JP2015117989A - Decontamination treatment method for radioactive materials - Google Patents

Decontamination treatment method for radioactive materials Download PDF

Info

Publication number
JP2015117989A
JP2015117989A JP2013260993A JP2013260993A JP2015117989A JP 2015117989 A JP2015117989 A JP 2015117989A JP 2013260993 A JP2013260993 A JP 2013260993A JP 2013260993 A JP2013260993 A JP 2013260993A JP 2015117989 A JP2015117989 A JP 2015117989A
Authority
JP
Japan
Prior art keywords
radioactive
gravel
sand
classified
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013260993A
Other languages
Japanese (ja)
Inventor
泰弘 大藤
Yasuhiro Ofuji
泰弘 大藤
敏彦 小野
Toshihiko Ono
敏彦 小野
裕文 長岡
Hirofumi Nagaoka
裕文 長岡
正則 高橋
Masanori Takahashi
正則 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANBAYASHI KOMUTEN KK
Original Assignee
KANBAYASHI KOMUTEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANBAYASHI KOMUTEN KK filed Critical KANBAYASHI KOMUTEN KK
Priority to JP2013260993A priority Critical patent/JP2015117989A/en
Publication of JP2015117989A publication Critical patent/JP2015117989A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decontamination treatment method for radioactive materials that readily enables the amount of radioactive materials in a reservoir to be reduced to a reference value or less and that generates a small amount of radioactive waste caused by decontamination.SOLUTION: A decontamination treatment method for radioactive materials includes: a water draining step (step S106) for draining water in a reservoir to perform decontamination treatment on radioactive materials; a classifying step (S107) for classifying dredged clastic materials; a gravel treating step (S108) for cleaning the classified gravel and returning it to the reservoir; a sand treating step (S109) for cleaning the classified sand and returning it to the reservoir; a flocculation and separation step (S111) for adding a flocculant to the classified sludge to separate it into flocculated sludge and supernatant; and a dehydrating step (S115) for dehydrating the flocculated sludge with pressure to make a dehydrated cake.

Description

本発明は、セシウム137・セシウム134等の放射性物質により汚染されたため池を除染する放射性物質の除染処理方法に係り、特に、底に砕屑物が堆積しているため池を除染する放射性物質の除染処理方法に関する。   The present invention relates to a method for decontaminating radioactive ponds that decontaminate ponds because of contamination with radioactive substances such as cesium 137 and cesium 134, and more particularly, radioactive substances that decontaminate ponds because debris is deposited on the bottom. It relates to the decontamination processing method.

東京電力福島第一原子力発電所の事故に伴い、セシウム137・セシウム134を中心とした放射性物質による汚染が問題となっている。大気中に放出された放射性物質は雨などにより地上に降下し、土壌が汚染されている。農業用水として利用されるため池も例外ではなく、放射性物質は、主に、ため池の底の砕屑物の中に含まれている。そのため、汚染されたため池は使用することができない状態が続いており、ため池の除染処理方法の開発が望まれていた。   With the accident at TEPCO's Fukushima Daiichi Nuclear Power Station, contamination by radioactive materials such as cesium 137 and cesium 134 has become a problem. Radioactive material released into the atmosphere falls to the ground due to rain, etc., and soil is contaminated. A pond is no exception because it is used as agricultural water, and radioactive materials are mainly contained in debris at the bottom of the pond. Therefore, the pond cannot be used because it is contaminated, and the development of a decontamination method for the pond has been desired.

従来より、放射性物質の除染方法としては、例えば、ゼオライトに放射性物質を吸着させて、汚染水から放射性物質を除去する方法が提案されている(例えば、特許文献1及び特許文献2参照)。しかしながら、一旦、地表に落下したものは、粘土粒子等と結合しており、陽イオン帯とはなっていないことから、ゼオライトは放射性物質の吸着量が十分とはいえず、処理効率が悪いという問題があった。また、放射性物質を吸着させた後のゼオライトは、減容化することが難しく、そのまま隔離容器に入れて保管しなければならないので、放射性廃棄物が多量に発生してしまうという問題もあった。   Conventionally, as a method for decontaminating a radioactive substance, for example, a method has been proposed in which a radioactive substance is adsorbed on zeolite to remove the radioactive substance from contaminated water (see, for example, Patent Document 1 and Patent Document 2). However, once it has fallen to the surface, it is bound to clay particles and is not a cation zone, so zeolite cannot be said to have a sufficient amount of adsorption of radioactive substances, and processing efficiency is poor. There was a problem. Further, it is difficult to reduce the volume of the zeolite after adsorbing the radioactive substance, and it is necessary to store it in an isolation container as it is, so that there is a problem that a large amount of radioactive waste is generated.

特開2005−177709号公報JP 2005-177709 A 特開2002−267795号公報Japanese Patent Laid-Open No. 2002-267995

本発明は、このような問題に基づきなされたものであり、容易にため池の放射性物質の量を基準値以下とすることができ、かつ、除染による放射性廃棄物の発生量が少ない放射性物質の除染処理方法を提供することを目的とする。   The present invention has been made based on such a problem, and it is possible to easily reduce the amount of radioactive material in the pond to a reference value or less and reduce the amount of radioactive waste generated by decontamination. It aims at providing the decontamination processing method.

本発明の放射性物質の除染処理方法は、放射性物質により汚染されたため池を除染する放射性物質の除染処理方法であって、ため池から水を抜く落水工程と、落水工程の後、ため池の底に堆積している砕屑物を浚渫する浚渫工程と、浚渫工程の後、浚渫した砕屑物を分級して礫と砂と泥とに分離する分級工程と、分級工程の後、分級した礫を洗浄して放射性物質を基準値以下とし、ため池に戻す礫処理工程と、分級工程の後、分級した砂を洗浄して放射性物質を基準値以下とし、ため池に戻す砂処理工程と、分級工程の後、分級した泥に凝集剤を添加し、凝集泥と上澄みに分離する凝集分離工程と、凝集分離工程の後、凝集泥を加圧脱水し、脱水ケーキとする脱水工程とを含むものである。   The radioactive substance decontamination treatment method of the present invention is a radioactive substance decontamination treatment method for decontaminating a pond because it has been contaminated with a radioactive substance. The dredging process that crushes debris accumulated on the bottom, the classification process that classifies the littered debris and separates it into gravel, sand, and mud after the dredging process, and the classified gravel after the classification process A gravel treatment process that returns the radioactive material to the pond after washing and returns to the pond, and a sand treatment process that returns the radioactive material to the reference value by washing the classified sand after the classification process, and a classification process. Thereafter, a flocculant is added to the classified mud and separated into agglomerated mud and a supernatant, and after the aggregating and separating step, the agglomerated mud is pressurized and dehydrated to obtain a dehydrated cake.

本発明によれば、ため池から水を抜き、底の砕屑物を浚渫するようにしたので、放射性物質がため池に溜まっている水に拡散することを防止することができると共に、放射性物質が含まれる砕屑物を簡単にため池から取り除くことができ、ため池の放射性物質の量を容易に基準値以下とすることができる。また、浚渫した砕屑物は、分級し、礫及び砂については、洗浄してため池に戻すので、放射性廃棄物の量を大幅に削減することができる。更に、分級した泥については、凝集分離したのち、加圧脱水するようにしたので、放射性廃棄物の量を更に削減することができる。加えて、加圧脱水により脱水ケーキの含水率を十分に低減することができるので、フレキシブルコンテナバックなどに収容して積み重ねて保管することが可能であり、放射性廃棄物の取り扱いを容易とすることができる。   According to the present invention, water is drained from the pond and the debris at the bottom is trapped, so that the radioactive substance can be prevented from diffusing into the water accumulated in the pond and the radioactive substance is included. The debris can be easily removed from the pond, and the amount of radioactive material in the pond can be easily reduced below the reference value. Moreover, since the debris that has been dredged is classified and the gravel and sand are washed and returned to the pond, the amount of radioactive waste can be greatly reduced. Further, since the classified mud is subjected to pressure dehydration after coagulation and separation, the amount of radioactive waste can be further reduced. In addition, since the moisture content of the dehydrated cake can be sufficiently reduced by dehydration under pressure, it can be stored and stored in a flexible container bag, etc., making it easy to handle radioactive waste. Can do.

また、浚渫工程の前に、ため池の砕屑物の放射性物質の量を深さ方向に間隔を開けて複数個所について測定し、この測定結果に基づいて砕屑物の浚渫する深さを決定し、その深さまで砕屑物を浚渫するようにすれば、ため池の放射性物質の量を確実に基準値以下とすることができる。また、必要以上に砕屑物を浚渫しないので、放射性廃棄物の量が増加することを抑制することができる。   In addition, before the dredging process, the amount of radioactive material in the debris in the pond is measured at multiple locations at intervals in the depth direction. If the debris is dredged to the depth, the amount of radioactive material in the pond can be reliably reduced below the reference value. Moreover, since it does not spoil debris more than necessary, it can suppress that the quantity of radioactive waste increases.

更に、礫処理工程又は砂処理工程において礫又は砂を洗浄した洗浄水について、洗浄水に含まれる放射性物質を籾殻、籾殻炭、及び、稲わらからなる群のうちの少なくとも1つを含む吸着剤に吸着させることにより放射性物質の量を低減するようにすれば、放射性物質を高い吸着率で吸着させることができ、容易にかつ効率よく放射性物質を除去することができる。   Furthermore, for the washing water obtained by washing the gravel or sand in the gravel treatment step or the sand treatment step, the radioactive material contained in the washing water contains at least one of the group consisting of rice husk, rice husk charcoal, and rice straw. If the amount of radioactive substance is reduced by adsorbing to the radioactive substance, the radioactive substance can be adsorbed at a high adsorption rate, and the radioactive substance can be removed easily and efficiently.

加えて、礫処理工程又は砂処理工程において、礫又は砂を洗浄する際に、洗浄水処理工程において処理した洗浄水を再び用いるようにすれば、洗浄水の量が増大することを抑制することができる。   In addition, when washing gravel or sand in the gravel treatment process or sand treatment process, if the washing water treated in the washing water treatment process is used again, the increase in the amount of washing water is suppressed. Can do.

更にまた、落水工程において抜いた水、凝集分離工程において分離した上澄み、又は、脱水工程において分離した水分について、これらに含まれる放射性物質を籾殻、籾殻炭、及び、稲わらからなる群のうちの少なくとも1つを含む吸着剤に吸着させることにより放射性物質の量を低減するようにすれば、放射性物質を高い吸着率で吸着させることができ、容易にかつ効率よく放射性物質を除去することができる。   Furthermore, for the water extracted in the falling water process, the supernatant separated in the coagulation separation process, or the water separated in the dehydration process, the radioactive substances contained therein are selected from the group consisting of rice husk, rice husk charcoal, and rice straw. If the amount of radioactive substance is reduced by adsorbing to an adsorbent containing at least one, the radioactive substance can be adsorbed at a high adsorption rate, and the radioactive substance can be easily and efficiently removed. .

本発明の一実施の形態に係る放射性物質の除染処理方法の工程を表す流れ図である。It is a flowchart showing the process of the decontamination processing method of the radioactive substance which concerns on one embodiment of this invention. 図1に示した放射性物質の除染処理方法の一工程を説明するための説明図である。It is explanatory drawing for demonstrating 1 process of the decontamination processing method of the radioactive substance shown in FIG. 図1に示した放射性物質の除染処理方法の他の一工程を説明するための説明図である。It is explanatory drawing for demonstrating other 1 process of the decontamination processing method of the radioactive substance shown in FIG.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係る放射性物質の除染処理方法の工程を表す流れ図である。図2から図3は、各工程を説明するための図である。この放射性物質の除染処理方法は、ため池の底に砕屑物が堆積している場合に好ましく用いることができる。   FIG. 1 is a flowchart showing the steps of a radioactive substance decontamination processing method according to an embodiment of the present invention. 2 to 3 are diagrams for explaining each step. This radioactive material decontamination treatment method can be preferably used when debris is accumulated at the bottom of the pond.

まず、例えば、放射性物質の除染処理を行うため池の立て樋を抜き、水を抜く(ステップS101;落水工程)。ため池の取水口は必要に応じて堰き止め、ため池への水の流入を止める。なお、放射性物質は主にため池の底に堆積している砕屑物に含まれているが、ため池に溜まっている水にも基準値を超える放射性物質が含まれている可能性がある。そこで、放流の際には、ため池に溜まっている水の放射性物質の量を測定し、放射性物質の量が基準値を上回る場合には(ステップS102;N)、ため池の水に含まれる放射性物質を吸着剤に吸着させ、放射性物質の量を基準値以下としてから放流することが好ましい(ステップS103;汚染水処理工程)。   First, for example, in order to perform a decontamination process of radioactive substances, a pond stand is pulled out and water is drained (step S101; water falling step). Reservoir intakes are dammed as necessary to stop water from entering the pond. Radioactive material is mainly contained in debris accumulated at the bottom of the pond, but the water accumulated in the pond may contain radioactive material that exceeds the standard value. Therefore, when discharging, the amount of radioactive material in the water stored in the pond is measured, and if the amount of radioactive material exceeds the reference value (step S102; N), the radioactive material contained in the pond water Is adsorbed by an adsorbent, and the amount of radioactive material is preferably released after being set to a reference value or less (step S103; contaminated water treatment step).

その際、吸着剤としては、例えば、籾殻、籾殻炭、及び、稲わらからなる群のうちの少なくとも1つを含むものを用いることが好ましい。籾殻、籾殻炭、及び、稲わらは、放射性物質の吸着率が高く、安価であり、かつ、焼却あるいは堆肥化等の生分解等により減容化することができるからである。吸着材に吸着させる方法としては、例えば、籾殻、籾殻炭、及び、稲わらからなる群のうちの少なくとも1つを含む吸着剤を網目状部を有する収納体、例えば、ネット状の袋に入れて、ため池から水を放流する水路に配置し、吸着剤に汚染水を浸潤させることが好ましい。また、ため池の水に含まれる放射性物質の量が基準値内の場合には(ステップS102;Y)、ため池の水をそのまま放流してもよい(ステップS104)。   In that case, as an adsorbent, it is preferable to use what contains at least 1 of the group which consists of rice husk, rice husk charcoal, and rice straw, for example. This is because rice husk, rice husk charcoal, and rice straw have a high radioactive material adsorption rate, are inexpensive, and can be reduced in volume by biodegradation such as incineration or composting. As a method for adsorbing to the adsorbent, for example, an adsorbent containing at least one of the group consisting of rice husk, rice husk charcoal, and rice straw is placed in a container having a net-like portion, for example, a net-like bag. Therefore, it is preferable that the adsorbent is infiltrated with contaminated water by disposing it in a water channel that discharges water from the reservoir. If the amount of radioactive material contained in the pond water is within the reference value (step S102; Y), the pond water may be discharged as it is (step S104).

落水工程(ステップS101)の後、例えば、ため池の砕屑物に含まれる放射性物質の量を深さ方向に間隔を開けて複数個所について測定し、この測定結果に基づいて砕屑物の浚渫する深さを決定することが好ましい(ステップS105;汚染調査工程)。放射性物質は砕屑物の表層からある程度の範囲に含まれているので、放射性物質を含む表層部を除去すれば十分に放射性物質の量を基準値以下とすることができるからである。また、必要以上に砕屑物を除去すると放射性廃棄物の量が増加して好ましくないからである。   After the water falling step (step S101), for example, the amount of radioactive material contained in the debris in the pond is measured at a plurality of locations at intervals in the depth direction, and the depth at which the debris is trapped based on the measurement result Is preferably determined (step S105; contamination investigation step). This is because the radioactive substance is included in a certain range from the surface layer of the debris, and therefore the amount of the radioactive substance can be made sufficiently lower than the reference value by removing the surface layer part containing the radioactive substance. Moreover, it is because it is unpreferable because the amount of radioactive waste will increase when the debris is removed more than necessary.

具体的には、例えば、図2(A)に示したように、ため池11の大きさに応じて、任意のピッチで縦線12と横線13を引き、その各交点14において、堆積汚泥15の深さ16を測定し、図2(B)に示したように、各交点14において、堆積汚泥15の表層から例えば5cm程度の所定の間隔17ごとに、簡易測定器などにより放射性物質の量を測定する。   Specifically, for example, as shown in FIG. 2A, depending on the size of the basin 11, vertical lines 12 and horizontal lines 13 are drawn at an arbitrary pitch, and at each intersection point 14, the accumulated sludge 15 As shown in FIG. 2 (B), the depth 16 is measured, and the amount of radioactive material is measured by a simple measuring instrument or the like at a predetermined interval 17 of, for example, about 5 cm from the surface layer of the deposited sludge 15 at each intersection 14. taking measurement.

汚染調査工程(ステップS105)の後、例えば、ため池の底に堆積している砕屑物を汚染調査工程において決定された深さまで浚渫する(ステップS106;浚渫工程)。浚渫は、例えば、パワーショベルなどで剥ぎ取ることにより行う。   After the contamination investigation process (step S105), for example, the debris accumulated at the bottom of the pond is dredged to the depth determined in the contamination investigation process (step S106; dredging process). For example, the scissors are peeled off with a power shovel.

浚渫工程(ステップS106)の後、例えば、浚渫した砕屑物を分級して礫と砂と泥とに分離する(ステップS107;分級工程)。その際、礫は大きさに応じて複数に分級することが好ましい。後述する礫処理工程において洗浄を容易とするためである。分級の方法としては、まず、例えば、浚渫した砕屑物をスケルトンバケットにより一次分級し、約150mm以上の礫を分離する。次いで、例えば、残りの砕屑物をトロンメルにより二次分級し、約50mm以上の礫を分離する。続いて、例えば、残りの砕屑物をフィルター2層式タンク内で水中攪拌機を使用し、2mm以上の礫を分離する。そののち、フィルターを通過した砂および泥は、例えば、チューブポンプ又は汚泥ポンプで引き抜き、サンドマスターに送り、サンドマスターにより砂を分離する。   After the dredging process (step S106), for example, the crushing debris is classified and separated into gravel, sand and mud (step S107; classification process). In that case, it is preferable to classify gravel into a plurality according to the size. This is for facilitating cleaning in the gravel treatment process described later. As a classification method, first, for example, crushed debris is primarily classified by a skeleton bucket, and gravel of about 150 mm or more is separated. Next, for example, the remaining debris is subjected to secondary classification with a trommel to separate gravel of about 50 mm or more. Subsequently, for example, the remaining debris is separated into gravels of 2 mm or more using an underwater stirrer in a filter two-layer tank. After that, the sand and mud that have passed through the filter are extracted by, for example, a tube pump or a sludge pump, sent to the sand master, and the sand is separated by the sand master.

分級工程(ステップS107)の後、分級した礫については、洗浄水により洗浄して放射性物質を基準値以下としたのち、ため池に戻す(ステップS108;礫処理工程)。その際、分級工程(ステップS107)において、礫を大きさに応じて複数に分級した場合には、分級した礫ごとに洗浄処理を行う。また、分級工程(ステップS107)の後、分級した砂についても、洗浄水により洗浄して放射性物質を基準値以下としたのち、ため池に戻す(ステップS109;砂処理工程)。このように、礫及び砂は、洗浄により表面に付着している放射性物質を除去して基準値以下とすることが可能であるので、洗浄したのちため池に戻すようにすれば、放射性廃棄物の量を大幅に削減することができるので好ましい。また、分級して洗浄するようにすれば、効率的かつ効果的に放射性物質を除去することができるので好ましい。   After the classification step (step S107), the classified gravel is washed with washing water to bring the radioactive material below the reference value, and then returned to the pond (step S108; gravel treatment step). At that time, in the classification step (step S107), when the gravel is classified into a plurality according to the size, a cleaning process is performed for each classified gravel. In addition, after the classification process (step S107), the classified sand is also washed with washing water to bring the radioactive material below the reference value, and then returned to the pond (step S109; sand treatment process). In this way, gravel and sand can remove radioactive substances adhering to the surface by washing to below the reference value, so if they are returned to the pond after washing, the radioactive waste This is preferable because the amount can be greatly reduced. Further, it is preferable to classify and wash, since the radioactive substance can be efficiently and effectively removed.

これら礫処理工程(ステップS108)又は砂処理工程(ステップS109)において礫又は砂を洗浄した洗浄水については、洗浄水に含まれる放射性物質を吸着剤に吸着させて放射性物質の量を基準値以下に低減することが好ましい(ステップS110;洗浄水処理工程)。この洗浄水処理工程(ステップS110)では、上述した汚染水処理工程(ステップS103)と同様に、吸着剤に、例えば、籾殻、籾殻炭、及び、稲わらからなる群のうちの少なくとも1つを含むものを用い、この吸着剤に上澄みを浸潤させることが好ましい。また、この洗浄水処理工程(ステップS110)において処理した洗浄水は、再度、礫処理工程(ステップS108)又は砂処理工程(ステップS109)において礫又は砂の洗浄に用いることが好ましい。洗浄水の量が増大することを抑制することができるからである。   For washing water that has washed gravel or sand in the gravel treatment process (step S108) or sand treatment process (step S109), the radioactive substance contained in the washing water is adsorbed to the adsorbent and the amount of radioactive substance is below the reference value. (Step S110; washing water treatment step). In this washing water treatment process (step S110), as in the above-described contaminated water treatment process (step S103), at least one of the group consisting of rice husk, rice husk charcoal, and rice straw is used as the adsorbent. It is preferable to infiltrate the supernatant into this adsorbent using the inclusion. Moreover, it is preferable to use the washing water treated in the washing water treatment process (step S110) again for washing gravel or sand in the gravel treatment process (step S108) or the sand treatment process (step S109). It is because it can suppress that the quantity of washing water increases.

また、分級工程(ステップS107)の後、分級した泥については、水分を含む汚泥となっているので、凝集剤を添加し、凝集汚泥と上澄みに分離する(ステップS111;凝集分離工程)。具体的には、図3に示したように、例えば、まず、サンドマスターに残った汚泥を中継タンク21に移し、次いで、混合槽22に移して凝集剤23を添加する。続いて、反応槽24に移して2次撹拌を行って凝集効果を高めたのち、沈殿槽25に移し凝集汚泥26と上澄み27に分離する。   In addition, after the classification step (step S107), the classified mud is sludge containing moisture, so a flocculant is added and separated into the flocculent sludge and the supernatant (step S111; agglomeration separation step). Specifically, as shown in FIG. 3, for example, first, the sludge remaining in the sand master is transferred to the relay tank 21, and then transferred to the mixing tank 22 and the flocculant 23 is added. Then, after moving to the reaction tank 24 and performing secondary stirring to enhance the coagulation effect, it is transferred to the precipitation tank 25 and separated into the coagulated sludge 26 and the supernatant 27.

分離した上澄みは、放射性物質の量を測定し、放射性物質の量が基準値を上回る場合には(ステップS112;N)、放射性物質を吸着剤に吸着させて放射性物質の量を基準値以下としたのち、排水することが好ましい(ステップS113;汚染水処理工程)。この汚染水処理工程(ステップS113)では、上述した汚染水処理工程(ステップS103)と同様に、吸着剤に、例えば、籾殻、籾殻炭、及び、稲わらからなる群のうちの少なくとも1つを含むものを用い、この吸着剤に上澄みを浸潤させることが好ましい。また、上澄みの放射性物質の量が基準値内の場合には(ステップS112;Y)、そのまま排水してもよい(ステップS114)。   The separated supernatant is measured for the amount of radioactive substance. If the amount of radioactive substance exceeds the reference value (step S112; N), the radioactive substance is adsorbed on the adsorbent and the amount of radioactive substance is reduced below the reference value. After that, it is preferable to drain (Step S113; contaminated water treatment step). In this contaminated water treatment process (step S113), as in the above-described contaminated water treatment process (step S103), at least one of the group consisting of rice husk, rice husk charcoal, and rice straw is used as the adsorbent. It is preferable to infiltrate the supernatant into this adsorbent using the inclusion. Further, when the amount of the radioactive material in the supernatant is within the reference value (step S112; Y), it may be drained as it is (step S114).

なお、汚染されたため池の砕屑物を採取し、分級した汚泥に凝集剤を添加して凝集汚泥と上澄みに分離し、分離前の汚泥と、分離後の上澄みに含まれる放射性セシウムの量及びそれらの濁度を測定したところ、放射性セシウムの量は、汚泥が1130ベクレル、上澄みが検出限界以下、濁度は汚泥が2800度、上澄みが3.8度であった。すなわち、この凝集分離工程(ステップS111)において、放射性物質は凝集汚泥に含まれ、放射性物質を濃縮することができることが分かる。   Collected debris from the pond because it was contaminated, added a flocculant to the classified sludge and separated it into agglomerated sludge and supernatant, the amount of radioactive cesium contained in the sludge before separation and the supernatant after separation, and those As a result, the amount of radioactive cesium was 1130 becquerels in the sludge, the supernatant was below the detection limit, the turbidity was 2800 degrees in the sludge, and 3.8 degrees in the supernatant. That is, it can be seen that in this flocculation separation step (step S111), the radioactive substance is contained in the flocculated sludge, and the radioactive substance can be concentrated.

凝集分離工程(ステップS111)の後、例えば、沈殿槽の下部に沈殿した凝集汚泥を加圧脱水機に高圧搬送して加圧脱水し、脱水ケーキとする(ステップS115;脱水工程)。この脱水ケーキは、最終残渣であり、放射性廃棄物として処理する。この加圧脱水により、凝集汚泥の含水率は90%程度であったのが、脱水ケーキの含水率は30%程度まで低減される。これにより、放射性廃棄物の量が大幅に削減される。   After the flocculation separation step (step S111), for example, the flocculated sludge precipitated in the lower part of the settling tank is conveyed to a pressure dehydrator under high pressure and dehydrated to obtain a dehydrated cake (step S115; dehydration step). This dehydrated cake is the final residue and is treated as radioactive waste. By this pressure dehydration, the moisture content of the coagulated sludge was about 90%, but the moisture content of the dewatered cake was reduced to about 30%. This greatly reduces the amount of radioactive waste.

脱水分離した水分は、放射性物質の量を測定し、放射性物質の量が基準値を上回る場合には(ステップS116;N)、放射性物質を吸着剤に吸着させて放射性物質の量を基準値以下に低減したのち、排水することが好ましい(ステップS117;汚染水処理工程)。この汚染水処理工程(ステップS117)では、上述した汚染水処理工程(ステップS103)と同様に、吸着剤に、例えば、籾殻、籾殻炭、及び、稲わらからなる群のうちの少なくとも1つを含むものを用い、この吸着材に上澄みを浸潤させることが好ましい。また、脱水分離した水分の放射性物質の量が基準値内の場合には(ステップS116;Y)、そのまま排水してもよい(ステップS118)。   The dehydrated and separated water is measured for the amount of radioactive substance. If the amount of radioactive substance exceeds the reference value (step S116; N), the radioactive substance is adsorbed on the adsorbent and the amount of radioactive substance is below the reference value. It is preferable to drain the water after the reduction (step S117; contaminated water treatment step). In this contaminated water treatment step (step S117), as in the above-described contaminated water treatment step (step S103), for example, at least one of the group consisting of rice husk, rice husk charcoal, and rice straw is used as the adsorbent. It is preferable to infiltrate the supernatant into this adsorbent using a material that contains it. Further, when the amount of dehydrated and separated water radioactive material is within the reference value (step S116; Y), the water may be drained as it is (step S118).

このように、本実施の形態によれば、ため池から水を抜き、底の砕屑物を浚渫するようにしたので、放射性物質がため池に溜まっている水に拡散することを防止することができると共に、放射性物質が含まれる砕屑物を簡単にため池から取り除くことができ、ため池の放射性物質の量を容易に基準値以下とすることができる。また、浚渫した砕屑物は、分級し、礫及び砂については、洗浄してため池に戻すので、放射性廃棄物の量を大幅に削減することができる。更に、分級した泥については、凝集分離したのち、加圧脱水するようにしたので、放射性廃棄物の量を更に削減することができる。加えて、加圧脱水により脱水ケーキの含水率を十分に低減することができるので、フレキシブルコンテナバックなどに収容して積み重ねて保管することが可能であり、放射性廃棄物の取り扱いを容易とすることができる。   As described above, according to the present embodiment, since water is drained from the pond and the debris at the bottom is trapped, it is possible to prevent the radioactive material from diffusing into the water accumulated in the pond. The debris containing radioactive material can be easily removed from the reservoir, and the amount of radioactive material in the reservoir can be easily reduced to a reference value or less. Moreover, since the debris that has been dredged is classified and the gravel and sand are washed and returned to the pond, the amount of radioactive waste can be greatly reduced. Further, since the classified mud is subjected to pressure dehydration after coagulation and separation, the amount of radioactive waste can be further reduced. In addition, since the moisture content of the dehydrated cake can be sufficiently reduced by dehydration under pressure, it can be stored and stored in a flexible container bag, etc., making it easy to handle radioactive waste. Can do.

また、浚渫工程の前に、ため池の砕屑物の放射性物質の量を深さ方向に間隔を開けて複数個所について測定し、この測定結果に基づいて砕屑物の浚渫する深さを決定し、その深さまで砕屑物を浚渫するようにすれば、ため池の放射性物質の量を確実に基準値以下とすることができる。また、必要以上に砕屑物を浚渫しないので、放射性廃棄物の量が増加することを抑制することができる。   In addition, before the dredging process, the amount of radioactive material in the debris in the pond is measured at multiple locations at intervals in the depth direction. If the debris is dredged to the depth, the amount of radioactive material in the pond can be reliably reduced below the reference value. Moreover, since it does not spoil debris more than necessary, it can suppress that the quantity of radioactive waste increases.

更に、礫処理工程又は砂処理工程において礫又は砂を洗浄した洗浄水について、洗浄水に含まれる放射性物質を籾殻、籾殻炭、及び、稲わらからなる群のうちの少なくとも1つを含む吸着剤に吸着させることにより放射性物質の量を低減するようにすれば、放射性物質を高い吸着率で吸着させることができ、容易にかつ効率よく放射性物質を除去することができる。   Furthermore, for the washing water obtained by washing the gravel or sand in the gravel treatment step or the sand treatment step, the radioactive material contained in the washing water contains at least one of the group consisting of rice husk, rice husk charcoal, and rice straw. If the amount of radioactive substance is reduced by adsorbing to the radioactive substance, the radioactive substance can be adsorbed at a high adsorption rate, and the radioactive substance can be removed easily and efficiently.

加えて、礫処理工程又は砂処理工程において、礫又は砂を洗浄する際に、洗浄水処理工程において処理した洗浄水を再び用いるようにすれば、洗浄水の量が増大することを抑制することができる。   In addition, when washing gravel or sand in the gravel treatment process or sand treatment process, if the washing water treated in the washing water treatment process is used again, the increase in the amount of washing water is suppressed. Can do.

更にまた、落水工程において抜いた水、凝集分離工程において分離した上澄み、又は、脱水工程において分離した水分について、これらに含まれる放射性物質を籾殻、籾殻炭、及び、稲わらからなる群のうちの少なくとも1つを含む吸着剤に吸着させることにより放射性物質の量を低減するようにすれば、放射性物質を高い吸着率で吸着させることができ、容易にかつ効率よく放射性物質を除去することができる。   Furthermore, for the water extracted in the falling water process, the supernatant separated in the coagulation separation process, or the water separated in the dehydration process, the radioactive substances contained therein are selected from the group consisting of rice husk, rice husk charcoal, and rice straw. If the amount of radioactive substance is reduced by adsorbing to an adsorbent containing at least one, the radioactive substance can be adsorbed at a high adsorption rate, and the radioactive substance can be easily and efficiently removed. .

以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態では、各工程について具体的に説明したが、全ての工程を含む必要はなく、また、他の工程を含んでいてもよい。   The present invention has been described with reference to the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above-described embodiment, each process has been specifically described. However, it is not necessary to include all processes, and other processes may be included.

放射性物質を含むため池の除染に用いることができる。   Because it contains radioactive material, it can be used for decontamination of ponds.

11…ため池、12…縦線、13…横線、14…交点、15…堆積汚泥、16…堆積汚泥の深さ、17…間隔、21…中継タンク、22…混合槽、23…凝集剤、24…反応槽、25…沈殿槽、26…凝集汚泥、27…上澄み   DESCRIPTION OF SYMBOLS 11 ... Reservoir, 12 ... Vertical line, 13 ... Horizontal line, 14 ... Intersection, 15 ... Deposition of sludge, 16 ... Depth of accumulated sludge, 17 ... Spacing, 21 ... Relay tank, 22 ... Mixing tank, 23 ... Flocculant, 24 ... reaction tank, 25 ... precipitation tank, 26 ... flocculated sludge, 27 ... supernatant

Claims (6)

放射性物質により汚染されたため池を除染する放射性物質の除染処理方法であって、
ため池から水を抜く落水工程と、
前記落水工程の後、ため池の底に堆積している砕屑物を浚渫する浚渫工程と、
前記浚渫工程の後、浚渫した砕屑物を分級して礫と砂と泥とに分離する分級工程と、
前記分級工程の後、分級した礫を洗浄して放射性物質を基準値以下とし、ため池に戻す礫処理工程と、
前記分級工程の後、分級した砂を洗浄して放射性物質を基準値以下とし、ため池に戻す砂処理工程と、
前記分級工程の後、分級した泥に凝集剤を添加し、凝集泥と上澄みに分離する凝集分離工程と、
前記凝集分離工程の後、凝集泥を加圧脱水し、脱水ケーキとする脱水工程と
を含むことを特徴とする放射性物質の除染処理方法。
A decontamination method for radioactive material that decontaminates a pond contaminated with radioactive material,
A draining process to drain water from the reservoir,
After the water falling step, dredging the debris accumulated at the bottom of the reservoir,
After the dredging step, the crushing debris is classified and separated into gravel, sand and mud,
After the classifying step, the classified gravel is washed to bring the radioactive material to a reference value or less, and the gravel processing step to return to the reservoir,
After the classification step, the classified sand is washed to bring the radioactive material to a reference value or less, and returned to the pond.
After the classification step, a flocculant is added to the classified mud, and the flocculent separation step for separating the flocculent mud from the supernatant;
A decontamination treatment method for a radioactive substance, comprising: after the aggregating and separating step, a dehydrating step of dewatering the agglomerated mud to form a dehydrated cake.
前記浚渫工程の前に、ため池の底に堆積している砕屑物の放射性物質の量を深さ方向に間隔を開けて複数個所について測定し、この測定結果に基づいて砕屑物の浚渫する深さを決定する汚染調査工程を含み、
前記浚渫工程では、前記汚染調査工程において決定された深さまで砕屑物を浚渫する
ことを特徴とする請求項1記載の放射性物質の除染処理方法。
Before the dredging step, the amount of debris radioactive material deposited at the bottom of the pond is measured at a plurality of positions at intervals in the depth direction, and the depth at which the debris is drowned based on the measurement result Including pollution investigation process to determine
The decontamination processing method for a radioactive substance according to claim 1, wherein in the dredging step, the debris is dredged to a depth determined in the contamination investigation step.
前記分級工程では、礫を大きさに応じて複数に分級し、
前記礫処理工程では、分級した礫ごとに洗浄する
ことを特徴とする請求項1又は請求項2記載の放射性物質の除染処理方法。
In the classification step, the gravel is classified into a plurality according to the size,
3. The radioactive substance decontamination method according to claim 1 or 2, wherein in the gravel treatment step, each classified gravel is washed.
前記礫処理工程又は前記砂処理工程において礫又は砂を洗浄した洗浄水について、洗浄水に含まれる放射性物質を籾殻、籾殻炭、及び、稲わらからなる群のうちの少なくとも1つを含む吸着剤に吸着させることにより放射性物質の量を低減する洗浄水処理工程を含むことを特徴とする請求項1から請求項3のいずれか1に記載の放射性物質の除染処理方法。   About washing water which washed gravel or sand in the gravel treatment process or the sand treatment process, the radioactive material contained in the washing water contains at least one of the group consisting of rice husk, rice husk charcoal, and rice straw The method for decontamination of a radioactive substance according to any one of claims 1 to 3, further comprising a washing water treatment step of reducing the amount of the radioactive substance by adsorbing to the substance. 前記礫処理工程又は前記砂処理工程において、礫又は砂を洗浄する際に、前記洗浄水処理工程において処理した洗浄水を再び用いることを特徴とする請求項4記載の放射性物質の除染処理方法。   5. The radioactive substance decontamination method according to claim 4, wherein the washing water treated in the washing water treatment step is used again when washing gravel or sand in the gravel treatment step or the sand treatment step. . 前記落水工程において抜いた水、前記凝集分離工程において分離した上澄み、又は、前記脱水工程において分離した水分について、これらに含まれる放射性物質を籾殻、籾殻炭、及び、稲わらからなる群のうちの少なくとも1つを含む吸着剤に吸着させることにより放射性物質の量を低減する汚染水処理工程を含むことを特徴とする請求項1から請求項5のいずれか1に記載の放射性物質の除染処理方法。   About the water extracted in the water falling step, the supernatant separated in the coagulation separation step, or the water separated in the dehydration step, the radioactive substances contained therein are selected from the group consisting of rice husk, rice husk charcoal, and rice straw The radioactive substance decontamination process according to any one of claims 1 to 5, further comprising a contaminated water treatment step of reducing the amount of the radioactive substance by adsorbing to an adsorbent containing at least one. Method.
JP2013260993A 2013-12-18 2013-12-18 Decontamination treatment method for radioactive materials Pending JP2015117989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013260993A JP2015117989A (en) 2013-12-18 2013-12-18 Decontamination treatment method for radioactive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260993A JP2015117989A (en) 2013-12-18 2013-12-18 Decontamination treatment method for radioactive materials

Publications (1)

Publication Number Publication Date
JP2015117989A true JP2015117989A (en) 2015-06-25

Family

ID=53530842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260993A Pending JP2015117989A (en) 2013-12-18 2013-12-18 Decontamination treatment method for radioactive materials

Country Status (1)

Country Link
JP (1) JP2015117989A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017772A (en) * 2014-07-04 2016-02-01 小柳建設株式会社 Method of processing radioactive material on water bottom
WO2018116503A1 (en) * 2016-12-21 2018-06-28 岩夫 松原 Dredging inlet structure
CN109529792A (en) * 2019-01-24 2019-03-29 华北水利水电大学 It is a kind of for containing the adsorbent and preparation method thereof in heavy metal-polluted water process
EP3657413A1 (en) 2015-06-11 2020-05-27 Yokogawa Electric Corporation Information collection system, information collection termal device, information collection server, and information collection method
CN113607922A (en) * 2021-08-04 2021-11-05 河海大学 Nitrogen and phosphorus polluted bottom sediment environment-friendly dredging depth determination method based on water pollutant carrying capacity analysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772400A (en) * 1986-06-20 1988-09-20 Heiner Kreyenberg Method and facility for removing sludge from water
JP2013064690A (en) * 2011-09-20 2013-04-11 Shonan Suri Kenkyukai Co Ltd Contaminated soil decontamination method
JP2013108758A (en) * 2011-11-17 2013-06-06 Natsuo Inagaki Method for decontaminating radiation-contaminated soil
JP2013164379A (en) * 2012-02-13 2013-08-22 Daiho Constr Co Ltd Processor for radiation-contaminated soil
JP2013170967A (en) * 2012-02-22 2013-09-02 Syoken Gijutsu Kk Radioactive substance decontamination method, radioactive substance adsorbent and radioactive substance decontamination apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772400A (en) * 1986-06-20 1988-09-20 Heiner Kreyenberg Method and facility for removing sludge from water
JP2013064690A (en) * 2011-09-20 2013-04-11 Shonan Suri Kenkyukai Co Ltd Contaminated soil decontamination method
JP2013108758A (en) * 2011-11-17 2013-06-06 Natsuo Inagaki Method for decontaminating radiation-contaminated soil
JP2013164379A (en) * 2012-02-13 2013-08-22 Daiho Constr Co Ltd Processor for radiation-contaminated soil
JP2013170967A (en) * 2012-02-22 2013-09-02 Syoken Gijutsu Kk Radioactive substance decontamination method, radioactive substance adsorbent and radioactive substance decontamination apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
岡本芳郎、小林浩幸: ""ため池の水質浄化に対する浚渫の有効性の実証実験"", 農業土木学会論文集, vol. N0.187, JPN6017031851, February 1997 (1997-02-01), JP, pages 161 - 169, ISSN: 0003749072 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017772A (en) * 2014-07-04 2016-02-01 小柳建設株式会社 Method of processing radioactive material on water bottom
EP3657413A1 (en) 2015-06-11 2020-05-27 Yokogawa Electric Corporation Information collection system, information collection termal device, information collection server, and information collection method
WO2018116503A1 (en) * 2016-12-21 2018-06-28 岩夫 松原 Dredging inlet structure
JPWO2018116503A1 (en) * 2016-12-21 2019-11-07 岩夫 松原 Sauce intake structure
CN109529792A (en) * 2019-01-24 2019-03-29 华北水利水电大学 It is a kind of for containing the adsorbent and preparation method thereof in heavy metal-polluted water process
CN109529792B (en) * 2019-01-24 2021-06-08 华北水利水电大学 Adsorbent for heavy metal-containing sewage treatment and preparation method thereof
CN113607922A (en) * 2021-08-04 2021-11-05 河海大学 Nitrogen and phosphorus polluted bottom sediment environment-friendly dredging depth determination method based on water pollutant carrying capacity analysis
CN113607922B (en) * 2021-08-04 2023-06-23 河海大学 Environment-friendly dredging depth determination method for nitrogen and phosphorus polluted sediment based on water body pollutant receiving capacity analysis

Similar Documents

Publication Publication Date Title
Vivekanand et al. Microplastics in aquatic environment: Challenges and perspectives
Dris et al. Microplastic contamination in freshwater systems: Methodological challenges, occurrence and sources
Chanpiwat et al. Abundance and characteristics of microplastics in freshwater and treated tap water in Bangkok, Thailand
Al Nahian et al. Occurrence, spatial distribution, and risk assessment of microplastics in surface water and sediments of Saint Martin Island in the Bay of Bengal
Zhu et al. Holistic assessment of microplastics and other anthropogenic microdebris in an Urban Bay sheds light on their sources and fate
JP2015117989A (en) Decontamination treatment method for radioactive materials
CN108516658A (en) A kind of cleaning in place, equipment for reclaiming and the method for black-odor riverway bed mud
CN105777217A (en) Resourceful treatment utilization method and device for livestock excrement
Mulligan et al. Filtration of contaminated suspended solids for the treatment of surface water
JP2013164379A (en) Processor for radiation-contaminated soil
KR101049575B1 (en) Purification and Method for Purifying Arsenic-Contaminated Wastewater Using Natural Adsorbents Made from Seaweeds
García-Haba et al. The role of different sustainable urban drainage systems in removing microplastics from urban runoff: A review
CN107262519B (en) Radioactive contaminated soil purification system
Priyanka et al. Transportation of microplastics from the rural area into the urban area of the Kosasthalaiyar River in the metropolitan city of Chennai
JP2013108758A (en) Method for decontaminating radiation-contaminated soil
JP2018025464A (en) Radioactive substance removal system and radioactive substance removal method
JP2012237658A (en) Method for purifying contaminated soil
CN206562383U (en) Sludge dewatering consolidation process system
Moraczewska-Majkut et al. The occurrence of microplastics in wastewater and the possibilities of using separation methods to reduce this contamination at the wastewater treatment plant
US20050160779A1 (en) Fertilizer
JP6137887B2 (en) Method for decontamination of soil containing radioactive material
CN106186166A (en) A kind of method utilizing eggshell fixed bed same for treating acidic mine wastewater
JP2015117988A (en) Decontamination treatment method for radioactive materials
JP2015190139A (en) Equipment and method for disposing of dredge soil
CN110206082A (en) A kind of garbage on water and underwater mud processing is whole solves technical solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306