JP2015124434A - Tin-plated copper-alloy terminal material - Google Patents

Tin-plated copper-alloy terminal material Download PDF

Info

Publication number
JP2015124434A
JP2015124434A JP2013271705A JP2013271705A JP2015124434A JP 2015124434 A JP2015124434 A JP 2015124434A JP 2013271705 A JP2013271705 A JP 2013271705A JP 2013271705 A JP2013271705 A JP 2013271705A JP 2015124434 A JP2015124434 A JP 2015124434A
Authority
JP
Japan
Prior art keywords
layer
less
thickness
plating
based surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013271705A
Other languages
Japanese (ja)
Inventor
雄基 井上
Yuki Inoue
雄基 井上
加藤 直樹
Naoki Kato
直樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013271705A priority Critical patent/JP2015124434A/en
Publication of JP2015124434A publication Critical patent/JP2015124434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tin-plated copper-alloy terminal material by which insertion force in fitting terminals can be reduced even for a terminal using a general-purpose Sn-plated terminal material.SOLUTION: An Sn-based surface layer is formed on a surface of a base material made of Cu alloy, a CuSn alloy layer is formed between the Sn-based surface layer and the base material, depth of oil accumulation Rvk of the CuSn alloy layer which is measured when the Sn-based surface layer is melted and removed to allow the CuSn alloy layer to appear on the surface is 0.2 μm or more and average thickness of the Sn-based surface layer is 0.2 μm or more and 0.6 μm or less, an Ag-coating layer having film thickness of 0.05 μm or less is formed on the outermost surface of the Sn-based surface layer, and dynamic friction coefficient of the surface is 0.3 or less.

Description

本発明は、自動車や民生機器等の電気配線の接続に使用されるコネクタ用端子、特に多ピンコネクタ用の端子として有用な錫めっき銅合金端子材に関するものである。   TECHNICAL FIELD The present invention relates to a tin-plated copper alloy terminal material useful as a connector terminal used for connection of electrical wiring of automobiles and consumer devices, particularly as a terminal for a multi-pin connector.

近年、自動車において電装機器の多機能・高集積化に伴い、使用するコネクタ端子の小型化、多ピン化が顕著になっている。コネクタには錫めっき銅合金材が広く使用されているが、コネクタの多ピン化により、端子差込時の摩擦抵抗が増え、生産性が低下することが懸念されている。そこで、錫めっき銅合金材の摩擦係数を小さくして単ピンあたりの挿入力を低減することが試みられている。   2. Description of the Related Art In recent years, with the increase in the number of functions and integration of electrical equipment in automobiles, miniaturization and increase in the number of pins of connector terminals to be used have become remarkable. Although tin-plated copper alloy materials are widely used for connectors, there is a concern that the increase in the number of pins of the connector will increase the frictional resistance when inserting the terminals, resulting in a decrease in productivity. Therefore, attempts have been made to reduce the insertion force per single pin by reducing the friction coefficient of the tin-plated copper alloy material.

例えば、錫めっき銅合金材の最表面に錫とは異なる結晶構造を持つ金属とすることで挿入力を低減させるもの(特許文献1)があるが、接触抵抗が増大する、ハンダ濡れ性が低下するといった問題があった。
特許文献2では、表面めっき層をSnめっき層とAgまたはInを含むめっき層とをリフロー処理または熱拡散処理された層としている。
また、特許文献3では、Snめっき層の上にAgめっき層を形成して熱処理することにより、Sn−Ag合金層を形成することが示されている。
これらの特許文献2,3記載の技術は、いずれも熱処理しSn合金層としたものであり、表面全体が硬いSn合金層で覆われているため、オス、メス両端子に用いた場合には摩擦抵抗の低減効果があるが、片側の端子が汎用のSnめっき材の場合、アブレシブ摩耗が発生してしまう問題があった。
For example, there is a metal that has a crystal structure different from that of tin on the outermost surface of a tin-plated copper alloy material (Patent Document 1), but the contact resistance increases and the solder wettability decreases. There was a problem such as.
In Patent Document 2, the surface plating layer is a Sn plating layer and a plating layer containing Ag or In that are subjected to a reflow process or a thermal diffusion process.
Patent Document 3 discloses that an Sn-Ag alloy layer is formed by forming an Ag plating layer on the Sn plating layer and performing heat treatment.
These technologies described in Patent Documents 2 and 3 are all heat-treated to form an Sn alloy layer, and the entire surface is covered with a hard Sn alloy layer, so when used for both male and female terminals, Although there is an effect of reducing frictional resistance, there is a problem that abrasive wear occurs when the terminal on one side is a general-purpose Sn plating material.

ここで、コネクタの挿入力Fは、メス端子がオス端子を圧し付ける力(接圧)をP、動摩擦係数をμとすると、通常オス端子は上下2方向からメス端子に挟まれるので、F=2×μ×P となる。このFを小さくするには、Pを小さくすることが有効だが、コネクタ嵌合時のオス・メス端子の電気的接続信頼性を確保するためにはいたずらに接圧を小さくすることができず、3N程度は必要とされる。多ピンコネクタでは、50ピン/コネクタを超えるものもあるが、コネクタ全体の挿入力は100N以下、できれば80N以下、あるいは70N以下が望ましいため、動摩擦係数μとしては、0.3以下が必要とされる。   Here, the insertion force F of the connector is such that the force (contact pressure) by which the female terminal presses the male terminal is P, and the dynamic friction coefficient is μ. 2 × μ × P. In order to reduce this F, it is effective to reduce P, but in order to ensure the electrical connection reliability of the male and female terminals when the connector is fitted, the contact pressure cannot be reduced unnecessarily. About 3N is required. Some multi-pin connectors exceed 50 pins / connector, but the insertion force of the entire connector is preferably 100 N or less, preferably 80 N or less, or 70 N or less, so that the dynamic friction coefficient μ is required to be 0.3 or less. The

特開平11−102739号公報Japanese Patent Laid-Open No. 11-102739 特開2007−177329号公報JP 2007-177329 A 特開2004−225070号公報Japanese Patent Laid-Open No. 2004-2225070

従来より表層の摩擦抵抗を下げた端子材が開発されているが、オス、メス端子を嵌合する接続端子の場合、両者に同じ材種を用いることが少なく、特にオス端子は、黄銅を基材とした汎用のSnめっき付き端子材が広く用いられている。そのため、メス端子のみに低挿入力端子材を用いても、挿入力低減の効果が小さいといった問題があった。   Conventionally, terminal materials with lower surface friction resistance have been developed, but in the case of connection terminals that fit male and female terminals, the same material type is rarely used for both, and male terminals are based on brass. A general-purpose terminal material with Sn plating as a material is widely used. Therefore, even if a low insertion force terminal material is used only for the female terminal, there is a problem that the effect of reducing the insertion force is small.

本発明は、前述の課題に鑑みてなされたものであって、汎用のSnめっき端子材を用いた端子に対しても嵌合時の挿入力を低減することができる錫めっき銅合金端子材の提供を目的とする。   The present invention has been made in view of the above-described problems, and is a tin-plated copper alloy terminal material that can reduce the insertion force at the time of fitting even to a terminal using a general-purpose Sn-plated terminal material. For the purpose of provision.

発明者らは、端子材表層の摩擦抵抗を下げる手段として、CuSn金属層とSn系表面層との界面の形状を制御し、Sn系表面層の直下に急峻な凹凸形状のCuSn合金層を配置することで摩擦係数が小さくなることを見出した。但し、この低挿入力端子材を端子の一方にのみ用い、他方を汎用のSnめっき材とした場合、摩擦係数低減の効果が半減した。
いずれも最表面がSnめっきであるため、同種のSnどうしが接触することでSnの凝着が発生して摩擦係数低減の効果が半減する。特に、低挿入力端子材は、Sn系表面層の直下に硬いCuSn合金層が配置されているため、汎用のSnめっき材の軟らかいSn系表面層のSnが削れて凝着すると考えられる。
発明者らは鋭意研究した結果、最表面に薄くAg被覆層を形成することで、低挿入力端子材の摩擦係数低減効果を確保しつつ、さらにSnの凝着を抑制し、他方の端子に汎用材を用いても摩擦抵抗の低減が可能となることを見出した。
The inventors have controlled the shape of the interface between the CuSn metal layer and the Sn-based surface layer as a means to lower the frictional resistance of the surface layer of the terminal material, and placed a steep uneven CuSn alloy layer directly under the Sn-based surface layer. It has been found that the friction coefficient is reduced by doing so. However, when this low insertion force terminal material was used for only one of the terminals and the other was a general-purpose Sn plating material, the effect of reducing the friction coefficient was reduced by half.
In any case, since the outermost surface is Sn plating, Sn adhesion occurs when Sn of the same kind is in contact with each other, and the effect of reducing the friction coefficient is halved. In particular, since the low insertion force terminal material has a hard CuSn alloy layer arranged immediately below the Sn-based surface layer, it is considered that Sn of the soft Sn-based surface layer of a general-purpose Sn plating material is scraped and adhered.
As a result of intensive research, the inventors have formed a thin Ag coating layer on the outermost surface, thereby ensuring the effect of reducing the friction coefficient of the low insertion force terminal material, and further suppressing the adhesion of Sn, and the other terminal. It was found that the frictional resistance can be reduced even by using a general-purpose material.

本発明の錫めっき銅合金端子材は、Cu合金からなる基材上表面にSn系表面層が形成され、前記Sn系表面層と前記基材との間にCuSn合金層が形成されており、前記Sn系表面層を溶解除去して、前記CuSn合金層を表面に現出させたときに測定される前記CuSn合金層の油溜り深さRvkが0.2μm以上であり、かつ前記Sn系表面層の平均厚みが0.2μm以上0.6μm以下であり、前記Sn系表面層の最表面に0.05μm以下の膜厚のAg被覆層が形成され、表面の動摩擦係数が0.3以下であることを特徴とする。   In the tin-plated copper alloy terminal material of the present invention, an Sn-based surface layer is formed on the surface of a base material made of a Cu alloy, and a CuSn alloy layer is formed between the Sn-based surface layer and the base material. An oil reservoir depth Rvk of the CuSn alloy layer measured when the Sn-based surface layer is dissolved and removed so that the CuSn alloy layer appears on the surface is 0.2 μm or more, and the Sn-based surface The average thickness of the layer is 0.2 μm or more and 0.6 μm or less, an Ag coating layer having a thickness of 0.05 μm or less is formed on the outermost surface of the Sn-based surface layer, and the surface dynamic friction coefficient is 0.3 or less. It is characterized by being.

CuSn合金層の油溜まり深さRvkを0.2μm以上、Sn系表面層の平均厚みを0.2μm以上0.6μm以下とし、Sn系表面層の最表面に0.05μm以下のAg被覆層を設けることで、動摩擦係数を0.3以下とすることができる。
CuSn合金層の油溜り深さRvkは、0.2μm未満では、CuSn合金層の凹部内に存在するSnが少なくなるので、動摩擦係数が増大する。また、Sn系表面層の平均厚みを0.2μm以上0.6μm以下としたのは、0.2μm未満でははんだ濡れ性の低下、電気的接続信頼性の低下を招き、0.6μmを超えるとCuSn合金層の油溜り深さRvkを0.2μm以上とすることができず、Snの占める厚さが大きくなるので動摩擦係数が増大するためである。
Ag被覆層の膜厚が0.05μmを超えると、Sn系表面層とCuSn合金層との特殊な界面形状による摩擦係数低減効果とAg被覆層によるSn凝着抑制効果とを同時に得ることができず、Ag被覆層による凝着抑制効果のみであるため十分な摩擦係数低減効果が得られない。またAg系被覆層を厚くするほどコスト高となる。このAg被覆層の膜厚は0.005μm以上とするのが好ましい。
ここで、表面の動摩擦係数は、本発明の錫めっき銅合金端子材同士の間ではもちろんのこと、最表面にSnめっき層を有する汎用のSnめっき端子材に対しても、0.3以下とされる。最表面にSnめっき層を有する汎用のSnめっき端子材とは、基材にCuめっき、Snめっきを施してリフロー処理することにより得られるが、CuSn合金層の油溜り深さRvkが0.2μm未満であり、平均厚み0.2μm以上3μm以下のSnめっき層を最表面に有するSnめっき端子材、あるいは、リフロー処理することなく、基材に厚み0.5μm以上3μm以下のSnめっき層を形成したSnめっき端子材をいう。
The oil reservoir depth Rvk of the CuSn alloy layer is 0.2 μm or more, the average thickness of the Sn-based surface layer is 0.2 μm or more and 0.6 μm or less, and an Ag coating layer of 0.05 μm or less is formed on the outermost surface of the Sn-based surface layer. By providing, a dynamic friction coefficient can be 0.3 or less.
When the oil sump depth Rvk of the CuSn alloy layer is less than 0.2 μm, Sn existing in the recesses of the CuSn alloy layer decreases, and the dynamic friction coefficient increases. In addition, the average thickness of the Sn-based surface layer is set to 0.2 μm or more and 0.6 μm or less. If the thickness is less than 0.2 μm, solder wettability and electrical connection reliability are deteriorated. This is because the oil sump depth Rvk of the CuSn alloy layer cannot be 0.2 μm or more, and the thickness occupied by Sn increases, so that the dynamic friction coefficient increases.
When the film thickness of the Ag coating layer exceeds 0.05 μm, it is possible to simultaneously obtain the friction coefficient reduction effect due to the special interface shape between the Sn-based surface layer and the CuSn alloy layer and the Sn adhesion suppression effect due to the Ag coating layer. In addition, since only the adhesion suppression effect by the Ag coating layer is obtained, a sufficient friction coefficient reduction effect cannot be obtained. Further, the thicker the Ag-based coating layer, the higher the cost. The thickness of the Ag coating layer is preferably 0.005 μm or more.
Here, the dynamic friction coefficient of the surface is 0.3 or less for the general-purpose Sn plating terminal material having the Sn plating layer on the outermost surface as well as between the tin plating copper alloy terminal materials of the present invention. Is done. A general-purpose Sn-plated terminal material having a Sn plating layer on the outermost surface is obtained by applying a Cu plating or Sn plating to a base material and performing a reflow process. Sn plating terminal material having an Sn plating layer with an average thickness of 0.2 μm or more and 3 μm or less on the outermost surface, or forming a Sn plating layer with a thickness of 0.5 μm or more and 3 μm or less on the substrate without reflow treatment Sn-plated terminal material.

本発明の錫めっき銅合金端子材において、前記CuSn合金層の平均厚みが0.6μm以上1μm以下であるとよい。
CuSn合金層の平均厚みが0.6μm未満では油溜まり深さRvkを0.2μm以上とすることが難しく、1μm以上の厚みに形成するためにはSn系表面層を必要以上に厚くする必要があり不経済である。
In the tin-plated copper alloy terminal material of the present invention, the average thickness of the CuSn alloy layer may be 0.6 μm or more and 1 μm or less.
If the average thickness of the CuSn alloy layer is less than 0.6 μm, it is difficult to make the oil sump depth Rvk 0.2 μm or more. In order to form a thickness of 1 μm or more, it is necessary to make the Sn-based surface layer thicker than necessary. Yes, it is uneconomical.

本発明の錫めっき銅合金端子材において、前記基材が、0.5質量%以上5質量%以下のNi、0.1質量%以上1.5質量%以下のSiを含有し、更に必要に応じてZn,Sn,Fe,Mgの群から選ばれた1種以上を合計で5質量%以下含有し、残部がCu及び不可避不純物から構成されるとよい。   In the tin-plated copper alloy terminal material of the present invention, the base material contains 0.5 mass% to 5 mass% Ni, 0.1 mass% to 1.5 mass% Si, and further required. Accordingly, it is preferable that one or more selected from the group of Zn, Sn, Fe, and Mg is contained in a total amount of 5% by mass or less, and the balance is composed of Cu and inevitable impurities.

CuSn系表面層の油溜まり深さRvkを0.2μm以上とするためには、CuSn合金層中にNi及びSiが固溶することが必要である。この場合、Ni及びSiを含有している基材を用いれば、リフロー時に基材よりNi及びSiをCuSn合金層中に供給することができる。ただし、基材中のこれらNi及びSiの含有量は、Niが0.5質量%未満、Siが0.1質量%未満では、それぞれNi又はSiの効果が現れず、Niでは5質量%を越えると鋳造や熱間圧延時に割れを生じるおそれがあり、Siでは1.5質量%を超えると導電性が低下するため、Niは0.5質量%以上5質量%以下、Siは0.1質量%以上1.5質量%以下が好ましい。
Zn,Snは、強度、耐熱性向上のために添加するとよく、また、Fe,Mgは、応力緩和特性向上のために添加するとよいが、合計で5質量%を超えると導電率が低下するので好ましくない。
In order to set the oil reservoir depth Rvk of the CuSn-based surface layer to 0.2 μm or more, it is necessary that Ni and Si dissolve in the CuSn alloy layer. In this case, if a base material containing Ni and Si is used, Ni and Si can be supplied from the base material into the CuSn alloy layer during reflow. However, the content of these Ni and Si in the substrate is such that when Ni is less than 0.5% by mass and Si is less than 0.1% by mass, the effect of Ni or Si does not appear. If it exceeds, there is a risk of cracking during casting or hot rolling, and if Si exceeds 1.5% by mass, the conductivity will decrease, so Ni is 0.5% by mass or more and 5% by mass or less, and Si is 0.1% by mass. The mass% is preferably 1.5% by mass or less.
Zn and Sn should be added to improve strength and heat resistance, and Fe and Mg should be added to improve stress relaxation characteristics. However, if the total exceeds 5% by mass, the conductivity will decrease. It is not preferable.

本発明の錫めっき銅合金端子材によれば、CuSn金属層とSn系表面層との界面の凹凸形状を制御した低挿入力端子材のSn系表面層の最表面に0.05μm以下の膜厚のAg被覆層を形成したことにより、汎用のSnめっき材との組み合わせで用いる場合でも、嵌合時の挿入力を低減することが可能となる。   According to the tin-plated copper alloy terminal material of the present invention, a film of 0.05 μm or less is formed on the outermost surface of the Sn-type surface layer of the low insertion force terminal material in which the uneven shape of the interface between the CuSn metal layer and the Sn-type surface layer is controlled. By forming a thick Ag coating layer, even when used in combination with a general-purpose Sn plating material, the insertion force during fitting can be reduced.

本発明の錫めっき銅合金端子材を模式的に示す断面図である。It is sectional drawing which shows typically the tin plating copper alloy terminal material of this invention. 本発明の端子材が適用される嵌合型接続端子の例を示す嵌合部の断面図である。It is sectional drawing of the fitting part which shows the example of the fitting type connection terminal to which the terminal material of this invention is applied. オス端子に用いられる端子材を模式的に示す断面図である。It is sectional drawing which shows typically the terminal material used for a male terminal. 動摩擦係数を測定するための装置を概念的に示す正面図である。It is a front view which shows notionally the apparatus for measuring a dynamic friction coefficient. 動摩擦係数測定後の実施例5のオス端子試験片表面の顕微鏡写真である。It is a microscope picture of the male terminal test piece surface of Example 5 after a dynamic friction coefficient measurement. 動摩擦係数測定後の比較例1のオス端子試験片表面の顕微鏡写真である。It is a microscope picture of the male terminal test piece surface of the comparative example 1 after a dynamic friction coefficient measurement. 動摩擦係数測定後の比較例4のオス端子試験片表面の顕微鏡写真である。It is a microscope picture of the male terminal test piece surface of the comparative example 4 after a dynamic friction coefficient measurement.

本発明の一実施形態の錫めっき銅合金端子材を説明する。
この錫めっき銅合金端子材は、図1の模式図に示すように、Cu合金からなる基材5上表面にSn系表面層6が形成され、Sn系表面層6とCu合金基材5との間にCuSn合金層7が形成されており、Sn系表面層6を溶解除去して、CuSn合金層7を表面に現出させたときに測定されるCuSn合金層7の油溜り深さRvkが0.2μm以上であり、かつSn系表面層6の平均厚みが0.2μm以上0.6μm以下であり、Sn系表面層6の最表面に0.05μm以下の膜厚のAg被覆層8が形成され、表面の動摩擦係数が0.3以下である。
The tin plating copper alloy terminal material of one Embodiment of this invention is demonstrated.
As shown in the schematic diagram of FIG. 1, this tin-plated copper alloy terminal material has a Sn-based surface layer 6 formed on the surface of a base material 5 made of a Cu alloy, and the Sn-based surface layer 6, the Cu alloy base material 5, The CuSn alloy layer 7 is formed between the two, and the Sn-based surface layer 6 is dissolved and removed, and the oil reservoir depth Rvk of the CuSn alloy layer 7 measured when the CuSn alloy layer 7 appears on the surface. Is 0.2 μm or more, the average thickness of the Sn-based surface layer 6 is 0.2 μm or more and 0.6 μm or less, and the Ag coating layer 8 having a thickness of 0.05 μm or less is formed on the outermost surface of the Sn-based surface layer 6. Are formed, and the dynamic friction coefficient of the surface is 0.3 or less.

基材は、Cu−Ni−Si系合金、Cu−Ni−Si−Zn系合金等、Ni及びSiを含有し、更に必要に応じてZn,Sn,Fe,Mgの群から選ばれた1種以上を合計で5質量%以下含有し、残部がCu及び不可避不純物から構成される銅合金である。Ni及びSiを必須成分としたのは、後述するリフロー処理により形成されるCuSn合金層の油溜まり深さRvk0.2μm以上にするために、リフロー時に基材よりNi及びSiを供給し、CuSn合金層中にNi及びSiを固溶させるためである。基材中のNiの含有量としては0.5質量%以上5質量%以下が、Siの含有量としては0.1質量%以上1.5質量%以下が好ましい。Niが0.5質量%未満ではNiの効果、Siが0.1質量%未満ではSiの効果がそれぞれ現れず、Niが5質量%を越えると鋳造や熱間圧延時に割れを生じるおそれがあり、Siが1.5質量%を超えると導電性が低下するためである。   The base material contains Ni and Si, such as a Cu—Ni—Si based alloy, a Cu—Ni—Si—Zn based alloy, and is further selected from the group of Zn, Sn, Fe, and Mg as required. The total is 5% by mass or less in total, and the balance is a copper alloy composed of Cu and inevitable impurities. Ni and Si are essential components because Ni and Si are supplied from the base material at the time of reflow in order to make the oil reservoir depth Rvk of 0.2 μm or more of the CuSn alloy layer formed by the reflow process described later, CuSn alloy This is because Ni and Si are dissolved in the layer. The Ni content in the substrate is preferably 0.5% by mass or more and 5% by mass or less, and the Si content is preferably 0.1% by mass or more and 1.5% by mass or less. If Ni is less than 0.5% by mass, the effect of Ni will not occur, and if Si is less than 0.1% by mass, the effect of Si will not appear. If Ni exceeds 5% by mass, cracking may occur during casting or hot rolling. This is because when Si exceeds 1.5% by mass, the conductivity is lowered.

また、Zn,Snは、強度、耐熱性を向上させ、Fe,Mgは、応力緩和特性を向上させる。これらZn,Sn,Fe,Mgのいずれか1種以上を添加する場合は、その合計の含有量が5質量%を超えると導電性が低下するので好ましくない。特に、Zn,Sn,Fe,Mgの全てを含むことが好ましい。   Zn and Sn improve strength and heat resistance, and Fe and Mg improve stress relaxation characteristics. When adding any one or more of these Zn, Sn, Fe, and Mg, if the total content exceeds 5% by mass, the conductivity decreases, which is not preferable. In particular, it is preferable to include all of Zn, Sn, Fe, and Mg.

CuSn合金層は、後述するように基材の上にCuめっき層とSnめっき層とを形成してリフロー処理することにより形成されたものであり、その大部分はCuSnであるが、基材との界面付近に、基材中のNi及びSiとCuの一部が置換した(Cu,Ni,Si)Sn合金が薄く形成される。また、このCuSn合金層とSn系表面層との界面は、凹凸状に形成され、その油溜り深さRvkが0.2μm以上とされる。
この油溜まり深さRvkは、JIS B0671−2で規定される表面粗さ曲線の突出谷部平均深さであり、平均的な凹凸よりも深い部分がどの程度あるかを示す指標とされ、この値が大きければ、非常に深い谷部分の存在により、急峻な凹凸形状となっていることを示す。
このCuSn合金層の平均厚みは0.6μm以上1μm以下であるとよく、0.6μm未満ではCuSn合金層の油溜まり深さRvkを0.2μm以上とすることが難しく、1μm以下と規定したのは、1μm以上の厚みに形成するためにはSn系表面層を必要以上に厚くする必要があり不経済である。
なお、このCuSn合金層の一部(CuSn)がSn系表面層に露出していてもよい。その場合、各露出部の円相当直径が0.6μm以上2.0μm以下で、露出面積率は40%以下とされ、その限られた範囲であれば、Sn系表面層の持つ優れた電気接続特性を損なうことはない。
The CuSn alloy layer is formed by forming a Cu plating layer and a Sn plating layer on a base material and performing a reflow treatment as will be described later. Most of the CuSn alloy layer is Cu 6 Sn 5 , A thin (Cu, Ni, Si) 6 Sn 5 alloy in which a part of Ni and Si and Cu in the base material is substituted is formed near the interface with the base material. In addition, the interface between the CuSn alloy layer and the Sn-based surface layer is formed in an uneven shape, and the oil sump depth Rvk is 0.2 μm or more.
This oil sump depth Rvk is the average depth of the projecting valley portion of the surface roughness curve defined in JIS B0671-2, and is an index indicating how much the portion is deeper than the average unevenness. A large value indicates a steep uneven shape due to the presence of a very deep valley.
The average thickness of the CuSn alloy layer is preferably 0.6 μm or more and 1 μm or less, and if it is less than 0.6 μm, it is difficult to make the oil reservoir depth Rvk of the CuSn alloy layer 0.2 μm or more, and it is defined as 1 μm or less. Is uneconomical because it is necessary to make the Sn-based surface layer thicker than necessary to form a thickness of 1 μm or more.
A part of this CuSn alloy layer (Cu 6 Sn 5 ) may be exposed on the Sn-based surface layer. In that case, the circle equivalent diameter of each exposed portion is 0.6 μm or more and 2.0 μm or less, and the exposed area ratio is 40% or less. There is no loss of properties.

Sn系表面層は平均厚みが0.2μm以上0.6μm以下に形成される。その厚みが0.2μm未満でははんだ濡れ性の低下、電気的接続信頼性の低下を招き、0.6μmを超えると表層をSnとCuSnの複合構造とすることができず、Snだけで占められるので動摩擦係数が増大するためである。より好ましいSn系表面層の平均厚みは0.25μm以上0.5μm以下である。   The Sn-based surface layer has an average thickness of 0.2 μm or more and 0.6 μm or less. If the thickness is less than 0.2 μm, solder wettability and electrical connection reliability are reduced, and if it exceeds 0.6 μm, the surface layer cannot be made of a composite structure of Sn and CuSn, and is occupied only by Sn. This is because the dynamic friction coefficient increases. A more preferable average thickness of the Sn-based surface layer is 0.25 μm or more and 0.5 μm or less.

Ag被覆層は、Agからなる被覆層であり、後述するように、リフロー処理した後のSn系表面層の上に形成され、膜厚が0.05μm以下とされる。0.05μmを超える膜厚では、Sn系表面層とCuSn合金層との特殊な界面形状による摩擦係数低減効果とAg被覆層によるSn凝着抑制効果とを同時に得ることができず、Ag被覆層による凝着抑制効果のみであるため十分な摩擦係数低減効果が得られず、また、Ag被覆層を厚くするほどコスト高となる。このAg被覆層の膜厚は0.005μm以上とするのが好ましい。   The Ag coating layer is a coating layer made of Ag, and is formed on the Sn-based surface layer after the reflow treatment as described later, and has a film thickness of 0.05 μm or less. When the film thickness exceeds 0.05 μm, the friction coefficient reduction effect due to the special interface shape between the Sn-based surface layer and the CuSn alloy layer and the Sn adhesion suppression effect due to the Ag coating layer cannot be obtained at the same time. The effect of reducing the friction coefficient is not obtained because of only the effect of suppressing adhesion due to, and the higher the Ag coating layer, the higher the cost. The thickness of the Ag coating layer is preferably 0.005 μm or more.

次に、この端子材の製造方法について説明する。
基材として、Cu−Ni−Si系合金、Cu−Ni−Si−Zn系合金等、Ni及びSiを含有し、更に必要に応じてZn,Sn,Fe,Mgの群から選ばれた1種以上を合計で5質量%以下含有し、残部がCu及び不可避不純物から構成される銅合金からなる板材を用意する。この板材に脱脂、酸洗等の処理をすることによって表面を清浄にした後、Cuめっき、Snめっきをこの順序で施す。
Next, the manufacturing method of this terminal material is demonstrated.
As a base material, Cu—Ni—Si alloy, Cu—Ni—Si—Zn alloy, etc., containing Ni and Si, and further, one kind selected from the group of Zn, Sn, Fe, Mg as required A plate material made of a copper alloy containing the above in total by 5% by mass or less and the balance of Cu and inevitable impurities is prepared. After the surface of the plate material is cleaned by degreasing, pickling, etc., Cu plating and Sn plating are performed in this order.

Cuめっきは一般的なCuめっき浴を用いればよく、例えば硫酸銅(CuSO)及び硫酸(HSO)を主成分とした硫酸銅浴等を用いることができる。めっき浴の温度は20℃以上50℃以下、電流密度は1A/dm以上20A/dm以下とされる。このCuめっきにより形成されるCuめっき層の膜厚は0.03μm以上0.15μm以下とされる。0.03μm未満では合金基材の影響が大きく、表層にまでCuSn合金層が成長し、光沢度、はんだ濡れ性の低下を招き、0.15μmを超えると、リフロー時に基材よりNiが十分に供給されず、所望のCuSn合金層の形状を得られないためである。 For Cu plating, a general Cu plating bath may be used. For example, a copper sulfate bath mainly composed of copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) may be used. The temperature of the plating bath is 20 ° C. or more and 50 ° C. or less, and the current density is 1 A / dm 2 or more and 20 A / dm 2 or less. The film thickness of the Cu plating layer formed by this Cu plating is 0.03 μm or more and 0.15 μm or less. If it is less than 0.03 μm, the influence of the alloy base material is large, and the CuSn alloy layer grows to the surface layer, resulting in a decrease in glossiness and solder wettability. This is because the desired shape of the CuSn alloy layer cannot be obtained.

Snめっき層形成のためのめっき浴としては、一般的なSnめっき浴を用いればよく、例えば硫酸(HSO)と硫酸第一錫(SnSO)を主成分とした硫酸浴を用いることができる。めっき浴の温度は15℃以上35℃以下、電流密度は1A/dm以上10A/dm以下とされる。このSnめっき層の膜厚は0.6μm以上1.3μm以下とされる。Snめっき層の厚みが0.6μm未満であると、リフロー後のSn系表面層が薄くなって電気接続特性が損なわれ、1.3μmを超えると、表面へのCuSn合金層の露出が少なくなって動摩擦係数を0.3以下にすることが難しい。 As a plating bath for forming the Sn plating layer, a general Sn plating bath may be used. For example, a sulfuric acid bath mainly composed of sulfuric acid (H 2 SO 4 ) and stannous sulfate (SnSO 4 ) is used. Can do. The temperature of the plating bath is 15 ° C. or more and 35 ° C. or less, and the current density is 1 A / dm 2 or more and 10 A / dm 2 or less. The film thickness of this Sn plating layer is 0.6 μm or more and 1.3 μm or less. When the thickness of the Sn plating layer is less than 0.6 μm, the Sn-based surface layer after reflow is thinned and the electrical connection characteristics are impaired. When the thickness exceeds 1.3 μm, the exposure of the CuSn alloy layer to the surface is reduced. Therefore, it is difficult to make the dynamic friction coefficient 0.3 or less.

リフロー処理条件としては、還元雰囲気中で基材の表面温度が240℃以上360℃以下となる条件で1秒以上12秒以下の時間加熱し、急冷とされる。さらに望ましくは260℃以上300℃以下で5秒以上10秒以下の加熱後急冷である。この場合、保持時間は以下に示すようにCuめっき層及びSnめっき層のそれぞれの厚みに応じて1秒以上12秒以下の範囲で適切な時間があり、めっき厚が薄いほど保持時間は少なく、厚くなると長い保持時間が必要になる。
<基材温度を240℃以上360℃以下まで昇温後の保持時間>
(1)Snめっき層の厚みが0.6μm以上0.8μm未満に対して、Cuめっき層の厚みが0.03以上0.05μm未満の場合は1秒以上3秒以下、Cuめっき層の厚みが0.05μm以上0.08μ未満の場合は1秒以上6秒以下、Cuめっき層の厚みが0.08μm以上0.14μm以下の場合は6秒以上9秒以下
(2)Snめっき層の厚みが0.8μm以上1.0μm未満に対して、Cuめっき層の厚みが0.03以上0.05μm未満の場合は3秒以上6秒以下、Cuめっき層の厚みが0.05μm以上0.08μ未満の場合は3秒以上9秒以下、Cuめっき層の厚みが0.08μm以上0.14μm以下の場合は6秒以上12秒以下
(3)Snめっき層の厚みが1.0μm以上1.3μm以下に対して、Cuめっき層の厚みが0.03以上0.05μm未満の場合は6秒以上9秒以下、Cuめっき層の厚みが0.05μm以上0.08μ未満の場合は6秒以上12秒以下、Cuめっき層の厚みが0.08μm以上0.14μm以下の場合は9秒以上12秒以下
240℃未満の温度、保持時間がこれら(1)〜(3)に示す時間未満の加熱ではSnの溶解が進まず、360℃を超える温度、保持時間が(1)〜(3)に示す時間を超える加熱ではCuSn合金結晶が大きく成長してしまい所望の形状を得られず、またCuSn合金層が表層にまで達し、表面に残留するSn系表面層が少なくなり過ぎる(CuSn合金層の表面への露出率が大きくなり過ぎる)ためである。また、加熱条件が高いとSn系表面層の酸化が進行して好ましくない。
As reflow treatment conditions, the substrate is heated for 1 second to 12 seconds in a reducing atmosphere under the condition that the surface temperature of the base material is 240 ° C. or higher and 360 ° C. or lower, and then rapidly cooled. More preferably, it is rapid cooling after heating at 260 to 300 ° C. for 5 to 10 seconds. In this case, as shown below, the holding time has an appropriate time in the range of 1 second to 12 seconds depending on the thickness of each of the Cu plating layer and the Sn plating layer, and the holding time is less as the plating thickness is thinner, Longer holding times are required as the thickness increases.
<Holding time after raising substrate temperature to 240 ° C. or higher and 360 ° C. or lower>
(1) Whereas the thickness of the Sn plating layer is 0.6 μm or more and less than 0.8 μm, the thickness of the Cu plating layer is 1 second or more and 3 seconds or less when the thickness of the Cu plating layer is 0.03 or more and less than 0.05 μm. When the thickness is 0.05 μm or more and less than 0.08 μm, it is 1 second or more and 6 seconds or less. When the thickness of the Cu plating layer is 0.08 μm or more and 0.14 μm or less, 6 seconds or more and 9 seconds or less. (2) Thickness of Sn plating layer Is 0.8 μm or more and less than 1.0 μm, and when the thickness of the Cu plating layer is 0.03 or more and less than 0.05 μm, the thickness of the Cu plating layer is 0.05 μm or more and 0.08 μm. Is less than 3 seconds and less than 9 seconds, and when the Cu plating layer thickness is between 0.08 μm and 0.14 μm, it is between 6 seconds and 12 seconds. (3) The Sn plating layer thickness is between 1.0 μm and 1.3 μm For the following, the thickness of the Cu plating layer is 0.03 or more When the thickness is less than 0.05 μm, it is 6 seconds or more and 9 seconds or less, and when the thickness of the Cu plating layer is 0.05 μm or more and less than 0.08 μ, the thickness of the Cu plating layer is 0.08 μm or more and 0.02 μm or less. In the case of 14 μm or less, the temperature is not less than 9 seconds and not more than 12 seconds. The temperature is not higher than 240 ° C. and the holding time is less than the time indicated in (1) to (3). However, when the heating exceeds the time shown in (1) to (3), the CuSn alloy crystal grows greatly and a desired shape cannot be obtained, and the CuSn alloy layer reaches the surface layer and remains on the surface. This is because there is too little (the exposure rate to the surface of the CuSn alloy layer becomes too large). Moreover, when heating conditions are high, the oxidation of the Sn-based surface layer proceeds, which is not preferable.

リフロー処理後の素材上にスパッタリング法やめっき法によってAg層を被覆する。このAg層の膜厚は前述したとおり0.05μm以下とされる。   The Ag layer is coated on the material after the reflow treatment by a sputtering method or a plating method. The thickness of this Ag layer is 0.05 μm or less as described above.

そして、この端子材は、例えば図2に示すような形状のメス端子2に成形される。
このメス端子2は、図2に示す例では、全体としては角筒状に形成され、その一方端の開口部15からオス端子1を嵌合することにより、このオス端子1を両側から挟持した状態に保持して接続される。メス端子2の内部には、嵌合されるオス端子1の一方の面に接触される弾性変形可能な接触片16が設けられるとともに、この接触片16に対向している側壁17に、オス端子1の他方の面に接触する半球状の凸部18がエンボス加工により内方に突出した状態に形成されている。接触片16にも、凸部18に対向するように山折り状の折り曲げ部19が設けられている。これら凸部18及び折り曲げ部19は、オス端子1を嵌合したときにオス端子1に向けて凸となるように突出しており、該オス端子1に対する摺動部11となる。
And this terminal material is shape | molded, for example in the female terminal 2 of a shape as shown in FIG.
In the example shown in FIG. 2, the female terminal 2 is formed in a rectangular tube shape as a whole, and the male terminal 1 is sandwiched from both sides by fitting the male terminal 1 from the opening 15 at one end thereof. It is connected in a state. Inside the female terminal 2, an elastically deformable contact piece 16 that is brought into contact with one surface of the fitted male terminal 1 is provided, and a male terminal is provided on the side wall 17 facing the contact piece 16. The hemispherical convex part 18 which contacts the other surface of 1 is formed in the state which protruded inward by embossing. The contact piece 16 is also provided with a mountain-folded bent portion 19 so as to face the convex portion 18. The protruding portion 18 and the bent portion 19 protrude so as to protrude toward the male terminal 1 when the male terminal 1 is fitted, and become the sliding portion 11 with respect to the male terminal 1.

なお、オス端子1に用いられる端子材は、図3に模式的に示すように、Cu合金からなる基材21上表面にSn系表面層22が形成され、Sn系表面層22とCu合金基材21との間にCuSn合金層23が形成された、一般的なリフロー処理材から構成される。このオス端子1において、Sn系表面層22を溶解除去して、CuSn合金層23を表面に現出させたときに測定されるCuSn合金層23の油溜り深さRvkは0.2μm未満、通常は0.15μm程度であり、かつSn系表面層22の平均厚みは0.2μm以上3μm以下である。
オス端子1は平板状に形成され、銅合金板にCuめっき及びSnめっきをこの順に施した後、リフロー処理することにより形成される。この場合、リフロー処理の加熱条件としては、一般には、240℃以上400℃以下の温度で1秒以上20秒以下の時間保持した後、急冷される。
なお、リフロー処理することなく、Cu合金からなる基材にSnめっきにより平均厚み0.5μm以上3μm以下のSn系表面層を形成した端子材をオス端子材としてもよい。
As shown schematically in FIG. 3, the terminal material used for the male terminal 1 has an Sn-based surface layer 22 formed on the upper surface of a substrate 21 made of a Cu alloy, and the Sn-based surface layer 22 and the Cu alloy base. It is comprised from the general reflow processing material in which the CuSn alloy layer 23 was formed between the materials 21. In this male terminal 1, the Sn-based surface layer 22 is dissolved and removed, and the oil reservoir depth Rvk of the CuSn alloy layer 23 measured when the CuSn alloy layer 23 appears on the surface is less than 0.2 μm. Is about 0.15 μm, and the average thickness of the Sn-based surface layer 22 is not less than 0.2 μm and not more than 3 μm.
The male terminal 1 is formed in a flat plate shape, and is formed by subjecting a copper alloy plate to Cu plating and Sn plating in this order, and then reflow treatment. In this case, as a heating condition for the reflow treatment, in general, it is rapidly cooled after being held at a temperature of 240 ° C. or higher and 400 ° C. or lower for a time of 1 second or longer and 20 seconds or shorter.
In addition, it is good also considering the terminal material which formed Sn type | system | group surface layer with an average thickness of 0.5 micrometer or more and 3 micrometers or less by Sn plating to the base material which consists of Cu alloy, without performing reflow processing as a male terminal material.

このようなメス端子材及びオス端子材を用いて形成したコネクタは、メス端子2の開口部15から接触片16と側壁17との間にオス端子1を挿入すると、接触片16は二点鎖線で示す位置から実線で示す位置に弾性変形し、その折り曲げ部19と凸部18との間にオス端子1を挟持した状態に保持する。
前述したように、メス端子2は、CuSn合金層とSn系表面層との界面を油溜り深さRvkが0.2μm以上の急峻な凹凸形状に形成され、かつSn系表面層の平均厚みが0.2μm以上0.6μm以下、Sn系表面層の最表面に0.05μm以下の膜厚のAg被覆層が形成されているので、メス端子2の凸部18及び折り曲げ部19の表面にSnが凝着することが抑制され、CuSn合金層とSn系表面層との界面が急峻な凹凸形状に形成されていることによる動摩擦係数の低減効果が有効に発揮され、オス端子1が通常のリフロー処理によるSn系表面層のものであっても、動摩擦係数を0.3以下にすることができる。
When the male terminal 1 is inserted between the contact piece 16 and the side wall 17 from the opening 15 of the female terminal 2 in the connector formed using such female terminal material and male terminal material, the contact piece 16 becomes a two-dot chain line. Is elastically deformed from the position indicated by the solid line to the position indicated by the solid line, and the male terminal 1 is held between the bent part 19 and the convex part 18.
As described above, in the female terminal 2, the interface between the CuSn alloy layer and the Sn-based surface layer is formed in a steep uneven shape with an oil sump depth Rvk of 0.2 μm or more, and the average thickness of the Sn-based surface layer is Since an Ag coating layer having a thickness of 0.2 μm or more and 0.6 μm or less and a thickness of 0.05 μm or less is formed on the outermost surface of the Sn-based surface layer, Sn is formed on the surface of the convex portion 18 and the bent portion 19 of the female terminal 2. Is suppressed, the effect of reducing the coefficient of dynamic friction due to the fact that the interface between the CuSn alloy layer and the Sn-based surface layer is formed in a steep concavo-convex shape is effectively exhibited, and the male terminal 1 is subjected to normal reflow. Even in the case of a Sn-based surface layer by treatment, the dynamic friction coefficient can be made 0.3 or less.

メス端子試験片として、板厚0.25mmの銅合金(Ni;0.5質量%以上5.0質量%以下−Zn;1.0質量%−Sn;0質量%以上0.5質量%以下―Si;0.1質量%以上1.5質量%以下−Fe;0質量%以上0.03質量%以下−Mg;0.005質量%)を基材とし、Cuめっき、Snめっきを順に施した後に、リフロー処理として、還元雰囲気中で、基材表面温度が240℃以上360℃以下の温度になるまで昇温し、3〜15秒保持した後、水冷した。リフロー処理後、スパッタリング法によりAg被覆層を形成した。比較例として、基材のNi及びSi濃度や、Cuめっき厚、Snめっき厚を変量したもの、Ag被覆層を形成しなかったものも作製した。
この場合、Cuめっき及びSnめっきのめっき条件は、表1に示す通りとした。表1中、Dkはカソードの電流密度、ASDはA/dmの略である。
各めっき層の厚さ、リフロー条件は、表2に示す通りとした。
As a female terminal test piece, a copper alloy having a thickness of 0.25 mm (Ni: 0.5% by mass or more and 5.0% by mass or less -Zn; 1.0% by mass-Sn; 0% by mass or more and 0.5% by mass or less) -Si; 0.1% by mass or more and 1.5% by mass or less -Fe; 0% by mass or more and 0.03% by mass or less -Mg; 0.005% by mass) as a base material, followed by Cu plating and Sn plating in this order. Then, as a reflow treatment, the temperature of the substrate surface was raised in a reducing atmosphere until the substrate surface temperature reached 240 ° C. or higher and 360 ° C. or lower, held for 3 to 15 seconds, and then cooled with water. After the reflow treatment, an Ag coating layer was formed by a sputtering method. As comparative examples, the Ni and Si concentrations of the base material, the Cu plating thickness and the Sn plating thickness were varied, and the Ag coating layer was not formed.
In this case, the plating conditions for Cu plating and Sn plating were as shown in Table 1. In Table 1, Dk is an abbreviation of cathode current density and ASD is A / dm 2 .
The thickness of each plating layer and the reflow conditions were as shown in Table 2.

これらの試料について、リフロー後のSn系表面層の厚み、CuSn合金層の厚み、CuSn合金層の油溜まり深さRvk、Ag被覆層の厚みを測定した。
リフロー後のSn系表面層及びCuSn合金層の厚み、Ag被覆層の厚みは、エスアイアイ・ナノテクノロジー株式会社製蛍光X線膜厚計(SFT9400)にて測定した。
Sn系表面層及びCuSn合金層の厚みは、Ag被覆層を形成する前の試料について、最初にリフロー後の試料の全Sn系表面層の厚みを測定した後、例えばレイボルド株式会社製のL80等の、純SnをエッチングしCuSn合金を腐食しない成分からなるめっき被膜剥離用のエッチング液に数分間浸漬することによりSn系表面層を除去し、その下層のCuSn合金層を露出させ純Sn換算におけるCuSn合金層の厚みを測定した後、(全Sn系表面層の厚み−純Sn換算におけるCuSn合金層の厚み)をSn系表面層の厚みと定義した。
CuSn合金層の油溜まり深さRvkは、Snめっき被膜剥離用のエッチング液に浸漬してSn系表面層を除去し、その下層のCuSn合金層を露出させた後、株式会社キーエンス製レーザ顕微鏡(VK−X200)を用い、対物レンズ150倍(測定視野94μm×70μm)の条件で、長手方向で5点、短手方向で5点、計10点測定した値の平均値より求めた。
For these samples, the thickness of the Sn-based surface layer after reflow, the thickness of the CuSn alloy layer, the oil reservoir depth Rvk of the CuSn alloy layer, and the thickness of the Ag coating layer were measured.
The thickness of the Sn-based surface layer and the CuSn alloy layer after reflow and the thickness of the Ag coating layer were measured with a fluorescent X-ray film thickness meter (SFT 9400) manufactured by SII Nanotechnology.
The thicknesses of the Sn-based surface layer and the CuSn alloy layer were determined by measuring the thickness of all the Sn-based surface layers of the sample after the reflow for the sample before forming the Ag coating layer, for example, L80 manufactured by Reybold Co., Ltd. The Sn-based surface layer is removed by immersing it in an etching solution for stripping a plating film made of a component that does not corrode CuSn alloy by etching pure Sn, and the underlying CuSn alloy layer is exposed so as to be in pure Sn conversion. After measuring the thickness of the CuSn alloy layer, (the thickness of all Sn-based surface layers−the thickness of the CuSn alloy layer in terms of pure Sn) was defined as the thickness of the Sn-based surface layer.
The oil reservoir depth Rvk of the CuSn alloy layer was immersed in an etching solution for removing the Sn plating film to remove the Sn-based surface layer, and the underlying CuSn alloy layer was exposed. VK-X200) was obtained from the average value of the values measured at 10 points in total, 5 points in the longitudinal direction and 5 points in the short direction under the condition of 150 times the objective lens (measurement visual field 94 μm × 70 μm).

一方、オス端子試験片として、板厚0.25mmの銅合金(C2600、Cu:70質量%−Zn:30質量%)を基材とし、Cuめっき、Snめっきを順に施し、リフロー処理した。このオス端子材のリフロー条件としては、基材温度270℃、保持時間6秒とし、リフロー後のSn系表面層の厚みは0.6μm、CuSn合金層の厚みは0.5μmとした。このCuSn合金層の油溜まり深さRvkは0.16μmとした。
このオス端子試験片と、表2のメス端子試験片とを用いて動摩擦係数を測定した。
動摩擦係数については、株式会社トリニティーラボ製の摩擦測定機(μV1000)を用い、両試験片間の摩擦力を測定して動摩擦係数を求めた。図4により説明すると、水平な台31上にオス端子試験片32を固定し、その上にメス端子試験片33の半球凸面を置いてめっき面同士を接触させ、メス端子試験片33に錘34によって500gfの荷重Pをかけてオス端子試験片32を押さえた状態とする。この荷重Pをかけた状態で、オス端子試験片32を摺動速度80mm/分で矢印により示した水平方向に10mm引っ張ったときの摩擦力Fをロードセル35によって測定した。その摩擦力Fの平均値Favと荷重Pより動摩擦係数(=Fav/P)を求めた。
また、はんだ濡れ性として、試験片を10mm幅に切り出し、活性フラックスを用いてメニスコグラフ法にてゼロクロスタイムを測定した。(はんだ浴温260℃のSn−3%Ag−0.5%Cuはんだに浸漬させ、浸漬速度2mm/sec、浸漬深さ1mm、浸漬時間10秒の条件にて測定した。)はんだゼロクロスタイムが3秒以下を○と評価し、3秒を超えた場合を×と評価した。
これらの測定結果、評価結果を表2に示す。
On the other hand, as a male terminal test piece, a copper alloy (C2600, Cu: 70% by mass—Zn: 30% by mass) having a plate thickness of 0.25 mm was used as a base material, and Cu plating and Sn plating were sequentially performed and reflow treatment was performed. The reflow conditions for this male terminal material were a substrate temperature of 270 ° C. and a holding time of 6 seconds, the thickness of the Sn-based surface layer after reflow was 0.6 μm, and the thickness of the CuSn alloy layer was 0.5 μm. The oil reservoir depth Rvk of this CuSn alloy layer was 0.16 μm.
The dynamic friction coefficient was measured using this male terminal test piece and the female terminal test piece of Table 2.
About the dynamic friction coefficient, the frictional force between both test pieces was measured using the friction measuring machine (microvolt 1000) by Trinity Lab Co., Ltd., and the dynamic friction coefficient was calculated | required. Referring to FIG. 4, a male terminal test piece 32 is fixed on a horizontal base 31, a hemispherical convex surface of a female terminal test piece 33 is placed thereon, and the plated surfaces are brought into contact with each other. Thus, a load P of 500 gf is applied to hold the male terminal test piece 32. With this load P applied, the frictional force F when the male terminal test piece 32 was pulled 10 mm in the horizontal direction indicated by the arrow at a sliding speed of 80 mm / min was measured by the load cell 35. A dynamic friction coefficient (= Fav / P) was obtained from the average value Fav of the friction force F and the load P.
Moreover, as solder wettability, the test piece was cut out to 10 mm width, and the zero cross time was measured by the menisograph method using the active flux. (Measured under the conditions of immersion in Sn-3% Ag-0.5% Cu solder with a solder bath temperature of 260 ° C., immersion rate of 2 mm / sec, immersion depth of 1 mm, and immersion time of 10 seconds.) The case where 3 seconds or less was evaluated as ◯, and the case where it exceeded 3 seconds was evaluated as x.
These measurement results and evaluation results are shown in Table 2.

この表2から明らかなように、実施例はいずれも動摩擦係数が0.3以下と小さく、良好なはんだ濡れ性を示した。
これに対して、各比較例は以下のような不具合が認められた。
比較例1、2はいずれもAg被覆層がないので、動摩擦係数が大きい。比較例3は、Ag被覆層の膜厚が大きいため、Sn系表面層とCuSn合金層との特殊な界面形状による摩擦係数低減効果を十分に得ることができず動摩擦係数が大きい。比較例4はCuめっき厚が厚すぎ、また比較例5はリフロー保持時間が短すぎるため、ともにRvkが小さく、Ag層を施すだけでは低減効果はあるものの大きな効果は得られない。比較例6、7はCuSn合金層が大きく成長しすぎてしまい、表面に残留するSn系表面層が少なくなり過ぎるため、はんだ濡れ性が悪くなる。比較例8、9はCuSn合金層の成長を促進する添加元素量が少ないため、十分な油溜まり深さRvkが得られず、大きな効果が得られない。
図5は実施例5の動摩擦係数測定後のオス端子試験片の摺動面の顕微鏡写真であり、図6は比較例1の顕微鏡写真であり、図7は比較例4の顕微鏡写真である。これらの写真を比較してわかるように、実施例のものは、Snの凝着が抑制され摺動面が滑らかなのに対し、比較例はSnの凝着のため摺動面が粗い。メス側のRvkが小さい比較例4は、Ag被覆層があってもSnの凝着が発生し摺動面が粗くなっている。
As is apparent from Table 2, all of the examples had a small coefficient of dynamic friction of 0.3 or less and exhibited good solder wettability.
On the other hand, the following problems were recognized in each comparative example.
Since Comparative Examples 1 and 2 do not have an Ag coating layer, the dynamic friction coefficient is large. In Comparative Example 3, since the film thickness of the Ag coating layer is large, the effect of reducing the friction coefficient due to the special interface shape between the Sn-based surface layer and the CuSn alloy layer cannot be sufficiently obtained, and the dynamic friction coefficient is large. In Comparative Example 4, the Cu plating thickness is too thick, and in Comparative Example 5, the reflow holding time is too short. Therefore, both Rvk are small, and a large effect cannot be obtained only by applying an Ag layer. In Comparative Examples 6 and 7, the CuSn alloy layer grows too much, and the Sn-based surface layer remaining on the surface becomes too small, so that the solder wettability is deteriorated. In Comparative Examples 8 and 9, since the amount of the additive element that promotes the growth of the CuSn alloy layer is small, a sufficient oil sump depth Rvk cannot be obtained, and a great effect cannot be obtained.
5 is a photomicrograph of the sliding surface of the male terminal test piece after measurement of the dynamic friction coefficient of Example 5, FIG. 6 is a photomicrograph of Comparative Example 1, and FIG. 7 is a photomicrograph of Comparative Example 4. As can be seen from comparison of these photographs, in the example, Sn adhesion was suppressed and the sliding surface was smooth, whereas in the comparative example, the sliding surface was rough due to Sn adhesion. In Comparative Example 4 in which the Rvk on the female side is small, Sn adhesion occurs and the sliding surface becomes rough even with the Ag coating layer.

1 オス端子
2 メス端子
5 基材
6 Sn系表面層
7 CuSn合金層
8 Ag被覆層
11 摺動部
15 開口部
16 接触片
17 側壁
18 凸部
19 折り曲げ部
21 基材
22 Sn系表面層
23 CuSn合金層
31 台
32 オス端子試験片
33 メス端子試験片
34 錘
35 ロードセル
DESCRIPTION OF SYMBOLS 1 Male terminal 2 Female terminal 5 Base material 6 Sn system surface layer 7 CuSn alloy layer 8 Ag coating layer 11 Sliding part 15 Opening part 16 Contact piece 17 Side wall 18 Convex part 19 Bending part 21 Base material 22 Sn system surface layer 23 CuSn Alloy layer 31 units 32 Male terminal test piece 33 Female terminal test piece 34 Weight 35 Load cell

Claims (3)

Cu合金からなる基材上表面にSn系表面層が形成され、前記Sn系表面層と前記基材との間にCuSn合金層が形成されており、前記Sn系表面層を溶解除去して、前記CuSn合金層を表面に現出させたときに測定される前記CuSn合金層の油溜り深さRvkが0.2μm以上であり、かつ前記Sn系表面層の平均厚みが0.2μm以上0.6μm以下であり、前記Sn系表面層の最表面に0.05μm以下の膜厚のAg被覆層が形成され、表面の動摩擦係数が0.3以下であることを特徴とする錫めっき銅合金端子材。   A Sn-based surface layer is formed on the surface of the base material made of Cu alloy, a CuSn alloy layer is formed between the Sn-based surface layer and the base material, and the Sn-based surface layer is dissolved and removed. The oil sump depth Rvk of the CuSn alloy layer measured when the CuSn alloy layer appears on the surface is 0.2 μm or more, and the average thickness of the Sn-based surface layer is 0.2 μm or more. A tin-plated copper alloy terminal characterized in that an Ag coating layer having a thickness of 0.05 μm or less is formed on the outermost surface of the Sn-based surface layer, and the dynamic friction coefficient of the surface is 0.3 or less. Wood. 前記CuSn合金層の平均厚みが0.6μm以上1μm以下であることを特徴とする請求項1記載の錫めっき銅合金端子材。   The tin-plated copper alloy terminal material according to claim 1, wherein an average thickness of the CuSn alloy layer is 0.6 μm or more and 1 μm or less. 前記基材が、0.5質量%以上5質量%以下のNi、0.1質量%以上1.5質量%以下のSiを含有し、更に必要に応じてZn,Sn,Fe,Mgの群から選ばれた1種以上を合計で5質量%以下含有し、残部がCu及び不可避不純物から構成されることを特徴とする請求項1又は2記載の錫めっき銅合金端子材。

The base material contains 0.5% by mass or more and 5% by mass or less of Ni, 0.1% by mass or more and 1.5% by mass or less of Si, and, if necessary, a group of Zn, Sn, Fe, and Mg The tin-plated copper alloy terminal material according to claim 1 or 2, wherein one or more selected from the group consisting of 5% by mass or less is contained, and the balance is composed of Cu and inevitable impurities.

JP2013271705A 2013-12-27 2013-12-27 Tin-plated copper-alloy terminal material Pending JP2015124434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013271705A JP2015124434A (en) 2013-12-27 2013-12-27 Tin-plated copper-alloy terminal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013271705A JP2015124434A (en) 2013-12-27 2013-12-27 Tin-plated copper-alloy terminal material

Publications (1)

Publication Number Publication Date
JP2015124434A true JP2015124434A (en) 2015-07-06

Family

ID=53535366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013271705A Pending JP2015124434A (en) 2013-12-27 2013-12-27 Tin-plated copper-alloy terminal material

Country Status (1)

Country Link
JP (1) JP2015124434A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056424A (en) * 2014-09-11 2016-04-21 三菱マテリアル株式会社 Tin-plated copper alloy terminal material and a method for manufacturing the same
JP6042577B1 (en) * 2016-07-05 2016-12-14 有限会社 ナプラ Multilayer preform sheet
WO2022219904A1 (en) * 2021-04-13 2022-10-20 Jx金属株式会社 Male pin for connector and manufacturing method of male pin for connector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056424A (en) * 2014-09-11 2016-04-21 三菱マテリアル株式会社 Tin-plated copper alloy terminal material and a method for manufacturing the same
JP6042577B1 (en) * 2016-07-05 2016-12-14 有限会社 ナプラ Multilayer preform sheet
JP2018001238A (en) * 2016-07-05 2018-01-11 有限会社 ナプラ Multilayer preform sheet
US9950496B2 (en) 2016-07-05 2018-04-24 Napra Co., Ltd. Multi-layer preform sheet
WO2022219904A1 (en) * 2021-04-13 2022-10-20 Jx金属株式会社 Male pin for connector and manufacturing method of male pin for connector
JP2022162913A (en) * 2021-04-13 2022-10-25 Jx金属株式会社 Connector male pin, and production method of connector male pin
JP7394086B2 (en) 2021-04-13 2023-12-07 Jx金属株式会社 Male pin for connector and method for manufacturing male pin for connector

Similar Documents

Publication Publication Date Title
JP5263435B1 (en) Tin-plated copper alloy terminal material with excellent insertability
JP6221695B2 (en) Tin-plated copper alloy terminal material with excellent insertability
KR102355331B1 (en) Tin-plated copper alloy terminal material and method for producing same
JP2015143385A (en) tin-plated copper alloy terminal material
JP5522300B1 (en) Tin-plated copper alloy terminal material excellent in insertion / extraction and manufacturing method thereof
TW201413068A (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and method of manufacturing the same
JP2015063750A (en) Tin-plated copper alloy terminal material excellent in insertability/extractability
JP2015110829A (en) Tin-plated copper-alloy terminal material
JP2010265542A (en) Conductive member and manufacturing method thereof
JP6201554B2 (en) Mating type connection terminal
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
JP5640922B2 (en) Tin-plated copper alloy terminal material with excellent insertability
JP2008248332A (en) Tin-plated strip and its production method
JP2015124434A (en) Tin-plated copper-alloy terminal material
JP6443092B2 (en) Tin-plated copper alloy terminal material
JP6217390B2 (en) Tin-plated copper alloy terminal material with excellent insertability
JP5419737B2 (en) Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same
JP5409401B2 (en) Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same
JP2016141835A (en) Tinned copper alloy terminal material
JP2016143542A (en) Tin plated copper alloy terminal material
JP2011080117A (en) Conductive member and method of manufacturing the same