JP2015119893A - Organism implement - Google Patents

Organism implement Download PDF

Info

Publication number
JP2015119893A
JP2015119893A JP2013266396A JP2013266396A JP2015119893A JP 2015119893 A JP2015119893 A JP 2015119893A JP 2013266396 A JP2013266396 A JP 2013266396A JP 2013266396 A JP2013266396 A JP 2013266396A JP 2015119893 A JP2015119893 A JP 2015119893A
Authority
JP
Japan
Prior art keywords
biological
magnesium
purity magnesium
bone
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013266396A
Other languages
Japanese (ja)
Inventor
堤 定美
Sadami Tsutumi
定美 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUTSUMI SOKEN CO Ltd
Original Assignee
TSUTSUMI SOKEN CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUTSUMI SOKEN CO Ltd filed Critical TSUTSUMI SOKEN CO Ltd
Priority to JP2013266396A priority Critical patent/JP2015119893A/en
Priority to PCT/JP2014/006349 priority patent/WO2015098071A1/en
Publication of JP2015119893A publication Critical patent/JP2015119893A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/866Material or manufacture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/122Clamps or clips, e.g. for the umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Neurology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To control absorption velocity with which magnesium is absorbed to bone, according to curing condition of an organism.SOLUTION: An organism implement at least possesses a part of highly corrosion-resistant high-purity magnesium metal and a part of lowly corrosion-resistant low-purity magnesium metal. A sustaining period of a needed reinforce function is controlled at a part of the organism implement, and after the period elapsed, the reinforce function of the organism implement is lost.

Description

本発明は、生体が骨折等の骨を損傷した際に、骨の損傷箇所が再建又は接合等で修復するまでの間、骨の損傷箇所を固定支持するように埋め込まれるボーンプレート、生体の管腔を内部から広げるステント、体内組織固定用結紮器及び縫合器(例えば、血管止血クリップ、ステープル、縫合針)等の生体器具に関するものである。   The present invention relates to a bone plate and a living body tube that are embedded so as to fix and support a bone damage site until the bone damage site is repaired by reconstruction or jointing when the living body damages a bone such as a fracture. The present invention relates to a biological device such as a stent for expanding a cavity from the inside, a ligator for fixing tissue in the body, and a suture device (for example, a blood vessel hemostatic clip, a staple, a suture needle).

生体の骨の損傷箇所が修復するまでの間、損傷箇所を固定支持するために、手術によって生体材料が埋め込まれる。従来からこのような生体材料に用いられる生体器具としてチタン又はチタン合金製の生体器具が使用されている。   In order to fix and support the damaged portion until the damaged portion of the living bone is repaired, a biomaterial is implanted by surgery. Conventionally, a biological instrument made of titanium or a titanium alloy has been used as a biological instrument used for such a biomaterial.

しかし、チタン又はチタン合金製の生体器具は剛性が高く生体への吸収性が低いので、骨の損傷や骨折等が治癒した後も長期に亘り生体内に残留することになる。前記チタン又はチタン合金製の生体器具が生体内に残留すると、残留した生体器具が治癒後の損傷箇所の荷重を支持することになり、結果的に骨自体が減少したり脆弱化したりするという問題がある。また、長期間生体内に剛性の高い生体器具が残留することは生体にとって望ましくない。さらに、生体が成長期の小児の場合には、骨の成長速度が成人に比べて速いため、チタン又はチタン合金製の生体器具を用いると、骨自体の成長を阻害することも懸念される。   However, since a biological device made of titanium or a titanium alloy has high rigidity and low absorbability to the living body, it remains in the living body for a long period of time after healing of bone damage or fracture. If the titanium or titanium alloy biomedical device remains in the living body, the remaining biomedical device will support the load at the damaged site after healing, resulting in a decrease or weakening of the bone itself. There is. In addition, it is undesirable for a living body that a highly rigid living body instrument remains in the living body for a long time. Furthermore, when the living body is a growing child, the bone growth rate is faster than that of an adult, and therefore there is a concern that the use of a biological device made of titanium or a titanium alloy may inhibit the growth of the bone itself.

このため、従来のチタン又はチタン合金製の生体器具では、骨の治癒後に、再手術により前記生体器具を取り出す必要があった。しかし、再手術を行うことは、患部の切開を必要とするため患者に多大な負担を要していた。   For this reason, in the conventional biological instrument made from titanium or titanium alloy, it was necessary to take out the said biological instrument by re-operation after bone healing. However, performing reoperation requires a large burden on the patient because it requires incision of the affected area.

そこで、このような再手術を必要としない生体器具として、例えば99.99質量%以上のマグネシウムを含有する高純度マグネシウムを用いる生体材料が提案されている(特許文献1)。マグネシウムは生体吸収性をもち、その生体内吸収性はマグネシウムの純度に依存する。すなわち、マグネシウムの純度が高いほど生体吸収性が低く、骨の損傷又は骨折箇所を固定支持するための生体器具としての機能を長く保つ。しかし、時間経過とともに高純度マグネシウムを用いた生体器具は体液により溶解しいずれ生体に吸収され、生体内から消滅する。このためマグネシウムを用いる生体部材は生体外に取り出すための再手術の必要性がなく、患者に与える負担が極めて少ないという特徴がある。   Therefore, as a biological instrument that does not require such re-operation, a biomaterial using high-purity magnesium containing, for example, 99.99% by mass or more of magnesium has been proposed (Patent Document 1). Magnesium has bioabsorbability, and the bioabsorbability depends on the purity of magnesium. That is, the higher the purity of magnesium, the lower the bioabsorbability, and the longer the function as a biological device for fixing and supporting bone damage or fracture sites. However, a biological device using high-purity magnesium is dissolved by a body fluid and is absorbed into the living body and disappears from the living body with time. For this reason, the biological member using magnesium has the feature that there is no need for re-operation for taking it out of the living body and the burden on the patient is extremely small.

国際公開2013/021913号International Publication 2013/021913

しかしながら、従来の高純度マグネシウムを用いた生体器具は、高純度マグネシウムのみの単一成分からなっていた。このため、生体器具の生体内での溶解、吸収性がマグネシウムの純度のみに依存し、患部の治癒状態に合わせて生体内の溶解、吸収性を遅めたり、速めたりすることは容易ではなかった。すなわち、生体器具の生体に対する溶解吸収速度を制御することは困難であった。   However, conventional biological devices using high-purity magnesium consisted of a single component of only high-purity magnesium. For this reason, the in vivo dissolution and absorption of the biological device depend only on the purity of magnesium, and it is not easy to delay or speed up the in vivo dissolution and absorption according to the healing state of the affected area. It was. That is, it has been difficult to control the dissolution / absorption rate of the biological device in the living body.

本発明はかかる事情に鑑みてなされたもので、生体器具が必要とする期間補強機能を確保し、補強機関が経過すれば速やかに補強機能を消失し、生体に吸収されて生体より排除される生体器具を提供することを目的とする。   The present invention has been made in view of such circumstances, and secures a reinforcing function for a period required by the biological device. When the reinforcing engine passes, the reinforcing function disappears quickly, and is absorbed by the living body and eliminated from the living body. An object is to provide a biological device.

本発明は体液に対する耐腐食性がマグネシウム金属のマグネシウム純度に依存していることから思い至ったもので、生体器具の一部分で必要な補強機能の維持期間を制御し、その期間が経過後、生体器具の補強機能を喪失させるようにしたものである。   The present invention was conceived from the fact that the corrosion resistance to body fluids depends on the magnesium purity of the magnesium metal, and the maintenance period of the reinforcing function necessary for a part of the biological device is controlled. The reinforcing function of the instrument is lost.

すなわち本発明の生体器具は、少なくとも耐食性の高い高純度マグネシウム金属で形成されている第1部分と耐食性の低い低純度マグネシウム金属で形成されている第2部分とを持つことを特徴とする。なお、第1部分と第2部分とは一体化あるいは機械的に一体化されていると、生体液中でマグネシウムの純度などのエネルギー準位差により高純度マグネシウム金属の第1部分はより耐食性が高くなり、逆に低純度マグネシウム金属の第2部分はより早く腐食する。そのために生体器具の必要な補強機能の維持期間の制御の選択肢(態様)が高くなる。   That is, the biological device of the present invention is characterized by having at least a first portion made of high-purity magnesium metal having high corrosion resistance and a second portion made of low-purity magnesium metal having low corrosion resistance. When the first part and the second part are integrated or mechanically integrated, the first part of the high purity magnesium metal is more corrosion resistant due to the energy level difference such as the purity of magnesium in the biological fluid. On the contrary, the second part of low purity magnesium metal corrodes faster. Therefore, the choice (mode) of control of the maintenance period of the necessary reinforcing function of the biological device is increased.

本発明の生体器具を本体部とこの本体部を被覆する被覆部とで構成し、この本体部を第2部分とし被覆部を第1部分とすることができる。   The biological instrument of the present invention can be constituted by a main body part and a covering part covering the main body part, and the main body part can be a second part and the covering part can be a first part.

また、本発明の生体器具を主体部とこの主体部を骨に固定する固定部とで構成し、主体部を第1部分とし固定部を第2部分とすることができる。   In addition, the biological device of the present invention can be constituted by a main part and a fixing part that fixes the main part to the bone, and the main part can be the first part and the fixing part can be the second part.

本発明の生体器具としての必要な補強機能の期間を第1部分及び第2部分のいずれかで制御し、その期間が過ぎれば体液による腐食で生体器具の補強機能を消失させる。これにより、骨の損傷又は骨折の治癒後にも生体器具の補強機能が維持されることによる生ずる悪影響をなくすることができる。生体器具の第1部分は体内に比較的長く腐食せずにとどまることになるが少しずつ生体に吸収されて消失する。したがって、第1部分を体外に取り出す外科手術は必要としない。   The period of the necessary reinforcing function as the biological instrument of the present invention is controlled by either the first part or the second part, and after that period, the reinforcing function of the biological instrument is lost due to corrosion by body fluid. Thereby, the bad influence which arises by maintaining the reinforcement function of a biological device after healing of a bone damage or a fracture can be eliminated. The first part of the biological device stays in the body for a relatively long time without corroding, but is gradually absorbed by the living body and disappears. Therefore, a surgical operation for removing the first part from the body is not necessary.

本発明の生体器具では、その必要とする補強機能、例えば必要とする補強強度とその強度が生体内で持続できる期間が知られていることが必要である。この必要とする補強強度とその持続期間に合わせて生体器具の第1部分及び第2部分が設計される。ここで、耐食性の高い高純度のマグネシウムで形成された第1部分は高い耐食性により補強機能の劣化が遅い。逆に耐食性の低い低純度のマグネシウムで形成された第2部分は低い耐食性のために補強機能の劣化が早い。劣化の早い第2部分の必要な補強機能を長くする手段は第2部分の厚さあるいは断面積を増やす等の手段で補う。例えば、所定厚さあるいは所定断面積の第2部分が生体内で3か月間必要な補強機能を維持できるとき、6か月の補強機能が必要の場合その第2部分の厚さあるいは断面積を所定厚さあるいは断面積の2倍とすることで対処する。第2部分の厚さあるいは断面積と必要とする補強機能の維持期間との関係はあらかじめ試験で求めておくことが必要である。   In the biological instrument of the present invention, it is necessary that the necessary reinforcing function, for example, the required reinforcing strength and the period during which the strength can be sustained in the living body are known. The first part and the second part of the biological device are designed according to the required reinforcing strength and the duration thereof. Here, the first portion made of high-purity magnesium having high corrosion resistance is slow in deterioration of the reinforcing function due to high corrosion resistance. In contrast, the second portion formed of low-purity magnesium having low corrosion resistance is rapidly deteriorated due to low corrosion resistance. The means for lengthening the necessary reinforcing function of the second portion that is rapidly deteriorated is supplemented by means such as increasing the thickness or the cross-sectional area of the second portion. For example, when the second part of a predetermined thickness or cross-sectional area can maintain the necessary reinforcing function for 3 months in vivo, if the 6-month reinforcing function is required, the thickness or cross-sectional area of the second part is This is dealt with by setting it to a predetermined thickness or twice the cross-sectional area. The relationship between the thickness or cross-sectional area of the second portion and the required maintenance period of the reinforcing function needs to be obtained in advance by a test.

なお、耐食性の高い高純度のマグネシウムの機械的強度は耐食性の低い低純度のマグネシウムより低い。第1部分及び第2部分に必要とする機械的強度を基準に必要とするマグネシウムを選択できる。   The mechanical strength of high-purity magnesium having high corrosion resistance is lower than that of low-purity magnesium having low corrosion resistance. The required magnesium can be selected based on the mechanical strength required for the first part and the second part.

本発明の生体器具の第1部分は、高い耐食性を持つために、その生体器具の形状あるいは構造上、所定の形状あるいは所定の機械的強度を一定期間確実に維持する必要のある部分に用いることが好ましい。それに対して、本発明の生体器具の第2部分は、高い強度を持つために、細くあるいは薄くする必要のある部分とするのが好ましい。細くあるいは薄くする必要のある部分でしかもその機械的強度を一定期間確実に維持する必要のある部分に対しては、その中央部となる本体部を高い強度を持つ第2部分とし、本体部の表面を被覆する被覆部を耐食性のある第1部分とすることで必要とする機能を得ることができる。   In order to have high corrosion resistance, the first part of the biological instrument of the present invention is used for a part that needs to reliably maintain a predetermined shape or a predetermined mechanical strength for a certain period on the shape or structure of the biological instrument. Is preferred. On the other hand, the second portion of the biological device of the present invention is preferably a portion that needs to be thinned or thinned in order to have high strength. For a part that needs to be thinned or thinned and that needs to maintain its mechanical strength for a certain period of time, the body part that is the central part is a second part having high strength, A necessary function can be obtained by making the covering portion covering the surface the first portion having corrosion resistance.

例えば補強器具が補強機能を持つ本体部とこの本体部を骨に固定するねじ部とで構成することが推奨される。この本体部を本発明の第1部分とし、ねじ部を本発明の第2部分とするものである。ねじ部は骨に固定されるためにできるだけ小さくすることが好ましい。この小さい部分は強度を高くして骨への切り込みと結合を強くしないと本体部の補強機能が働かない。このため、ねじ部は高い強度を持つ第2部分とし、本体部を第1部分とすることが考えられる。   For example, it is recommended that the reinforcing device is composed of a main body portion having a reinforcing function and a screw portion for fixing the main body portion to the bone. This main body portion is the first portion of the present invention, and the screw portion is the second portion of the present invention. The threaded portion is preferably as small as possible in order to be fixed to the bone. The strength of the small part does not work unless the strength is increased and the incision and connection to the bone are strengthened. For this reason, it can be considered that the screw portion is a second portion having high strength and the main body portion is the first portion.

なお、ねじ部は通常高い機械的強度を必要とすると同時に、骨表面よりも体液との接触が少ないために吸収性を少し高める必要があるため低純度のマグネシウム(第2部分)が好ましい。機械的強度も高くかつ長期の高い耐腐食性を望む場合には、例えば、ねじ部を低純度のマグネシウム(第2部分)で形成し、その表面に高純度のマグネシウム被膜(第1部分)を形成することも好ましい。   In addition, since the screw portion usually requires high mechanical strength and at the same time, it has less contact with the body fluid than the bone surface, and therefore it is necessary to slightly increase the absorbability, so low purity magnesium (second portion) is preferable. When high mechanical strength and long-term high corrosion resistance are desired, for example, the screw part is formed of low-purity magnesium (second part), and a high-purity magnesium coating (first part) is formed on the surface. It is also preferable to form.

生体器具の形状で応力集中する部分となる屈曲部とかネック部、弾性変形、塑性変形が必要な変形部を第1部分とすることが好ましい。   It is preferable that a bent portion or a neck portion, which is a portion where stress is concentrated in the shape of the biological instrument, or a deformed portion that requires elastic deformation or plastic deformation be the first portion.

第1部分を耐腐食層として機能させることもできる。マグネシウム金属は比較的昇華しやすい金属であるため真空蒸着とかスパッタリング等の物理的手段で容易に目的とする厚さの被膜を形成できる。具体的には生体器具のほぼ全体となる本体部を第2部分とし、この本体部の全表面を、例えば10μm厚さの真空蒸着で形成した被膜を第1部分とするものである。ここで10μm厚さの被膜からなる第1部分はその生体器具の補強機能を必要とする期間生体による腐食に耐え、その期間が過ぎれば耐腐食被膜としての機能を消失するものとしている。第1部分の被膜が腐食されて部分的にも被膜が消失すると第2部分が生体に晒され、第2部分は比較的短期間に腐食され生体に吸収される。   The first portion can also function as a corrosion resistant layer. Since magnesium metal is a metal that is relatively easily sublimated, a film having a desired thickness can be easily formed by physical means such as vacuum deposition or sputtering. Specifically, the main body part that is almost the whole of the biological device is the second part, and the entire surface of the main body part is formed by, for example, vacuum deposition having a thickness of 10 μm, for example, as the first part. Here, the first portion made of the 10 μm thick coating resists corrosion by the living body for a period requiring the reinforcing function of the biological instrument, and the function as the corrosion resistant coating disappears after the period. When the coating of the first part is corroded and partially disappears, the second part is exposed to the living body, and the second part is corroded and absorbed by the living body in a relatively short time.

物理的手段による目的とする厚さの被膜の形成は容易であるため、患者の必要とする期間のみ補強機能が発揮されるように被膜の厚さを調整する。例えば治りの早い患者には被膜を薄くし、被膜が早く腐食されるようにする。予定された期間が過ぎると被膜が腐食され被膜で保護されていた本体部(第2部分)が生体に晒され、本体部は短期間に生体に吸収される。   Since it is easy to form a film having a desired thickness by physical means, the thickness of the film is adjusted so that the reinforcing function is exhibited only during a period required by the patient. For example, for patients with fast healing, the coating should be thin so that the coating erodes quickly. After the scheduled period, the coating is corroded and the body (second part) protected by the coating is exposed to the living body, and the body is absorbed by the living body in a short time.

本発明の第1部分を形成する高い耐食性を有する高純度のマグネシウム金属の生体に対する耐食性は、本発明の第2部分を形成する低い耐食性を有する低純度のマグネシウム金属の生体に対する耐食性の少なくとも2倍以上の高い耐食性を持つものとするのが好ましい。   The corrosion resistance of the high-purity magnesium metal having high corrosion resistance forming the first part of the present invention to the living body is at least twice the corrosion resistance of the low-purity magnesium metal having low corrosion resistance forming the second part of the present invention to the living body. It is preferable to have the above high corrosion resistance.

本発明の生体器具の生体吸収性を細かく制御するために、本発明の生体器具をポリグルコール酸(PGA)とかポリ乳酸(PLA)等の生体吸収性材料で被覆することもできる。   In order to finely control the bioabsorbability of the biomedical device of the present invention, the biomedical device of the present invention can be coated with a bioabsorbable material such as polyglycolic acid (PGA) or polylactic acid (PLA).

本発明の第1部分を形成する高い耐食性を有する高純度のマグネシウム金属としてはマグネシウム99.996質量%(残り亜鉛等の不純物)のもの(以下、高純度マグネシウムと称する。)を使用できる。この高純度マグネシウムは市販のマグネシウム99.93質量%の地金(以下、マグネシウム地金と称する。)を昇華法で精製したものである。   As the high-purity magnesium metal having high corrosion resistance forming the first part of the present invention, 99.996% by mass of magnesium (impurities such as remaining zinc) (hereinafter referred to as high-purity magnesium) can be used. This high-purity magnesium is obtained by purifying commercially available magnesium 99.93 mass% ingot (hereinafter referred to as magnesium ingot) by the sublimation method.

高純度マグネシウムとマグネシウム地金の生体内における分解及び吸収の指標を得るために疑似体液中での浸漬試験を行った。これらの金属から縦、横、高さ5×5×1mm3の試料を作り、これらの試料を疑似体液(Hank’s Balanced Salt Solution HBSS)中に浸漬し、時間経過に伴う重量減を測定した。この結果を図1に示す。図1から分かるように、マグネシウム地金は5日間で3質量%の重量減を示しているのに対して、高純度マグネシウムは40日間で1質量%程度の重量減を示すに過ぎなかった。尚、図1において、測定の初期において高純度マグネシウムの重量が増加しているのは、疑似体液に含まれる塩が試料表面に析出した結果と考えられる。   In order to obtain in vivo degradation and absorption indicators of high-purity magnesium and magnesium metal, immersion tests were conducted in simulated body fluids. Samples of 5 × 5 × 1 mm 3 in length, width, and height were prepared from these metals, and these samples were immersed in a simulated body fluid (Hank's Balanced Salt Solution HBSS), and the weight loss over time was measured. The result is shown in FIG. As can be seen from FIG. 1, the magnesium metal showed a weight loss of 3% by mass in 5 days, whereas the high purity magnesium only showed a weight loss of about 1% by mass in 40 days. In FIG. 1, the increase in the weight of the high-purity magnesium at the beginning of the measurement is considered to be a result of the salt contained in the simulated body fluid being deposited on the sample surface.

次に、この高純度マグネシウムを用いて、動物実験により生体吸収性及び生体適合性を調べた。試料として、図2に外形状を示すボーンプレートを用いた。この資料は、長さ16.7mm、最大幅3.2mm、厚さ0.65mmであり、図示しないボーンスクリュウが挿入される直径1.5mmの貫通孔が4個長手方向に沿って形成されている。   Next, bioabsorbability and biocompatibility were examined by animal experiments using this high purity magnesium. A bone plate having an outer shape shown in FIG. 2 was used as a sample. This document has a length of 16.7 mm, a maximum width of 3.2 mm, a thickness of 0.65 mm, and four through-holes with a diameter of 1.5 mm into which bone screws (not shown) are inserted are formed along the longitudinal direction. Yes.

実験動物としては、実験用ラット(Wistar系、リタイア、メス)12匹を対象とした。実験用ラットを1M群(4匹)、3M群(4匹)、4M群(4匹)の3群に分け、各実験用ラット1匹に1個の試料を埋入する手術を実施した。その後、1M群は1ヶ月後、3M群は3ヶ月後、4M群は4ヶ月後にそれぞれラットより摘出し、埋入時の重量と摘出後の重量とを測定した。結果を表1に示す。   As experimental animals, 12 experimental rats (Wistar strain, retired, female) were used. The experimental rats were divided into three groups, 1M group (4 animals), 3M group (4 animals), and 4M group (4 animals), and an operation was performed in which one sample was placed in each experimental rat. Thereafter, the 1M group was removed from the rat after 1 month, the 3M group was removed after 3 months, and the 4M group was removed after 4 months, and the weight at the time of implantation and the weight after removal were measured. The results are shown in Table 1.

Figure 2015119893
Figure 2015119893

表1から高純度マグネシウムで形成された試料のボーンプレートは埋入後1ヶ月でその重量が10.8%減少し、埋入後3ヶ月でその重量が36.7%、埋入後4ヶ月では50.7%減少した。表1の示す重量減は明らかに試料が生体(マウス)に吸収されたものであることを示している。すなわち、高純度マグネシウムは生体に吸収され、表1からは6カ月後には100%(全て)生体中に吸収されることが推察される。   From Table 1, the bone plate of the sample made of high purity magnesium loses 10.8% in the first month after implantation, and 36.7% in the third month after implantation, and 4 months after implantation. Then, it decreased by 50.7%. The weight loss shown in Table 1 clearly indicates that the sample was absorbed by the living body (mouse). That is, high-purity magnesium is absorbed by the living body, and it can be inferred from Table 1 that 100% (all) is absorbed into the living body after 6 months.

さらに、試料の摘出する際に、全ての実験用ラットから血液を採集し、血液生化学検査を行った。具体的には、血中尿素窒素(BUN,mg/dl)、クレアチニン(Cr,mg/dl),ナトリウム(Na,mmol/L)、塩素(Cl、mml/L)、カリウム(K,mmol/L)、カルシウム(Ca,mmol/L)、アスパラギン酸アミノトランスフェラーゼ(AST,IU/L)、アラニンアミノトランスフェラーゼ(ALT,IU/L)、γ―グルタミントランスフェラーゼ(γ−GTP,IU/L)の血中濃度を測定した。測定された数値は特に異常と思える数値は無く、埋入された試料は生体適合性備えていることが解った。すなわち、高純度マグネシウムは生体適合性を持つことが解った。   Furthermore, when the sample was extracted, blood was collected from all experimental rats and subjected to blood biochemical tests. Specifically, blood urea nitrogen (BUN, mg / dl), creatinine (Cr, mg / dl), sodium (Na, mmol / L), chlorine (Cl, mml / L), potassium (K, mmol / L), calcium (Ca, mmol / L), aspartate aminotransferase (AST, IU / L), alanine aminotransferase (ALT, IU / L), blood of γ-glutamine transferase (γ-GTP, IU / L) Medium concentration was measured. The measured values were not particularly abnormal, and it was found that the embedded samples were biocompatible. That is, it was found that high purity magnesium has biocompatibility.

これらのことから、この高純度マグネシウムは生体内においてその強度及び剛性を長期に亘って保持でき、かつその後、生体に吸収されて消失し、生体適合性も有することが明らかになった。従って、この高純度マグネシウムは本発明の高純度のマグネシウム金属として使用でき、本発明の生体器具の第1部分を形成できると考えている。   From these facts, it has been clarified that this high-purity magnesium can retain its strength and rigidity in a living body for a long period of time, and then is absorbed by the living body and disappears, and has biocompatibility. Therefore, it is believed that this high purity magnesium can be used as the high purity magnesium metal of the present invention and can form the first part of the biological device of the present invention.

本発明の生体器具の第2部分を形成する低純度のマグネシウムとしてはマグネシウム99.9質量%(残り亜鉛等の不純物)のものを使用できる。具体的には前記した市販のマグネシウム地金(マグネシウム99.93質量%)を使用できる。また第2部分を形成する低純度のマグネシウムはこのマグネシウム地金に前記した高純度マグネシウムを混合し、適切なマグネシウム純度のものとすることができる。   As low-purity magnesium forming the second part of the biological device of the present invention, 99.9% by mass of magnesium (impurities such as remaining zinc) can be used. Specifically, the above-described commercially available magnesium metal (magnesium 99.93% by mass) can be used. Further, the low-purity magnesium forming the second portion can be made to have a suitable magnesium purity by mixing the above-mentioned high-purity magnesium with this magnesium metal.

この説明では、本発明の生体器具の第1部分を形成する高純度のマグネシウムとしてマグネシウム99.996質量%の高純度マグネシウムを、第2部分を形成する低純度のマグネシウムとしてマグネシウム99.9質量%のマグネシウム地金の組合わせで説明した。しかし、組み合わせはこれに限ることはなく、より純度の高い高純度のマグネシウムを用いて本発明の生体器具の第1部分を形成できる。   In this description, 99.996% by mass of high purity magnesium as the high purity magnesium forming the first part of the biological device of the present invention and 99.9% by mass of magnesium as the low purity magnesium forming the second part. Explained with a combination of magnesium ingots. However, the combination is not limited to this, and the first part of the biological device of the present invention can be formed using high-purity magnesium having a higher purity.

また、本発明の生体器具は第1部分と第2部分とからなることを説明したが、第3部分等の他の部分を持つものでもよい。この第3部分は、純度の異なるマグネシウム金属で形成されているものでも、アパタイト等の生体硬組織と同化するもので形成されているものでも、生体中に残留しても問題とならない部分ではチタン金属等で形成されているものでもよい。   In addition, although it has been described that the biological device of the present invention includes the first portion and the second portion, the biological device may have other portions such as a third portion. This third part is made of magnesium metal having a different purity, is made of an assimilation with a living hard tissue such as apatite, or titanium that does not cause a problem even if it remains in the living body. It may be formed of metal or the like.

本発明の生体器具としては、例えば、骨折した部分の補強に使用されるボーンプレート、骨に螺号して固定されるボーンスクリュウ、人体の管状の部分(血管、気管、食道、十二指腸、大腸、胆道、尿道など)を管腔内部から広げる医療機器であるステント、体内組織固定用結紮器及び縫合器(例えば、血管止血クリップ、ステープル、縫合針)等を挙げることができる。   Examples of the biological device of the present invention include a bone plate used for reinforcing a fractured part, a bone screw fixed by screwing to a bone, and a tubular part of a human body (blood vessel, trachea, esophagus, duodenum, large intestine, biliary tract) , Urethra, etc.), which are medical devices that expand the inside of the lumen, stents for ligation for body tissue fixation, suture devices (for example, vascular hemostatic clips, staples, suture needles) and the like.

本発明の生体器具は、生体内における耐食性の高い高純度のマグネシウム金属で形成された第1部分と、生体内における耐食性のやや低い低純度のマグネシウム金属で形成された第2部分とからなる。この生体器具は生体内で必要とする補強機能の期間が第1部分及び第2部分のいずれかで制御されるように設計されている。このため生体内で設計された期間が経過後、他の部分の溶解により生体器具としての補強機能が消失する。これにより、骨の損傷又は骨折の治癒後にも生体器具の補強機能が維持されることによる生ずる悪影響をなくすることができる。生体器具の第1部分は体内に比較的長く腐食せずにとどまることになるが少しずつ生体に吸収されて消失する。したがって、第1部分を体外に取り出す外科手術は必要としない。   The biological device of the present invention includes a first portion formed of high-purity magnesium metal having high corrosion resistance in vivo and a second portion formed of low-purity magnesium metal having slightly lower corrosion resistance in vivo. This biological instrument is designed so that the period of the reinforcing function required in the living body is controlled by either the first part or the second part. For this reason, after the period designed in the living body elapses, the reinforcing function as the biological instrument disappears due to dissolution of other parts. Thereby, the bad influence which arises by maintaining the reinforcement function of a biological device after healing of a bone damage or a fracture can be eliminated. The first part of the biological device stays in the body for a relatively long time without corroding, but is gradually absorbed by the living body and disappears. Therefore, a surgical operation for removing the first part from the body is not necessary.

純度の異なる2種類のマグネシウム金属の疑似体液中における質量の経時変化を示すグラフ。The graph which shows the time-dependent change of the mass in the pseudo body fluid of two types of magnesium metals from which purity differs. 生体試験に供された試料の平面図である。It is a top view of the sample used for the biological test. 本発明の生体器具の第1実施形態の平面図である。It is a top view of a 1st embodiment of a living body instrument of the present invention. 図3に示すA−A断面図である。It is AA sectional drawing shown in FIG. 本発明の生体器具の第2実施形態の平面図である。It is a top view of 2nd Embodiment of the biological device of this invention.

(第1実施形態)
本発明の生体器具の第1実施形態の平面図を図3に、図3のA−A断面図を図4に示す。この生体器具1はボーンプレートであり、その外形は長方形の板状で、その表面から裏面に貫通する4個のボーンスクリュウ孔10が長手方向に等間隔で形成されている。この生体器具1は本発明の第2部分を構成する本体部11とこの本体部11の外周面を覆い、本発明の第1部分を構成する被膜部12とからなる。本体部11は、本発明の低純度のマグネシウムであるマグネシウム99.9質量%(残り亜鉛等の不純物)のもので形成されている。被膜部12は本発明の高純度のマグネシウムであるマグネシウム99.996質量%の高純度マグネシウムで形成されている。この本体部11は低純度のマグネシウム板から機械加工で形成する。被膜部12は本体部11の外周面に高純度マグネシウムを真空蒸着して形成する。
(First embodiment)
FIG. 3 is a plan view of the first embodiment of the biological device of the present invention, and FIG. 4 is a sectional view taken along the line AA of FIG. The biological instrument 1 is a bone plate, and the outer shape thereof is a rectangular plate shape. Four bone screw holes 10 penetrating from the front surface to the back surface are formed at equal intervals in the longitudinal direction. This biological instrument 1 is composed of a main body part 11 constituting the second part of the present invention and a coating part 12 covering the outer peripheral surface of the main body part 11 and constituting the first part of the present invention. The main body 11 is made of 99.9% by mass of magnesium (impurities such as remaining zinc) which is the low-purity magnesium of the present invention. The coating part 12 is formed of high-purity magnesium of 99.996% by mass of magnesium, which is the high-purity magnesium of the present invention. The main body 11 is formed by machining from a low-purity magnesium plate. The coating 12 is formed by vacuum-depositing high purity magnesium on the outer peripheral surface of the main body 11.

この生体器具1は通常のボーンプレートと同様にボーンスクリュウで損傷した骨の部分を結ぶように固定されて使用される。   The biological instrument 1 is used by being fixed so as to connect bone parts damaged by a bone screw in the same manner as a normal bone plate.

この生体器具1は体液に晒される外周面が耐食性の高い被膜部12の表面となっているために体液に対して腐食されにくい。従って、損傷した骨が修復される期間、被膜部12が体液の腐食に耐え、本体部11を体液から隔離する。本体部11が腐食されないため、この生体器具1は骨が修復される期間十分に骨の補強機能を発揮する。しかし、被膜部12は言葉通りに薄いため少しずつ腐食され、体液が本体部11と接触し、本体部11は急速に体液に溶かされ生体に吸収される。すなわち、この生体器具1は骨の修復期間は腐食の進行が極めて緩やかで本来の骨の補強機能を果たす。しかし、その後、短期間に本体部11が体液に溶解され生体に吸収されて消失する。このため、この生体器具1が体内に長く残ることによる悪い影響を避けることができる。   Since the outer peripheral surface exposed to the body fluid is the surface of the coating portion 12 having high corrosion resistance, the biological device 1 is not easily corroded by the body fluid. Therefore, during the period in which the damaged bone is repaired, the coating 12 resists body fluid corrosion and isolates the body 11 from the body fluid. Since the main body 11 is not corroded, the biological device 1 exhibits a bone reinforcing function sufficiently during a period in which the bone is repaired. However, since the coating portion 12 is thin as it is literally, it is gradually corroded, and the body fluid comes into contact with the main body portion 11, and the main body portion 11 is rapidly dissolved in the body fluid and absorbed by the living body. In other words, the biomedical device 1 has a very slow progress of corrosion during the bone repair period and fulfills the original bone reinforcement function. However, thereafter, the main body 11 is dissolved in the body fluid and absorbed by the living body in a short time and disappears. For this reason, the bad influence by this biological device 1 remaining in the body for a long time can be avoided.

(第2実施形態)
本発明の生体器具の第2実施形態の平面図を図5に示す。この生体器具2もボーンプレートであり、Y字形状の薄板で形成されている。この生体器具2は、その中央部を構成する3個の短い先端部を持つ連結部分21と、この連結部分21の下方の先端部から下方に一体的に延びる長い薄板状の脚部分22と、連結部分21の左側斜め上方の先端部から斜め上方に一体的に延びる短い薄板状の左腕部分23と、連結部分21の右側斜め上方の先端部から斜め上方に一体的に延びる短い薄板状の右腕部分24とからなる。
(Second Embodiment)
The top view of 2nd Embodiment of the biological device of this invention is shown in FIG. This biological instrument 2 is also a bone plate, and is formed of a Y-shaped thin plate. This biological instrument 2 includes a connecting portion 21 having three short tips constituting the central portion thereof, a long thin plate-like leg portion 22 integrally extending downward from a tip of the connecting portion 21 below, A short thin plate-like left arm portion 23 integrally extending obliquely upward from the tip portion on the left side of the connecting portion 21 and a short thin plate-like right arm extending integrally obliquely upward from the tip portion on the right side of the connecting portion 21. Part 24.

脚部分22の下端部分及び中央部分に、その表面から裏面に貫通するボーンスクリュウ孔20がそれぞれ形成されている。左腕部分23及び右腕部分24の先端部分にもそれぞれボーンスクリュウ孔20が形成されている。   Bone screw holes 20 penetrating from the front surface to the back surface are respectively formed in the lower end portion and the central portion of the leg portion 22. Bone screw holes 20 are also formed in the tip portions of the left arm portion 23 and the right arm portion 24, respectively.

この生体器具2の連結部分21は本発明の第1部分を構成し、高純度のマグネシウムで形成されている。他の脚部分22、左腕部分23および右腕部分24は本発明の第2部分を構成し低純度のマグネシウムで形成されている。高純度のマグネシウムとしては前記したマグネシウム99.996質量%の高純度マグネシウムを使用でき、低純度のマグネシウムとしては前記したマグネシウム99.9質量%のマグネシウム地金を使用できる。連結部分21と他の脚部分22、左腕部分23および右腕部分24はそれぞれレーザー等で溶接一体化できる。   The connecting portion 21 of the biological device 2 constitutes the first portion of the present invention and is made of high-purity magnesium. The other leg portion 22, the left arm portion 23, and the right arm portion 24 constitute the second portion of the present invention and are made of low-purity magnesium. As high-purity magnesium, the above-mentioned 99.996 mass% high-purity magnesium can be used, and as the low-purity magnesium, the above-mentioned magnesium 99.9 mass% magnesium ingot can be used. The connecting portion 21, the other leg portion 22, the left arm portion 23, and the right arm portion 24 can be welded and integrated with each other by a laser or the like.

この生体器具1は通常のボーンプレートと同様にボーンスクリュウで損傷した骨の部分を結ぶように固定されて使用される。   The biological instrument 1 is used by being fixed so as to connect bone parts damaged by a bone screw in the same manner as a normal bone plate.

この生体器具2は応力が集中する連結部分21が耐食性の高い第1部分となっているために体液による腐食が遅く、補強機能を果たす。この生体器具2の補強機能の喪失は脚部分22、左腕部分23および右腕部分24の腐食によりもたらされる。脚部分22、左腕部分23および右腕部分24の腐食により生体器具2の補強機能が無くなり、その後脚部分22、左腕部分23および右腕部分24が体液により溶解し生体に吸収されて消失する。連結部分21は体内に長く残ることになるが最後には体液により溶解し生体に吸収されて消失する。   In this biomedical device 2, since the connecting portion 21 where stress is concentrated is the first portion having high corrosion resistance, corrosion due to body fluid is slow and a reinforcing function is achieved. This loss of the reinforcing function of the biological device 2 is caused by corrosion of the leg portion 22, the left arm portion 23 and the right arm portion 24. Corrosion of the leg portion 22, the left arm portion 23, and the right arm portion 24 eliminates the reinforcement function of the biological device 2, and then the leg portion 22, the left arm portion 23, and the right arm portion 24 are dissolved by the body fluid and absorbed by the living body and disappear. The connecting portion 21 remains in the body for a long time, but is finally dissolved by the body fluid and absorbed by the living body and disappears.

この生体器具2では補強機能の要となる応力が集中する連結部分21の腐食による予期せぬ補強機能の喪失を避けることができ、全体を同一純度のマグネシウムで形成した生体器具よりも信頼性が高い。   This biological device 2 can avoid an unexpected loss of the reinforcing function due to the corrosion of the connecting portion 21 where stress that is a key to the reinforcing function is concentrated, and is more reliable than a biological device formed entirely of magnesium of the same purity. high.

1、2・・・生体器具 10、20・・・ボーンスクリュウ孔
11・・・本体部 12・・・被覆部 21・・・連結部分
22・・・脚部分 23・・・左腕部分 24・・・右腕部分
DESCRIPTION OF SYMBOLS 1, 2 ... Biological instrument 10, 20 ... Bone screw hole 11 ... Main-body part 12 ... Covering part 21 ... Connection part 22 ... Leg part 23 ... Left arm part 24 ...・ Right arm

Claims (6)

少なくとも耐食性の高い高純度マグネシウム金属で形成されている第1部分と耐食性の低い低純度マグネシウム金属で形成されている第2部分とを持つことを特徴とする生体器具。   A biological device having at least a first portion made of high-purity magnesium metal having high corrosion resistance and a second portion made of low-purity magnesium metal having low corrosion resistance. 本体部と該本体部を覆う被覆部とから構成され、該本体部は前記第2部分を構成し、該被覆部は前記第1部分を構成する請求項1に記載の生体器具。   The biological instrument according to claim 1, comprising a main body portion and a covering portion covering the main body portion, the main body portion constituting the second portion, and the covering portion constituting the first portion. 前記被覆部は真空蒸着によって形成されている請求項2に記載の生体器具。   The biological device according to claim 2, wherein the covering portion is formed by vacuum deposition. 主体部と該主体部を生体骨に固定する固定部とから構成され、該主体部は前記第1部分を構成し、該固定部は前記第2部分を構成する請求項1に記載の生体器具。   The biological instrument according to claim 1, comprising a main body part and a fixing part for fixing the main body part to the living bone, wherein the main body part constitutes the first part, and the fixing part constitutes the second part. . 応力が集中する応力集中部と該応力集中部と一体的に形成された端部とから構成され、該応力集中部は前記第2部分を構成し、該端部は前記第1部分を構成する請求項1に記載の生体器具。   A stress concentration portion where stress concentrates and an end portion formed integrally with the stress concentration portion, the stress concentration portion constituting the second portion, and the end portion constituting the first portion. The biological device according to claim 1. ポリグルコール酸(PGA)とかポリ乳酸(PLA)等の生体吸収性材料で構成された被膜を持つ請求項1〜5記載の生体器具。   The biological device according to any one of claims 1 to 5, having a coating film made of a bioabsorbable material such as polyglycolic acid (PGA) or polylactic acid (PLA).
JP2013266396A 2013-12-25 2013-12-25 Organism implement Pending JP2015119893A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013266396A JP2015119893A (en) 2013-12-25 2013-12-25 Organism implement
PCT/JP2014/006349 WO2015098071A1 (en) 2013-12-25 2014-12-19 Living body instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013266396A JP2015119893A (en) 2013-12-25 2013-12-25 Organism implement

Publications (1)

Publication Number Publication Date
JP2015119893A true JP2015119893A (en) 2015-07-02

Family

ID=53477973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013266396A Pending JP2015119893A (en) 2013-12-25 2013-12-25 Organism implement

Country Status (2)

Country Link
JP (1) JP2015119893A (en)
WO (1) WO2015098071A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019503790A (en) * 2016-01-22 2019-02-14 フォートウェイン メタルズ リサーチ プロダクツ コーポレーション Braided or braided tubular metal construction

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530496A (en) * 2006-03-18 2009-08-27 アクロシュターク コーポレイション ビーヴィアイ Magnesium-based alloy with an excellent combination of mechanical and corrosion properties
JP2010528188A (en) * 2007-05-28 2010-08-19 アクロシュターク コーポレイション ビーヴィアイ Magnesium-based alloy
JP2010240416A (en) * 2009-03-31 2010-10-28 Tyco Healthcare Group Lp Multizone implant
WO2012102205A1 (en) * 2011-01-24 2012-08-02 オリンパス株式会社 Biodegradable implant material and method for producing same
JP2012522543A (en) * 2009-04-08 2012-09-27 ストライカー トラウマ アーゲー Hybrid bone plate
WO2013021913A1 (en) * 2011-08-05 2013-02-14 株式会社メディカルユーアンドエイ Osteosynthesis material
JP2013509217A (en) * 2009-10-30 2013-03-14 アクロシュターク コープ ビーヴイアイ,トルトーラ Biodegradable implantable medical devices formed from ultrapure magnesium based materials
WO2014203566A1 (en) * 2013-06-18 2014-12-24 オリンパス株式会社 Implant for living organisms

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3768388B2 (en) * 2000-07-18 2006-04-19 独立行政法人科学技術振興機構 Biological magnesium material and method for producing the same
JP2008125622A (en) * 2006-11-17 2008-06-05 National Institute For Materials Science Biodegradable magnesium material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530496A (en) * 2006-03-18 2009-08-27 アクロシュターク コーポレイション ビーヴィアイ Magnesium-based alloy with an excellent combination of mechanical and corrosion properties
JP2010528188A (en) * 2007-05-28 2010-08-19 アクロシュターク コーポレイション ビーヴィアイ Magnesium-based alloy
JP2010240416A (en) * 2009-03-31 2010-10-28 Tyco Healthcare Group Lp Multizone implant
JP2012522543A (en) * 2009-04-08 2012-09-27 ストライカー トラウマ アーゲー Hybrid bone plate
JP2013509217A (en) * 2009-10-30 2013-03-14 アクロシュターク コープ ビーヴイアイ,トルトーラ Biodegradable implantable medical devices formed from ultrapure magnesium based materials
WO2012102205A1 (en) * 2011-01-24 2012-08-02 オリンパス株式会社 Biodegradable implant material and method for producing same
WO2013021913A1 (en) * 2011-08-05 2013-02-14 株式会社メディカルユーアンドエイ Osteosynthesis material
WO2014203566A1 (en) * 2013-06-18 2014-12-24 オリンパス株式会社 Implant for living organisms

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019503790A (en) * 2016-01-22 2019-02-14 フォートウェイン メタルズ リサーチ プロダクツ コーポレーション Braided or braided tubular metal construction

Also Published As

Publication number Publication date
WO2015098071A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP5352776B2 (en) In vivo degradable metal implants
Heiden et al. Magnesium, iron and zinc alloys, the trifecta of bioresorbable orthopaedic and vascular implantation-a review
Wang et al. In vivo study of the efficacy, biosafety, and degradation of a zinc alloy osteosynthesis system
US20070055305A1 (en) Biodegradable and/or bioabsorbable member for vascular sealing
JP5250260B2 (en) Intramedullary nail device and method for repairing long bones
JP2008532705A5 (en)
BR112012009953B1 (en) biodegradable implantable medical devices formed of super pure magnesium based material
Yoshida et al. Development of a new biodegradable operative clip made of a magnesium alloy: evaluation of its safety and tolerability for canine cholecystectomy
WO2015098071A1 (en) Living body instrument
Hannula et al. Shape memory alloys for biomedical applications
ES2755185T3 (en) Dental member
Kujala Biocompatibility and biomechanical aspects of Nitinol shape memory metal implants
WO2018047611A1 (en) Biocompatible alloy and medical product
Schilling et al. Cardiovascular applications of magnesium alloys
US20170239398A1 (en) Magnesium enhanced/induced bone formation
EP1667748B1 (en) Biodegradable and/or bioabsorbable member for vascular sealing
RU2361536C1 (en) Plate for correction of funnel-shaped deformation of breast
US20120150281A1 (en) Implant made of biocorrodible material and with a coating containing a tissue adhesive
Mohammed Biomechanical evaluation of magnesium plates for management of mandibular angle fracture
James Recent advancements in magnesium implants for orthopedic application and associated infections
JP2012196463A (en) Intramedullary nail device and method for mending long bone
TW508231B (en) Medical implant
JP6950899B2 (en) Biological alloys and medical supplies
JP2009118927A (en) Medical device for tissue anastomosis
JP2021147698A (en) Biological alloy and medical use article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327