JP2015120133A - Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst - Google Patents

Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst Download PDF

Info

Publication number
JP2015120133A
JP2015120133A JP2013266638A JP2013266638A JP2015120133A JP 2015120133 A JP2015120133 A JP 2015120133A JP 2013266638 A JP2013266638 A JP 2013266638A JP 2013266638 A JP2013266638 A JP 2013266638A JP 2015120133 A JP2015120133 A JP 2015120133A
Authority
JP
Japan
Prior art keywords
catalyst
acrylic acid
dried product
acrolein
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013266638A
Other languages
Japanese (ja)
Inventor
俊哉 西口
Toshiya Nishiguchi
俊哉 西口
徳彦 井口
Norihiko Iguchi
徳彦 井口
昌秀 島
Masahide Shima
昌秀 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2013266638A priority Critical patent/JP2015120133A/en
Publication of JP2015120133A publication Critical patent/JP2015120133A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst which is excellent in catalytic activity, catalytic performance such as selectivity, and service life and exhibits stable performance over a long period of time when used for producing acrylic acid from propane and/or acrolein.SOLUTION: The catalyst contains molybdenum, vanadium and antimony as essential components and is used for producing acrylic acid by a catalytic vapor-phase oxidation reaction of propane and/or acrolein in the presence of molecular oxygen or molecular oxygen-containing gas. In a Cu-Kα beam-used X-ray diffraction analysis of a catalytically active component thereof, a ratio I(25.0°)/I(22.2°) of the peak intensity at the diffraction angle 2θ=22.2°±0.3° to that at the diffraction angle 2θ=25.0°±0.3° is equal to or larger than 0.1 and smaller than 0.7.

Description

本発明はプロパンおよび/またはアクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するのに好適な触媒および該触媒を用いたアクリル酸の製造に関する。   The present invention relates to a catalyst suitable for producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein in the presence of molecular oxygen or a molecular oxygen-containing gas, and to production of acrylic acid using the catalyst.

アクリル酸は、各種合成樹脂、塗料、可塑剤の原料として工業的に重要であり、近年では、吸水性樹脂の原料としてその重要性が高まっている。そのアクリル酸の製法としては、プロピレンの接触気相酸化によりアクロレインとし、さらに得られたアクロレインの接触気相酸化によってアクリル酸とする2段酸化方法が最も一般的である。   Acrylic acid is industrially important as a raw material for various synthetic resins, paints, and plasticizers, and in recent years, its importance is increasing as a raw material for water-absorbing resins. As a method for producing the acrylic acid, a two-stage oxidation method in which acrolein is obtained by catalytic vapor phase oxidation of propylene and acrylic acid is obtained by catalytic vapor phase oxidation of the obtained acrolein is most common.

一方、プロパンとプロピレンの価格差から、プロパンを1段で酸化してアクリル酸とする方法についても、近年、開発が進み、種々の提案がなされている。   On the other hand, due to the price difference between propane and propylene, development of a method for oxidizing propane in one stage to produce acrylic acid has been progressing in recent years and various proposals have been made.

このような、プロパンおよび/またはアクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するための触媒としてモリブデン−バナジウム系を中心として検討されているが、目的とするアクリル酸の収率や寿命等の触媒性能は必ずしも充分なものではなく、触媒性能の改善を目的として各社から様々な提案がされている。   As a catalyst for producing acrylic acid by catalytic vapor phase oxidation of propane and / or acrolein in the presence of molecular oxygen or a molecular oxygen-containing gas, the molybdenum-vanadium system is mainly studied. However, the catalyst performance such as the yield and lifetime of the target acrylic acid is not always sufficient, and various proposals have been made by various companies for the purpose of improving the catalyst performance.

例えば、特許文献1では、触媒のX線回折分析によって測定したd=4.38オングストロームにおけるピーク強度(d4.38)とd=4.00オングストロームにおけるピーク強度(d4.00)との比(d4.38/d4.00)が0.07未満であるモリブデン−バナジウム系酸化物触媒が開示されている。   For example, in Patent Document 1, the ratio (d4) of the peak intensity at d = 4.38 angstroms (d4.38) and the peak intensity at d = 4.00 angstroms (d4.00) measured by X-ray diffraction analysis of the catalyst (d4). .38 / d4.00) is disclosed as being a molybdenum-vanadium oxide catalyst.

特許文献2では、触媒活性成分の銅のKα線を用いたX線回折の2θ値(θはX線回折における回折角度をさす。)において、22.2°±0.3°のピーク強度が最大であるモリブデン−バナジウム系酸化物触媒が開示されている。   In Patent Document 2, in the 2θ value of X-ray diffraction using the Kα ray of copper as the catalytic active component (θ indicates the diffraction angle in X-ray diffraction), the peak intensity of 22.2 ° ± 0.3 ° is The largest molybdenum-vanadium oxide catalyst is disclosed.

特許文献3では、アンチモンの供給源化合物の少なくとも一部に等軸晶系のSbを使用し、そのX線回折線における2θ=約28.3°の強度(a1)と2θ=約27.6の強度(a2)との比(a1/a2)が0.2以下である触媒の製造方法が開示されている。 In Patent Document 3, equiaxed Sb 2 O 3 is used as at least a part of a source compound of antimony, and an intensity (a1) of 2θ = about 28.3 ° and 2θ = about in its X-ray diffraction line. A method for producing a catalyst having a ratio (a1 / a2) of 27.6 to strength (a2) of 0.2 or less is disclosed.

また、特許文献4では、元素Mo、VおよびTeおよび/またはSbを含有し、特殊なX線回折パターンを有する多金属酸化物材料を用いて不均一系触媒作用によりプロパンを気相酸化することによりアクリル酸を製造する方法が開示されている。   Further, in Patent Document 4, propane is vapor-phase oxidized by heterogeneous catalysis using a multi-metal oxide material containing elements Mo, V and Te and / or Sb and having a special X-ray diffraction pattern. Discloses a process for producing acrylic acid.

しかしながら、これら従来の複合酸化物触媒は、それぞれ優れた性能を示すものの、工業的な実用触媒として、さらなるカルボン酸収率の向上や高生産性が望まれている。   However, although these conventional composite oxide catalysts each show excellent performance, further improvements in carboxylic acid yield and high productivity are desired as industrial practical catalysts.

特開2002−233757号公報JP 2002-233757 A 特開平8−299797号公報JP-A-8-299797 特開2005−329363号公報JP 2005-329363 A 特表2004−504288号公報JP-T-2004-504288

アクリル酸は全世界で現在数百万トン/年の規模で生産されており、工業的規模でたとえ0.1%でも収率が向上すれば経済的に非常に大きな意味を持つことになる。また、生産性を向上の観点から、高負荷反応条件下でも長期間安定した運転が可能であることが望まれている。前記した触媒はいずれも目的とするアクリル酸の収率や寿命等の触媒性能において幾分改善は見られているものの、なお工業的な規模での見地より改善の余地を残すものである。   Acrylic acid is currently produced on a scale of several million tons / year all over the world, and even if it is 0.1% on an industrial scale, if the yield is improved, it will be very economically significant. Further, from the viewpoint of improving productivity, it is desired that stable operation for a long period of time is possible even under high-load reaction conditions. Although all of the above-mentioned catalysts have improved somewhat in the catalytic performance such as the yield and life of the target acrylic acid, there is still room for improvement from the viewpoint of an industrial scale.

かくして、本発明の目的は、プロパンおよび/またはアクロレインからアクリル酸を製造するに際し、触媒活性、選択性等の触媒性能および触媒寿命に優れ、長期にわたって安定した性能を示す触媒を提供することにある。   Thus, an object of the present invention is to provide a catalyst which is excellent in catalyst performance such as catalyst activity and selectivity and catalyst life and produces stable performance over a long period of time when producing acrylic acid from propane and / or acrolein. .

本発明者らは、プロパンおよび/またはアクロレインの接触気相酸化反応によりアクリル酸を製造するに際して用いられるモリブデン−バナジウム−アンチモン系触媒において、上記課題を解決すべく触媒活性成分の結晶構造と触媒性能との相関について鋭意検討を行った結果、本発明に至った。   In the molybdenum-vanadium-antimony catalyst used in the production of acrylic acid by the catalytic gas phase oxidation reaction of propane and / or acrolein, the inventors of the present invention provide a crystal structure and catalytic performance of a catalytically active component to solve the above problems. As a result of intensive studies on the correlation with the above, the present invention has been achieved.

すなわち、触媒活性成分のCu−Kα線を用いたX線回折分析において、回折角2θ=22.2°±0.3°のピーク強度に対する回折角2θ=25.0°±0.3°のピーク強度の比I(25.0°)/I(22.2°)が0.1以上0.7未満である触媒を用いることで、上記課題を容易に解決できることを見出し、本発明に至った。   That is, in the X-ray diffraction analysis using the Cu—Kα ray of the catalytically active component, the diffraction angle 2θ = 25.0 ° ± 0.3 ° with respect to the peak intensity of the diffraction angle 2θ = 22.2 ° ± 0.3 °. It has been found that the above problems can be easily solved by using a catalyst having a peak intensity ratio I (25.0 °) / I (22.2 °) of 0.1 or more and less than 0.7, leading to the present invention. It was.

さらには、回折角2θ=22.2°±0.3°のピーク強度に対する回折角2θ=28.2°±0.3°のピーク強度の比I(28.2°)/I(22.2°)が0.2以上0.8未満である触媒を用いることで、上記課題を解決できることも見出した。   Furthermore, the ratio I (28.2 °) / I (22.2) of the peak intensity at the diffraction angle 2θ = 28.2 ° ± 0.3 ° to the peak intensity at the diffraction angle 2θ = 22.2 ° ± 0.3 °. It has also been found that the above problem can be solved by using a catalyst having a 2 °) of 0.2 or more and less than 0.8.

その理由については明らかではないが、回折角2θ=22.2°、25.0°、28.2°のピークは、それぞれ、Mo−V複合酸化物の斜方晶、三斜晶、Mo−Sb系複合酸化物に帰属するものと推定され、主活性種とされるMo−V複合酸化物の斜方晶に対し、Mo−V複合酸化物の三斜晶が性能低下因子として、またMo−Sb系複合酸化物が性能向上因子として作用しており、Mo−V複合酸化物の三斜晶形成を抑制し、Mo−Sb系複合酸化物の形成を促進した触媒が高性能を発現するものと考えられる。   Although the reason for this is not clear, the peaks at diffraction angles 2θ = 22.2 °, 25.0 °, and 28.2 ° are respectively orthorhombic, triclinic, and Mo—V of the Mo—V composite oxide. The triclinic crystal of the Mo-V composite oxide is presumed to be attributed to the Sb-based composite oxide and the main active species is the orthorhombic crystal of the Mo-V composite oxide. -The Sb-based composite oxide acts as a performance improvement factor, and the catalyst that suppresses the formation of the triclinic crystal of the Mo-V composite oxide and promotes the formation of the Mo-Sb-based composite oxide exhibits high performance. It is considered a thing.

別の観点からは、以下に示す工程(1)〜工程(3)を含むとともに、該工程の少なくとも1つの工程において、触媒活性成分の出発原料とは異なる含窒素化合物を添加することで、前記X線回折ピークの強度比を満足する触媒を得ることが出来ることを見出した。
工程(1):触媒活性成分の出発原料の混合液を得る工程
工程(2):前記触媒活性成分の出発原料混合液を乾燥して乾燥物を得る工程、または、前記触媒活性成分の出発原料混合液を乾燥して乾燥物を得、得られた乾燥物を焼成する工程
工程(3):前記乾燥物若しくは前記乾燥物を焼成して得られる焼成物を一定形状に押し出し成形若しくは打錠成形する工程、または、前記乾燥物若しくは前記乾燥物を焼成して得られる焼成物を不活性担体に担持する工程
From another viewpoint, the process includes the following steps (1) to (3), and at least one of the steps includes adding a nitrogen-containing compound different from the starting material of the catalytically active component, It has been found that a catalyst satisfying the intensity ratio of the X-ray diffraction peak can be obtained.
Step (1): Step of obtaining a mixture of starting materials of catalytically active components Step (2): Step of drying a mixture of starting materials of catalytically active components to obtain a dried product, or starting materials of the catalytically active components Step of drying the liquid mixture to obtain a dried product and firing the resulting dried product (3): Extruding or tableting the dried product or a fired product obtained by firing the dried product into a certain shape Or a step of supporting the dried product or a fired product obtained by firing the dried product on an inert carrier.

本発明によれば、上記課題の解決により、プロパンおよび/またはアクロレインを分子状酸素により接触気相酸化してアクリル酸を製造する際に、長期間にわたり安定して高収率で製造できる触媒を提供することができ、該触媒を用いてアクリル酸を長期間、高収率で製造することができる。   According to the present invention, by solving the above problems, a catalyst that can be stably produced in a high yield over a long period of time when producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein with molecular oxygen is provided. Acrylic acid can be produced in a high yield over a long period of time using the catalyst.

以下、本発明にかかる触媒および該触媒を用いたアクリル酸の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。   Hereinafter, although the catalyst concerning this invention and the manufacturing method of acrylic acid using this catalyst are demonstrated in detail, the scope of the present invention is not restrained by these description, and the meaning of this invention is not limited to the following illustrations. It can change suitably and implement in the range which does not impair.

本発明における触媒としては、モリブデン、バナジウムおよびアンチモンを必須成分として含有する触媒であって、触媒活性成分のCu−Kα線を用いたX線回折分析において、回折角2θ=22.2°±0.3°のピーク強度に対する回折角2θ=25.0°±0.3°のピーク強度の比I(25.0°)/I(22.2°)が0.1以上0.7未満であればよい。さらには、回折角2θ=22.2°±0.3°のピーク強度に対する回折角2θ=28.2°±0.3°のピーク強度の比I(28.2°)/I(22.2°)が0.2以上0.8未満であることが好ましい。当該範囲の触媒を用いることで、プロパンおよび/またはアクロレインを分子状酸素により接触気相酸化してアクリル酸を製造するに際して、長期間にわたり安定して高収率で製造できる触媒を提供することができ、該触媒を用いてアクリル酸を長期間、高収率で製造することができる。   The catalyst in the present invention is a catalyst containing molybdenum, vanadium and antimony as essential components, and in an X-ray diffraction analysis using Cu—Kα ray of the catalytically active component, a diffraction angle 2θ = 22.2 ° ± 0. The ratio I (25.0 °) / I (22.2 °) of the diffraction intensity 2θ = 25.0 ° ± 0.3 ° to the peak intensity of 3 ° is 0.1 or more and less than 0.7. I just need it. Furthermore, the ratio I (28.2 °) / I (22.2) of the peak intensity at the diffraction angle 2θ = 28.2 ° ± 0.3 ° to the peak intensity at the diffraction angle 2θ = 22.2 ° ± 0.3 °. 2 °) is preferably 0.2 or more and less than 0.8. By using a catalyst in this range, it is possible to provide a catalyst that can be stably produced in a high yield over a long period of time when producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein with molecular oxygen. Acrylic acid can be produced in a high yield over a long period of time using the catalyst.

本発明における触媒としては、その触媒活性成分のX線回折分析における回折角22.2°、25.0°、28.2°のピーク強度が前記ピーク強度比を満たすことが重要であり、触媒活性成分の組成としては、下記一般式(1)で表わされるものが好ましい。
MoaVbWcCudSbeXfYgZhOi(1)
(式中、Moはモリブデン、Vはバナジウム、Wはタングステン、Cuは銅、Sbはアンチモン、Xはニオブ、テルルおよびスズから選ばれる少なくとも一種の元素、Yはマグネシウム、カルシウム、ストロンチウム、バリウムおよびアルカリ金属から選ばれる少なくとも一種の元素、Zはシリコン、アルミニウム、チタン、ジルコニウムおよびセリウムから選ばれる少なくとも一種の元素、そしてOは酸素であり、a、b、c、d、e、f、g、hおよびiは、Mo、V、W、Cu、Sb、X、Y、ZおよびOの原子数を表し、a=12のとき、2≦b≦14、0<c≦12、0<d≦6、0<e≦5、0≦f≦5、0≦g≦3、0≦h≦50であり、iは各々の元素の酸化状態によって定まる数値である)
As the catalyst in the present invention, it is important that the peak intensities at the diffraction angles of 22.2 °, 25.0 °, and 28.2 ° in the X-ray diffraction analysis of the catalytic active component satisfy the peak intensity ratio. As a composition of an active ingredient, what is represented by following General formula (1) is preferable.
MoaVbWcCudSbeXfYgZhOi (1)
(Wherein Mo is molybdenum, V is vanadium, W is tungsten, Cu is copper, Sb is antimony, X is at least one element selected from niobium, tellurium and tin, Y is magnesium, calcium, strontium, barium and alkali. At least one element selected from metals, Z is at least one element selected from silicon, aluminum, titanium, zirconium and cerium, and O is oxygen; a, b, c, d, e, f, g, h And i represent the number of atoms of Mo, V, W, Cu, Sb, X, Y, Z, and O. When a = 12, 2 ≦ b ≦ 14, 0 <c ≦ 12, 0 <d ≦ 6 0 <e ≦ 5, 0 ≦ f ≦ 5, 0 ≦ g ≦ 3, 0 ≦ h ≦ 50, and i is a numerical value determined by the oxidation state of each element)

上記触媒活性成分は、この種の調製に一般に用いられている原料を用いることができ、例えば、各元素の酸化物、水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などの塩類や、それらの水溶液、ゾルなど、あるいは、複数の元素を含む化合物などを用いることもできる。これら出発原料を、水などの溶媒に溶解あるいは混合して、混合液とする(以下、「出発原料混合液」ともいう)。   As the catalytic active component, raw materials generally used for this kind of preparation can be used. For example, oxides, hydroxides, ammonium salts, nitrates, carbonates, sulfates, organic acid salts of the respective elements, etc. These salts, aqueous solutions or sols thereof, or compounds containing a plurality of elements can also be used. These starting materials are dissolved or mixed in a solvent such as water to obtain a mixed solution (hereinafter also referred to as “starting material mixed solution”).

上記触媒活性成分の出発原料混合液は、この種の触媒製造に一般的に用いられる方法により調製すればよく、例えば、上記出発原料を順次水に混合して水溶液あるいは水性スラリーとなるようにする方法や、出発原料の種類に応じて複数の水溶液または水性スラリーを調製し、これらを順次混合する方法などがある。その際、出発原料の混合順序、温度、圧力、pH等については特に制限はなく、出発原料などにより適宜選択できる。温度条件としては、50℃以上、圧力は1MPa以下とするのが好ましく、また、適宜、硝酸、アンモニア、尿素、硝酸アンモニウム、炭酸アンモニウムなどの含窒素化合物を加えて、pHは4〜10の範囲内で制御するのが好ましい。   The starting raw material mixture of the catalytically active component may be prepared by a method generally used in the production of this type of catalyst. For example, the starting raw material is sequentially mixed with water to form an aqueous solution or aqueous slurry. There are a method, a method of preparing a plurality of aqueous solutions or aqueous slurries according to the type of starting materials, and sequentially mixing them. At that time, the mixing order, temperature, pressure, pH and the like of the starting materials are not particularly limited and can be appropriately selected depending on the starting materials. The temperature condition is preferably 50 ° C. or higher, and the pressure is preferably 1 MPa or lower. Further, a nitrogen-containing compound such as nitric acid, ammonia, urea, ammonium nitrate, and ammonium carbonate is appropriately added, and the pH is within the range of 4 to 10. It is preferable to control by.

次に、得られた出発原料混合液を、加熱や減圧など各種方法により乾燥させて乾燥物(以下、「触媒前駆体」ともいう)とする。加熱による乾燥方法としては、例えば、スプレードライヤー、ドラムドライヤー等を用いて粉末状の乾燥物を得ることもできるし、箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱してブロック状またはフレーク状の乾燥物を得ることもできる。また、一旦、出発原料の混合液を濃縮、蒸発乾固してケーキ状の固形物を得て、この固形物をさらに上記加熱処理する方法も採用できる。減圧による乾燥方法としては、例えば、真空乾燥機を用いて、ブロック状または粉末状の乾燥物を得ることができる。これらの乾燥工程において、乾燥前あるいは途中の出発原料混合液や、得られた乾燥物に、硝酸、アンモニア、尿素、硝酸アンモニウム、炭酸アンモニウムなどの含窒素化合物を加えてもよい。次に、得られた乾燥物は、必要に応じて適当な粒度の粉体を得るための粉砕工程や分級工程を経て、続く成形工程に送られる。場合によっては、得られた乾燥物を一旦焼成して焼成物を得た後にその焼成物を成形工程に送ってもよい。なお、上記乾燥物の粉体の粒度は、特に限定されないが、成型性に優れる点で500μm以下が好ましい。   Next, the obtained starting material mixture is dried by various methods such as heating and decompression to obtain a dried product (hereinafter also referred to as “catalyst precursor”). As a drying method by heating, for example, a dry powder can be obtained by using a spray dryer, a drum dryer or the like, or a block by heating in a stream using a box-type dryer, a tunnel-type dryer or the like. A dried product in the form of a flake or flakes can also be obtained. Alternatively, a method of once concentrating and evaporating and drying the mixture of starting materials to obtain a cake-like solid and further subjecting the solid to the above heat treatment can also be employed. As a drying method by reduced pressure, for example, a block or powdery dried product can be obtained using a vacuum dryer. In these drying steps, a nitrogen-containing compound such as nitric acid, ammonia, urea, ammonium nitrate, or ammonium carbonate may be added to the starting raw material mixture before or during drying, or the obtained dried product. Next, the obtained dried product is sent to a subsequent molding step through a pulverization step and a classification step for obtaining a powder having an appropriate particle size as necessary. Depending on the case, after the obtained dried product is once fired to obtain a fired product, the fired product may be sent to the molding step. The particle size of the powder of the dried product is not particularly limited, but is preferably 500 μm or less in terms of excellent moldability.

成形方法としては、従来からよく知られている活性成分を圧力により一定の形状に成形する押し出し成形法や打錠成形法、活性成分を一定の形状を有する任意の不活性担体上に担持する担持法がある。担持法としては、例えば、出発原料混合液を乾燥させずに液状で用い、長時間かけて加熱しながら所望の担体に吸収あるいは塗布して乾燥担持させる蒸発乾固法、あるいは活性成分(前記乾燥物あるいは前記焼成物)を一定の形状を有する任意の不活性担体に担持させる造粒法にしたがって製造することができる。その中でも、特に特開昭63−200839号公報に記載の遠心流動コーティング法や、さらには特開2004−136267号公報に記載のロッキングミキサー法を用いて担体に担持する造粒法が好ましい。   The molding method includes an extrusion molding method and a tableting molding method in which a conventionally well-known active ingredient is molded into a certain shape by pressure, and a carrier that carries the active ingredient on any inert carrier having a certain shape. There is a law. As the loading method, for example, the starting raw material mixture is used in a liquid state without being dried, and is evaporated or dried to be absorbed and coated on a desired carrier while heating over a long period of time, or an active ingredient (the above-mentioned drying component). Or the calcined product) can be produced according to a granulation method in which an arbitrary inert carrier having a certain shape is supported. Among these, the granulation method of carrying on a carrier using the centrifugal fluid coating method described in JP-A No. 63-200249 or the rocking mixer method described in JP-A No. 2004-136267 is particularly preferable.

押し出し成形法や打錠成形法等の場合、その形状に特に制限はなく、球状、円柱状、リング状、不定形などのいずれの形状でもよい。もちろん球状の場合、真球である必要はなく実質的に球状であればよく、円柱状およびリング状についても同様である。   In the case of an extrusion molding method or a tableting molding method, the shape is not particularly limited, and may be any shape such as a spherical shape, a cylindrical shape, a ring shape, and an indeterminate shape. Of course, in the case of a spherical shape, it does not need to be a true sphere, and may be substantially spherical, and the same applies to a cylindrical shape and a ring shape.

担持法の場合、使用できる不活性担体としては、一般的に不活性担体として知られている、アルミナ、シリカ、シリカ−アルミナ、チタニア、マグネシア、ステアタイト、シリカ−マグネシア、炭化ケイ素、窒化ケイ素、ゼオライト等を用いることができる。その形状においても特に制限はなく、球状、円柱状、リング状など公知の形状のものが使用できる。   In the case of the supporting method, as the inert carrier that can be used, alumina, silica, silica-alumina, titania, magnesia, steatite, silica-magnesia, silicon carbide, silicon nitride, which are generally known as inert carriers, Zeolite or the like can be used. There is no restriction | limiting in particular also in the shape, The thing of well-known shapes, such as spherical shape, cylinder shape, and ring shape, can be used.

成形工程においては、触媒成分の前駆体となる乾燥物を成形するにあたり、成形性を向上させるために成形補助剤やバインダー、触媒に適度な細孔を形成させるために気孔形成剤など、一般に触媒の製造においてこれらの効果を目的として使用されている各種物質を用いることができる。具体例としては、エチレングリコール、グリセリン、プロピオン酸、マレイン酸、ベンジルアルコール、プロピルアルコール、ブチルアルコールまたはフェノール類の有機化合物や、硝酸、アンモニア、硝酸アンモニウム、尿素、炭酸アンモニウムの水溶液や水などが挙げられるが、特に硝酸、アンモニア、尿素、硝酸アンモニウムなどの含窒素化合物を加えた方が好ましい。   In the molding process, when molding a dried product that is a precursor of a catalyst component, a catalyst such as a molding aid or binder for improving moldability, or a pore forming agent for forming appropriate pores in the catalyst is generally used. Various substances used for the purpose of these effects in the production of can be used. Specific examples include organic compounds of ethylene glycol, glycerin, propionic acid, maleic acid, benzyl alcohol, propyl alcohol, butyl alcohol or phenols, aqueous solutions of nitric acid, ammonia, ammonium nitrate, urea, ammonium carbonate, water, and the like. However, it is particularly preferable to add a nitrogen-containing compound such as nitric acid, ammonia, urea or ammonium nitrate.

成型工程において含窒素化合物を添加する場合、添加する含窒素化合物に含有される窒素量は、モリブデン12モルあたり、0.01モル〜20モルが好ましく、さらに0.1〜10モルの範囲が好ましい。   When a nitrogen-containing compound is added in the molding step, the amount of nitrogen contained in the nitrogen-containing compound to be added is preferably 0.01 mol to 20 mol, more preferably 0.1 to 10 mol, per 12 mol of molybdenum. .

水溶液で添加する場合、例えば、硝酸アンモニウム水溶液では、0.1〜55質量%の濃度が好適に用いられるが、好ましくは10〜50質量%、より好ましくは15〜45質量%の濃度が好適に用いられる。   When added in an aqueous solution, for example, in an aqueous ammonium nitrate solution, a concentration of 0.1 to 55% by mass is suitably used, but a concentration of 10 to 50% by mass, more preferably 15 to 45% by mass is suitably used. It is done.

その理由は明らかではないが、当該範囲内であれば、回折角2θ=25.0°±0.3°すなわちMo−V複合酸化物の三斜晶に帰属するピーク強度が弱くなる一方、回折角2θ=28.2°±0.3°すなわちMo−Sb系複合酸化物に帰属するピーク強度が増すためである。   The reason for this is not clear, but if it is within this range, the diffraction angle 2θ = 25.0 ° ± 0.3 °, that is, the peak intensity attributed to the triclinic crystal of the Mo—V composite oxide is weakened. This is because the bending angle 2θ = 28.2 ° ± 0.3 °, that is, the peak intensity attributed to the Mo—Sb-based composite oxide increases.

また、別に触媒の機械強度を向上させる目的で、補強剤を用いることもできる。具体例としては、補強剤として一般的に知られているシリカ、アルミナ、ガラス繊維、炭化ケイ素、窒化ケイ素などが挙げられる。補強剤は、出発原料混合液に添加しておいてもよいし、成型工程時に触媒前駆体に配合してもよい。   A reinforcing agent can also be used for the purpose of improving the mechanical strength of the catalyst. Specific examples include silica, alumina, glass fiber, silicon carbide, silicon nitride and the like that are generally known as reinforcing agents. The reinforcing agent may be added to the starting raw material mixture, or may be blended with the catalyst precursor during the molding process.

上記成形工程で得られた成形体あるいは担持体は、続く焼成工程に送られる。本発明の触媒は、焼成温度としては、360℃〜440℃が好ましく、更に好ましくは380℃〜420℃であり、基準値に対するフレ幅が±20℃の範囲で制御されることが望ましく、さらには±10℃の範囲で制御されることが好ましい。焼成時間としては1〜24時間が好適であり、さらに好ましくは1〜10時間である。酸素濃度は、任意の濃度でも適用できるが、酸素濃度を低減させた領域で焼成する方が好適であり、特に0.1〜21容量%、さらには5〜20容量%が好ましい。焼成炉としては、特に制限はなく、一般的に使用される箱型焼成炉あるいはトンネル型焼成炉等を用いればよい。   The molded body or carrier obtained in the molding process is sent to the subsequent firing process. The catalyst of the present invention preferably has a calcination temperature of 360 ° C. to 440 ° C., more preferably 380 ° C. to 420 ° C., and the flare width with respect to the reference value is desirably controlled within a range of ± 20 ° C. Is preferably controlled within a range of ± 10 ° C. The firing time is preferably 1 to 24 hours, more preferably 1 to 10 hours. The oxygen concentration can be applied at any concentration, but firing in a region where the oxygen concentration is reduced is preferable, and 0.1 to 21% by volume, particularly 5 to 20% by volume is particularly preferable. The firing furnace is not particularly limited, and a generally used box-type firing furnace or tunnel-type firing furnace may be used.

反応器に充填される場合は、それぞれ単一な触媒である必要はなく、例えば、活性の異なる複数種の触媒を用い、これらを活性の異なる順に充填したり、触媒の一部を不活性担体などで希釈したりしてもよい。   When the reactor is charged, it is not necessary to use a single catalyst for each, for example, using a plurality of types of catalysts having different activities and charging them in the order of different activities, or a part of the catalyst as an inert carrier. It may be diluted with.

本発明における、プロパンおよび/またはアクロレインを分子状酸素により接触気相酸化してアクリル酸を製造するのに用いられる反応器については特段の制限はなく、固定床反応器、流動床反応器、移動床反応器のいずれも用いることができるが、通常、固定床反応器が用いられる。   In the present invention, there is no particular limitation on the reactor used for producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein with molecular oxygen, and there are no particular limitations. Fixed bed reactor, fluidized bed reactor, transfer Any of the bed reactors can be used, but usually a fixed bed reactor is used.

また、本発明における反応条件には特に制限は無く、この種の反応に一般に用いられている条件であればいずれも実施することが可能である。例えば、原料ガスとして1〜15容量%、好ましくは4〜12容量%のプロパンおよび/またはアクロレイン、0.5〜25容量%、好ましくは2〜20容量%の分子状酸素、0〜30容量%、好ましくは0〜25容量%の水蒸気、残部が窒素などの不活性ガスからなる混合ガスを200〜400℃の温度範囲で0.1〜1.0MPaの圧力下、300〜8,000h−1(STP)の空間速度で酸化触媒に接触させればよい。 In addition, the reaction conditions in the present invention are not particularly limited, and any conditions that are generally used for this type of reaction can be used. For example, the raw material gas is 1-15% by volume, preferably 4-12% by volume propane and / or acrolein, 0.5-25% by volume, preferably 2-20% by volume molecular oxygen, 0-30% by volume. Preferably, a mixed gas consisting of 0 to 25% by volume of water vapor and the balance of an inert gas such as nitrogen is 300 to 8,000 h −1 under a pressure of 0.1 to 1.0 MPa in a temperature range of 200 to 400 ° C. What is necessary is just to contact an oxidation catalyst with the space velocity of (STP).

反応ガスとしては、プロパンおよび/またはアクロレイン、分子状酸素および不活性ガスからなる混合ガスはもちろんのこと、グリセリンの脱水反応や、プロピレンの酸化反応によって得られるアクロレイン含有の混合ガスも使用可能である。また、この混合ガスに必要に応じ、空気または酸素などを添加することもできる。   As the reaction gas, not only a mixed gas composed of propane and / or acrolein, molecular oxygen and an inert gas, but also an acrolein-containing mixed gas obtained by a dehydration reaction of glycerin or an oxidation reaction of propylene can be used. . In addition, air or oxygen can be added to the mixed gas as necessary.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、以下では便宜上、「質量部」を「部」と記すことがある。実施例および比較例におけるアクロレイン転化率、アクリル酸選択率およびアクリル酸収率は次式によって求めた。
アクロレイン転化率(モル%)
=(反応したアクロレインのモル数)/(供給したアクロレインのモル数)×100
アクリル酸選択率(モル%)
=(生成したアクリル酸のモル数)/(反応したアクロレインのモル数)×100
アクリル酸収率(モル%)
=(生成したアクリル酸のモル数)/(供給したアクロレインのモル数)×100
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Hereinafter, for convenience, “parts by mass” may be referred to as “parts”. The acrolein conversion, acrylic acid selectivity and acrylic acid yield in the examples and comparative examples were determined by the following formulas.
Acrolein conversion (mol%)
= (Mole number of reacted acrolein) / (Mole number of supplied acrolein) × 100
Acrylic acid selectivity (mol%)
= (Number of moles of acrylic acid produced) / (number of moles of reacted acrolein) × 100
Acrylic acid yield (mol%)
= (Number of moles of acrylic acid produced) / (number of moles of acrolein supplied) × 100

[触媒のX線回折の測定]
X線粉末回折スペクトルは、全ての実施例において、PHILIPS社製X‘pertPROを用いて、Cu−Kα放射線(X線出力:40mA−45kV、Kα1線波長:1.5406Å)を使用して得られた。
[Measurement of X-ray diffraction of catalyst]
X-ray powder diffraction spectra were obtained in all Examples using Cu-Kα radiation (X-ray output: 40 mA-45 kV, Kα1-ray wavelength: 1.5406 mm) using X'pert PRO from PHILIPS. It was.

<実施例1>
[触媒調製]
純水2000部を加熱攪拌しながら、そのなかにパラモリブデン酸アンモニウム350部、メタバナジン酸アンモニウム96.6部、パラタングステン酸55.8部を溶解した。そこに、28質量%アンモニア137.4部および硝酸銅79.8部を純水300部に溶解させた硝酸銅水溶液とを加え、懸濁液とした。さらに三酸化アンチモン4.8部および二酸化ジルコニウム10.2部を添加して、触媒前駆スラリーを得た。この触媒前駆スラリーを、噴霧乾燥させ、得られた粉体を、350℃で約3時間焼成を行い、焼成後の固形物を250μm以下に篩分けし、触媒前駆粉体を得た。遠心流動コーティング装置に平均粒径4mmのα−アルミナ球形担体1000部を投入し、次いで結合剤として5質量%の硝酸アンモニウム水溶液を担体に含浸させてから、触媒粉体を担体に担持させた後、約90℃の熱風で乾燥し、さらに空気雰囲気下400℃で6時間焼成して触媒1を得た。この触媒1の担持率は38質量%であり、酸素を除く金属元素組成は以下の通りであった。
触媒組成:Mo121.25Cu2.0Sb0.2Zr0.5
なお、担持率は下記式により求めた。
担持率(質量%)=(担持された触媒粉体の質量(g))/(用いた担体の質量(g))×100
<Example 1>
[Catalyst preparation]
While heating and stirring 2000 parts of pure water, 350 parts of ammonium paramolybdate, 96.6 parts of ammonium metavanadate, and 55.8 parts of paratungstic acid were dissolved therein. Thereto was added a copper nitrate aqueous solution in which 137.4 parts of 28 mass% ammonia and 79.8 parts of copper nitrate were dissolved in 300 parts of pure water to prepare a suspension. Further, 4.8 parts of antimony trioxide and 10.2 parts of zirconium dioxide were added to obtain a catalyst precursor slurry. This catalyst precursor slurry was spray-dried, and the obtained powder was calcined at 350 ° C. for about 3 hours, and the solid matter after calcination was sieved to 250 μm or less to obtain catalyst precursor powder. After 1000 parts of an α-alumina spherical carrier having an average particle diameter of 4 mm was put into a centrifugal fluid coating apparatus, and after impregnating the carrier with 5% by mass of ammonium nitrate aqueous solution as a binder, the catalyst powder was supported on the carrier, The catalyst 1 was obtained by drying with hot air at about 90 ° C. and calcining at 400 ° C. for 6 hours in an air atmosphere. The supported rate of the catalyst 1 was 38% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst composition: Mo 12 V 5 W 1.25 Cu 2.0 Sb 0.2 Zr 0.5
The loading rate was determined by the following formula.
Support rate (mass%) = (mass of supported catalyst powder (g)) / (mass of used carrier (g)) × 100

この触媒の触媒活性成分のX線回折測定による回折角2θ=22.2(±0.3)°のピーク強度に対する回折角2θ=25.0(±0.3)°のピーク強度比(I(25.0°)/I(22.2°))及び、回折角2θ=22.2(±0.3)°のピーク強度に対する回折角2θ=28.2(±0.3)°のピーク強度比(I(28.2°)/I(22.2°))を表1に示す。   The peak intensity ratio (I) of diffraction angle 2θ = 25.0 (± 0.3) to the peak intensity of diffraction angle 2θ = 22.2 (± 0.3) ° by X-ray diffraction measurement of the catalytically active component of this catalyst (I (25.0 °) / I (22.2 °)) and a diffraction angle 2θ = 28.2 (± 0.3) ° with respect to the peak intensity of the diffraction angle 2θ = 22.2 (± 0.3) °. The peak intensity ratio (I (28.2 °) / I (22.2 °)) is shown in Table 1.

[酸化反応]
全長300mm、内径25mmのSUS製U字反応管に、触媒層長が100mmとなるように充填し、ナイター(溶融塩)浴中で反応ガス流が鉛直方向になるように設置した。熱媒体温度(反応温度)を230℃に保ち、触媒を充填した反応管に、アクロレイン2容量%、酸素10容量%、水蒸気10容量%、窒素78容量%の混合ガスを空間速度2000hr−1(STP)で導入し、アクロレイン酸化反応を行った。その反応結果を表1に示す。
[Oxidation reaction]
A SUS U-shaped reaction tube having a total length of 300 mm and an inner diameter of 25 mm was filled so that the catalyst layer length would be 100 mm, and installed in a nighter (molten salt) bath so that the reaction gas flow was vertical. A mixed gas of 2% by volume of acrolein, 10% by volume of oxygen, 10% by volume of water vapor and 78% by volume of nitrogen was placed in a reaction tube filled with the catalyst at a heat medium temperature (reaction temperature) of 230 ° C. at a space velocity of 2000 hr −1 STP) and acrolein oxidation reaction was performed. The reaction results are shown in Table 1.

<実施例2>
実施例1において、三酸化アンチモン4.8部および二酸化ジルコニウム10.2部の代わりに、三酢酸アンチモン24.6部および酸化アルミニウム16.9部を添加すること、および結合剤として15質量%の硝酸アンモニウム水溶液を用いること以外は実施例1と同様に調製し、触媒2を得た。この触媒2の担持率は38質量%であり、酸素を除く金属元素組成は以下の通りであった。
触媒組成:Mo121.25Cu2.0Sb0.5Al2.0
触媒2を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 2>
In Example 1, instead of 4.8 parts of antimony trioxide and 10.2 parts of zirconium dioxide, 24.6 parts of antimony triacetate and 16.9 parts of aluminum oxide were added, and 15% by weight of the binder was used. A catalyst 2 was obtained in the same manner as in Example 1 except that an aqueous ammonium nitrate solution was used. The supported rate of the catalyst 2 was 38% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst composition: Mo 12 V 5 W 1.25 Cu 2.0 Sb 0.5 Al 2.0
Using catalyst 2, the acrolein oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

<実施例3>
実施例1において、三酸化アンチモン4.8部および二酸化ジルコニウム10.2部の代わりに、三酢酸アンチモン39.7部および二酸化ケイ素10.0部を添加すること、および結合剤として30質量%の硝酸アンモニウム水溶液を用いること以外は実施例1と同様に調製し、触媒3を得た。この触媒3の担持率は38質量%であり、酸素を除く金属元素組成は以下の通りであった。
触媒組成:Mo121.25Cu2.0Sb0.8Si1.0
触媒3を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 3>
In Example 1, instead of 4.8 parts of antimony trioxide and 10.2 parts of zirconium dioxide, 39.7 parts of antimony triacetate and 10.0 parts of silicon dioxide were added, and 30% by weight as a binder. A catalyst 3 was obtained in the same manner as in Example 1 except that an aqueous ammonium nitrate solution was used. The supported rate of the catalyst 3 was 38% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst composition: Mo 12 V 5 W 1.25 Cu 2.0 Sb 0.8 Si 1.0
Using catalyst 3, an acrolein oxidation reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

<実施例4>
実施例1において、三酸化アンチモン4.8部の代わりに、三酸化アンチモン9.6部を添加すること、および結合剤として40質量%の硝酸アンモニウム水溶液を用いること以外は実施例1と同様に調製し、触媒4を得た。この触媒4の担持率は38質量%であり、酸素を除く金属元素組成は以下の通りであった。
触媒組成:Mo121.25Cu2.0Sb0.4Zr0.5
触媒4を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 4>
In Example 1, prepared in the same manner as in Example 1, except that 9.6 parts of antimony trioxide was added instead of 4.8 parts of antimony trioxide, and 40% by weight aqueous ammonium nitrate solution was used as the binder. As a result, catalyst 4 was obtained. The supporting rate of the catalyst 4 was 38% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst composition: Mo 12 V 5 W 1.25 Cu 2.0 Sb 0.4 Zr 0.5
Using catalyst 4, the acrolein oxidation reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

<実施例5>
実施例1において、三酸化アンチモン4.8部および二酸化ジルコニウム10.2部の代わりに、三酸化アンチモン24.0部および二酸化チタン13.2部を添加すること、および結合剤として55質量%の硝酸アンモニウム水溶液を用いること以外は実施例1と同様に調製し、触媒5を得た。この触媒5の担持率は38質量%であり、酸素を除く金属元素組成は以下の通りであった。
触媒組成:Mo121.25Cu2.0Sb1.0Ti1.0
触媒5を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 5>
In Example 1, instead of 4.8 parts of antimony trioxide and 10.2 parts of zirconium dioxide, 24.0 parts of antimony trioxide and 13.2 parts of titanium dioxide were added, and 55% by weight of the binder was used. A catalyst 5 was obtained in the same manner as in Example 1 except that an aqueous ammonium nitrate solution was used. The supporting rate of the catalyst 5 was 38% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst composition: Mo 12 V 5 W 1.25 Cu 2.0 Sb 1.0 Ti 1.0
Using catalyst 5, the acrolein oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

<比較例1>
実施例1において、結合剤として5質量%の硝酸アンモニウム水溶液を使用する代わりに、グリセリンを用いること、および担持体を約90℃の熱風で乾燥し、さらに空気雰囲気下350℃で6時間焼成する以外は実施例1と同様に調製し、触媒6を得た。この触媒6の担持率は38質量%であり、酸素を除く金属元素組成は以下の通りであった。
触媒組成:Mo121.25Cu2.0Sb0.2Zr0.5
触媒6を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Comparative Example 1>
In Example 1, instead of using a 5 mass% ammonium nitrate aqueous solution as a binder, glycerin was used, and the support was dried with hot air of about 90 ° C., and further fired at 350 ° C. for 6 hours in an air atmosphere. Was prepared in the same manner as in Example 1 to obtain a catalyst 6. The supporting rate of the catalyst 6 was 38% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst composition: Mo 12 V 5 W 1.25 Cu 2.0 Sb 0.2 Zr 0.5
Using catalyst 6, the acrolein oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

<比較例2>
実施例1において、三酸化アンチモン4.8部の代わりに、三酸化アンチモン9.6部を添加すること、および結合剤として60質量%の硝酸アンモニウム水溶液を用いること以外は実施例1と同様に調製し、触媒7を得た。この触媒7の担持率は38質量%であり、酸素を除く金属元素組成は以下の通りであった。
触媒組成:Mo121.25Cu2.0Sb0.4Zr0.5
触媒7を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Comparative Example 2>
In Example 1, prepared in the same manner as in Example 1, except that 9.6 parts of antimony trioxide was added instead of 4.8 parts of antimony trioxide, and a 60% by mass aqueous ammonium nitrate solution was used as the binder. As a result, catalyst 7 was obtained. The supporting rate of the catalyst 7 was 38% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst composition: Mo 12 V 5 W 1.25 Cu 2.0 Sb 0.4 Zr 0.5
Using catalyst 7, an acrolein oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

<比較例3>
実施例1において、三酸化アンチモン4.8部の代わりに、三酸化アンチモン9.6部を添加すること、結合剤として5質量%の硝酸アンモニウム水溶液を使用する代わりに、グリセリンを用いること、および担持体を約90℃の熱風で乾燥し、さらに空気雰囲気下450℃で6時間焼成する以外は実施例1と同様に調製し、触媒8を得た。この触媒8の担持率は38質量%であり、酸素を除く金属元素組成は以下の通りであった。
触媒組成:Mo121.25Cu2.0Sb0.4Zr0.5
触媒8を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Comparative Example 3>
In Example 1, 9.6 parts of antimony trioxide are added instead of 4.8 parts of antimony trioxide, glycerin is used instead of using a 5% by weight ammonium nitrate aqueous solution as a binder, and loading. A catalyst 8 was obtained in the same manner as in Example 1 except that the body was dried with hot air at about 90 ° C. and calcined at 450 ° C. for 6 hours in an air atmosphere. The supporting rate of the catalyst 8 was 38% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst composition: Mo 12 V 5 W 1.25 Cu 2.0 Sb 0.4 Zr 0.5
Using catalyst 8, the acrolein oxidation reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

Figure 2015120133
Figure 2015120133

<実施例6>
実施例4で調製された触媒について、全長3200mm、内径25mmのSUS製反応管およびこれを覆う熱媒体を流すためのシェルからなる反応器を用いて、層長が3000mmとなるように充填した。触媒を充填した反応管に、アクロレイン7容量%、酸素8容量%、水蒸気25容量%、窒素60容量%の混合ガスを空間速度1800hr−1(STP)で導入し、アクロレイン酸化反応を行った。アクロレイン転化率がほぼ一定になるように反応温度を変更しつつ、5000時間継続して行い、触媒性能を表2に示した。
<Example 6>
The catalyst prepared in Example 4 was packed so as to have a layer length of 3000 mm using a reactor composed of a SUS reaction tube having a total length of 3200 mm and an inner diameter of 25 mm and a shell for flowing a heat medium covering the catalyst. Acrolein oxidation reaction was performed by introducing a mixed gas of 7% by volume of acrolein, 8% by volume of oxygen, 25% by volume of water vapor, and 60% by volume of nitrogen into the reaction tube filled with the catalyst at a space velocity of 1800 hr −1 (STP). The reaction was carried out continuously for 5000 hours while changing the reaction temperature so that the acrolein conversion was almost constant. Table 2 shows the catalyst performance.

<比較例4>
比較例1で調製された触媒について、実施例6と同様に、アクロレイン酸化反応を行い、触媒性能を表2に示した。
<Comparative Example 4>
The catalyst prepared in Comparative Example 1 was subjected to an acrolein oxidation reaction in the same manner as in Example 6, and the catalyst performance is shown in Table 2.

Figure 2015120133
Figure 2015120133

Claims (5)

モリブデン、バナジウムおよびアンチモンを必須成分として含有するプロパンおよび/またはアクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するための触媒であって、触媒活性成分のCu−Kα線を用いたX線回折分析において、回折角2θ=22.2°±0.3°のピーク強度に対する回折角2θ=25.0°±0.3°のピーク強度の比I(25.0°)/I(22.2°)が0.1以上0.7未満であることを特徴とする触媒。   A catalyst for producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein containing molybdenum, vanadium and antimony as essential components in the presence of molecular oxygen or a molecular oxygen-containing gas. In X-ray diffraction analysis using Cu—Kα ray as a component, the ratio of the peak intensity at diffraction angle 2θ = 25.0 ° ± 0.3 ° to the peak intensity at diffraction angle 2θ = 22.2 ° ± 0.3 ° I (25.0 °) / I (22.2 °) is 0.1 or more and less than 0.7. 回折角2θ=22.2°±0.3°のピーク強度に対する回折角2θ=28.2°±0.3°のピーク強度の比I(28.2°)/I(22.2°)が0.2以上0.8未満であることを特徴とする請求項1に記載の触媒。   Ratio I (28.2 °) / I (22.2 °) of peak intensity at diffraction angle 2θ = 28.2 ° ± 0.3 ° to peak intensity at diffraction angle 2θ = 22.2 ° ± 0.3 ° The catalyst according to claim 1, wherein is not less than 0.2 and less than 0.8. 前記触媒活性成分が粒塊状の不活性担体に担持されてなることを特徴とする請求項1または2に記載の触媒。   The catalyst according to claim 1 or 2, wherein the catalytically active component is supported on an inert support in the form of agglomerates. 以下に示す工程(1)〜工程(3)を含むとともに、該工程の少なくとも1つの工程において、触媒活性成分の出発原料とは異なる含窒素化合物を添加することを特徴とする請求項1〜3いずれか1項に記載の触媒の製造方法。
工程(1):触媒活性成分の出発原料の混合液を得る工程
工程(2):前記触媒活性成分の出発原料混合液を乾燥して乾燥物を得る工程、または、前記触媒活性成分の出発原料混合液を乾燥して乾燥物を得、得られた乾燥物を焼成する工程
工程(3):前記乾燥物若しくは前記乾燥物を焼成して得られる焼成物を一定形状に押し出し成形若しくは打錠成形する工程、または、前記乾燥物若しくは前記乾燥物を焼成して得られる焼成物を不活性担体に担持する工程
The process includes the following steps (1) to (3), and in at least one of the steps, a nitrogen-containing compound different from the starting material of the catalytically active component is added. The method for producing a catalyst according to any one of the above.
Step (1): Step of obtaining a mixture of starting materials of catalytically active components Step (2): Step of drying the mixture of starting materials of catalytically active components to obtain a dried product, or starting materials of the catalytically active components Step of drying the liquid mixture to obtain a dried product and firing the obtained dried product Step (3): Extruding or tableting the dried product or a fired product obtained by firing the dried product into a fixed shape Or a step of supporting the dried product or a fired product obtained by firing the dried product on an inert carrier.
請求項1〜3いずれか1項に記載の触媒を用いて、プロパンおよび/またはアクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化することを特徴とするアクリル酸の製造方法。   Production of acrylic acid, characterized by subjecting propane and / or acrolein to catalytic gas phase oxidation in the presence of molecular oxygen or a molecular oxygen-containing gas using the catalyst according to any one of claims 1 to 3. Method.
JP2013266638A 2013-12-25 2013-12-25 Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst Pending JP2015120133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013266638A JP2015120133A (en) 2013-12-25 2013-12-25 Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013266638A JP2015120133A (en) 2013-12-25 2013-12-25 Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst

Publications (1)

Publication Number Publication Date
JP2015120133A true JP2015120133A (en) 2015-07-02

Family

ID=53532313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013266638A Pending JP2015120133A (en) 2013-12-25 2013-12-25 Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst

Country Status (1)

Country Link
JP (1) JP2015120133A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181544A1 (en) * 2017-03-31 2018-10-04 三菱ケミカル株式会社 Catalyst for producing unsaturated carboxylic acid, method for producing unsaturated carboxylic acid, and method for producing unsaturated carboxylic ester
WO2022050110A1 (en) 2020-09-03 2022-03-10 株式会社日本触媒 Catalyst for acrylic acid production, method for producing same, and method for producing acrylic acid
WO2023063349A1 (en) 2021-10-14 2023-04-20 日本化薬株式会社 Catalyst for production of unsaturated carboxylic acid, method for producing same, and method for producing unsaturated carboxylic acid

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504288A (en) * 2000-07-18 2004-02-12 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing acrylic acid by gas phase oxidation of propane by heterogeneous catalysis
US20040097368A1 (en) * 2002-10-17 2004-05-20 Basf Aktiengesellschaft Preparation of a multimetal oxide material
US20050085678A1 (en) * 2002-01-31 2005-04-21 Lopez Nieto Jose M. Method for the oxidative dehydrogenation of ethane
JP2005185977A (en) * 2003-12-26 2005-07-14 Nippon Kayaku Co Ltd Method for manufacturing mixed metal oxide catalyst
JP2007502319A (en) * 2003-05-27 2007-02-08 アルケマ フランス Oxidation of propane using a catalyst in a mixture of crystalline phases to give acrylic acid
JP2007509864A (en) * 2003-10-29 2007-04-19 ビーエーエスエフ アクチェンゲゼルシャフト A method for long-term operation of gas phase partial oxidation by heterogeneous catalysis of acrolein to acrylic acid
JP2007301470A (en) * 2006-05-11 2007-11-22 Asahi Kasei Chemicals Corp Improved catalyst
US20100324326A1 (en) * 2006-12-27 2010-12-23 Exxonmobil Research And Engineering Company Mixed Metal Oxide Catalysts and Processes For Their Preparation and Use
JP2011516378A (en) * 2008-04-04 2011-05-26 ズード−ケミー アーゲー Method for producing nanocrystalline molybdenum mixed oxide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504288A (en) * 2000-07-18 2004-02-12 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing acrylic acid by gas phase oxidation of propane by heterogeneous catalysis
US20050085678A1 (en) * 2002-01-31 2005-04-21 Lopez Nieto Jose M. Method for the oxidative dehydrogenation of ethane
US20040097368A1 (en) * 2002-10-17 2004-05-20 Basf Aktiengesellschaft Preparation of a multimetal oxide material
JP2006502847A (en) * 2002-10-17 2006-01-26 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing multi-metal oxide material
JP2007502319A (en) * 2003-05-27 2007-02-08 アルケマ フランス Oxidation of propane using a catalyst in a mixture of crystalline phases to give acrylic acid
JP2007509864A (en) * 2003-10-29 2007-04-19 ビーエーエスエフ アクチェンゲゼルシャフト A method for long-term operation of gas phase partial oxidation by heterogeneous catalysis of acrolein to acrylic acid
JP2005185977A (en) * 2003-12-26 2005-07-14 Nippon Kayaku Co Ltd Method for manufacturing mixed metal oxide catalyst
JP2007301470A (en) * 2006-05-11 2007-11-22 Asahi Kasei Chemicals Corp Improved catalyst
US20100324326A1 (en) * 2006-12-27 2010-12-23 Exxonmobil Research And Engineering Company Mixed Metal Oxide Catalysts and Processes For Their Preparation and Use
JP2011516378A (en) * 2008-04-04 2011-05-26 ズード−ケミー アーゲー Method for producing nanocrystalline molybdenum mixed oxide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181544A1 (en) * 2017-03-31 2018-10-04 三菱ケミカル株式会社 Catalyst for producing unsaturated carboxylic acid, method for producing unsaturated carboxylic acid, and method for producing unsaturated carboxylic ester
KR20190134713A (en) * 2017-03-31 2019-12-04 미쯔비시 케미컬 주식회사 Catalyst for producing unsaturated carboxylic acid, method for producing unsaturated carboxylic acid, and method for producing unsaturated carboxylic acid ester
JPWO2018181544A1 (en) * 2017-03-31 2020-02-20 三菱ケミカル株式会社 Catalyst for producing unsaturated carboxylic acid, method for producing unsaturated carboxylic acid, and method for producing unsaturated carboxylic acid ester
JP6999909B2 (en) 2017-03-31 2022-02-04 三菱ケミカル株式会社 A catalyst for producing an unsaturated carboxylic acid, a method for producing an unsaturated carboxylic acid, and a method for producing an unsaturated carboxylic acid ester.
KR102418676B1 (en) 2017-03-31 2022-07-07 미쯔비시 케미컬 주식회사 Catalyst for production of unsaturated carboxylic acid, method for producing unsaturated carboxylic acid, and method for producing unsaturated carboxylic acid ester
WO2022050110A1 (en) 2020-09-03 2022-03-10 株式会社日本触媒 Catalyst for acrylic acid production, method for producing same, and method for producing acrylic acid
KR20230036136A (en) 2020-09-03 2023-03-14 가부시키가이샤 닛폰 쇼쿠바이 Catalyst for producing acrylic acid, method for producing the same, and method for producing acrylic acid
CN116033968A (en) * 2020-09-03 2023-04-28 株式会社日本触媒 Catalyst for acrylic acid production, method for producing same, and method for producing acrylic acid
WO2023063349A1 (en) 2021-10-14 2023-04-20 日本化薬株式会社 Catalyst for production of unsaturated carboxylic acid, method for producing same, and method for producing unsaturated carboxylic acid

Similar Documents

Publication Publication Date Title
JP5845337B2 (en) Method for producing acrylic acid using a fixed bed multitubular reactor
JP6674441B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
JP2018043197A (en) Catalyst for manufacturing acrylic acid
CN111757779A (en) Catalyst and direct-connection two-stage gas-phase catalytic oxidation method using same
JP6504774B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP5845338B2 (en) Method for producing acrolein and acrylic acid using fixed bed multitubular reactor
JP2008264766A (en) Oxide catalyst, manufacturing method of acrolein or acrylic acid and manufacturing method of water-absorptive resin using acrylic acid
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP5548132B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP5582708B2 (en) Catalyst for producing acrolein and method for producing acrolein and / or acrylic acid using the catalyst
JP2006007205A (en) Compound oxide catalyst and its manufacturing method
JP5831329B2 (en) Composite oxide catalyst
JP4950986B2 (en) Method for producing methacrolein and / or methacrylic acid
JP2005305421A (en) Method of producing compound oxide catalyst
JP6487242B2 (en) Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst
JP5448331B2 (en) Acrylic acid production catalyst and method for producing acrylic acid using the catalyst
JP4970986B2 (en) Method for producing composite oxide catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP5582709B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP6238354B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP6628661B2 (en) Method for producing catalyst for acrylic acid production, its catalyst, and method for producing acrylic acid using the catalyst
JP6534328B2 (en) Method of producing catalyst for producing acrylic acid, catalyst therefor, and method of producing acrylic acid using the catalyst
JP2011102247A (en) Method of producing acrolein and/or acrylic acid
JP2000084412A (en) Catalyst for producing methacrylic acid, production thereof and production of methacrylic acid
WO2005053844A1 (en) Process for producing catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171024