JP2015117392A - Cu-Fe-BASED ALLOY ROLLED SHEET FOR TERMINAL METAL FITTING AND TERMINAL METAL FITTING - Google Patents

Cu-Fe-BASED ALLOY ROLLED SHEET FOR TERMINAL METAL FITTING AND TERMINAL METAL FITTING Download PDF

Info

Publication number
JP2015117392A
JP2015117392A JP2013259746A JP2013259746A JP2015117392A JP 2015117392 A JP2015117392 A JP 2015117392A JP 2013259746 A JP2013259746 A JP 2013259746A JP 2013259746 A JP2013259746 A JP 2013259746A JP 2015117392 A JP2015117392 A JP 2015117392A
Authority
JP
Japan
Prior art keywords
terminal
rolling direction
rolled sheet
bending
terminal fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013259746A
Other languages
Japanese (ja)
Inventor
齋藤 寧
Yasushi Saito
寧 齋藤
古川 欣吾
Kingo Furukawa
欣吾 古川
照善 宗像
Teruyoshi Munakata
照善 宗像
清水 健一
Kenichi Shimizu
健一 清水
寛 泉田
Hiroshi Izumida
寛 泉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2013259746A priority Critical patent/JP2015117392A/en
Priority to PCT/JP2014/081739 priority patent/WO2015093270A1/en
Publication of JP2015117392A publication Critical patent/JP2015117392A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Fe-based alloy rolled sheet for terminal metal fitting excellent in both of processability and strength with low material cost.SOLUTION: A Cu-Fe-based alloy rolled sheet for terminal metal fitting 1 has a chemical component containing 10 mass% or more Fe and the balance Cu with inevitable impurities. The Cu-Fe-based alloy rolled sheet for terminal metal fitting 1 contains Fe as a main component and has a metallic structure which Fe-based particles 3 having a flat shape in a draft direction distribute in a row in the draft direction and a Cu-based parent phase 2 mainly containing Cu segments neighboring Fe-based particles 3. The Fe-based particles 3 preferably has both of a length dimension obtained by measuring in a direction parallel to a rolling direction and a width dimension obtained by measuring in a direction vertical to the rolling direction of 4 to 32 μm and a thickness dimension obtained by measuring in the draft direction of 0.2 to 3.0 μm.

Description

本発明は、端子金具用Cu−Fe系合金圧延板及びそれを用いた端子金具に関する。   The present invention relates to a rolled Cu-Fe alloy plate for terminal fittings and a terminal fitting using the same.

自動車等に用いる端子金具には、例えば黄銅などの、銅に数質量%程度の金属を添加した銅合金が使用されているものがある。近年、端子金具の剛性を確保しつつ、材料コストを低減することが望まれている。そこで、材料の強度が高く、材料コストの低い銅合金として、銅(Cu)に鉄(Fe)を添加したCu−Fe系合金を端子金具の素材として用いることが検討されている。   Some terminal fittings used in automobiles use copper alloys such as brass, in which a metal of about several mass% is added to copper. In recent years, it has been desired to reduce the material cost while ensuring the rigidity of the terminal fitting. Therefore, as a copper alloy having a high material strength and a low material cost, it has been studied to use a Cu—Fe-based alloy obtained by adding iron (Fe) to copper (Cu) as a material for a terminal fitting.

例えば特許文献1には、0.05〜5質量%の炭素が固溶した10〜70質量%のFeと、残部がCu及び不可避不純物との合金からなるばね部材の例が開示されている。かかる化学成分を有するCu−Fe系合金は、従来の銅合金よりも高い強度を有するものとなりやすい。また、Cu−Fe系合金は、Cuよりも地金代の安価なFeを含有しているため、Feの含有量を多くすることにより材料コストを容易に低減することができる。   For example, Patent Document 1 discloses an example of a spring member made of an alloy of 10 to 70% by mass of Fe in which 0.05 to 5% by mass of carbon is solid-dissolved, and the balance being Cu and inevitable impurities. A Cu—Fe-based alloy having such a chemical component tends to have a higher strength than conventional copper alloys. In addition, since the Cu—Fe-based alloy contains Fe, which is cheaper than metal, than Cu, the material cost can be easily reduced by increasing the Fe content.

このように、Cu−Fe系合金は、端子金具の素材として要求される強度と、材料コストとを両立する可能性を有する材料である。   As described above, the Cu—Fe-based alloy is a material having the possibility of achieving both the strength required as a material for the terminal fitting and the material cost.

特開平5−125468号公報JP-A-5-125468

しかしながら、従来公知のCu−Fe系合金は、端子金具を作製する場合に加工性と強度を両立させることが困難である。つまり、従来のCu−Fe系合金は、Feの含有量が少ない場合には、例えば曲げ加工等を施す際の加工性に優れる反面、強度が低くなる傾向がある。そのため、Feの含有量が少ない場合には、端子金具の素材に要求される強度を満たすことが困難となる。また、Feの含有量が少ない場合には、材料コストの低減が困難である。   However, it is difficult for conventionally known Cu—Fe-based alloys to achieve both workability and strength when producing terminal fittings. That is, when the content of Fe is low, the conventional Cu—Fe-based alloy is excellent in workability when performing, for example, bending work, but tends to have low strength. For this reason, when the Fe content is small, it is difficult to satisfy the strength required for the material of the terminal fitting. Moreover, when there is little content of Fe, it is difficult to reduce material cost.

一方、Feの含有量を多くしたCu−Fe系合金は、強度が高くなりやすく、材料コストを低減し易いものの、加工性が悪化するという問題がある。そのため、強度の高いCu−Fe系合金は、端子金具の作製工程において曲げ加工を施した後に、屈曲部に割れが生じ易い。   On the other hand, Cu-Fe alloys with an increased Fe content tend to be high in strength and easily reduce material costs, but have a problem that workability deteriorates. Therefore, a Cu-Fe alloy having high strength is likely to be cracked at the bent portion after bending in the terminal fitting manufacturing process.

このように、従来公知のCu−Fe系合金を端子金具の素材として用いるためには、材料コストを低減すると共に、高い強度と優れた加工性とを両立させることが必要である。   Thus, in order to use a conventionally known Cu-Fe alloy as a material for a terminal fitting, it is necessary to reduce the material cost and achieve both high strength and excellent workability.

本発明は、かかる背景に鑑みてなされたものであり、加工性と強度との双方に優れ、材料コストの安価な端子金具用Cu−Fe系合金圧延板及びこれを用いた端子金具を提供しようとするものである。   The present invention has been made in view of such a background, and is intended to provide a Cu-Fe alloy rolled sheet for terminal metal fittings that is excellent in both workability and strength and is low in material cost, and a terminal metal fitting using the same. It is what.

本発明の一態様は、10質量%以上のFeを含有し、残部がCu及び不可避不純物よりなる化学成分を有し、
Cuを主成分とするCu系母相中に、Feを主成分とし、圧下方向に扁平な形状を呈するFe系粒子が圧延方向に連なって分布する金属組織を有していることを特徴とする端子金具用Cu−Fe系合金圧延板にある。
One aspect of the present invention contains 10 mass% or more of Fe, with the remainder having chemical components consisting of Cu and inevitable impurities,
The Cu-based matrix containing Cu as a main component has a metal structure in which Fe-based particles that are mainly composed of Fe and have a flat shape in the rolling direction are distributed continuously in the rolling direction. It exists in the Cu-Fe type alloy rolled sheet for terminal metal fittings.

また、本発明の他の態様は、上記端子金具用Cu−Fe系合金圧延板よりなる端子金具であって、
電線の端末部を接続するバレル部と、
該バレル部に連なる略角筒状の筒状体部とを有し、
該筒状体部は、上記端子金具用Cu−Fe系合金圧延板の上記圧延方向とのなす角度が45〜90°の範囲である直線状の曲げ線に沿って上記端子金具用Cu−Fe系合金圧延板に曲げ加工を施して形成されていることを特徴とする端子金具にある。
Further, another aspect of the present invention is a terminal fitting made of the above-mentioned Cu-Fe alloy rolled sheet for terminal fitting,
A barrel part for connecting the terminal part of the electric wire;
A substantially rectangular tube-shaped cylindrical body portion connected to the barrel portion,
The cylindrical body portion is formed of the Cu-Fe for terminal fittings along a linear bending line in which the angle formed with the rolling direction of the Cu-Fe alloy rolled sheet for terminal fittings is in the range of 45 to 90 °. The terminal fitting is characterized by being formed by bending a rolled alloy plate.

上記端子金具用Cu−Fe系合金圧延板(以下、適宜「圧延板」と省略することがある。)は、10質量%以上のFeを含有し、残部がCu及び不可避不純物よりなる化学成分を有している。そのため、上記圧延板は、従来の銅合金と同等以下の材料コストを容易に実現できる。   The above-mentioned Cu—Fe-based alloy rolled plate for terminal metal fitting (hereinafter sometimes abbreviated as “rolled plate” as appropriate) contains 10 mass% or more of Fe, with the balance being a chemical component consisting of Cu and inevitable impurities. Have. For this reason, the rolled plate can easily realize a material cost equal to or lower than that of a conventional copper alloy.

また、上記圧延板は、Cuを主成分とするCu系母相中に、Feを主成分とし、圧下方向に扁平な形状を呈するFe系粒子が圧延方向に連なって分布する金属組織を有している。かかる金属組織を有する上記圧延板は、圧延方向への延性が比較的大きくなる。それ故、例えば、圧延方向と直角方向に伸びる曲げ線に沿って上記圧延板に曲げ加工を施す際に、屈曲部分に割れが生じにくくなる。このように、上記圧延板は、加工方向を適切に選択することにより優れた加工性を有する。そのため、上記圧延板の圧延方向を考慮して端子金具を作製することにより、曲げ加工等に伴う割れの発生を抑制することができる。   In addition, the rolled sheet has a metal structure in which Fe-based particles that are mainly composed of Fe and have a flat shape in the rolling direction are distributed continuously in the rolling direction in a Cu-based matrix having Cu as a main component. ing. The rolled sheet having such a metal structure has a relatively large ductility in the rolling direction. Therefore, for example, when bending the rolled sheet along a bending line extending in a direction perpendicular to the rolling direction, cracks are less likely to occur at the bent portion. As described above, the rolled sheet has excellent workability by appropriately selecting the processing direction. Therefore, the production of a terminal fitting in consideration of the rolling direction of the rolled plate can suppress the occurrence of cracks associated with bending or the like.

また、上記圧延板は、上記特定の化学成分と、上述した金属組織とを具備していることにより、従来の銅合金よりも強度を高くすることができる。   Moreover, the said rolled sheet can make intensity | strength higher than the conventional copper alloy by comprising the said specific chemical component and the metal structure mentioned above.

以上のように、上記端子金具用Cu−Fe系合金圧延板は、加工性と強度との双方に優れ、材料コストの安価なものとなる。   As described above, the Cu—Fe-based alloy rolled sheet for terminal fittings is excellent in both workability and strength, and is low in material cost.

また、上記圧延板を用いて作製される端子金具は、略角筒状の筒状体部を有している。そして、筒状体部は、上記端子金具用Cu−Fe系合金圧延板の圧延方向とのなす角度が45〜90°の範囲である直線状の曲げ線に沿って端子金具用Cu−Fe系合金圧延板に曲げ加工を施して形成されている。そのため、筒状体部を形成する90°曲げ加工等の際に、上記圧延板の有する圧延方向への高い延性を効果的に利用でき、屈曲部における割れやクラックの発生を抑制することができる。その結果、上記端子金具は、筒状体部に割れ等がなく、優れた品質を有するものとなる。   Moreover, the terminal metal fitting produced using the said rolling plate has a cylindrical body part of a substantially rectangular tube shape. And a cylindrical body part is a Cu-Fe type | system | group for terminal metal fittings along the linear bending line whose angle with the rolling direction of the said Cu-Fe type alloy rolled sheet for terminal metal fittings is the range of 45-90 degrees. It is formed by bending a rolled alloy plate. Therefore, at the time of 90 ° bending forming the cylindrical body portion, the high ductility in the rolling direction of the rolled plate can be effectively used, and the generation of cracks and cracks in the bent portion can be suppressed. . As a result, the terminal fitting does not have a crack or the like in the cylindrical body portion and has excellent quality.

実施例1における、試験材1の板面の光学顕微鏡写真。The optical microscope photograph of the plate surface of the test material 1 in Example 1. FIG. 図1を拡大した光学顕微鏡写真。The optical microscope photograph which expanded FIG. 実施例1における、Fe系粒子の形状を示す説明図。FIG. 3 is an explanatory diagram showing the shape of Fe-based particles in Example 1. 実施例1の試験材1における、板幅方向に直交する断面の電子顕微鏡写真。The electron micrograph of the cross section orthogonal to the board width direction in the test material 1 of Example 1. FIG. 実施例1の試験材1における、圧延方向に直交する断面の電子顕微鏡写真。The electron micrograph of the cross section orthogonal to the rolling direction in the test material 1 of Example 1. FIG. 図4に存在するFe系粒子の長さ寸法の分布を示す説明図。Explanatory drawing which shows distribution of the length dimension of the Fe-type particle | grains which exist in FIG. 図5に存在するFe系粒子の幅寸法の分布を示す説明図。Explanatory drawing which shows distribution of the width dimension of the Fe-type particle | grains which exist in FIG. 図4に存在するFe系粒子の厚み寸法の分布を示す説明図。Explanatory drawing which shows distribution of the thickness dimension of the Fe-type particle | grains which exist in FIG. 図5に存在するFe系粒子の厚み寸法の分布を示す説明図。Explanatory drawing which shows distribution of the thickness dimension of the Fe-type particle | grains which exist in FIG. 実施例1における、板幅方向に伸びる曲げ線に沿って試験材1に90°曲げ加工を施した際の屈曲部の写真。The photograph of the bending part at the time of giving 90 degree bending process to the test material 1 along the bending line extended in the board width direction in Example 1. FIG. 実施例1における、板幅方向に伸びる曲げ線に沿って試験材1に180°曲げ加工を施した際の屈曲部の写真。The photograph of the bending part at the time of giving 180 degree bending process to the test material 1 along the bending line extended in the board width direction in Example 1. FIG. 実施例1における、圧延方向に伸びる曲げ線に沿って試験材1に90°曲げ加工を施した際の屈曲部の写真。The photograph of the bending part at the time of giving 90 degree bending process to the test material 1 along the bending line extended in the rolling direction in Example 1. FIG. 実施例1における、圧延方向に伸びる曲げ線に沿って試験材1に180°曲げ加工を施した際の屈曲部の写真。The photograph of the bending part at the time of giving 180 degree bending process to the test material 1 along the bending line extended in the rolling direction in Example 1. FIG. 実施例1における、端子金具用Cu−Fe系合金圧延板の引張試験結果を示す応力−ひずみ曲線図。The stress-strain curve figure which shows the tension test result of the Cu-Fe type alloy rolled sheet for terminal metal fittings in Example 1. FIG. 実施例1における、圧延方向に引張力を加えたときの試験材1の破断面の電子顕微鏡写真。The electron micrograph of the torn surface of the test material 1 when the tensile force is applied in the rolling direction in Example 1. FIG. 実施例1における、板幅方向に引張力を加えたときの試験材1の破断面の電子顕微鏡写真。The electron micrograph of the torn surface of the test material 1 in Example 1 when a tensile force is applied to the board width direction. 実施例1における、圧延工程でのFe系粒子の変形過程を示す説明図。FIG. 3 is an explanatory diagram showing a deformation process of Fe-based particles in a rolling process in Example 1. 実施例2における、雌端子金具の斜視図。The perspective view of the female terminal metal fitting in Example 2. FIG. 実施例2における、雌端子金具の一部断面図。FIG. 6 is a partial cross-sectional view of a female terminal fitting in Example 2. 実施例2における、端子金具用Cu−Fe系合金圧延板に打ち抜き加工を施した状態の平面図。The top view of the state which stamped the Cu-Fe type alloy rolled sheet for terminal metal fittings in Example 2. FIG. 実施例3における、雄端子金具の斜視図。The perspective view of the male terminal metal fitting in Example 3. FIG. 実施例3における、端子金具用Cu−Fe系合金圧延板に打ち抜き加工を施した状態の平面図。The top view of the state which stamped the Cu-Fe type alloy rolled sheet for terminal metal fittings in Example 3. FIG.

上記端子金具用Cu−Fe系合金圧延板は、10質量%以上のFeを含有している。上述したように、Cu−Fe系合金は、Feの含有量が多くなるほど強度が高くなる傾向がある。そのため、上記圧延板は、Feの含有量を10質量%以上とすることにより、端子金具の素材に要求される強度を十分に満足することができる。また、上記圧延板は、Feの含有量を10質量%以上とすることにより、従来の銅合金よりも材料コストを低減することができる。それ故、強度をより強くし、材料コストをより低減する観点から、Feの含有量は10質量%以上とする。同じ観点から、Feの含有量は20質量%以上が好ましく、50質量%以上がより好ましい。   The said Cu-Fe-type alloy rolled sheet for terminal metal fittings contains 10 mass% or more of Fe. As described above, Cu—Fe-based alloys tend to have higher strength as the Fe content increases. Therefore, the said rolled sheet can fully satisfy the intensity | strength requested | required of the raw material of a terminal metal fitting by content of Fe being 10 mass% or more. Moreover, the said rolled sheet can reduce material cost rather than the conventional copper alloy by content of Fe being 10 mass% or more. Therefore, from the viewpoint of increasing the strength and reducing the material cost, the Fe content is set to 10% by mass or more. From the same viewpoint, the Fe content is preferably 20% by mass or more, and more preferably 50% by mass or more.

一方、Feの含有量が過度に多くなると、上述したように加工性が悪化するため、上記圧延板を用いて端子金具等を作製する際に割れ等が生じ易くなる。また、Fe系粒子は、Cuを主成分とするCu系母相に比べて導電率が低いため、Feの含有量が過度に多い場合には、得られる端子金具用Cu−Fe系合金圧延板の導電率が低くなりやすい。それ故、Feの含有量が過度に多い場合には、端子金具に要求される導電率を満足することが困難となるおそれがある。これらの問題を回避するためには、例えば、Feの含有量を70質量%以下に規制することが好ましい。   On the other hand, if the Fe content is excessively large, the workability deteriorates as described above, and therefore, cracks and the like are likely to occur when a terminal fitting or the like is produced using the rolled plate. In addition, since Fe-based particles have a lower electrical conductivity than Cu-based matrix with Cu as a main component, when the content of Fe is excessively large, a Cu-Fe-based alloy rolled plate for terminal fittings to be obtained is obtained. The electrical conductivity is likely to be low. Therefore, when the Fe content is excessively large, it may be difficult to satisfy the electrical conductivity required for the terminal fitting. In order to avoid these problems, for example, the Fe content is preferably regulated to 70% by mass or less.

以上のように、上記端子金具用Cu−Fe系合金圧延板は、Feの含有量を10質量%以上とすることにより、端子金具の素材に要求される強度、加工性、導電性等の諸特性を満足し、材料コストの安価な材料となる。また、かかる観点から、上記圧延板はFeの含有量を10〜70質量%とすることがより好ましい。   As described above, the above-mentioned Cu-Fe alloy rolled sheet for terminal fittings has various strengths, workability, conductivity, etc. required for the terminal fitting material by setting the Fe content to 10% by mass or more. The material satisfies the characteristics and has a low material cost. From this viewpoint, it is more preferable that the rolled plate has a Fe content of 10 to 70% by mass.

また、上記金属組織は、例えば、鋳造の際に生じるFeを主成分とする晶出物や、熱処理等により生じるFeを主成分とする析出物等を、圧延方向に引き延ばされた状態で上記Cu系母相中に含んでいる。つまり、上記晶出物や上記析出物は、冷間圧延時の加工力を受けることにより、圧延方向に引き延ばされつつ、圧下方向に薄くなるよう塑性変形する。そして、上記晶出物や上記析出物が十分に引き延ばされ、それ以上塑性変形ができなくなった状態からさらに加工力を受けることにより、上記晶出物や上記析出物が圧延方向に分断され、上記Fe系粒子が生じる。また、それと同時に隣り合う上記Fe系粒子の間に上記Cu系母相が進入する。以上の結果、上記Fe系粒子が圧延方向に連なって分布すると共に、隣り合う上記Fe系粒子の間が上記Cu系母相により分断されている金属組織が形成される。   In addition, the metal structure is, for example, a crystallized substance mainly composed of Fe generated during casting, a precipitate mainly composed of Fe generated by heat treatment or the like in a state of being stretched in the rolling direction. It is contained in the Cu-based matrix. That is, the crystallized product and the precipitate are plastically deformed by being thinned in the rolling direction while being stretched in the rolling direction by receiving a processing force during cold rolling. The crystallized product and the precipitate are sufficiently stretched and further subjected to a processing force from a state where plastic deformation cannot be further performed, whereby the crystallized product and the precipitate are separated in the rolling direction. The Fe-based particles are generated. At the same time, the Cu-based matrix enters between the adjacent Fe-based particles. As a result, a metal structure in which the Fe-based particles are distributed continuously in the rolling direction and the adjacent Fe-based particles are separated by the Cu-based matrix is formed.

なお、上述した「主成分」とは、最も含有量の多い元素であることを意味している。そして、上記Cu系母相は主成分のCuの他に微量のFeあるいは不純物を含有する場合がある。また、Fe系粒子は主成分のFeの他に微量のCuあるいは不純物を含有する場合がある。   The above-mentioned “main component” means an element having the highest content. The Cu-based matrix may contain a trace amount of Fe or impurities in addition to the main component Cu. The Fe-based particles may contain a trace amount of Cu or impurities in addition to the main component Fe.

上記Fe系粒子は、圧延方向と平行な方向に測定して得られる長さ寸法及び圧延方向と直角な方向に測定して得られる幅寸法の双方が4〜32μmであり、かつ、圧下方向に測定して得られる厚み寸法が0.2〜3.0μmであることが好ましい。この場合には、上記圧延板は、加工性により優れると共に、より高い強度を有する。   The Fe-based particles have a length dimension obtained by measurement in a direction parallel to the rolling direction and a width dimension obtained by measurement in a direction perpendicular to the rolling direction of 4 to 32 μm, and in the reduction direction. The thickness obtained by measurement is preferably 0.2 to 3.0 μm. In this case, the rolled sheet is superior in workability and has higher strength.

上記長さ寸法が32μmを超えるFe系粒子、上記幅寸法が32μmを超えるFe系粒子、または上記厚み寸法が3.0μmを超えるFe系粒子が上記圧延板中に存在する場合には、曲げ加工等を施す際に、Fe系粒子自身の変形に伴い、Fe系粒子とCu系母相との間に亀裂が生じるおそれがある。このような亀裂は、割れの原因となるおそれがあり、ひいては加工性が不十分となるおそれがある。   When the above-mentioned rolled sheet contains Fe-based particles having a length dimension exceeding 32 μm, Fe-based particles having a width dimension exceeding 32 μm, or Fe-based particles having a thickness dimension exceeding 3.0 μm, bending processing is performed. Etc., there is a risk of cracking between the Fe-based particles and the Cu-based matrix due to the deformation of the Fe-based particles themselves. Such cracks may cause cracking, and as a result, workability may be insufficient.

また、上記長さ寸法が4μm未満となるFe系粒子、上記幅寸法が4μm未満となるFe系粒子、または上記厚み寸法が0.2μm未満となるFe系粒子が上記圧延板中に存在する場合には、Fe系粒子による強度向上効果が不十分となる恐れがある。つまり、Fe系粒子が荷重を支えきれず、Cu系母相が容易に変形するおそれがあるため、強度が不十分となるおそれがある。   Further, when the Fe-based particles having the length dimension of less than 4 μm, the Fe-based particles having the width dimension of less than 4 μm, or the Fe-based particles having the thickness dimension of less than 0.2 μm are present in the rolled plate. In such a case, the effect of improving the strength by the Fe-based particles may be insufficient. That is, the Fe-based particles cannot support the load, and the Cu-based matrix may be easily deformed, so that the strength may be insufficient.

また、上記圧延板は、引張強さが700MPa以上であることが好ましい。従来のCu−Fe系合金は、上述したように加工性と強度とを両立させることが困難である。そのため、引張強さが700MPa以上となる高強度のCu−Fe系合金は、端子金具の素材として用いることがほとんど不可能であった。これに対し、上記端子金具用Cu−Fe系合金圧延板は、上記特定の化学成分と上記特定の金属組織とを共に備えることにより、黄銅材(引張強さ450〜500MPa)やコルソン系銅合金(引張強さ600〜650MPa)よりも高い強度を備え、かつ、優れた加工性を有する。それ故、上記圧延板は、板厚を従来のものより薄くしても端子金具の素材として十分な強度を有し、ひいては端子金具の小型化、軽量化に有利なものとなる。   The rolled sheet preferably has a tensile strength of 700 MPa or more. As described above, it is difficult for conventional Cu—Fe based alloys to achieve both workability and strength. Therefore, a high-strength Cu—Fe alloy having a tensile strength of 700 MPa or more could hardly be used as a material for terminal fittings. On the other hand, the said Cu-Fe-type alloy rolled sheet for terminal metal fittings has a brass material (tensile strength 450-500 MPa) and a Corson type copper alloy by providing both the said specific chemical component and the said specific metal structure. It has a higher strength than (tensile strength of 600 to 650 MPa) and has excellent workability. Therefore, the rolled plate has sufficient strength as a material for the terminal fitting even if the plate thickness is made thinner than that of the conventional one, which is advantageous for reducing the size and weight of the terminal fitting.

また、上記圧延板は、圧延方向における伸びが2%以上であることが好ましい。この場合には、上記圧延板は、圧延方向において、十分に高い延性を示す。そのため、例えば、圧延方向と直角方向に伸びる曲げ線に沿って上記圧延板に曲げ加工を施す場合等に、屈曲部分における割れやクラックの発生をより抑制し易くなる。このように、上記特定の範囲の伸びを有する上記圧延板は、より優れた加工性を有する。   The rolled plate preferably has an elongation in the rolling direction of 2% or more. In this case, the rolled sheet exhibits sufficiently high ductility in the rolling direction. Therefore, for example, when bending the rolled plate along a bending line extending in a direction perpendicular to the rolling direction, it becomes easier to suppress the occurrence of cracks and cracks in the bent portion. As described above, the rolled sheet having the elongation in the specific range has better workability.

また、上記圧延板は、導電率が30%IACS以上であることが好ましい。この場合には、上記圧延板の導電率は、黄銅材等の銅合金と同等となる。そのため、上記圧延板は、端子金具に要求される導電率を満足でき、端子金具の素材として好適に用いることができる。   The rolled plate preferably has a conductivity of 30% IACS or higher. In this case, the conductivity of the rolled plate is equivalent to a copper alloy such as a brass material. Therefore, the rolled sheet can satisfy the electrical conductivity required for the terminal fitting, and can be suitably used as a material for the terminal fitting.

上記端子金具用Cu−Fe系合金圧延板を用いて端子金具を作製する場合には、端子金具が以下のように構成されていることが好ましい。   When producing a terminal metal fitting using the said Cu-Fe type alloy rolled sheet for terminal metal fittings, it is preferable that the terminal metal fitting is comprised as follows.

すなわち、上記端子金具は、電線の端末部を接続するバレル部と、
該バレル部に連なる略角筒状の筒状体部とを有し、
該筒状体部は、上記端子金具用Cu−Fe系合金圧延板の上記圧延方向とのなす角度が45〜90°の範囲である直線状の曲げ線に沿って上記端子金具用Cu−Fe系合金圧延板に曲げ加工を施して形成されていることが好ましい。
That is, the terminal fitting is a barrel portion for connecting the terminal portion of the electric wire,
A substantially rectangular tube-shaped cylindrical body portion connected to the barrel portion,
The cylindrical body portion is formed of the Cu-Fe for terminal fittings along a linear bending line in which the angle formed with the rolling direction of the Cu-Fe alloy rolled sheet for terminal fittings is in the range of 45 to 90 °. It is preferable that the rolled alloy plate is formed by bending.

略角筒状の筒状体部を有する端子金具においては、筒状体部を形成する際に、素材となる板材に90°曲げ加工を施す必要がある。この90°曲げ加工によって形成される屈曲部は、通常、曲げ半径が極めて小さくなるため、素材の加工性が不十分な場合に割れやクラックが生じ易いという問題がある。   In a terminal fitting having a substantially rectangular tubular body portion, it is necessary to perform a 90 ° bending process on a plate material as a material when the tubular body portion is formed. Since the bending portion formed by this 90 ° bending process usually has a very small bending radius, there is a problem that cracks and cracks are likely to occur when the workability of the material is insufficient.

これに対し、上記端子金具は、上記圧延板を素材として用いると共に、筒状体部が、上記圧延方向とのなす角度が上記特定の範囲である直線状の曲げ線に沿って上記圧延板に曲げ加工を施すことにより形成されている。すなわち、上記端子金具は、上記曲げ加工を施す際の曲げ線が圧延方向に対して概ね直角方向に伸びた状態となるように構成されている。そのため、曲げ加工の際に、上記圧延板の有する圧延方向への高い延性を効果的に利用することができる。以上の結果、上記端子金具は、筒状体部に割れやクラックが生じにくく、優れた品質を有する。   On the other hand, the terminal fitting uses the rolled plate as a raw material, and the cylindrical body portion is formed on the rolled plate along a linear bending line whose angle with the rolling direction is the specific range. It is formed by bending. That is, the terminal fitting is configured such that a bending line when the bending process is performed extends in a direction substantially perpendicular to the rolling direction. Therefore, the high ductility to the rolling direction which the said rolling plate has can be utilized effectively in the case of a bending process. As a result of the above, the terminal fitting is not easily cracked or cracked in the cylindrical body portion and has excellent quality.

また、上記端子金具は、上記曲げ線と上記圧延方向とのなす角度が90°であることが好ましい。この場合には、筒状体部を形成する曲げ加工の際に、上記圧延板の有する圧延方向への高い延性を最大限に利用することができる。その結果、上記端子金具は、筒状体部に割れやクラックが生じにくく、より優れた品質を有する。   Moreover, it is preferable that the angle which the said terminal metal fitting makes with the said bending line and the said rolling direction is 90 degrees. In this case, the high ductility in the rolling direction of the rolled sheet can be utilized to the maximum when bending the cylindrical body portion. As a result, the terminal fitting is less prone to cracks and cracks in the cylindrical body portion, and has better quality.

また、上記端子金具は、筒状体部内に配されると共に、半円筒状に湾曲する湾曲部を介して筒状体部の開口端に連なって形成される弾性片部を有する雌端子金具として構成されていてもよい。この場合には、上記端子金具用Cu−Fe系合金圧延板の有する高い強度に由来して、弾性片部が雄端子金具を押圧する押圧力をより高くすることができる。その結果、上記雌端子金具は、雄端子金具との接触荷重をより高くすることができ、端子金具間の接続信頼性をより向上させることができる。   In addition, the terminal fitting is a female terminal fitting having an elastic piece portion that is arranged in the cylindrical body portion and is connected to the opening end of the cylindrical body portion via a curved portion that is curved in a semi-cylindrical shape. It may be configured. In this case, the pressing force by which the elastic piece portion presses the male terminal fitting can be further increased due to the high strength of the rolled metal plate for terminal fitting. As a result, the female terminal fitting can further increase the contact load with the male terminal fitting, and can further improve the connection reliability between the terminal fittings.

また、上記湾曲部が略半円筒状を呈しているため、湾曲部を形成する際の曲げ加工において、曲げ半径が比較的大きくなる。それ故、湾曲部を形成する際の曲げ加工を容易に行うことができると共に、湾曲部に割れやクラックが生じにくくなる。これらの結果、上記雌端子金具は、より優れた接続信頼性を有すると共に、より優れた品質を有する。   Further, since the curved portion has a substantially semi-cylindrical shape, the bending radius is relatively large in the bending process when forming the curved portion. Therefore, it is possible to easily perform the bending process when forming the curved portion, and it is difficult for the curved portion to be cracked or cracked. As a result, the female terminal fitting has superior connection reliability and superior quality.

また、上記端子金具は、筒状体部の開口端からバレル部と反対側に向けて延設され、上記圧延板の圧延方向とのなす角度が45〜90°の範囲である直線状の曲げ線に沿って上記圧延板を折り重ねてなるタブ部を有する雄端子金具として構成されていてもよい。   The terminal fitting extends from the opening end of the cylindrical body portion toward the opposite side of the barrel portion, and is a linear bending whose angle with the rolling direction of the rolled plate is in the range of 45 to 90 °. You may be comprised as a male terminal metal fitting which has a tab part formed by folding the said rolled sheet along a line.

上記タブ部は、通常、素材となる板材に対して曲げ半径の極めて小さい90°曲げ加工や180°曲げ加工を施すことにより形成される。それ故、これらの曲げ加工によって形成される屈曲部は、上述した筒状体部と同様に、素材の加工性が不十分な場合に割れやクラックが生じ易いという問題がある。   The tab portion is usually formed by subjecting a plate material as a material to 90 ° bending or 180 ° bending with a very small bending radius. Therefore, the bent part formed by these bending processes has a problem that cracks and cracks are likely to occur when the material is not sufficiently workable, like the cylindrical body part described above.

一方、上記タブ部は、上記圧延方向とのなす角度が上記特定の範囲である直線状の曲げ線に沿って上記圧延板に曲げ加工を施して形成されている。そのため、上記雄端子金具は、タブ部を成形する曲げ加工の際に、上記圧延板の有する圧延方向への高い延性を効果的に利用することができる。その結果、上記雄端子金具は、タブ部に割れやクラックが生じにくく、より優れた品質を有する。   On the other hand, the tab portion is formed by bending the rolled plate along a linear bend line whose angle with the rolling direction is in the specific range. Therefore, the said male terminal metal fitting can utilize effectively the high ductility to the rolling direction which the said rolling plate has in the case of the bending process which shape | molds a tab part. As a result, the male terminal fitting is less susceptible to cracks and cracks in the tab portion, and has better quality.

(実施例1)
上記端子金具用Cu−Fe系合金圧延板の実施例について、図1〜図17を用いて説明する。端子金具用Cu−Fe系合金圧延板1は、10質量%以上のFeを含有し、残部がCu及び不可避不純物よりなる化学成分を有している。また、端子金具用Cu−Fe系合金圧延板1は、図1〜図5に示すように、Cuを主成分とするCu系母相2中に、Feを主成分とし、圧下方向に扁平な形状を呈するFe系粒子3が圧延方向に連なって分布する金属組織を有している。以下、端子金具用Cu−Fe系合金圧延板1の作製方法及び詳細な構成について説明する。
Example 1
The Example of the said Cu-Fe type alloy rolled sheet for terminal metal fittings is demonstrated using FIGS. The Cu—Fe-based alloy rolled sheet 1 for terminal fittings contains 10% by mass or more of Fe, and the remainder has chemical components composed of Cu and inevitable impurities. Moreover, as shown in FIGS. 1-5, the Cu-Fe type alloy rolled sheet 1 for terminal metal fittings has Fe as a main component in the Cu type | mold mother phase 2 which has Cu as a main component, and is flat in a rolling-down direction. The Fe-based particles 3 exhibiting a shape have a metal structure distributed continuously in the rolling direction. Hereafter, the preparation method and detailed structure of the Cu-Fe type alloy rolled sheet 1 for terminal metal fittings are demonstrated.

なお、以下において、圧延方向に平行な方向を「長手方向X」、圧下方向に平行な方向を「板厚方向Z」ということがある。また、圧延方向及び圧下方向の双方に直交する方向を「板幅方向Y」ということがある。また、端子金具用Cu−Fe系合金圧延板1を適宜「圧延板1」と省略することがある。   In the following, the direction parallel to the rolling direction may be referred to as “longitudinal direction X”, and the direction parallel to the rolling direction may be referred to as “plate thickness direction Z”. In addition, a direction perpendicular to both the rolling direction and the rolling direction may be referred to as “sheet width direction Y”. Further, the Cu—Fe-based alloy rolled plate 1 for terminal fittings may be appropriately abbreviated as “rolled plate 1”.

<圧延板1の作製方法>
圧延板1は、従来公知のCu−Fe系合金圧延板と同様の工程により作製することができる。すなわち、圧延板1は、化学成分を所望の比率に調整したインゴットを鋳造した後、熱間鍛造や熱間圧延等の熱間加工、溶体化処理や時効処理等のための熱処理及び冷間加工を適宜組み合わせることにより作製することができる。また、圧延板1の作製工程は、Cu系母相2中に、圧下方向に扁平な形状を呈するFe系粒子3が圧延方向に連なって分布する金属組織を生じさせるために、少なくとも1回の冷間圧延を含む必要がある。
<Method for producing rolled plate 1>
The rolled plate 1 can be produced by the same process as a conventionally known Cu—Fe alloy rolled plate. That is, the rolled plate 1 is obtained by casting an ingot whose chemical composition is adjusted to a desired ratio, then performing hot working such as hot forging and hot rolling, heat treatment and cold working for solution treatment, aging treatment, and the like. Can be produced by appropriately combining. Further, the production process of the rolled plate 1 is performed at least once in order to produce a metal structure in which the Fe-based particles 3 having a flat shape in the rolling direction are distributed in the rolling direction in the Cu-based matrix 2. It is necessary to include cold rolling.

また、上記金属組織をより効率的に生じさせるためには、最終工程が冷間圧延となるように作製工程を構成した上で、最終工程に供する直前の中間材に急冷処理を施すことが好ましい。   Moreover, in order to generate the metal structure more efficiently, it is preferable to perform a rapid cooling process on the intermediate material immediately before being subjected to the final process after configuring the production process so that the final process is cold rolling. .

本例においては、Feを20質量%含有し、残部がCu及び不可避不純物からなる化学成分と、上記金属組織とを具備する試験材1と、Feを10質量%含有し、残部がCu及び不可避不純物からなる化学成分と、上記金属組織とを具備する試験材2との2種類の試験材を作製した。なお、試験材1及び試験材2の板厚は、ともに0.3mmtとした。   In this example, 20% by mass of Fe, with the balance being a chemical component consisting of Cu and unavoidable impurities and the above metal structure, 10% by mass of Fe, with the balance being Cu and unavoidable Two types of test materials were prepared: a test material 2 having a chemical component composed of impurities and the metal structure. The thicknesses of the test material 1 and the test material 2 were both 0.3 mmt.

これらの試験材を用いて金属組織の観察及び機械特性の評価を行った。以下に、その詳細について説明する。   These test materials were used to observe the metal structure and evaluate the mechanical properties. The details will be described below.

<金属組織の観察>
・Fe系粒子3の形態観察
まず、試験材1の板面を研磨し、光学顕微鏡を用いて板面に現れた金属組織を観察した。図1及び図2に得られた光学顕微鏡写真を示す。図1及び図2より知られるように、板面に現れた金属組織は、比較的明るい色調を呈するCu系母相2が圧延方向(長手方向X)に伸び、全体として筋状の模様を呈していた。また、図2及び図3に示すように、Cu系母相2中に、比較的暗い色調を示すFe系粒子3が圧延方向に連なって分布している様子が観察された。
<Observation of metal structure>
-Morphological observation of Fe-based particles 3 First, the plate surface of the test material 1 was polished, and the metal structure that appeared on the plate surface was observed using an optical microscope. The optical micrographs obtained are shown in FIGS. As is known from FIGS. 1 and 2, the metal structure that appears on the plate surface has a relatively bright color tone, the Cu-based matrix 2 extending in the rolling direction (longitudinal direction X), and exhibits a streak pattern as a whole. It was. Further, as shown in FIGS. 2 and 3, it was observed that Fe-based particles 3 having a relatively dark color tone were distributed continuously in the rolling direction in the Cu-based matrix 2.

次いで、試験材1を板幅方向Yに直交する面で切断し、得られた断面を電子顕微鏡により観察した。これにより得られた断面の電子顕微鏡写真を図4に示す。図4より知られるように、板幅方向Yに直交する断面に存在する個々のFe系粒子3は、圧下方向(板厚方向Z)に扁平であり、中央部31が外周縁部32よりも膨らんだ形状を呈していた。   Subsequently, the test material 1 was cut | disconnected by the surface orthogonal to the plate width direction Y, and the obtained cross section was observed with the electron microscope. The electron micrograph of the cross section obtained by this is shown in FIG. As is known from FIG. 4, each Fe-based particle 3 existing in a cross section perpendicular to the plate width direction Y is flat in the rolling direction (plate thickness direction Z), and the central portion 31 is more than the outer peripheral edge portion 32. It had a swollen shape.

同様に、試験材1を長手方向Xに直交する面で切断し、得られた断面を電子顕微鏡により観察した。これにより得られた断面の電子顕微鏡写真を図5に示す。図4及び図5より知られるように、長手方向Xに直交する断面に存在する個々のFe系粒子3は、図4と同様に、板厚方向Zに扁平であり、中央部31が外周縁部32よりも膨らんだ形状を呈していた。   Similarly, the test material 1 was cut along a plane orthogonal to the longitudinal direction X, and the obtained cross section was observed with an electron microscope. The electron micrograph of the cross section obtained by this is shown in FIG. 4 and 5, each Fe-based particle 3 existing in a cross section perpendicular to the longitudinal direction X is flat in the plate thickness direction Z, and the central portion 31 is the outer peripheral edge, as in FIG. The shape swelled more than the part 32 was exhibited.

以上の結果から、端子金具用Cu−Fe系合金圧延板1は、図3に示すように、板厚方向Zに扁平な形状を呈する個々のFe系粒子3が長手方向Xに連なって分布しているとともに、隣り合うFe系粒子3の間がCuを主成分とするCu系母相2により分断されている金属組織を有していることを確認した。   From the above results, the Cu—Fe-based alloy rolled sheet 1 for terminal metal fittings has individual Fe-based particles 3 having a flat shape in the plate thickness direction Z distributed in the longitudinal direction X as shown in FIG. In addition, it was confirmed that the adjacent Fe-based particles 3 have a metal structure separated by a Cu-based matrix 2 containing Cu as a main component.

・Fe系粒子3の寸法分布の評価
次に、図4及び図5に基づいて、試験材1におけるFe系粒子3の寸法の分布を評価した。具体的には、まず、図4において観察された全てのFe系粒子3について、圧延方向(長手方向X)に測定して得られる長さ寸法と、圧下方向(板厚方向Z)に測定して得られる厚み寸法とを測定した。そして、得られた長さ寸法及び厚み寸法の値に基づいてヒストグラムを作成した。
Evaluation of dimensional distribution of Fe-based particles 3 Next, based on FIGS. 4 and 5, the distribution of dimensions of the Fe-based particles 3 in the test material 1 was evaluated. Specifically, first, for all the Fe-based particles 3 observed in FIG. 4, the length dimension obtained by measurement in the rolling direction (longitudinal direction X) and the reduction direction (plate thickness direction Z) are measured. The thickness dimension obtained was measured. And the histogram was created based on the value of the obtained length dimension and thickness dimension.

同様に、図5において観察された全てのFe系粒子3について、圧延方向に直角な方向(板幅方向Y)に測定して得られる幅寸法と、厚み寸法とを測定し、これらの値に基づいてヒストグラムを作成した。   Similarly, for all the Fe-based particles 3 observed in FIG. 5, the width dimension and the thickness dimension obtained by measuring in the direction perpendicular to the rolling direction (plate width direction Y) are measured, and these values are obtained. A histogram was created based on this.

図6〜図9に、それぞれ、Fe系粒子3の長さ寸法の分布、幅寸法の分布及び厚み寸法の分布を示す。なお、図6〜図9の横軸はFe系粒子3の寸法を示している。また、図6〜図9の縦軸は、横軸上の寸法範囲内に上記測定により得られた寸法が含まれるFe系粒子3の個数である。また、図8には図4に基づいて作成した厚み寸法の分布を示し、図9には図5に基づいて作成した厚み寸法の分布を示した。   6 to 9 show the distribution of the length dimension, the distribution of the width dimension, and the distribution of the thickness dimension of the Fe-based particles 3, respectively. 6 to 9 indicate the dimensions of the Fe-based particles 3. Moreover, the vertical axis | shaft of FIGS. 6-9 is the number of the Fe-type particle | grains 3 in which the dimension obtained by the said measurement is contained in the dimension range on a horizontal axis. 8 shows the distribution of thickness dimensions created based on FIG. 4, and FIG. 9 shows the distribution of thickness dimensions created based on FIG.

図6〜図9より知られるように、Fe系粒子3の寸法は、長さ寸法及び幅寸法の双方が4〜32μmであり、かつ、厚み寸法が0.2〜3.0μmである範囲に含まれていた。   As is known from FIGS. 6 to 9, the size of the Fe-based particles 3 is in a range in which both the length dimension and the width dimension are 4 to 32 μm and the thickness dimension is 0.2 to 3.0 μm. It was included.

<機械特性評価>
・曲げ試験
試験材1を用いて曲げ試験を行い、圧延板1に曲げ加工を施す場合の加工性を評価した。図10〜図13に曲げ試験の結果を示す。
<Mechanical property evaluation>
-Bending test The bending test was done using the test material 1, and the workability in the case of bending the rolled plate 1 was evaluated. 10 to 13 show the results of the bending test.

図10は、板幅方向Yに伸びる曲げ線に沿って90°曲げ加工を施した試験材1における、屈曲部の写真である。図10に示すように、板幅方向Yに伸びる曲げ線に沿って90°曲げ加工を施した試験材1においては、屈曲部に割れやクラックは発生しなかった。   FIG. 10 is a photograph of the bent portion in the test material 1 subjected to 90 ° bending along a bending line extending in the plate width direction Y. As shown in FIG. 10, in the test material 1 subjected to 90 ° bending along the bending line extending in the plate width direction Y, no cracks or cracks occurred in the bent portion.

図11は、板幅方向Yに伸びる曲げ線に沿って180°曲げ加工を施した試験材1における、屈曲部の写真である。図11に示すように、板幅方向Yに伸びる曲げ線に沿って180°曲げ加工を施した試験材1においては、上述した90°曲げ加工と同様に、屈曲部に割れやクラックは発生しなかった。   FIG. 11 is a photograph of the bent portion in the test material 1 that was subjected to 180 ° bending along the bending line extending in the plate width direction Y. As shown in FIG. 11, in the test material 1 subjected to 180 ° bending along the bending line extending in the plate width direction Y, cracks and cracks are generated in the bent portion as in the 90 ° bending described above. There wasn't.

図12は、圧延方向に伸びる曲げ線に沿って90°曲げ加工を施した試験材1における、屈曲部の写真である。図12に示すように、圧延方向に伸びる曲げ線に沿って90°曲げ加工を施した試験材1においては、屈曲部の板表面に微小な凹凸が見られるものの、割れやクラックは発生しなかった。   FIG. 12 is a photograph of a bent portion in the test material 1 subjected to 90 ° bending along a bending line extending in the rolling direction. As shown in FIG. 12, in the test material 1 subjected to 90 ° bending along the bending line extending in the rolling direction, although minute irregularities are seen on the plate surface of the bent portion, no cracks or cracks occur. It was.

図13は、圧延方向に伸びる曲げ線に沿って180°曲げ加工を施した試験材1における、屈曲部の写真である。図13に示すように、圧延方向に伸びる曲げ線に沿って180°曲げ加工を施した試験材1においては、屈曲部に割れが発生した。   FIG. 13 is a photograph of a bent portion in the test material 1 that was subjected to 180 ° bending along a bending line extending in the rolling direction. As shown in FIG. 13, in the test material 1 subjected to 180 ° bending along the bending line extending in the rolling direction, a crack occurred in the bent portion.

このように、圧延板1は、圧延方向に伸びる曲げ線に沿って曲げ加工を施す際の加工性と比べて、板幅方向Yに伸びる曲げ線に沿って曲げ加工を施す際の加工性がより優れている。それ故、圧延板1は、例えば180°曲げ加工や曲げ半径の小さい曲げ加工等の高い加工性を要求される屈曲部を板幅方向Yに伸びる曲げ線に沿って形成することにより、屈曲部における割れやクラックの発生を抑制しやすい。   Thus, compared with the workability at the time of bending along the bend line extending in the rolling direction, the rolled plate 1 has the workability at the time of bending along the bend line extending in the plate width direction Y. Better. Therefore, the rolled plate 1 is formed by forming a bent portion that requires high workability such as a 180 ° bending process or a bending process with a small bending radius along the bending line extending in the sheet width direction Y. It is easy to suppress the occurrence of cracks and cracks.

また、圧延板1は、例えば90°曲げ加工や曲げ半径の比較的大きい曲げ加工等の比較的曲げ加工の容易な部位であれば、割れやクラックを生じさせることなく圧延方向に伸びる曲げ線に沿って曲げ加工を施すことが可能である。   Further, if the rolled plate 1 is a portion that is relatively easy to bend, such as 90 ° bending or bending with a relatively large bending radius, the rolled plate 1 has a bending line extending in the rolling direction without causing cracks or cracks. It is possible to bend along.

・引張試験
Feを20%含有する試験材1及びFeを10%含有する試験材2の2種の試験材を用いて圧延方向への引張試験及び板幅方向Yへの引張試験を行い、圧延板1の延性を評価した。なお、引張試験はJIS Z 2241に準じて行った。また、引張試験に供する試験片は、圧延方向及び板幅方向の2方向について採取した。
・ Tensile test Tensile test in the rolling direction and tensile test in the sheet width direction Y were performed using two types of test materials, test material 1 containing 20% Fe and test material 2 containing 10% Fe, and rolling. The ductility of the plate 1 was evaluated. The tensile test was performed according to JIS Z 2241. Moreover, the test piece used for a tensile test was extract | collected about 2 directions of a rolling direction and a plate width direction.

図14に、引張試験により取得した応力−ひずみ曲線図を示す。なお、図14の縦軸は引張応力(MPa)であり、横軸はひずみ(%)である。   FIG. 14 shows a stress-strain curve obtained by a tensile test. In FIG. 14, the vertical axis represents tensile stress (MPa) and the horizontal axis represents strain (%).

図14より知られるように、試験材1及び試験材2は、いずれも700MPa以上の引張強さを示した。また、試験材1及び試験材2は、それぞれ、板幅方向Yに引張力を加えた場合の伸びよりも、圧延方向に引張力を加えた場合の伸びの方が大きくなった。   As is known from FIG. 14, both of the test material 1 and the test material 2 exhibited a tensile strength of 700 MPa or more. Further, each of the test material 1 and the test material 2 had a larger elongation when the tensile force was applied in the rolling direction than when the tensile force was applied in the plate width direction Y.

以上のように、圧延板1は、圧延方向と直角な方向(板幅方向Y)への延性に比べて圧延方向への延性がより大きい。   As described above, the rolled plate 1 has higher ductility in the rolling direction than that in the direction perpendicular to the rolling direction (sheet width direction Y).

次に、端子金具用Cu−Fe系合金圧延板1の作用効果について説明する。圧延板1は、10質量%以上のFeを含有し、残部がCu及び不可避不純物よりなる化学成分を有している。そのため、圧延板1は、従来の銅合金と同等以下の材料コストを容易に実現できる。   Next, the effect of the Cu-Fe type alloy rolled sheet 1 for terminal metal fittings is demonstrated. The rolled sheet 1 contains 10% by mass or more of Fe, and the balance has chemical components composed of Cu and inevitable impurities. Therefore, the rolled plate 1 can easily realize a material cost equal to or lower than that of a conventional copper alloy.

また、圧延板1は、Cuを主成分とするCu系母相2中に、Feを主成分とし、圧下方向に扁平な形状を呈するFe系粒子3が圧延方向に連なって分布する金属組織を有している。そのため、圧延板1は、圧延方向と直角な方向に比べて圧延方向への延性がより大きくなる。   Further, the rolled plate 1 has a metal structure in which Fe-based particles 3 which are mainly composed of Fe and have a flat shape in the rolling direction are distributed in the rolling direction in the Cu-based matrix 2 mainly composed of Cu. Have. For this reason, the rolled sheet 1 is more ductile in the rolling direction than in the direction perpendicular to the rolling direction.

また、圧延板1は、上記特定の化学成分と、上述した金属組織とを具備していることにより、従来の銅合金よりも高い強度を有する。   Moreover, the rolled sheet 1 has a higher strength than a conventional copper alloy by including the specific chemical component and the metal structure described above.

以上のように、端子金具用Cu−Fe系合金圧延板1は、加工性と強度との双方に優れ、材料コストの安価なものとなる。   As described above, the Cu—Fe-based alloy rolled sheet 1 for terminal metal fittings is excellent in both workability and strength, and is low in material cost.

本例のように、圧延板1が圧延方向に優れた延性を示すメカニズムとしては、例えば以下のメカニズムが考えられる。   As the mechanism in which the rolled sheet 1 exhibits excellent ductility in the rolling direction as in this example, for example, the following mechanism can be considered.

試験材1の引張試験後における破断面を電子顕微鏡により観察したところ、圧延方向に引張力を加えた場合の破断面は、図15に示すように、ディンプル状を呈する延性破壊痕(符号4)の中に、粒子状の破壊痕(符号5)を多数有していた。これに対し、板幅方向Yに引張力を加えた場合の破断面は、図16に示すように、略全面がディンプル状の延性破壊痕(符号4)となっており、図15に比べて粒子状の破壊痕(符号5)がほとんど観察されなかった。   When the fracture surface of the test material 1 after the tensile test was observed with an electron microscope, the fracture surface when a tensile force was applied in the rolling direction was a ductile fracture mark (symbol 4) exhibiting a dimple shape as shown in FIG. It had a lot of particulate fracture marks (symbol 5). On the other hand, as shown in FIG. 16, the fracture surface when a tensile force is applied in the plate width direction Y has a dimple-like ductile fracture mark (reference numeral 4) as shown in FIG. Particulate fracture marks (reference numeral 5) were hardly observed.

また、図15及び図16における符号4(4a、4b、4c)及び符号5(5a、5b、5c、5d)で示した点について、EDX(エネルギー分散型X線分光法)による組成分析を行った。その結果を表1に示す。   Further, composition analysis by EDX (energy dispersive X-ray spectroscopy) was performed on the points indicated by reference numerals 4 (4a, 4b, 4c) and reference numerals 5 (5a, 5b, 5c, 5d) in FIGS. It was. The results are shown in Table 1.

表1より知られるように、延性破壊痕(符号4)における組成は、粒子状の破壊痕(符号5)における組成に比べてFeの濃度が低かった。従って、延性破壊痕は、Fe濃度の低いCu系母相2が延性破壊を起こした痕跡であり、粒子状の破壊痕は、Fe系粒子3とCu系母相2との界面が破壊され、Fe系粒子3がCu系母相2から脱落した痕跡であると推測できる。   As can be seen from Table 1, the composition of the ductile fracture trace (reference numeral 4) had a lower Fe concentration than the composition of the particulate fracture trace (reference numeral 5). Accordingly, the ductile fracture trace is a trace where the Cu-based matrix 2 having a low Fe concentration has undergone ductile fracture, and the particulate fracture trace is the interface between the Fe-based particle 3 and the Cu-based matrix 2 being destroyed, It can be estimated that the Fe-based particles 3 are traces of dropping from the Cu-based matrix 2.

以上の観察結果から、圧延方向への引張試験においては、Fe系粒子3がCu系母相2から脱落することにより、比較的延性の高いCu系母相2の性質に由来して端子金具用Cu−Fe系合金圧延板1が延びやすくなっていると考えられる。一方、板幅方向Yへの引張試験においては、Fe系粒子3とCu系母相2とが強固に結合しており、Cu系母相2からのFe系粒子3の脱落が起こりにくくなっていると考えられる。それ故、全面において延性破壊となるために延びにくくなっていると考えられる。   From the above observation results, in the tensile test in the rolling direction, the Fe-based particles 3 fall off from the Cu-based matrix 2, and thus the terminal metal for the terminal metal fitting is derived from the properties of the relatively high ductility of the Cu-based matrix 2. It is considered that the Cu—Fe-based alloy rolled sheet 1 is easily extended. On the other hand, in the tensile test in the plate width direction Y, the Fe-based particles 3 and the Cu-based parent phase 2 are firmly bonded, and the Fe-based particles 3 are less likely to fall off from the Cu-based mother phase 2. It is thought that there is. Therefore, it is considered that the entire surface is difficult to extend because of ductile fracture.

以上のメカニズムを、Fe系粒子3の形成過程との関係から考察すると、Cu系母相2とFe系粒子3との結合の強さは、以下のようなメカニズムによって変化すると推測できる。   Considering the above mechanism from the relationship with the formation process of the Fe-based particles 3, it can be estimated that the bonding strength between the Cu-based matrix 2 and the Fe-based particles 3 is changed by the following mechanism.

端子金具用Cu−Fe系合金圧延板1の金属組織は、その作製工程において、例えば以下のような過程により形成される。図17(a)に示すように、冷間加工を施す前の中間材100においては、Feを主成分とする晶出物301や析出物302がCu系母相2中に分散している。この状態の中間材100に対して冷間圧延を施すと、晶出物301や析出物302が、冷間圧延時の加工力を受けて、圧延方向に引き延ばされつつ、圧下方向に薄くなるよう塑性変形する(図17(b)参照)。   The metal structure of the Cu—Fe-based alloy rolled sheet 1 for terminal fittings is formed by the following process, for example, in the production process. As shown in FIG. 17 (a), in the intermediate material 100 before cold working, crystallized substances 301 and precipitates 302 containing Fe as a main component are dispersed in the Cu-based matrix 2. When the intermediate material 100 in this state is cold-rolled, the crystallized substance 301 and the precipitate 302 receive the processing force during the cold rolling and are stretched in the rolling direction and thinned in the rolling direction. It is plastically deformed (see FIG. 17B).

そして、晶出物301や析出物302が十分に引き延ばされ、それ以上塑性変形ができなくなった状態からさらに加工力を受けると、図17(c)に示すように、晶出物301や析出物302が圧延方向に分断され、Fe系粒子3が生じる。また、それと同時に隣り合うFe系粒子3の間にCu系母相2が進入する。以上により、Fe系粒子3が圧延方向に連なって分布すると共に、隣り合うFe系粒子3の間がCu系母相2により分断されている金属組織が形成される。   Then, when the crystallized substance 301 and the precipitate 302 are sufficiently stretched and further subjected to a processing force from the state in which plastic deformation cannot be performed any more, as shown in FIG. The precipitate 302 is divided in the rolling direction, and Fe-based particles 3 are generated. At the same time, the Cu-based matrix 2 enters between the adjacent Fe-based particles 3. Thus, a metal structure is formed in which the Fe-based particles 3 are distributed continuously in the rolling direction and the adjacent Fe-based particles 3 are separated by the Cu-based matrix 2.

このような過程において、Fe系粒子3の板幅方向Yの端部33(図3参照)は、Cu系母相2と常に接しながら変形している。それ故、Fe系粒子3の板幅方向Yの端部33とCu系母相2との結合が強固なものとなり、例えば板幅方向Yに引張試験を行う際等に、Fe系粒子3が脱落しにくくなっていると考えられる。   In such a process, the end portion 33 (see FIG. 3) of the Fe-based particles 3 in the plate width direction Y is deformed while always in contact with the Cu-based matrix 2. Therefore, the bond between the end portion 33 of the Fe-based particles 3 in the plate width direction Y and the Cu-based matrix 2 becomes strong. For example, when performing a tensile test in the plate width direction Y, the Fe-based particles 3 It seems that it is difficult to drop off.

一方、Fe系粒子3の圧延方向(長手方向X)の端部34(図3参照)は、冷間加工に伴って晶出物301や析出物302が分断されることにより形成される。そのため、板幅方向Yの端部33に比べてCu系母相2との結合が弱くなり易いと考えられる。それ故、例えば圧延方向に引張試験を行う際等に、圧延方向の端部34がCu系母相2から剥離し、Fe系粒子3が脱落し易くなっていると考えられる。   On the other hand, the end 34 (see FIG. 3) in the rolling direction (longitudinal direction X) of the Fe-based particles 3 is formed by dividing the crystallized substance 301 and the precipitates 302 along with the cold working. Therefore, it is considered that the bond with the Cu-based parent phase 2 is likely to be weaker than the end portion 33 in the plate width direction Y. Therefore, for example, when performing a tensile test in the rolling direction, it is considered that the end 34 in the rolling direction peels off from the Cu-based matrix 2 and the Fe-based particles 3 are likely to fall off.

(実施例2)
本例は、端子金具用Cu−Fe系合金圧延板1を用いて作製した雌端子金具101の例である。本例の雌端子金具101は、実施例1における試験材1に相当する圧延板1を用いて形成されている。また、図18及び図19に示すように、雌端子金具101は、電線の端末部を接続するバレル部11と、バレル部11に連なる略角筒状の筒状体部12とを有している。そして、筒状体部12は、図20に示すように、圧延板1の圧延方向(長手方向X)とのなす角度θが45〜90°の範囲である直線状の曲げ線120に沿って圧延板1に曲げ加工を施して形成されている。
(Example 2)
This example is an example of the female terminal fitting 101 produced using the Cu-Fe alloy rolled sheet 1 for terminal fitting. The female terminal fitting 101 of this example is formed using a rolled plate 1 corresponding to the test material 1 in the first embodiment. As shown in FIGS. 18 and 19, the female terminal fitting 101 includes a barrel portion 11 that connects the terminal portion of the electric wire, and a substantially rectangular tube-shaped tubular body portion 12 that continues to the barrel portion 11. Yes. And the cylindrical body part 12 is along the linear bending line 120 whose angle (theta) which makes with the rolling direction (longitudinal direction X) of the rolled sheet 1 is the range of 45-90 degrees, as shown in FIG. The rolled plate 1 is formed by bending.

また、雌端子金具101は、図19に示すように、筒状体部12内に配されると共に、筒状体部12の開口端121と半円筒状に湾曲する湾曲部13を介して連なって形成される弾性片部14を有している。また、雌端子金具101は、弾性片部14に面して配設され、雄端子金具との電気的接点を形成する接点部15を筒状体部12内に有している。   Further, as shown in FIG. 19, the female terminal fitting 101 is arranged in the cylindrical body portion 12 and is connected to the opening end 121 of the cylindrical body portion 12 via the curved portion 13 that is curved in a semi-cylindrical shape. The elastic piece portion 14 is formed. In addition, the female terminal fitting 101 is disposed facing the elastic piece portion 14 and has a contact portion 15 in the cylindrical body portion 12 that forms an electrical contact with the male terminal fitting.

バレル部11は、電線の端末部における絶縁被覆をかしめて固定するインシュレーションバレル部111と、電線の端末部における導体をかしめて圧着するワイヤバレル部112とを有している。   The barrel part 11 has an insulation barrel part 111 for caulking and fixing the insulation coating at the terminal part of the electric wire, and a wire barrel part 112 for caulking and crimping the conductor at the terminal part of the electric wire.

雌端子金具101は、例えば以下のようにして作製することができる。まず、圧延板1に打ち抜き加工を施し、図20に示す端子中間体10を作製する。端子中間体10は、筒状体部12、接点部15、弾性片部14及びバレル部11に相当する複数の端子部103と、複数の端子部103を連ねるキャリア部104とを有している。   The female terminal fitting 101 can be manufactured as follows, for example. First, the rolled sheet 1 is punched to produce a terminal intermediate 10 shown in FIG. The terminal intermediate body 10 includes a plurality of terminal portions 103 corresponding to the cylindrical body portion 12, the contact portion 15, the elastic piece portion 14, and the barrel portion 11, and a carrier portion 104 that connects the plurality of terminal portions 103. .

端子部103は、弾性片部14に相当する端子前部103aと、筒状体部12及び接点部15に相当する端子中央部103bと、バレル部11に相当する端子後部103cとを一体に有している。また、端子中間体10は、端子前部103a、端子中央部103b及び端子後部103cが、圧延板1の板幅方向Yに一列に並んでいる。そして、端子後部103cは圧延方向に延設されたキャリア部104に連なっている。   The terminal portion 103 has a terminal front portion 103 a corresponding to the elastic piece portion 14, a terminal center portion 103 b corresponding to the cylindrical body portion 12 and the contact portion 15, and a terminal rear portion 103 c corresponding to the barrel portion 11. doing. Further, the terminal intermediate body 10 has a terminal front portion 103 a, a terminal center portion 103 b, and a terminal rear portion 103 c arranged in a line in the plate width direction Y of the rolled plate 1. And the terminal rear part 103c is continued to the carrier part 104 extended in the rolling direction.

端子中間体10を作製した後、端子部103に曲げ加工を施し、雌端子金具101の形状に成形する。端子前部103aには、圧延方向とのなす角度が0°となる曲げ線130(図20参照)に沿って曲げ加工が施される。これにより、筒状体部12の開口端121から半円筒状に湾曲する湾曲部13が形成される。その結果、図19に示すように、筒状体部12の内部に弾性片部14が配設されるとともに、弾性片部14が湾曲部13を介して筒状体部12の開口端121と連なって形成される。   After producing the terminal intermediate body 10, the terminal portion 103 is bent and formed into the shape of the female terminal fitting 101. The terminal front portion 103a is bent along a bending line 130 (see FIG. 20) that makes an angle with the rolling direction of 0 °. Thereby, the curved part 13 which curves in the semi-cylindrical form from the opening end 121 of the cylindrical body part 12 is formed. As a result, as shown in FIG. 19, the elastic piece portion 14 is disposed inside the cylindrical body portion 12, and the elastic piece portion 14 is connected to the opening end 121 of the cylindrical body portion 12 via the bending portion 13. It is formed in a row.

また、図20に示すように、端子中央部103bには、圧延方向とのなす角度θが90°となる4本の曲げ線120に沿って、4箇所の90°曲げ加工が施される。これにより、略角筒状の筒状体部12が形成されるとともに、接点部15が筒状体部12の筒内に折り込まれ、弾性片部14に面する位置に配設される。   As shown in FIG. 20, the terminal central portion 103b is subjected to four 90 ° bending processes along four bending lines 120 where the angle θ formed with the rolling direction is 90 °. As a result, a substantially rectangular tubular body 12 is formed, and the contact 15 is folded into the cylinder of the tubular body 12 and disposed at a position facing the elastic piece 14.

また、端子後部103cには、板幅方向Yから見て略U字状を呈するように曲げ加工が施される。これにより、バレル部11が形成される。   Further, the terminal rear portion 103c is bent so as to exhibit a substantially U shape when viewed from the plate width direction Y. Thereby, the barrel part 11 is formed.

次に、本例の作用効果について説明する。本例の雌端子金具101は、端子金具用Cu−Fe系合金圧延板1を素材として用いると共に、圧延板1の圧延方向とのなす角度θが90°である直線状の曲げ線120に沿って圧延板1に曲げ加工を施すことにより筒状体部12が形成されている。そのため、筒状体部12を形成する90°曲げ加工の際に、圧延板1の有する圧延方向への高い延性を効果的に利用することができる。その結果、雌端子金具101は、筒状体部12に割れが生じにくく、優れた品質を有する。   Next, the function and effect of this example will be described. The female terminal fitting 101 of this example uses the Cu—Fe-based alloy rolled sheet 1 for terminal fitting as a material, and along a linear bending line 120 where the angle θ formed with the rolling direction of the rolled sheet 1 is 90 °. The cylindrical body 12 is formed by bending the rolled plate 1. Therefore, the high ductility in the rolling direction of the rolled plate 1 can be effectively utilized during the 90 ° bending process for forming the cylindrical body portion 12. As a result, the female terminal fitting 101 is less likely to be cracked in the cylindrical body portion 12 and has excellent quality.

また、雌端子金具101は、筒状体部12内に配されると共に、半円筒状に湾曲する湾曲部13を介して筒状体部12の開口端121に連なって形成される弾性片部14を有している。そのため、雌端子金具101は、雄端子金具との接触荷重をより高くすることができ、接続信頼性をより向上させることができる。   In addition, the female terminal fitting 101 is disposed in the cylindrical body portion 12 and is an elastic piece portion formed continuously to the opening end 121 of the cylindrical body portion 12 via the curved portion 13 that is curved in a semicylindrical shape. 14. Therefore, the female terminal fitting 101 can further increase the contact load with the male terminal fitting, and can further improve the connection reliability.

また、湾曲部13が略半円筒状を呈しているため、湾曲部13を形成する際の曲げ加工において、曲げ半径が比較的大きくなる。それ故、湾曲部13を形成する際の曲げ加工を容易に行うことができると共に、湾曲部13に割れが生じにくくなる。これらの結果、雌端子金具101は、より優れた接続信頼性を有すると共に、より優れた品質を有する。   In addition, since the bending portion 13 has a substantially semi-cylindrical shape, the bending radius becomes relatively large in the bending process when forming the bending portion 13. Therefore, it is possible to easily perform the bending process when forming the curved portion 13 and it is difficult for the curved portion 13 to be cracked. As a result, the female terminal fitting 101 has superior connection reliability and superior quality.

(実施例3)
本例は、端子金具用Cu−Fe系合金圧延板1を用いて作製した雄端子金具102の例である。本例の雄端子金具102は、実施例1における試験材1に相当する圧延板1を用いて形成されている。また、図21に示すように、雄端子金具102は、バレル部11と、筒状体部12とを有している。そして、図22に示すように、筒状体部12は、圧延板1の圧延方向とのなす角度θが90°である直線状の曲げ線120に沿って端子金具用Cu−Fe系合金圧延板1に曲げ加工を施して形成されている。
(Example 3)
This example is an example of the male terminal fitting 102 produced using the Cu—Fe alloy rolled sheet 1 for terminal fitting. The male terminal fitting 102 of this example is formed using a rolled plate 1 corresponding to the test material 1 in the first embodiment. Further, as shown in FIG. 21, the male terminal fitting 102 has a barrel portion 11 and a cylindrical body portion 12. Then, as shown in FIG. 22, the cylindrical body portion 12 is rolled with a Cu—Fe alloy for terminal fittings along a linear bending line 120 having an angle θ of 90 ° with the rolling direction of the rolled plate 1. The plate 1 is formed by bending.

また、図21及び図22に示すように、雄端子金具102は、筒状体部12の開口端121からバレル部11と反対側に向けて延設され、圧延板1の圧延方向とのなす角度が90°である直線状の曲げ線160に沿って圧延板1を折り重ねてなるタブ部16を有している。   Further, as shown in FIGS. 21 and 22, the male terminal fitting 102 extends from the opening end 121 of the cylindrical body portion 12 toward the opposite side to the barrel portion 11, and forms the rolling direction of the rolled plate 1. The tab portion 16 is formed by folding the rolled plate 1 along a linear bending line 160 having an angle of 90 °.

雄端子金具102は、例えば以下のようにして作製することができる。まず、圧延板1に打ち抜き加工を施し、図22に示す端子中間体10を作製する。端子中間体10は、筒状体部12、タブ部16及びバレル部11に相当する複数の端子部103と、複数の端子部103を連ねるキャリア部104とを有している。   The male terminal fitting 102 can be manufactured as follows, for example. First, the rolled sheet 1 is punched to produce a terminal intermediate 10 shown in FIG. The terminal intermediate body 10 includes a plurality of terminal portions 103 corresponding to the cylindrical body portion 12, the tab portion 16 and the barrel portion 11, and a carrier portion 104 connecting the plurality of terminal portions 103.

端子部103は、タブ部16に相当する端子前部103aと、筒状体部12に相当する端子中央部103bと、バレル部11に相当する端子後部103cとを一体に有している。また、端子中間体10は、端子前部103a、端子中央部103b及び端子後部103cが、圧延板1の板幅方向Yに向けて一列に並んでいる。そして、端子後部103cはキャリア部104に連なっている。   The terminal portion 103 integrally includes a terminal front portion 103 a corresponding to the tab portion 16, a terminal center portion 103 b corresponding to the cylindrical body portion 12, and a terminal rear portion 103 c corresponding to the barrel portion 11. In the terminal intermediate body 10, the terminal front portion 103 a, the terminal center portion 103 b, and the terminal rear portion 103 c are arranged in a line in the plate width direction Y of the rolled plate 1. The terminal rear portion 103 c is continuous with the carrier portion 104.

端子中間体10を作製した後、端子部103に曲げ加工を施し、雄端子金具102の形状に成形する。端子前部103aには、圧延方向とのなす角度φが90°となる2本の曲げ線160に沿って、2箇所の90°曲げ加工が施される。すなわち、端子前部103aは、2本の曲げ線160により区画された3つの領域161a、161bのうち、両側の領域161aの内表面が互いに密着するようにして折り重ねられる。これにより、板幅方向Zに垂直な断面において板厚方向Zに扁平な形状を呈するタブ部16が形成される。   After producing the terminal intermediate body 10, the terminal portion 103 is bent to form the male terminal fitting 102. The terminal front portion 103a is subjected to two 90 ° bending processes along two bending lines 160 where the angle φ formed with the rolling direction is 90 °. That is, the terminal front portion 103a is folded so that the inner surfaces of the regions 161a on both sides of the three regions 161a and 161b defined by the two bending lines 160 are in close contact with each other. Thereby, the tab part 16 which exhibits a flat shape in the plate thickness direction Z in the cross section perpendicular to the plate width direction Z is formed.

その他は実施例2と同様である。なお、図21及び図22において用いた符号のうち、実施例2において用いた符号と同一のものは、実施例2と同様の構成要素等を示す。   Others are the same as in the second embodiment. Of the reference numerals used in FIGS. 21 and 22, the same reference numerals as those used in the second embodiment indicate the same components as in the second embodiment.

本例の雄端子金具102は、圧延板1を素材として用いると共に、圧延板1の圧延方向とのなす角度θが90°である直線状の曲げ線120に沿って圧延板1に曲げ加工を施すことにより筒状体部12が形成されている。そのため、雄端子金具102は、筒状体部12に割れが生じにくく、優れた品質を有する。   The male terminal fitting 102 of this example uses the rolled plate 1 as a material, and bends the rolled plate 1 along a linear bending line 120 having an angle θ of 90 ° with the rolling direction of the rolled plate 1. By applying, the cylindrical body part 12 is formed. Therefore, the male terminal fitting 102 is not easily cracked in the cylindrical body portion 12 and has excellent quality.

また、雄端子金具102は、筒状体部12の開口端121からバレル部11と反対側に向けて延設され、圧延板1の圧延方向とのなす角度φが90°である直線状の曲げ線160に沿って圧延板1を折り重ねてなるタブ部16を有している。そのため、タブ部16を成形する90°曲げ加工の際に、圧延板1の有する圧延方向への高い延性を効果的に利用することができる。その結果、雄端子金具102は、タブ部16に割れが生じにくく、優れた品質を有する。   The male terminal fitting 102 extends from the opening end 121 of the cylindrical body portion 12 toward the opposite side to the barrel portion 11, and is a linear shape having an angle φ of 90 ° with the rolling direction of the rolled plate 1. It has a tab portion 16 formed by folding the rolled plate 1 along a bending line 160. Therefore, the high ductility in the rolling direction of the rolled plate 1 can be effectively utilized during the 90 ° bending process for forming the tab portion 16. As a result, the male terminal fitting 102 is not easily cracked in the tab portion 16 and has excellent quality.

1 端子金具用Cu−Fe系合金圧延板
2 Cu系母相
3 Fe系粒子
DESCRIPTION OF SYMBOLS 1 Cu-Fe type alloy rolled sheet for terminal metal fittings 2 Cu type | mold mother phase 3 Fe type particle | grains

上記圧延板中に存在するFe系粒子が、上記長さ寸法が32μmを超えるFe系粒子、上記幅寸法が32μmを超えるFe系粒子及び上記厚み寸法が3.0μmを超えるFe系粒子のうち1種以上のFe系粒子のみから構成されている場合には、曲げ加工等を施す際に、Fe系粒子自身の変形に伴い、Fe系粒子とCu系母相との間に亀裂が生じるおそれがある。このような亀裂は、割れの原因となるおそれがあり、ひいては加工性が不十分となるおそれがある。 Fe-based particles present in the rolling plate, among the Fe-based particles the length Fe based particles size is more than 32 [mu] m, the width dimension of Fe-based particles and the thickness exceeds 32 [mu] m greater than 3.0 [mu] m 1 In the case of being composed of only Fe-type particles or more of seeds, there is a risk that cracking may occur between the Fe-based particles and the Cu-based matrix due to deformation of the Fe-based particles themselves when bending or the like is performed. is there. Such cracks may cause cracking, and as a result, workability may be insufficient.

また、上記圧延板中に存在するFe系粒子が、上記長さ寸法が4μm未満となるFe系粒子、上記幅寸法が4μm未満となるFe系粒子及び上記厚み寸法が0.2μm未満となるFe系粒子のうち1種以上のFe系粒子のみから構成されている場合には、Fe系粒子による強度向上効果が不十分となる恐れがある。つまり、Fe系粒子が荷重を支えきれず、Cu系母相が容易に変形するおそれがあるため、強度が不十分となるおそれがある。 Further, Fe-based particles present in the rolling plate, the length dimension is less than 4 [mu] m Fe-based particles, Fe-based particles and the thickness of the width dimension is less than 4 [mu] m is less than 0.2 [mu] m Fe If the particles are composed of only one or more types of Fe- based particles, the strength improvement effect by the Fe-based particles may be insufficient. That is, the Fe-based particles cannot support the load, and the Cu-based matrix may be easily deformed, so that the strength may be insufficient.

端子中間体10を作製した後、端子部103に曲げ加工を施し、雄端子金具102の形状に成形する。端子前部103aには、圧延方向とのなす角度φが90°となる2本の曲げ線160に沿って、2箇所の90°曲げ加工が施される。すなわち、端子前部103aは、2本の曲げ線160により区画された3つの領域161a、161bのうち、両側の領域161aの内表面が互いに密着するようにして折り重ねられる。これにより、板幅方向に垂直な断面において板厚方向Zに扁平な形状を呈するタブ部16が形成される。 After producing the terminal intermediate body 10, the terminal portion 103 is bent to form the male terminal fitting 102. The terminal front portion 103a is subjected to two 90 ° bending processes along two bending lines 160 where the angle φ formed with the rolling direction is 90 °. That is, the terminal front portion 103a is folded so that the inner surfaces of the regions 161a on both sides of the three regions 161a and 161b defined by the two bending lines 160 are in close contact with each other. Thereby, the tab part 16 which exhibits a flat shape in the plate thickness direction Z in the cross section perpendicular to the plate width direction Y is formed.

本発明の一態様は、10質量%以上70質量%以下のFeを含有し、残部がCu及び不可避不純物よりなる化学成分を有し、
Cuを主成分とするCu系母相中に、Feを主成分とし、圧下方向に扁平な形状を呈するFe系粒子が圧延方向に連なって分布しており、かつ、一連の上記Fe系粒子における隣り合う該Fe系粒子の間に上記Cu系母相が介在している金属組織を有していることを特徴とする端子金具用Cu−Fe系合金圧延板にある。
One aspect of the present invention contains 10% by mass or more and 70% by mass or less of Fe, with the remainder having chemical components consisting of Cu and inevitable impurities,
In the Cu-based matrix having Cu as a main component, Fe-based particles having Fe as a main component and having a flat shape in the rolling direction are distributed continuously in the rolling direction , and in the series of Fe-based particles, The Cu-Fe alloy rolled sheet for terminal metal fittings has a metal structure in which the Cu-based matrix is interposed between the adjacent Fe-based particles .

また、上記圧延板は、Cuを主成分とするCu系母相中に、Feを主成分とし、圧下方向に扁平な形状を呈するFe系粒子が圧延方向に連なって分布しており、かつ、一連の上記Fe系粒子における隣り合う該Fe系粒子の間に上記Cu系母相が介在している金属組織を有している。かかる金属組織を有する上記圧延板は、圧延方向への延性が比較的大きくなる。それ故、例えば、圧延方向と直角方向に伸びる曲げ線に沿って上記圧延板に曲げ加工を施す際に、屈曲部分に割れが生じにくくなる。このように、上記圧延板は、加工方向を適切に選択することにより優れた加工性を有する。そのため、上記圧延板の圧延方向を考慮して端子金具を作製することにより、曲げ加工等に伴う割れの発生を抑制することができる。 Further, the rolled plate has Fe-based particles having a main shape of Fe and a flat shape in the rolling direction distributed in the rolling direction in a Cu-based matrix having Cu as a main component , and In the series of Fe-based particles, the Cu-based matrix is interposed between adjacent Fe-based particles . The rolled sheet having such a metal structure has a relatively large ductility in the rolling direction. Therefore, for example, when bending the rolled sheet along a bending line extending in a direction perpendicular to the rolling direction, cracks are less likely to occur at the bent portion. As described above, the rolled sheet has excellent workability by appropriately selecting the processing direction. Therefore, the production of a terminal fitting in consideration of the rolling direction of the rolled plate can suppress the occurrence of cracks associated with bending or the like.

以上のように、上記端子金具用Cu−Fe系合金圧延板は、Feの含有量を10質量%以上70質量%以下とすることにより、端子金具の素材に要求される強度、加工性、導電性等の諸特性を満足し、材料コストの安価な材料となる As described above, the Cu—Fe-based alloy rolled sheet for terminal fittings has the strength, workability, and conductivity required for the terminal fitting material by setting the Fe content to 10 mass% to 70 mass%. It satisfies various properties such as properties, and is a material with a low material cost .

なお、上述した「主成分」とは、最も含有量の多い元素であることを意味している。そして、上記Cu系母相は主成分のCuの他に微量のFeあるいは不可避不純物を含有する場合がある。また、Fe系粒子は主成分のFeの他に微量のCuあるいは不可避不純物を含有する場合がある。 The above-mentioned “main component” means an element having the highest content. The Cu-based matrix may contain a trace amount of Fe or inevitable impurities in addition to the main component Cu. The Fe-based particles may contain a trace amount of Cu or inevitable impurities in addition to the main component Fe.

Claims (7)

10質量%以上のFeを含有し、残部がCu及び不可避不純物よりなる化学成分を有し、
Cuを主成分とするCu系母相中に、Feを主成分とし、圧下方向に扁平な形状を呈するFe系粒子が圧延方向に連なって分布する金属組織を有していることを特徴とする端子金具用Cu−Fe系合金圧延板。
Containing 10% by mass or more of Fe, the balance having a chemical component consisting of Cu and inevitable impurities,
The Cu-based matrix containing Cu as a main component has a metal structure in which Fe-based particles that are mainly composed of Fe and have a flat shape in the rolling direction are distributed continuously in the rolling direction. Cu-Fe alloy rolled sheet for terminal fittings.
上記Fe系粒子は、上記圧延方向と平行な方向に測定して得られる長さ寸法及び上記圧延方向と直角な方向に測定して得られる幅寸法の双方が4〜32μmであり、かつ、上記圧下方向に測定して得られる厚み寸法が0.2〜3.0μmであることを特徴とする請求項1に記載の端子金具用Cu−Fe系合金圧延板。   Both the length dimension obtained by measuring the Fe-based particles in a direction parallel to the rolling direction and the width dimension obtained by measuring in a direction perpendicular to the rolling direction are 4 to 32 μm, and The Cu-Fe-based alloy rolled sheet for terminal fittings according to claim 1, wherein the thickness dimension obtained by measuring in the rolling direction is 0.2 to 3.0 µm. 引張強さが700MPa以上であることを特徴とする請求項1または2に記載の端子金具用Cu−Fe系合金圧延板。   The tensile strength is 700 MPa or more, Cu-Fe type alloy rolled sheet for terminal metal fittings according to claim 1 or 2. 請求項1〜3のいずれか1項に記載の端子金具用Cu−Fe系合金圧延板よりなる端子金具であって、
電線の端末部を接続するバレル部と、
該バレル部に連なる略角筒状の筒状体部とを有し、
該筒状体部は、上記端子金具用Cu−Fe系合金圧延板の上記圧延方向とのなす角度が45〜90°の範囲である直線状の曲げ線に沿って上記端子金具用Cu−Fe系合金圧延板に曲げ加工を施して形成されていることを特徴とする端子金具。
It is a terminal metal fitting which consists of a Cu-Fe system alloy rolled sheet for terminal metal fittings of any one of Claims 1-3,
A barrel part for connecting the terminal part of the electric wire;
A substantially rectangular tube-shaped cylindrical body portion connected to the barrel portion,
The cylindrical body portion is formed of the Cu-Fe for terminal fittings along a linear bending line in which the angle formed with the rolling direction of the Cu-Fe alloy rolled sheet for terminal fittings is in the range of 45 to 90 °. A terminal fitting formed by bending a rolled alloy plate.
上記曲げ線と上記圧延方向とのなす角度が90°であることを特徴とする請求項4に記載の端子金具。   The terminal fitting according to claim 4, wherein an angle formed by the bend line and the rolling direction is 90 °. 上記端子金具は、上記筒状体部内に配されると共に、半円筒状に湾曲する湾曲部を介して上記筒状体部の開口端に連なって形成される弾性片部を有していることを特徴とする請求項4または5に記載の雌端子金具。   The terminal fitting has an elastic piece portion that is arranged in the cylindrical body portion and is connected to the opening end of the cylindrical body portion via a curved portion that curves in a semi-cylindrical shape. The female terminal fitting according to claim 4 or 5. 上記端子金具は、上記筒状体部の開口端から上記バレル部と反対側に向けて延設され、上記端子金具用Cu−Fe系合金圧延板の上記圧延方向とのなす角度が45〜90°の範囲である直線状の曲げ線に沿って上記端子金具用Cu−Fe系合金圧延板を折り重ねてなるタブ部を有していることを特徴とする請求項4または5に記載の雄端子金具。   The terminal fitting extends from the opening end of the cylindrical body portion toward the opposite side of the barrel portion, and an angle formed with the rolling direction of the Cu—Fe-based alloy rolled sheet for terminal fitting is 45 to 90. 6. The male part according to claim 4 or 5, further comprising a tab portion formed by folding the terminal metal fitting Cu-Fe alloy rolled sheet along a linear bending line in a range of °. Terminal fitting.
JP2013259746A 2013-12-17 2013-12-17 Cu-Fe-BASED ALLOY ROLLED SHEET FOR TERMINAL METAL FITTING AND TERMINAL METAL FITTING Pending JP2015117392A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013259746A JP2015117392A (en) 2013-12-17 2013-12-17 Cu-Fe-BASED ALLOY ROLLED SHEET FOR TERMINAL METAL FITTING AND TERMINAL METAL FITTING
PCT/JP2014/081739 WO2015093270A1 (en) 2013-12-17 2014-12-01 Cu-fe alloy rolled plate for terminal fitting and terminal fitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013259746A JP2015117392A (en) 2013-12-17 2013-12-17 Cu-Fe-BASED ALLOY ROLLED SHEET FOR TERMINAL METAL FITTING AND TERMINAL METAL FITTING

Publications (1)

Publication Number Publication Date
JP2015117392A true JP2015117392A (en) 2015-06-25

Family

ID=53402619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013259746A Pending JP2015117392A (en) 2013-12-17 2013-12-17 Cu-Fe-BASED ALLOY ROLLED SHEET FOR TERMINAL METAL FITTING AND TERMINAL METAL FITTING

Country Status (2)

Country Link
JP (1) JP2015117392A (en)
WO (1) WO2015093270A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080360A1 (en) * 2018-10-16 2020-04-23 パナソニックIpマネジメント株式会社 Terminal component and manufacturing method therefor, and electronic device including terminal component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249505A (en) * 2005-03-10 2006-09-21 Nikko Metal Manufacturing Co Ltd High-strength and high-conductivity copper alloy and its manufacturing method
JP2006283129A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk High strength and high conductivity copper alloy, copper alloy spring material, copper alloy foil, and method for producing high strength and high conductivity copper alloy
JP2009079283A (en) * 2007-09-27 2009-04-16 Nikko Kinzoku Kk High-strength, high-conductivity two phase copper alloy
JP2012188709A (en) * 2011-03-11 2012-10-04 Japan Steel Works Ltd:The High-strength and high-conductivity two-phase copper alloy and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249505A (en) * 2005-03-10 2006-09-21 Nikko Metal Manufacturing Co Ltd High-strength and high-conductivity copper alloy and its manufacturing method
JP2006283129A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk High strength and high conductivity copper alloy, copper alloy spring material, copper alloy foil, and method for producing high strength and high conductivity copper alloy
JP2009079283A (en) * 2007-09-27 2009-04-16 Nikko Kinzoku Kk High-strength, high-conductivity two phase copper alloy
JP2012188709A (en) * 2011-03-11 2012-10-04 Japan Steel Works Ltd:The High-strength and high-conductivity two-phase copper alloy and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080360A1 (en) * 2018-10-16 2020-04-23 パナソニックIpマネジメント株式会社 Terminal component and manufacturing method therefor, and electronic device including terminal component

Also Published As

Publication number Publication date
WO2015093270A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP4118832B2 (en) Copper alloy and manufacturing method thereof
TWI541367B (en) Cu-Ni-Si type copper alloy sheet having good mold resistance and shearing workability and manufacturing method thereof
TW200926214A (en) Conductor material for electronic device and electric wire for wiring using the same
JP5243744B2 (en) Connector terminal
JP5610643B2 (en) Cu-Ni-Si-based copper alloy strip and method for producing the same
TWI521073B (en) Copper alloy plate, and with its high current with electronic components and thermal electronic components
JP6050588B2 (en) Copper alloy wire
JP2013194268A (en) Copper alloy material excellent in die wear resistance during press, and method of manufacturing the same
WO2016051864A1 (en) Copper alloy material, connector terminal, and method for producing copper alloy material
JP2000355721A (en) Copper alloy enhanced in crack resistance
WO2015111455A1 (en) Cu-Fe BASE ALLOY WIRE FOR CONNECTOR PIN, AND CONNECTOR
JP5522771B2 (en) Sheet metal punching method
KR101822740B1 (en) Copper alloy sheet and press-molded product with the same
US20200370147A1 (en) Copper-zinc alloy
WO2013065583A1 (en) Aluminum alloy sheet for terminal, terminal fitting, and electric wire terminal connection structure
WO2015093270A1 (en) Cu-fe alloy rolled plate for terminal fitting and terminal fitting
JP5869288B2 (en) Modified cross-section copper alloy sheet with excellent bending workability and low anisotropy and method for producing the same
JP4550148B1 (en) Copper alloy and manufacturing method thereof
JP2012153961A (en) Copper-zinc alloy linear sheet and method for manufacturing the copper-zinc alloy linear sheet
JP5761400B1 (en) Wire for connector pin, method for manufacturing the same, and connector
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP5437520B1 (en) Cu-Co-Si-based copper alloy strip and method for producing the same
WO2022244315A1 (en) Aluminum alloy plate, terminal, electric wire with terminal, and bus bar
JP2013094801A (en) Method for rolling tungsten wire
EP1967597A3 (en) Beryllium-Copper conductor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150623