrid vehicle
US20130184907A1 (en) * 2012-01-12 2013-07-18 GM Global Technology Operations LLC Coordination of fuel cutoff for fault detection and hybrid operation
JP2013163484A (en) * 2012-02-13 2013-08-22 Toyota Motor Corp Air-fuel ratio control apparatus for internal combustion engine mounted on hybrid vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141293A (en) 1991-11-21 1993-06-08 Daihatsu Motor Co Ltd Air fuel ratio correcting method
JP2006118433A (en) 2004-10-21 2006-05-11 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054826A (en) * 1998-08-11 2000-02-22 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2003166414A (en) * 2001-11-30 2003-06-13 Toyota Motor Corp Control device of internal combustion engine
JP2003172176A (en) * 2001-12-06 2003-06-20 Toyota Motor Corp Fuel feed control method and device for internal combustion engine
JP2007309243A (en) * 2006-05-19 2007-11-29 Mitsubishi Motors Corp Catalyst temperature estimating device
JP2009036117A (en) * 2007-08-02 2009-02-19 Toyota Motor Corp Air-fuel ratio controller of internal combustion engine
JP2010096037A (en) * 2008-10-14 2010-04-30 Honda Motor Co Ltd Control system for internal combustion engine
JP2010179864A (en) * 2009-02-09 2010-08-19 Nissan Motor Co Ltd Control device for hybrid vehicle
US20130184907A1 (en) * 2012-01-12 2013-07-18 GM Global Technology Operations LLC Coordination of fuel cutoff for fault detection and hybrid operation
JP2013163484A (en) * 2012-02-13 2013-08-22 Toyota Motor Corp Air-fuel ratio control apparatus for internal combustion engine mounted on hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135276A1 (en) * 2018-01-05 2019-07-11 日産自動車株式会社 Method for controlling air-fuel ratio of internal combustion engine, and air-fuel ratio control device

Also Published As

Publication number Publication date
JP6288419B2 (en) 2018-03-07
US9334821B2 (en) 2016-05-10
US20150184605A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6288419B2 (en) Engine fuel injection control device
US8789359B2 (en) Exhaust gas purifying system of an internal combustion engine
JP5187458B2 (en) Control device for internal combustion engine
WO2013098973A1 (en) Exhaust control apparatus for internal combustion engine
JP5811822B2 (en) Diesel engine exhaust gas purification method and exhaust gas purification system
JP6501065B2 (en) Engine exhaust purification system
JP5229400B2 (en) Control device for internal combustion engine
WO2013035163A1 (en) Warm-up system for exhaust system of internal combustion engine
JP2016176428A (en) Exhaust emission control device for engine
JP2019007417A (en) Exhaust emission control device for internal combustion engine
JP5392021B2 (en) Fuel injection control device for internal combustion engine
JP2010031737A (en) Air-fuel ratio control device and hybrid vehicle
JP4635868B2 (en) Exhaust gas purification device for internal combustion engine
JP4867694B2 (en) Engine exhaust purification system
JP6230008B1 (en) Engine exhaust purification system
JP2004285841A (en) Exhaust emission control device of internal combustion engine
JP6232749B2 (en) Engine control apparatus and control method
JP2009281176A (en) Exhaust emission control device for internal combustion engine
JP5324295B2 (en) Exhaust gas purification system for internal combustion engine
JP2000192812A (en) Exhaust emission control device for internal combustion engine
JP2001342879A (en) Exhaust emission control device of internal combustion engine
JP5427525B2 (en) Automatic engine stop control device
JP3899775B2 (en) Exhaust gas purification device for internal combustion engine
JP2000265824A (en) Exhaust emission control device for internal combustion engine
JP2011106383A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180123

R151 Written notification of patent or utility model registration

Ref document number: 6288419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350