JP2015117216A - Sterilization method of water system - Google Patents

Sterilization method of water system Download PDF

Info

Publication number
JP2015117216A
JP2015117216A JP2013262680A JP2013262680A JP2015117216A JP 2015117216 A JP2015117216 A JP 2015117216A JP 2013262680 A JP2013262680 A JP 2013262680A JP 2013262680 A JP2013262680 A JP 2013262680A JP 2015117216 A JP2015117216 A JP 2015117216A
Authority
JP
Japan
Prior art keywords
organic
concentration
residual chlorine
inorganic
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013262680A
Other languages
Japanese (ja)
Other versions
JP6478455B2 (en
Inventor
若子 佐藤
Wakako Sato
若子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013262680A priority Critical patent/JP6478455B2/en
Publication of JP2015117216A publication Critical patent/JP2015117216A/en
Application granted granted Critical
Publication of JP6478455B2 publication Critical patent/JP6478455B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sterilization method of a water system using an organic bactericidal agent and an inorganic oxidant in combination, which can suppress corrosion of metal and provides an excellent bactericidal effect.SOLUTION: Provided is a sterilization method of a water system comprising addition of an organic bactericidal agent and an inorganic oxidant to the water system, where the organic bactericidal agent and the inorganic oxidant are added intermittently. Between additions of the organic sterilization agent and the inorganic oxidant, there is set a non-residual time when a free residual chlorine concentration of the water system is less than 0.1 mg/L. The organic sterilization agent is preferably 5-chloro-2-methyl-4-isothiazolin-3-one, dichloroglyoxime, or dibromonitroethanol.

Description

本発明は、循環冷却水系などの水系の殺菌方法に係り、特に有機系殺菌剤と無機系酸化剤とを併用した水系の殺菌方法に関する。   The present invention relates to an aqueous sterilization method such as a circulating cooling water system, and more particularly to an aqueous sterilization method using an organic sterilizing agent and an inorganic oxidizing agent in combination.

冷却水は、種々の産業分野、例えば、石油化学産業や鉄鋼産業などにおいて、間接的又は直接的に被処理物を冷却する目的で、あるいは、ビルの空調や冷暖房及びその関連装置などに多量に利用されている。さらに、水資源の不足や有効利用の観点から、冷却水の使用量を削減するために、例えば、開放循環冷却水系の高濃縮運転における強制ブロー量の削減など、冷却水の高度利用が行われている。このように冷却水を高度に利用した場合には、溶存塩類や栄養源の濃縮などにより、循環冷却水の水質が悪化し、細菌、黴、藻類などの微生物群に、土砂、塵埃などが混ざり合って形成されるスライムが発生し、熱交換器における熱効率の低下や通水の悪化を引き起こし、またスライム付着下部において、機器や配管の局部腐食を誘発する。   A large amount of cooling water is used in various industrial fields, for example, in the petrochemical industry and the steel industry, for the purpose of indirectly or directly cooling the object to be treated, or for air conditioning, cooling and heating and related equipment of buildings. It's being used. Furthermore, in order to reduce the amount of cooling water used from the viewpoint of lack of water resources and effective use, advanced use of cooling water is performed, for example, reducing the amount of forced blow in the high concentration operation of an open circulating cooling water system. ing. In this way, when cooling water is used at a high level, the quality of circulating cooling water deteriorates due to the concentration of dissolved salts and nutrients, etc., and soil, sand, dust, etc. are mixed with microorganisms such as bacteria, sputum and algae. The slime formed is generated, which causes a decrease in thermal efficiency and deterioration of water flow in the heat exchanger, and also induces local corrosion of equipment and piping at the lower part of the slime adhesion.

そこで、このようなスライムによる障害を防止するために、種々の抗菌剤、例えば、次亜塩素酸などの酸化性抗菌剤などが用いられている。冷却水の高度利用がさらに進んだ場合には、スライムによる障害が激しくなり、抗菌剤の必要添加濃度が上昇する。しかし、酸化性抗菌剤の場合は、金属腐食を生ずる危険性が増すので、添加濃度を増加させることはできない。また、酸化性抗菌剤は、酸化力が強くスライムに対する浸透力に乏しいために、いったんスライム障害が発生すると、その進行を阻止することは極めて困難である。   Therefore, various antibacterial agents, for example, oxidizing antibacterial agents such as hypochlorous acid, and the like are used in order to prevent such damage caused by slime. When advanced use of cooling water further progresses, the slime damage becomes severe and the required concentration of antibacterial agent increases. However, in the case of an oxidizing antibacterial agent, the added concentration cannot be increased because the risk of causing metal corrosion increases. In addition, since the oxidizing antibacterial agent has a strong oxidizing power and a poor ability to penetrate slime, it is extremely difficult to prevent the progression of slime once it occurs.

有機系抗菌剤の場合は、酸化力がないか又は極めて低く、スライムに対する浸透力が強いために、いったんスライム障害が発生した場合でもその進行を阻止することは比較的容易である。しかし、選定する薬剤によって、細菌、黴、藻類などのスライムの構成要素に対して有効なスペクトルが異なる。また、素材コストが酸化性抗菌剤と比較して遥かに高価である。   In the case of an organic antibacterial agent, since it has no or very low oxidizing power and has a strong penetrating ability to slime, it is relatively easy to prevent the progression of slime once it has occurred. However, the effective spectrum for the constituents of slime such as bacteria, sputum, and algae varies depending on the selected drug. In addition, the material cost is much higher than that of the oxidizing antibacterial agent.

このために、スライム障害の激しい条件においても、細菌、黴、藻類などのあらゆるスライムの構成要素に対して有効であり、低コストでスライムを防除することができるスライム防除方法及び防除剤が求められている。   Therefore, there is a need for a slime control method and a control agent that are effective against all slime constituents such as bacteria, sputum, and algae even under severe slime damage conditions and that can control slime at low cost. ing.

特許文献1,2には、冷却水系に酸化性抗菌剤とイソチアゾロン化合物を添加することにより、各薬剤の相乗効果を発揮させ、冷却水系のスライムの付着を抑制する方法が記載されている。   Patent Documents 1 and 2 describe a method of suppressing the adhesion of cooling water-type slime by adding an oxidizing antibacterial agent and an isothiazolone compound to the cooling water system to exhibit a synergistic effect of each drug.

特許3873534Patent 3873534 特開2006−22097JP 2006-22097 A

有機系殺菌剤と無機系酸化剤とを併用すると、殺菌速度が大きく、殺菌効果に優れるが、無機系酸化剤を多くすると金属材に腐食が生じるので、なるべく添加量が少ないことが望まれる。   When an organic disinfectant and an inorganic oxidant are used in combination, the sterilization rate is large and the bactericidal effect is excellent. However, if the inorganic oxidant is increased, the metal material is corroded, so it is desirable that the addition amount be as small as possible.

本発明は、有機系殺菌剤と無機系酸化剤とを併用する水系の殺菌方法において、金属材の腐食を抑制することができると共に、有機系殺菌剤の使用量を少なくしても優れた殺菌効果を得るようにすることを目的とする。   The present invention is an aqueous sterilization method using an organic sterilant and an inorganic oxidant in combination, which can suppress corrosion of a metal material and is excellent in sterilization even if the amount of the organic sterilizer is reduced. The purpose is to obtain an effect.

本発明の水系の殺菌方法は、水系に有機系殺菌剤と無機系酸化剤とを添加する水系の殺菌方法において、該有機系殺菌剤と無機系酸化剤とを間欠的に添加することを特徴とするものである。   The aqueous sterilization method of the present invention is characterized in that, in the aqueous sterilization method in which an organic sterilizer and an inorganic oxidizer are added to an aqueous system, the organic sterilizer and the inorganic oxidizer are intermittently added. It is what.

本発明では、有機系殺菌剤と無機系酸化剤とを添加する時期と時期の間に、水系の残留塩素が実質的に検出されない非残留期間を設けることが好ましい。   In the present invention, it is preferable to provide a non-residual period in which water-based residual chlorine is not substantially detected between the time when the organic disinfectant and the inorganic oxidant are added.

また、本発明では、無機系酸化剤及び有機系殺菌剤の添加間隔を24〜100hとすることが好ましい。   Moreover, in this invention, it is preferable that the addition space | interval of an inorganic type oxidizing agent and an organic type fungicide shall be 24-100h.

本発明者が微生物燃料電池を用いて種々研究を重ねた結果、有機系殺菌剤と無機系酸化剤とを併用する水系の殺菌方法にあっては、両剤を間欠添加すると、添加量を少なくしても十分な殺菌効果が得られることが認められた。即ち、本発明で用いる有機系殺菌剤と無機系酸化剤とを併用して水系に添加した場合、添加を中断して水系に薬剤濃度がなくなった後も菌の代謝を阻害し続け、殺菌効果が持続することが見出された。   As a result of the inventor's extensive research using a microbial fuel cell, in an aqueous sterilization method using both an organic sterilizer and an inorganic oxidizer, the amount added can be reduced by intermittent addition of both agents. However, it was confirmed that a sufficient bactericidal effect was obtained. That is, when combined with an organic sterilizing agent and an inorganic oxidizing agent used in the present invention and added to an aqueous system, even after the addition is interrupted and the concentration of the drug in the aqueous system disappears, the metabolism of bacteria continues to be inhibited, and the sterilizing effect Was found to persist.

この理由については、微生物燃料電池を用いた評価結果より、次のように推察される。   About this reason, it estimates as follows from the evaluation result using a microbial fuel cell.

無機系酸化剤と有機系殺菌剤は作用点、作用機構が異なり、微生物燃料電池の電位阻害パターンが異なる。結合型塩素は薬剤接触とほぼ同時に急激な電位上昇がおこり、生物のエネルギー生産系の阻害に即効性があることを示す。しかし、残留しなくなると急激に効果が低下する。これは、エネルギー生産系にかかわる物質が破壊されていないためと推定される。   Inorganic oxidizers and organic fungicides have different points of action and mechanisms of action, and have different potential inhibition patterns for microbial fuel cells. Combined chlorine has a rapid potential increase almost simultaneously with drug contact, indicating that it has an immediate effect on the inhibition of the biological energy production system. However, when it does not remain, the effect decreases rapidly. This is presumed to be because the substances involved in the energy production system have not been destroyed.

一方、有機系殺菌剤は有効成分が微生物と接触すると、ゆっくりと電位上昇が起こる。これは、エネルギー生産系の阻害がゆっくりとおこっていることを示す。そして微生物燃料電池内の薬剤残留がなくなると、ゆっくりと電位回復が起こる。これは、エネルギー生産にかかわる物質の回復に時間がかかることを示している。無機系酸化剤と有機系殺菌剤とを併用すると、急激な電位上昇がおこり、上昇レベルも大きい。薬剤の残留がなくなると回復はゆっくりと起こる。   On the other hand, when an active ingredient comes into contact with microorganisms, an organic fungicide slowly increases in potential. This indicates that the energy production system is slowly inhibiting. When the drug residue in the microbial fuel cell is exhausted, the potential recovers slowly. This indicates that it takes time to recover materials involved in energy production. When an inorganic oxidizing agent and an organic disinfectant are used in combination, a rapid increase in potential occurs and the level of increase is large. Recovery occurs slowly when there is no drug residue.

これらの無機系酸化剤と有機系殺菌剤との化学的な性質の観点での違いは、無機系酸化剤(以下、酸化系増殖抑制剤又は単に酸化剤ということがある。)は酸化還元電位を変化させ、有機系殺菌剤はこの変化を引き起こさない点がある。   The difference in the chemical properties between these inorganic oxidizers and organic fungicides is that the inorganic oxidizer (hereinafter sometimes referred to as oxidative growth inhibitor or simply oxidizer) is a redox potential. There is a point that organic germicide does not cause this change.

これらの結果から推察されるのは、無機系酸化剤は細胞内の酸化還元電位勾配に影響を与え、電子伝達系のエネルギー生産部分を阻害しているが、このときエネルギー生産系の物質は不可逆的な科学的・物理的変化を受けないということである。そのため、酸化還元電位に影響する物質がなくなれば微生物は急速に機能を回復する。一方、有機系殺菌剤はエネルギー生産系にかかわる物質を、不可逆的に阻害するため、回復には物質生産を必要とするので時間がかかる。   From these results, it can be inferred that inorganic oxidants affect the redox potential gradient in the cell and inhibit the energy production part of the electron transfer system, but at this time the substances in the energy production system are irreversible. It is not subject to natural scientific and physical changes. For this reason, if there is no substance that affects the oxidation-reduction potential, the microorganism rapidly recovers its function. On the other hand, since organic germicides irreversibly inhibit substances involved in energy production systems, recovery requires substance production and thus takes time.

無機系酸化剤と有機系殺菌剤とを併用すると、酸化剤が代謝を停止させ、有機系殺菌剤の作用点への到達、及び化学反応が効率よく行われる。微生物機能の回復には物質の生産が必要なので、代謝機能の低下が大きい分回復に時間を要する。このようなメカニズムで、即効性のある殺菌がなされ、残留しない期間も効果持続期間が続く。さらに、細胞内で分解される殺菌成分も抑制されるので必要とされる薬剤濃度も低濃度となる。   When an inorganic oxidant and an organic fungicide are used in combination, the oxidant stops metabolism, reaching the action point of the organic fungicide, and a chemical reaction is performed efficiently. Since the production of substances is necessary for the recovery of microbial function, it takes time to recover due to the large decrease in metabolic function. By such a mechanism, immediate sterilization is performed, and the duration of the effect continues even when it does not remain. Furthermore, since the bactericidal component decomposed in the cells is also suppressed, the required drug concentration becomes low.

本発明では、無機系酸化剤が残留しない期間を設けるように添加することにより、腐食性も抑制される。   In the present invention, the corrosivity is also suppressed by adding so as to provide a period in which the inorganic oxidant does not remain.

本発明によると、有機系殺菌剤及び無機系酸化剤の添加量を少なくしても優れた殺菌効果が期待できるところから、経済性の向上を図ることができる。また、金属表面水系(例えば冷却塔)にレジオネラが検出された場合でも、本法によれば、その殺菌の速攻性と低腐食性によって迅速に対処することができる。   According to the present invention, even if the addition amount of the organic sterilizing agent and the inorganic oxidant is reduced, an excellent sterilizing effect can be expected, so that economic efficiency can be improved. Further, even when Legionella is detected in a metal surface water system (for example, a cooling tower), according to the present method, it is possible to quickly cope with the sterilization quickness and low corrosiveness.

本発明では、無機系酸化剤を添加するので即効性があり、また有機系殺菌剤を添加するので、水系に無機系酸化剤がなくなっても効果が持続し、安定した処理を行うことができる。また、目的とする系以外の系の殺菌を回避でき、排水系の活性汚泥や、環境への負荷低減を図ることができる。   In the present invention, since an inorganic oxidizer is added, there is an immediate effect, and since an organic sterilizer is added, even if the inorganic oxidizer is removed from the aqueous system, the effect is maintained and stable treatment can be performed. . In addition, sterilization of systems other than the target system can be avoided, and activated sludge in the drainage system and reduction of the load on the environment can be achieved.

実施例を説明するフロー図である。It is a flowchart explaining an Example. 実施例を説明するフロー図である。It is a flowchart explaining an Example. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result.

以下本発明について詳細に説明する。   The present invention will be described in detail below.

本発明が処理対象とする水系としては、冷却水系、紙パルプ製造水系、スクラバー水系などが例示される。   Examples of water systems to be treated by the present invention include cooling water systems, paper pulp manufacturing water systems, scrubber water systems, and the like.

本発明で用いる無機系酸化剤としては、例えば、塩素ガス、次亜塩素酸ナトリウム、塩素化イソシアヌル酸などの塩素系酸化剤、ジブロモヒダントイン、ブロモクロロヒダントインなどの臭素剤、過ヨウ素酸カリウム、メタ過ヨウ素酸ナトリウム、パラ過ヨウ素酸ナトリウム、ヨウ素、ヨウ素酸カリウムなどのヨウ素剤、過酸化水素、オゾンなどを挙げることができるが、次亜塩素酸ナトリウムが好適である。   Examples of the inorganic oxidizing agent used in the present invention include chlorine oxidizing agents such as chlorine gas, sodium hypochlorite and chlorinated isocyanuric acid, bromine agents such as dibromohydantoin and bromochlorohydantoin, potassium periodate, Examples thereof include iodine agents such as sodium periodate, sodium paraperiodate, iodine, and potassium iodate, hydrogen peroxide, ozone, and the like, but sodium hypochlorite is preferred.

有機系殺菌剤としては、イソチアゾリン化合物、ジクロログリオキシム、ジブロモニトロエタノールのいずれか、またはこれらの組合わせを用いるのが好ましい。   As the organic fungicide, it is preferable to use any one of isothiazoline compounds, dichloroglyoxime, dibromonitroethanol, or a combination thereof.

イソチアゾリン化合物としては、例えば、2−メチル−4−イソチアゾリン−3−オン、2−エチル−4−イソチアゾリン−3−オン、2−n−オクチル−4−イソチアゾリン−3−オン、5−クロロ−2−メチル−4−イソチアゾリン−3−オン、5−クロロ−2−エチル−4−イソチアゾリン−3−オン、5−クロロ−2−t−オクチル−4−イソチアゾリン−3−オン、4,5−ジクロロ−2−n−オクチル−4−イソチアゾリン−3−オン、4,5−ジクロロ−2−シクロヘキシル−4−イソチアゾリン−3−オンなどを挙げることができる。これらのイソチアゾロン化合物は、1種を単独で用いることができ、あるいは、2種以上を組み合わせて用いることもできる。また、イソチアゾリン化合物としては、上述のイソチアゾリン化合物と塩化マグネシウム、硝酸マグネシウム、塩化銅、硝酸銅、塩化カルシウムなどとの錯化合物を用いてもよい。   Examples of the isothiazoline compound include 2-methyl-4-isothiazolin-3-one, 2-ethyl-4-isothiazolin-3-one, 2-n-octyl-4-isothiazolin-3-one, and 5-chloro-2. -Methyl-4-isothiazolin-3-one, 5-chloro-2-ethyl-4-isothiazolin-3-one, 5-chloro-2-t-octyl-4-isothiazolin-3-one, 4,5-dichloro 2-n-octyl-4-isothiazolin-3-one, 4,5-dichloro-2-cyclohexyl-4-isothiazolin-3-one, and the like. These isothiazolone compounds can be used individually by 1 type, or can also be used in combination of 2 or more type. As the isothiazoline compound, a complex compound of the above-mentioned isothiazoline compound and magnesium chloride, magnesium nitrate, copper chloride, copper nitrate, calcium chloride, or the like may be used.

本発明では、対象水系に対して、有機系殺菌剤(好ましくはイソチアゾリン化合物、ジクロログリオキシド、及びジブロモニトロエタノールのいずれか1種または2種以上)、無機酸化剤(好ましくは次亜塩素酸ナトリウム)を別々に、あるいは、事前に混合したのち添加する。酸化剤の安定化剤として窒素化合物(好ましくはグリシン、ポリペプトン、及びスルファミン酸のいずれか1種または2種以上)を別々にあるいは事前に混合して添加してもよい。   In the present invention, an organic disinfectant (preferably any one or more of isothiazoline compound, dichloroglycoxide and dibromonitroethanol), an inorganic oxidant (preferably sodium hypochlorite) with respect to the target aqueous system. ) Separately or in advance after mixing. Nitrogen compounds (preferably one or more of glycine, polypeptone, and sulfamic acid) may be added separately or in advance as a stabilizer for the oxidizing agent.

このとき、好ましくは、殺菌成分である有機系殺菌剤と増殖抑制成分である無機系酸化剤とが同時に残留する期間(残留期間)と両者とも残留しない非残留期間ができるように間欠的に添加する。この非残留期間においては、残留塩素が実質的に検出されないようにするのが好ましい。通常、残留塩素の各測定法には、測定下限値があり、残留していないことの確認には、測定下限値以下であることを確認すれば良い。例えば、DPD法における残留塩素の測定下限値は0.1mg/Lである。   At this time, it is preferable to add intermittently so that an organic disinfectant that is a disinfecting component and an inorganic oxidant that is a growth inhibitory component remain simultaneously (residual period) and a non-residual period in which neither remains To do. It is preferable that substantially no residual chlorine is detected during this non-residual period. Usually, each measurement method of residual chlorine has a measurement lower limit value, and it can be confirmed that it is not more than the measurement lower limit value in order to confirm that there is no residue. For example, the lower limit of measurement of residual chlorine in the DPD method is 0.1 mg / L.

スライムコントロール効果は期待できないが、腐食に影響がない残留塩素濃度としては0.1mg/L未満が目安であり、実用上は0.1mg/L未満となる様に管理すれば良い。無機系酸化剤の添加により検出される残留塩素はスライムコントロールに有用であるが、本発明によれば、連続的に残留塩素が検出されなくても、スライムコントロール効果が維持される。   Although the slime control effect cannot be expected, the residual chlorine concentration that does not affect the corrosion is a guideline of less than 0.1 mg / L, and may be managed to be less than 0.1 mg / L in practical use. Residual chlorine detected by adding an inorganic oxidizing agent is useful for slime control. However, according to the present invention, the slime control effect is maintained even if residual chlorine is not detected continuously.

残留塩素濃度は遊離残留塩素濃度を超えることはなく、残留塩素濃度を一定値以下に保てば、遊離残留塩素濃度はそれ以下の値となる。遊離残留塩素は残留塩素よりも腐食性が高く、遊離塩素濃度を一定値以下にしない場合、残留塩素濃度で管理すれば目標が達成できる。   The residual chlorine concentration does not exceed the free residual chlorine concentration, and if the residual chlorine concentration is kept below a certain value, the free residual chlorine concentration becomes a value below that. Free residual chlorine is more corrosive than residual chlorine. If the free chlorine concentration is not below a certain level, the target can be achieved by managing the residual chlorine concentration.

無機系酸化剤と有機系殺菌剤との添加頻度は24時間に1時間未満、例えば24時間に0.1〜0.9時間特に0.25〜0.5時間程度とするのが好ましい。添加時における有機系殺菌剤の添加量は1〜30mg/L特に3〜10mg/L程度が好ましく、無機系酸化剤の場合は1〜50mg/LasCl特に3〜10mg/LasCl程度が好ましい。1回の添加とその後の添加との間隔(非添加時間)は24〜100h特に25〜72h程度が好ましい。
無機系酸化剤と有機系殺菌剤とは同じタイミングで同時に添加するだけでなく、それらを別のタイミングで添加しても良い。
The addition frequency of the inorganic oxidizer and the organic fungicide is preferably less than 1 hour in 24 hours, for example, 0.1 to 0.9 hours in 24 hours, particularly about 0.25 to 0.5 hours. The addition amount of the organic fungicides is preferably about 1 to 30 mg / L, especially 3-10 mg / L at the time of the addition, 2 about 1~50mg / LasCl 2 particularly 3~10mg / LasCl For inorganic oxidizing agent is preferred. The interval (non-addition time) between one addition and the subsequent addition is preferably about 24 to 100 h, particularly about 25 to 72 h.
The inorganic oxidizer and the organic sterilizer may be added not only at the same time but also at different times.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。なお、以下の実施例及び比較例において、濃度を示す「%」は「重量%」を表わす。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. In the following examples and comparative examples, “%” indicating concentration represents “% by weight”.

[実施例1]
<有機系殺菌剤(イソチアゾリン化合物)、窒素化合物(グリシン)及び無機系酸化剤(次亜塩素酸ナトリウム)の併用による殺菌効果の実験>
<方法>
300mL容三角フラスコに100mLの滅菌水を作成した。この滅菌水に目的濃度の下記スライムコントロール剤を添加し、培養した下記レジオネラ標準菌株懸濁液10mLを添加した。一定温度、所定時間振とうしたのち、増殖能力がある菌数を計測した。操作はすべてP2クリーンベンチ内で行い、培養はP2インキュベーターで行った。
[Example 1]
<Experiment of bactericidal effect by combined use of organic fungicide (isothiazoline compound), nitrogen compound (glycine) and inorganic oxidant (sodium hypochlorite)>
<Method>
100 mL of sterilized water was prepared in a 300 mL Erlenmeyer flask. The following slime control agent of the target concentration was added to this sterilized water, and 10 mL of the following Legionella standard strain suspension cultured was added. After shaking at a constant temperature for a predetermined time, the number of bacteria having growth ability was counted. All operations were performed in a P2 clean bench, and culture was performed in a P2 incubator.

スライムコントロール剤:食品添加用NaClO溶液、
5−クロロ−2−メチル−4−イソチアゾリン−3−オン(
Cl−MIT)1%とグリシン1%溶液
Slime control agent: NaClO solution for food addition,
5-chloro-2-methyl-4-isothiazolin-3-one (
Cl-MIT) 1% and glycine 1% solution

濃度測定はハックポケット残留塩素計を用い、DPD試薬測定した。
遊離残留塩素濃度値はDPDfree測定試薬で行い、撹拌後、60秒静置して測定した。
残留塩素濃度はDPDtotal測定試薬で行い、撹拌後、3min静置して測定した。
5−クロロ−2−メチル−4−イソチアゾリン−3−オンの定量は液体クロマトグラフィーにより実施した。実測しなかった場合は設定値で示した。
滅菌水中の遊離残留塩素濃度、残留塩素濃度はレジオネラ添加後変化したので、レジオネラサンプリング時の残留濃度を採用した。
Concentration measurement was performed using a hack pocket residual chlorine meter and DPD reagent measurement.
The free residual chlorine concentration value was measured with a DPDfree measuring reagent, and was allowed to stand for 60 seconds after stirring.
Residual chlorine concentration was measured with a DPDtotal measurement reagent, and after stirring, allowed to stand for 3 min.
Quantification of 5-chloro-2-methyl-4-isothiazolin-3-one was performed by liquid chromatography. When it was not actually measured, it was shown as a set value.
Since free residual chlorine concentration and residual chlorine concentration in sterilized water changed after Legionella addition, the residual concentration at the time of Legionella sampling was adopted.

レジオネラ標準菌株はLegionella pneumophila GIFU9134(血清型sero1)である。あらかじめ、BCYEα培地で培養し、滅菌水に懸濁して、試験管用吸光度計で660nmの吸光度0.1に合わせた液を菌液として使用した。
スライムコントロール剤との接触条件は30℃、100rpm、0分、6分、27分、60分とした。
Legionella standard strain is Legionella pneumophila GIFU 9134 (serotype sero1). A liquid which was previously cultured in a BCYEα medium, suspended in sterilized water, and adjusted to an absorbance of 660 nm of 0.1 with a test tube absorbance meter was used as a bacterial solution.
The contact conditions with the slime control agent were 30 ° C., 100 rpm, 0 minutes, 6 minutes, 27 minutes, and 60 minutes.

レジオネラの計測のために、三角フラスコから10mlをサンプリングし、チオ硫酸ナトリウム添加撹拌後、100μLをBCYEα培地の表面に塗抹した。37℃で培養し、7日〜10日後のコロニーを計測した。0分の値はあらかじめスライムコントロール剤を添加した液に、菌添加後、撹拌し、即座にサンプリングしたときの値を用いた。ブランクはスライムコントロール剤を添加しないで同様の操作を行った。   In order to measure Legionella, 10 ml was sampled from the Erlenmeyer flask, and after adding sodium thiosulfate and stirring, 100 μL was smeared on the surface of the BCYEα medium. After culturing at 37 ° C., colonies after 7 to 10 days were counted. The value of 0 minutes was the value obtained by immediately stirring after adding the bacteria to the solution to which the slime control agent had been added in advance. The blank was subjected to the same operation without adding a slime control agent.

その結果、表1の通り、Cl−MIT(19mg/L)と残留塩素(5〜10mg/LasCl)の併用で、遊離残留塩素が0.1mg/L未満の条件で、60分で99.9%の殺菌に至った。このときの遊離残留塩素濃度は0.1mg/L未満であったので、遊離残留塩素による殺菌ではないと考えられる。 As a result, as shown in Table 1, the combined use of Cl-MIT (19 mg / L) and residual chlorine (5 to 10 mg / LasCl 2 ) under the condition that the free residual chlorine was less than 0.1 mg / L, 99. It resulted in 9% sterilization. Since the free residual chlorine concentration at this time was less than 0.1 mg / L, it is considered that it is not sterilization by free residual chlorine.

Cl−MIT(19mg/L)と残留塩素(5〜10mg/LasCl)の併用で、遊離残留塩素が0.1mg/L未満の条件で、27分で95%以上の殺菌を示した。 The combined use of Cl-MIT (19 mg / L) and residual chlorine (5 to 10 mg / LasCl 2 ) showed sterilization of 95% or more in 27 minutes under the condition that the free residual chlorine was less than 0.1 mg / L.

[比較例1−1]
スライムコントロール剤として5−クロロ−2−メチル−4−イソチアゾリン−3−オン(Cl−MIT)1%とグリシン1%溶液を用い、スライムコントロール剤との接触を30℃、100rpm、27分としたこと以外は実施例1と同一の試験を行った。
[Comparative Example 1-1]
As a slime control agent, 5-chloro-2-methyl-4-isothiazolin-3-one (Cl-MIT) 1% and glycine 1% solution were used, and contact with the slime control agent was 30 ° C., 100 rpm, 27 minutes. Except that, the same test as in Example 1 was performed.

その結果、表2の通り、Cl−MIT(19mg/L)で、27分で約80%の殺菌性しか示さず、殺菌性が劣った。   As a result, as shown in Table 2, Cl-MIT (19 mg / L) showed only about 80% bactericidal properties in 27 minutes and was inferior in bactericidal properties.

[比較例1−2]
スライムコントロール剤として食添用NaClO溶液とグリシン1%溶液を用い、スライムコントロール剤との接触を30℃、100rpm、0分、6分、27分としたこと以外は実施例1と同様の試験を行った。
[Comparative Example 1-2]
The same test as in Example 1 was conducted except that an NaClO solution for food addition and a 1% glycine solution were used as slime control agents, and contact with the slime control agent was 30 ° C., 100 rpm, 0 minutes, 6 minutes, and 27 minutes. went.

その結果、表3の通り、残留塩素(10mg/LasCl)の条件で、27分で75%の殺菌性しか示さず、殺菌効果は低かった。 As a result, as shown in Table 3, under the condition of residual chlorine (10 mg / LasCl 2 ), it showed only 75% bactericidal properties in 27 minutes, and the bactericidal effect was low.

[比較例1−3A〜3E]
スライムコントロール剤として5−クロロ−2−メチル−4−イソチアゾリン−3−オン(Cl−MIT)1%を用い、スライムコントロール剤との接触を30℃、100rpm、1時間としたこと以外は実施例1と同一の試験を行った。
[Comparative Examples 1-3A to 3E]
Example except that 1% of 5-chloro-2-methyl-4-isothiazolin-3-one (Cl-MIT) was used as the slime control agent, and the contact with the slime control agent was 30 ° C., 100 rpm, 1 hour. The same test as 1 was conducted.

その結果、表4の通り、Cl−MIT(10mg/L)、1時間接触で、殺菌された割合は30〜87%の範囲であり、殺菌性は低かった。   As a result, as shown in Table 4, the rate of sterilization after contact with Cl-MIT (10 mg / L) for 1 hour was in the range of 30 to 87%, and the bactericidal property was low.

99%以上の殺菌性に至るには24時間を要し、即効性に欠けた。   It took 24 hours to reach 99% or more of bactericidal properties and lacked immediate effect.

Figure 2015117216
Figure 2015117216

Figure 2015117216
Figure 2015117216

Figure 2015117216
Figure 2015117216

Figure 2015117216
Figure 2015117216

[実施例2]
一過性試験装置を用いて、カラム部分で滞留時間を設定し、CFU測定により殺菌性を評価した。
[Example 2]
Using a transient test apparatus, the residence time was set at the column portion, and the bactericidal property was evaluated by CFU measurement.

一過性試験装置として、図1に示すフローのものを用いた。図1においてPはポンプを表わす。   As a transient test apparatus, the one shown in FIG. 1 was used. In FIG. 1, P represents a pump.

フェルトを固定床とした培養装置(微生物燃料電池)に、脱塩素水に培地を追加したものを20ml/minで流した。培地はポリペプトン、イーストエキストラクト、酢酸ナトリウムにより構成されるPYA培地を用いた。   A culture apparatus (microbial fuel cell) using felt as a fixed bed was passed at 20 ml / min with a medium added to dechlorinated water. As the medium, a PYA medium composed of polypeptone, yeast extract, and sodium acetate was used.

培養装置(微生物燃料電池)から流出した菌液を一過性で流した。この液を対象に、CFUを測定した。表5に示すスライムコントロール剤を菌液の流れの途中から添加した。 表5のMITはCl−MITである。この菌液をカラムで滞留させ、スライムコントロール剤の接触時間とした。   The bacterial solution that flowed out of the culture device (microbial fuel cell) was allowed to flow temporarily. CFU was measured for this solution. The slime control agent shown in Table 5 was added from the middle of the flow of the bacterial solution. The MIT in Table 5 is Cl-MIT. This bacterial solution was allowed to stay in the column and used as the contact time of the slime control agent.

スライムコントロール剤濃度は薬注直後とカラム出口(一定時間接触後)の濃度を測定した。   The slime control agent concentration was measured immediately after drug injection and at the column outlet (after contact for a certain period of time).

CFU測定は1/10PY培地を用いて、段階希釈法により実施した。今回試験対象になった菌は環境中で生育した一般細菌と考えられる。菌の顕微鏡観察や菌種の同定は行っていない。   CFU measurement was performed by serial dilution method using 1/10 PY medium. The bacteria that were tested this time are considered to be general bacteria that grew in the environment. Microscopic observation of bacteria and identification of bacterial species are not performed.

その結果、表5の通り、Cl−MITと結合型塩素を併用すると、99.99%以上の殺菌性を示した。接触時間0分で殺菌効果を発揮し、約30分の接触でさらに効果が増した。このとき、残留塩素濃度は約7mg/LasClであった。遊離残留塩素濃度は0.15mg/LasClであった。 As a result, as shown in Table 5, when Cl-MIT and combined chlorine were used in combination, bactericidal properties of 99.99% or more were exhibited. The bactericidal effect was exhibited with a contact time of 0 minutes, and the effect was further increased with a contact time of about 30 minutes. At this time, the residual chlorine concentration was about 7 mg / LasCl 2 . Free residual chlorine concentration was 0.15mg / LasCl 2.

[比較例2−1]
スライムコントロール剤として、表5の通り、次亜塩素酸ナトリウムを用いなかったこと以外は実施例2と同様の試験を行った。
[Comparative Example 2-1]
As a slime control agent, as shown in Table 5, the same test as in Example 2 was performed except that sodium hypochlorite was not used.

[比較例2−2]
スライムコントロール剤として表5の通り、Cl−MITを用いなかったこと以外は実施例2と同様の試験を行った。
[Comparative Example 2-2]
As the slime control agent, the same test as in Example 2 was conducted except that Cl-MIT was not used as shown in Table 5.

その結果、表5の通り結合型残留塩素単独では、約8mg/LasClで約90%の殺菌性を示した。このとき、遊離残留塩素濃度は約0.1mg/LasClであった。また、Cl−MIT単独の場合は、10mg/L、30minで明確な殺菌性は示さなかった。 As a result, as shown in Table 5, combined residual chlorine alone showed about 90% bactericidal property at about 8 mg / LasCl 2 . At this time, the free residual chlorine concentration was about 0.1 mg / LasCl 2 . In addition, Cl-MIT alone did not show clear bactericidal properties at 10 mg / L for 30 min.

Figure 2015117216
Figure 2015117216

[実施例3]
回転腐食試験装置を用い、下記条件にて腐食試験を行った。
<スライムコントロール剤>
実施例3−1:Cl−MIT1%、グリシン1%、スルファミン酸3%含有400mg/L+NaClO溶液を遊離残留塩素濃度0.1mg/LasClになるよう添加
実施例3−2:Cl−MIT1%、グリシン1%400mg/L
<防食剤>
ベンゾトリアゾール(銅用防食剤、BT):1mg/L(添加濃度)
マレイン酸系ポリマー:1.5mg/L(添加濃度)
ホスホン酸:2.4gm/L(添加濃度)
<試験水水質(純水給水想定)>
Mアルカリ度:79mg/l
Ca硬度:2mg/L
Mg硬度:1mg/L
[Example 3]
A corrosion test was performed under the following conditions using a rotary corrosion tester.
<Slime control agent>
Example 3-1: 400 mg / L + NaClO solution containing 1% Cl-MIT, 1% glycine and 3% sulfamic acid was added to a free residual chlorine concentration of 0.1 mg / LasCl 2 Example 3-2: Cl-MIT 1% Glycine 1% 400mg / L
<Anticorrosive>
Benzotriazole (corrosion inhibitor for copper, BT): 1 mg / L (addition concentration)
Maleic acid polymer: 1.5 mg / L (addition concentration)
Phosphonic acid: 2.4 gm / L (addition concentration)
<Test water quality (assuming pure water supply)>
M alkalinity: 79 mg / l
Ca hardness: 2 mg / L
Mg hardness: 1mg / L

試験水に上記防食剤、スライムコントロール剤が所定濃度になるように添加した。試験水、防食剤、スライムコントロール剤混合液を1L/dayの速度で注入し滞留時間を与えた。測定時、遊離残留塩素濃度が所定濃度を下回っていた場合は、NaClO溶液をバッチで追加し、所定濃度にするようにした。
<試験片>
銅テストピース31cm(30mm×50mm×1mm)
回転腐食試験装置条件を140rpm、水温30℃、7日間とし、試験片の試験前の重量と後重量を測定し、一日当たり、dm当たりの減量(mg)で比較した。
The anticorrosive and the slime control agent were added to the test water so as to have predetermined concentrations. Test water, anticorrosive, and slime control agent mixed solution were injected at a rate of 1 L / day to give a residence time. At the time of measurement, if the free residual chlorine concentration was lower than the predetermined concentration, a NaClO solution was added in batches so that the predetermined concentration was reached.
<Specimen>
Copper test piece 31cm 2 (30mm × 50mm × 1mm)
The conditions of the rotary corrosion test apparatus were 140 rpm, the water temperature was 30 ° C., 7 days, the weights of the test pieces before and after the test were measured, and the weight loss per day and dm 2 (mg) were compared.

その結果、表6の実施例3−1に示す通り、遊離残留塩素濃度平均が0.1mg/LasCl未満で、腐食速度は問題のないレベルであった。また、表7の通り、NaClO追加時は遊離残留塩素濃度が一時0.1mg/LasClを超えることがあったが、腐食速度に悪影響はなかった。遊離残留塩素濃度を0.1mg/LasCl以上に維持しなければ腐食速度が上がらないことが示された。 As a result, as shown in Example 3-1 of Table 6, the average free residual chlorine concentration was less than 0.1 mg / LasCl 2 , and the corrosion rate was at a level with no problem. Further, as shown in Table 7, although the time of NaClO added had the free residual chlorine concentration exceeds a temporary 0.1mg / LasCl 2, there was no adverse effect on corrosion rate. It was shown that the corrosion rate would not increase unless the free residual chlorine concentration was maintained at 0.1 mg / LasCl 2 or higher.

[比較例3]
スライムコントロール剤を次の通りとしたこと以外は実施例3と同一の試験を行った。
[Comparative Example 3]
The same test as in Example 3 was performed except that the slime control agent was as follows.

比較例3−1:スルファミン酸とNaClOとの混合液をNaClO残留塩素濃度として15mg/LasCl、遊離残留塩素濃度として0.3mg/LasClになるよう添加
比較例3−2:スルファミン酸とNaClOとの混合液をNaClO残留塩素濃度として5mg/LasCl、遊離残留塩素濃度として0.3mg/LasClになるよう添加
Comparative Example 3-1: A mixture of sulfamic acid and NaClO was added to a NaClO residual chlorine concentration of 15 mg / LasCl 2 and a free residual chlorine concentration of 0.3 mg / LasCl 2 Comparative Example 3-2: Sulfamic acid and NaClO The mixture was added to a NaClO residual chlorine concentration of 5 mg / LasCl 2 and a free residual chlorine concentration of 0.3 mg / LasCl 2.

その結果、表6の通り、平均遊離残留塩素濃度0.17mg/LasCl以上を維持すると、腐食速度は1mddをこえ、腐食が心配される。 As a result, as shown in Table 6, when the average free residual chlorine concentration is maintained at 0.17 mg / LasCl 2 or more, the corrosion rate exceeds 1 mdd, and corrosion is a concern.

Figure 2015117216
Figure 2015117216

Figure 2015117216
Figure 2015117216

比較例3−2(遊離残留塩素濃度0.17mg/LasCl)と同等の遊離残留塩素濃度及び残留塩素濃度で行った前述の表3の比較例1−2からわかるようにNaClO+グリシンだけではレジオネラ属菌の殺菌効果は不十分であり、腐食の問題がない濃度での殺菌効果は期待できないことがわかった。 As can be seen from Comparative Example 1-2 in Table 3 which was carried out at a free residual chlorine concentration and a residual chlorine concentration equivalent to Comparative Example 3-2 (Free Residual Chlorine Concentration 0.17 mg / LasCl 2 ), Legionella alone was obtained with NaClO + glycine alone. It was found that the sterilization effect of the genus fungus is insufficient, and the bactericidal effect at a concentration without the problem of corrosion cannot be expected.

[実施例4]
間欠注入における薬剤の即効性と薬注停止後の効果を比較するために、図2のフローの微生物燃料電池のアノードに殺菌剤を間欠注入した。図2の通り、脱塩素水を窒素曝気により脱酸素して、培地を途中注入し微生物燃料電池のアノード側に流入させた。
[Example 4]
In order to compare the immediate effect of the drug in intermittent injection and the effect after stopping the injection, a disinfectant was intermittently injected into the anode of the microbial fuel cell in the flow of FIG. As shown in FIG. 2, the dechlorinated water was deoxygenated by nitrogen aeration, and the medium was injected halfway to flow into the anode side of the microbial fuel cell.

微生物燃料電池のカソード側には空気を吹き込み酸素供給を行った。微生物の生育によりアノード側からカソード側に電子が供給され、抵抗(500Ω)をアノード・カソード間に接続し、電圧を測定した。カソードを基準としたマイナス電位の絶対値が大きければ大きいほど、微生物の生育が活発であることを示す。   Air was blown into the cathode side of the microbial fuel cell to supply oxygen. Electrons were supplied from the anode side to the cathode side due to the growth of microorganisms, a resistance (500Ω) was connected between the anode and cathode, and the voltage was measured. The greater the absolute value of the negative potential with respect to the cathode, the more active the microorganism is growing.

本試験において、薬剤注入により上昇した最高電位を到達電位、薬剤注入停止後薬剤注入前の電位に戻るまでの期間をエネルギー生産阻害持続期間として測定した。これらの値に基づいて有機系殺菌剤及び無機系酸化剤の効果を比較した。   In this test, the maximum potential increased by drug injection was measured as the ultimate potential, and the period until the potential returned to the potential before drug injection after stopping the drug injection was measured as the energy production inhibition duration. Based on these values, the effects of organic fungicides and inorganic oxidizers were compared.

図2の微生物燃料電池の条件は次の通りである。   The conditions of the microbial fuel cell in FIG. 2 are as follows.

アノード:5mm厚グラファイトフェルト5cm*15cm(アノード容量80〜90mL)
カソード:カーボンコーティングニッケル触媒
非導電性膜:ミリポア社製ニトロセルロース膜
抵抗:500Ω
カソードには野木町水と空気を2L/minの送風量で供給した。アノード液には野木町水を曝気槽に取り、窒素ガスで曝気して溶存酸素を除いた水を8mL/minで送液し、アノード入口の前に培地をポンプにて所定濃度になるようにライン注入した。必要に応じてアノード入り口手前で、下記酸化系増殖抑制剤及び有機系殺菌剤をポンプで所定濃度になるように所定時間ライン注入した。アノードとカソードを抵抗を介した銅電線で接続し、生じた電位を連続測定した。なお、薬注停止後、アノード室の滞留時間の経過後、有機系殺菌剤と酸化系増殖抑制剤が検出されないことを確認した。
Anode: 5 mm thick graphite felt 5 cm * 15 cm (anode capacity 80-90 mL)
Cathode: Carbon coating nickel catalyst Non-conductive film: Nitrocellulose film manufactured by Millipore Corporation Resistance: 500Ω
Nogicho water and air were supplied to the cathode at a flow rate of 2 L / min. As the anolyte, take Nogi-cho water in an aeration tank, feed water with nitrogen gas removed from the dissolved oxygen at a rate of 8 mL / min, and adjust the culture medium to a predetermined concentration with a pump before the anode inlet. Line was injected. If necessary, before the anode entrance, the following oxidative growth inhibitor and organic fungicide were line-injected for a predetermined time with a pump so as to reach a predetermined concentration. The anode and the cathode were connected by a copper wire through a resistor, and the generated potential was continuously measured. In addition, it was confirmed that the organic disinfectant and the oxidative growth inhibitor were not detected after elapse of the residence time in the anode chamber after stopping the chemical injection.

試験条件は次の通りとした。
有機系殺菌剤:Cl−MIT設定濃度5mg/L+グリシン10mg/L
酸化系増殖抑制剤:NaClO設定濃度10mg/L、培地有機物・グリシンと反応してほとんど結合型になっている。
注入時間:3h
アノード滞留時間:10〜20min(アノードセル内にはフェルトがあるため、正確な滞留時間を測定することは困難)
The test conditions were as follows.
Organic fungicide: Cl-MIT set concentration 5 mg / L + glycine 10 mg / L
Oxidation system growth inhibitor: NaClO set concentration of 10 mg / L, reacts with medium organic substance / glycine to become almost bound type.
Injection time: 3h
Anode residence time: 10-20 min (Because there is felt in the anode cell, it is difficult to accurately measure the residence time)

評価方法は次の通りとした。
到達電位:薬品注入により電位上昇が起こり、到達した最高電位
エネルギー生産阻害持続期間:薬注停止後薬注前の電位に戻るまでの期間及び電位の経時変化の形状
The evaluation method was as follows.
Achieving potential: Maximum potential caused by drug injection and reaching the highest potential Energy production inhibition duration: Period until the potential returns to the potential before drug injection after stopping drug injection and shape of time-dependent change in potential

その結果、表8及び図3の通り、有機系殺菌剤と無機系酸化剤との併用により電位は急激な上昇を示し、単品使用よりも高い電位となった。到達電位は単品注入で上昇した電位を加算した値と同等となった。   As a result, as shown in Table 8 and FIG. 3, the combined use of the organic disinfectant and the inorganic oxidant showed a rapid increase in potential, which was higher than the single product. The ultimate potential was equivalent to the value obtained by adding the potentials increased by single injection.

無機系酸化剤と有機系殺菌剤とを併用した場合、電位回復は薬注停止後約100mV低下し、急激な回復を示すが、その後は緩やかな回復を示した。エネルギー生産阻害持続時間は単品による阻害時間の加算とほぼ同等であった。   When the inorganic oxidizer and the organic fungicide were used in combination, the potential recovery decreased about 100 mV after stopping the drug injection and showed a rapid recovery, but thereafter showed a gradual recovery. The energy production inhibition duration was almost equal to the addition of inhibition time by single item.

この結果から、無機系酸化剤と有機系殺菌剤とを併用すると即効性が増し、阻害の程度が強くなり、薬注後の回復が遅れることが分かった。   From these results, it was found that when an inorganic oxidizing agent and an organic fungicide were used in combination, the immediate effect increased, the degree of inhibition increased, and recovery after drug injection was delayed.

[比較例4−1]
酸化系増殖抑制剤を用いなかったこと以外は実施例4と同一条件にて試験を行った。
[Comparative Example 4-1]
The test was performed under the same conditions as in Example 4 except that the oxidative growth inhibitor was not used.

その結果、表8及び図3の通り、電位の低下は実施例4、比較例4−2と比較すると緩やかで、3時間後も−400mVの電位を保っていた。薬注停止後の電位低下は緩やかであったが、上昇した電位幅が小さいので、4時間程度で元の電位に戻った。   As a result, as shown in Table 8 and FIG. 3, the decrease in the potential was more gradual as compared with Example 4 and Comparative Example 4-2, and the potential was maintained at −400 mV even after 3 hours. Although the potential drop after stopping the drug injection was gradual, the increased potential width was small, so it returned to the original potential in about 4 hours.

このことから、有機系殺菌剤の即効性が低いことが分かる。   From this, it can be seen that the immediate effect of the organic fungicide is low.

[比較例4−2]
有機系殺菌剤を用いなかったこと以外は実施例4と同一条件にて試験を行った。
[Comparative Example 4-2]
The test was performed under the same conditions as in Example 4 except that no organic fungicide was used.

この結果、表8及び図3の通り、電位は急激な上昇を示し−150mVに達する。薬注停止直後、約200mVの急激な電位の低下(回復)が起こり、電位は−300mVに至る。このように、酸化系薬剤は即効性はあるが、薬注を停止すると急激にエネルギー生産阻害をする能力が消失するので、効果を維持するためには濃度を維持しなければならないと推定される。   As a result, as shown in Table 8 and FIG. 3, the potential increases rapidly and reaches −150 mV. Immediately after stopping the drug injection, a rapid potential drop (recovery) of about 200 mV occurs, and the potential reaches -300 mV. In this way, although the oxidative drugs are immediately effective, the ability to rapidly inhibit energy production disappears when drug injection is stopped, so it is estimated that the concentration must be maintained to maintain the effect .

Figure 2015117216
Figure 2015117216

[実施例5]
実施例4と同一の試験装置を用い、間欠注入時間を長くしたときの即効性と薬注停止後の効果に与える影響を、微生物燃料電池で下記条件にて比較した。
<試験条件>
有機系殺菌剤:Cl−MIT設定濃度5mg/L
酸化系増殖抑制剤:結合型塩素(スルファミン酸+NaClO)残留塩素設定濃度15mg/LasCl
注入時間:6h
アノード滞留時間:10〜20min
[Example 5]
Using the same test apparatus as in Example 4, the immediate effect when the intermittent injection time was increased and the effect on the effect after stopping the drug injection were compared using a microbial fuel cell under the following conditions.
<Test conditions>
Organic fungicide: Cl-MIT set concentration 5mg / L
Oxidative growth inhibitor: Combined chlorine (sulfamic acid + NaClO) residual chlorine set concentration 15 mg / LasCl 2
Injection time: 6h
Anode residence time: 10-20 min

その結果、図4、表9の通り、電位は薬注後即座に上昇し−100mV以上となった。注入中はその電位が徐々に低下し続けた。到達した電位は−67mVであった。有機系殺菌剤と無機系酸化剤との併用により到達した電位は単独使用の上昇電位を加算した値には達せず、殺菌・増殖抑制の到達電位は上限があるようである。   As a result, as shown in FIG. 4 and Table 9, the potential immediately increased after the drug injection and became −100 mV or more. The potential continued to decline gradually during the injection. The potential reached was -67 mV. The potential reached by the combined use of the organic disinfectant and the inorganic oxidizer does not reach the value obtained by adding the increased potential of the single use, and the ultimate potential for disinfection / growth suppression seems to have an upper limit.

薬注停止後、無機系酸化剤と有機系殺菌剤とを併用した場合は、電位が即座に約100mV低下したが、その後は緩やかな電位低下(回復)を示し、ものと電位に戻るまでに39hを要した。単独使用の回復時間の和よりも、併用の方が9h程度余分に時間を要した。このように、併用接触時間を延ばすと回復にかかる時間が延びた。   When the combination of an inorganic oxidizer and an organic fungicide was used after stopping drug injection, the potential immediately decreased by about 100 mV, but after that, it showed a gradual decrease in potential (recovery) until it returned to the potential. It took 39h. The combined use took about 9 hours more time than the sum of the recovery time for the single use. Thus, when the combined contact time is extended, the time required for recovery is extended.

この実施例5では、結合型塩素の結合相手をスルファミン酸としたが、実施例4と同様な阻害と回復のパターンを示すことが分かった。   In this Example 5, the binding partner of bound chlorine was sulfamic acid, but it was found that the same inhibition and recovery pattern as in Example 4 was exhibited.

無機系酸化剤と有機系殺菌剤との併用時間の延長により、十分に阻害された時間が延び、薬注停止後の回復も遅れる。このことから併用時間を長くすると、殺菌性の強さと薬注停止後の効果維持時間がより効率的になると考えられる。   By extending the combined use time of the inorganic oxidizer and the organic fungicide, the time that has been sufficiently inhibited is prolonged, and the recovery after stopping the drug injection is also delayed. From this fact, it is considered that when the combined use time is increased, the bactericidal strength and the effect maintaining time after stopping the drug injection become more efficient.

[比較例5−1]
有機系殺菌剤をCl−MIT設定濃度5mg/Lとしたこと以外は実施例5と同一条件にて試験を行った。
[Comparative Example 5-1]
The test was performed under the same conditions as in Example 5 except that the organic disinfectant was set to a Cl-MIT set concentration of 5 mg / L.

その結果、図4及び表9の通り、Cl−MIT添加による阻害パータンは比較例4と同様であり、比較的緩やかであった。時間を延ばすとその電位上昇は3hの延長線上にあった。薬注停止後電位は無機系酸化剤に比較して緩やかに回復するパターンを示した。Cl−MIT薬注後、電位回復に要する時間はCl−MITが13hであった。   As a result, as shown in FIG. 4 and Table 9, the inhibition pattern due to the addition of Cl-MIT was the same as that in Comparative Example 4, and was relatively slow. When the time was extended, the potential increase was on the 3 h extension line. The potential after cessation of drug injection showed a pattern of moderate recovery compared to inorganic oxidants. The time required for the potential recovery after Cl-MIT injection was Cl-MIT was 13 h.

[比較例5−2]
酸化系増殖抑制剤を結合型塩素(スルファミン酸+NaClO)残留塩素設定濃度15mg/LasClとしたこと以外は実施例5と同一条件にて試験を行った。
[Comparative Example 5-2]
The test was conducted under the same conditions as in Example 5 except that the oxidative growth inhibitor was a combined chlorine (sulfamic acid + NaClO) residual chlorine set concentration of 15 mg / LasCl 2 .

その結果、図4及び表9の通り、結合型塩素により、電位は直線的に300mV上昇し、その後緩やかに上昇した。薬注を停止すると電位は約200mV即座に回復(低下)した。その後緩やかに回復し、元の電位まで回復するためにかかる時間は約16hであった。   As a result, as shown in FIG. 4 and Table 9, the potential increased linearly by 300 mV due to combined chlorine, and then gradually increased. When the drug injection was stopped, the potential immediately recovered (decreased) to about 200 mV. After that, it took about 16 hours to recover slowly and recover to the original potential.

Figure 2015117216
Figure 2015117216

[実施例6]
遊離残留塩素濃度が次亜塩素酸ナトリウム添加の直後に0.1mg/Lを超えても、0.1mg/L未満に下がる期間があれば腐食は抑制されることを示すための試験を行った。
[Example 6]
A test was conducted to show that even if the free residual chlorine concentration exceeds 0.1 mg / L immediately after the addition of sodium hypochlorite, the corrosion is suppressed if there is a period when it falls below 0.1 mg / L. .

この試験では、実施例3と同一の回転腐食試験装置を用いた。
<スライムコントロール条件>
実施例6−1:Cl−MIT2%、グリシン2%、スルファミン酸3%含有液200mg/LとNaClOを遊離残留塩素濃度0.3mg/LasClになるよう添加。一日一回。
実施例6−2:Cl−MIT2%、グリシン2%、スルファミン酸3%含有液200mg/LとNaClOを遊離残留塩素濃度0.1mg/LasClになるよう添加。一日一回。
実施例6−3:Cl−MIT2%、グリシン2%、スルファミン酸3%含有液を200mg/L
<防食剤>
ベンゾトリアゾール(銅用防食剤、BT):1mg/L(最終濃度)
マレイン酸系ポリマー:1.5mg/L(最終濃度)
ホスホン酸:2.4gm/L(最終濃度)
<試験水水質(純水給水想定)>
Mアルカリ度:79mg/L
Ca硬度:2mg/L
Mg硬度:1mg/L
<試験手順>
試験水に防食剤、スライムコントロール剤が所定濃度になるように添加した。試験水、防食剤、スライムコントロール剤混合液を1L/dayの速度で注入し滞留時間を与えた。NaClO溶液をバッチで一日一回追加し、所定濃度にするようにした。回転腐食試験装置条件は140rpm、水温30℃、7日間とした。
<試験片>
軟鋼テストピース31cm(30mm×50mm×1mm)
試験前の重量と後重量を測定し、一日当たり、dm当たりの減量(mg)で比較した。
In this test, the same rotary corrosion test apparatus as in Example 3 was used.
<Slime control conditions>
Example 6-1: 200 mg / L of a solution containing 2% Cl-MIT, 2% glycine and 3% sulfamic acid and NaClO were added so that the free residual chlorine concentration was 0.3 mg / LasCl 2 . once a day.
Example 6-2: 200 mg / L of a solution containing 2% Cl-MIT, 2% glycine and 3% sulfamic acid and NaClO were added to a free residual chlorine concentration of 0.1 mg / LasCl 2 . once a day.
Example 6-3: A solution containing 2% Cl-MIT, 2% glycine and 3% sulfamic acid was 200 mg / L.
<Anticorrosive>
Benzotriazole (corrosion inhibitor for copper, BT): 1 mg / L (final concentration)
Maleic acid polymer: 1.5 mg / L (final concentration)
Phosphonic acid: 2.4 gm / L (final concentration)
<Test water quality (assuming pure water supply)>
M alkalinity: 79 mg / L
Ca hardness: 2 mg / L
Mg hardness: 1mg / L
<Test procedure>
An anticorrosive and a slime control agent were added to the test water so as to have predetermined concentrations. Test water, anticorrosive, and slime control agent mixed solution were injected at a rate of 1 L / day to give a residence time. The NaClO solution was added once a day in a batch to obtain a predetermined concentration. The conditions of the rotary corrosion test apparatus were 140 rpm, water temperature 30 ° C., and 7 days.
<Specimen>
Mild steel test piece 31cm 2 (30mm × 50mm × 1mm)
The weight before the test and the weight after the test were measured and compared with the weight loss (mg) per dm 2 per day.

その結果、表10〜12の通り、実施例6−1はNaClOの間欠注入で遊離残留塩素濃度が1mg/LasCl以上に至っても翌日0.1未満に戻れば、腐食はNaClO無添加と同等である。 As a result, as shown in Tables 10 to 12, in Example 6-1, in the case of intermittent injection of NaClO, the free residual chlorine concentration reached 1 mg / LasCl 2 or more, and if it returned to less than 0.1 the next day, the corrosion was equivalent to no addition of NaClO. It is.

実施例6−2に示すようにNaClOの間欠注入で遊離残留塩素濃度が0.1mg/LasCl未満を維持した場合も、腐食速度はNaClO無添加と同等である(表11)。この結果から遊離残留塩素濃度が一時的に0.1mg/LasClを超えても、確実に0.1mg/LasClを下回る期間があれば、残留塩素無添加と比較して腐食は促進されない。 As shown in Example 6-2, when the free residual chlorine concentration is maintained below 0.1 mg / LasCl 2 by intermittent injection of NaClO, the corrosion rate is equivalent to that without addition of NaClO (Table 11). Even beyond this results from free residual chlorine concentration is temporarily 0.1mg / LasCl 2, if there is certainly a period of less than 0.1mg / LasCl 2, corrosion compared with residual chlorine no addition is not promoted.

[比較例6]
スライムコントロール条件を次の通りとしたこと以外は実施例6と同一条件にて試験を行った。
[Comparative Example 6]
The test was conducted under the same conditions as in Example 6 except that the slime control conditions were as follows.

比較例6−1:スルファミン酸、NaClO混合液 200mg/L。残留塩素濃度として15mg/LasCl、遊離残留塩素濃度として0.3mg/LasCl以上を維持。
比較例6−2:スルファミン酸、NaClO混合液 50mg/L。残留塩素濃度5mg/LasCl、遊離残留塩素濃度として0.1−0.2mg/LasClを維持。
Comparative Example 6-1: Sulfamic acid and NaClO mixed solution 200 mg / L. Maintain a residual chlorine concentration of 15 mg / LasCl 2 and a free residual chlorine concentration of 0.3 mg / LasCl 2 or higher.
Comparative Example 6-2: Sulfamic acid, NaClO mixed solution 50 mg / L. Residual chlorine concentration 5mg / LasCl 2, maintaining the 0.1-0.2mg / LasCl 2 as free residual chlorine concentration.

その結果を表10〜12に示す。比較例6−2は実施例6−1よりも遊離残留塩素濃度の平均値が低くても、腐食速度は増大する。低濃度であっても遊離残留塩素濃度が維持されると腐食速度は増大する(表10)。
比較例6−2よりも比較例6−1の方が腐食速度は大きく、腐食速度は遊離残留塩素維持濃度が上がると増加する(表10)。
The results are shown in Tables 10-12. In Comparative Example 6-2, even if the average value of the free residual chlorine concentration is lower than that in Example 6-1, the corrosion rate increases. The corrosion rate increases when the free residual chlorine concentration is maintained even at low concentrations (Table 10).
Comparative Example 6-1 has a higher corrosion rate than Comparative Example 6-2, and the corrosion rate increases as the free residual chlorine maintenance concentration increases (Table 10).

遊離最大塩素濃度は比較例6−1よりも実施例6−1のほうが大きい。このことから、最大値よりも、最低値の方が腐食速度に影響すると考えられ、濃度を維持すると腐食速度の増大につながる(表11,12)。   The free maximum chlorine concentration is larger in Example 6-1 than in Comparative Example 6-1. From this, it is considered that the minimum value affects the corrosion rate rather than the maximum value, and maintaining the concentration leads to an increase in the corrosion rate (Tables 11 and 12).

Figure 2015117216
Figure 2015117216

Figure 2015117216
Figure 2015117216

Figure 2015117216
Figure 2015117216

[実施例7]
イソチアゾリン以外の有機系殺菌剤と酸化剤の併用による呼吸活性阻害の即効性増進について下記条件にて試験を行った。
<有機系殺菌剤の種類>
ジクロログリオキシム(DCG)
2,2−ジブロモ−2−ニトロエタノール(DBNE)
<無機系酸化剤>
次亜塩素酸ナトリウムとスルファミン酸ナトリウム混合品
<試験方法>
Pseudomonas.putidを用いて評価した。
対象菌を滅菌水に懸濁し、660nm吸光度、0.1に調整し、10mlずつ試験管に分注した。有機系殺菌剤単独、無機系酸化剤単独、有機系殺菌剤と無機系酸化剤併用、各濃度を添加。
30℃、1h、100r.p.mで振盪した。
その後、ポアサイズ0.45μmのニトロセルロースフィルターで濾過し、10mLの滅菌水を添加して、濾過し、薬品を取り除いた。
2−p−ヨードフェニル−3−p−ニトロフェニル−5−テトラゾリウムクロライド溶液(以下INT溶液、最終濃度0.02%)と培地(ポリペプトン 最終濃度0.1g/L、イーストエキストラクト 最終濃度0.1g/L、NaCl 最終濃度0.05g/L)を菌を濾過したフィルターに載せる。
37℃、1h静置する。
所定時間後濾過し、フィルターをクロロフォルム1mLで抽出し、490nmの吸光度を測定する。この値から菌のデハイドロゲナーゼにより生じたフォルマザン濃度を算出する。
対象菌のタンパク濃度を測定する。タンパク質濃度の定量はFolin−Ciocaltenのフェノール試薬による測定により実施した。
下式を用いて、抽出液量から抽出されたINTフォルマザンモル数を算出し、反応時間で除算するとデハイドロゲナーゼ活性を算出することができる。
デハイドロゲナーゼ活性[U]=ミリモル濃度[mmol/L]×μモル換算[1000μmol/mmol]×抽出液量[L]/反応時間[min]=(0.044×490nm吸光度−0.0004)×1000×(1/1000)/60
(注) ミリモル濃度[mmol/L]=0.044×490nm吸光度−0.0004
抽出液量 1mL
反応時間 60min
[Example 7]
Tests were conducted under the following conditions for immediate improvement of respiratory activity inhibition by the combined use of an organic bactericide other than isothiazoline and an oxidizing agent.
<Types of organic fungicides>
Dichloroglyoxime (DCG)
2,2-dibromo-2-nitroethanol (DBNE)
<Inorganic oxidant>
Sodium hypochlorite and sodium sulfamate mixture <Test method>
Evaluation was performed using Pseudomonas.putid.
The target bacteria were suspended in sterilized water, adjusted to 660 nm absorbance, 0.1, and dispensed into test tubes in 10 ml aliquots. Organic disinfectant alone, inorganic oxidizer alone, combined use of organic disinfectant and inorganic oxidizer, each concentration added.
30 ° C., 1 h, 100 r. p. Shake at m.
Thereafter, the mixture was filtered through a nitrocellulose filter having a pore size of 0.45 μm, 10 mL of sterilized water was added, and the mixture was filtered to remove chemicals.
2-p-iodophenyl-3-p-nitrophenyl-5-tetrazolium chloride solution (hereinafter INT solution, final concentration 0.02%) and medium (polypeptone final concentration 0.1 g / L, yeast extract final concentration 0. 1 g / L, NaCl final concentration 0.05 g / L) is placed on the filter with the bacteria filtered.
Let stand at 37 ° C. for 1 h.
After a predetermined time, it is filtered, the filter is extracted with 1 mL of chloroform, and the absorbance at 490 nm is measured. From this value, the concentration of formazan produced by the fungal dehydrogenase is calculated.
Measure protein concentration of target bacteria. The protein concentration was quantified by measurement with Folin-Ciocalten's phenol reagent.
The dehydrogenase activity can be calculated by calculating the number of moles of INT formazan extracted from the amount of the extract using the following formula and dividing by the reaction time.
Dehydrogenase activity [U] = mmol concentration [mmol / L] × μmole conversion [1000 μmol / mmol] × extracted solution amount [L] / reaction time [min] = (0.044 × 490 nm absorbance−0.0004 ) × 1000 × (1/1000) / 60
(Note) millimolar concentration [mmol / L] = 0.044 × 490 nm absorbance−0.0004
Extraction volume 1mL
Reaction time 60min

デハイドロゲナーゼ活性をタンパク質の質量で除算し、菌体当たりの活性を求める。桁数が小さいので、さらに100000倍して結果とした。このデハイドロゲナーゼ活性が消失した単独及び併用の薬剤濃度を図5に示す。なお、図5のグラフ中の直線は相加効果直線を表しており、この直線より下にあると相乗効果ありと判断される。   Divide the dehydrogenase activity by the protein mass to determine the activity per cell. Since the number of digits is small, the result was further multiplied by 100,000. FIG. 5 shows single and combined drug concentrations at which this dehydrogenase activity disappeared. In addition, the straight line in the graph of FIG. 5 represents the additive effect straight line, and if it is below this straight line, it is judged that there exists a synergistic effect.

<結果>
(1) 薬剤を添加しないPseudomonas.putidの菌体当たりの活性は484で、十分な活性を示した。
(2) 次亜塩素酸ナトリウムとスルファミン酸ナトリウム混合品で、デハイドロゲナーゼ活性を消失させるためには70mg/LasCl以上の濃度を必要とし、また、DCGでは10mg/Lを必要とした。併用すると、活性消失に必要とされる各剤は両者を足した場合よりも低濃度で達成され、併用されたことによる活性抑制の相乗効果が示された。
(3) 次亜塩素酸ナトリウムとスルファミン酸ナトリウム混合品で、デハイドロゲナーゼ活性を消失させるためには70mg/LasCl以上の濃度を必要とし、また、DBNEでは10mg/Lを必要とした。併用すると、活性消失に必要とされる各剤は両者を足した場合よりも低濃度で達成され、併用されたことによる活性抑制の相乗効果が示された。
これらの結果から明らかなように、イソチアゾリン化合物以外の有機系殺菌剤と無機系酸化剤の併用においても、同様の機構が働き、相乗効果、速効性、効果の持続が達される。また、酸化剤の大幅な低減により、腐食のリスクも低減される。
<Result>
(1) The activity per cell of Pseudomonas.putid to which no drug was added was 484, indicating a sufficient activity.
(2) In order to eliminate dehydrogenase activity in a mixture of sodium hypochlorite and sodium sulfamate, a concentration of 70 mg / LasCl 2 or more was required, and DCG required 10 mg / L. When used in combination, each agent required for loss of activity was achieved at a lower concentration than when both were added, and a synergistic effect of activity suppression due to the combined use was shown.
(3) In order to eliminate dehydrogenase activity in a mixture of sodium hypochlorite and sodium sulfamate, a concentration of 70 mg / LasCl 2 or more was required, and DBNE required 10 mg / L. When used in combination, each agent required for loss of activity was achieved at a lower concentration than when both were added, and a synergistic effect of activity suppression due to the combined use was shown.
As is clear from these results, the same mechanism works also in the combined use of organic bactericides other than isothiazoline compounds and inorganic oxidizers, and a synergistic effect, rapid efficacy, and sustained effect are achieved. The risk of corrosion is also reduced due to the significant reduction in oxidant.

Claims (6)

水系に有機系殺菌剤と無機系酸化剤とを添加する水系の殺菌方法において、
該有機系殺菌剤と無機系酸化剤とを間欠的に添加することを特徴とする水系の殺菌方法。
In an aqueous sterilization method of adding an organic sterilant and an inorganic oxidizer to an aqueous system,
An aqueous sterilization method, wherein the organic sterilant and an inorganic oxidant are intermittently added.
請求項1において、前記有機系殺菌剤と無機系酸化剤とを添加する時期と時期との間に、水系の残留塩素濃度が実質的に検出されない非残留期間を設けることを特徴とする水系の殺菌方法。   The aqueous system according to claim 1, wherein a non-residual period in which the residual chlorine concentration of the aqueous system is not substantially detected is provided between the timing of adding the organic disinfectant and the inorganic oxidizing agent. Sterilization method. 請求項2において、無機系酸化剤及び有機系殺菌剤の添加間隔を24〜100hとすることを特徴とする水系の殺菌方法。   The water-based sterilization method according to claim 2, wherein an addition interval of the inorganic oxidizer and the organic sterilizer is 24 to 100 h. 請求項1ないし3のいずれか1項において、有機系殺菌剤がイソチアゾリン化合物、
ジクロログリオキシド、及びジブロモニトロエタノールよりなる群から選ばれる1種又は2種以上であることを特徴とする水系の殺菌方法。
In any 1 item | term of Claim 1 thru | or 3, an organic type fungicide is an isothiazoline compound,
A water-based sterilization method, which is one or more selected from the group consisting of dichloroglycoxide and dibromonitroethanol.
請求項1ないし4のいずれか1項において、無機系酸化剤が塩素系酸化剤であることを特徴とする水系の殺菌方法。   5. The water-based sterilization method according to claim 1, wherein the inorganic oxidant is a chlorine-based oxidant. 請求項5において、有機系殺菌剤の添加量が1〜30mg/Lであり、無機系酸化剤の添加量が1〜50mg/LasClであることを特徴とする水系の殺菌方法。 In claim 5, an added amount of 1 to 30 mg / L of organic fungicides, sterilization method of the water-based, wherein the addition amount of the inorganic oxidizing agent is 1~50mg / LasCl 2.
JP2013262680A 2013-12-19 2013-12-19 Water sterilization method Expired - Fee Related JP6478455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262680A JP6478455B2 (en) 2013-12-19 2013-12-19 Water sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262680A JP6478455B2 (en) 2013-12-19 2013-12-19 Water sterilization method

Publications (2)

Publication Number Publication Date
JP2015117216A true JP2015117216A (en) 2015-06-25
JP6478455B2 JP6478455B2 (en) 2019-03-06

Family

ID=53530279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262680A Expired - Fee Related JP6478455B2 (en) 2013-12-19 2013-12-19 Water sterilization method

Country Status (1)

Country Link
JP (1) JP6478455B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020697B1 (en) * 2015-11-09 2016-11-02 栗田工業株式会社 Method for inhibiting concentration reduction of isothiazoline compounds
JP2018122267A (en) * 2017-02-02 2018-08-09 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, and method of treating uncharged material-containing water
WO2018142904A1 (en) * 2017-02-02 2018-08-09 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, method for treating water containing non-charged substance, operation method for reverse osmosis membrane, and reverse osmosis membrane device
JP2018187572A (en) * 2017-05-09 2018-11-29 オルガノ株式会社 Operation method for reverse osmosis membrane and reverse osmosis membrane device
JP6447687B1 (en) * 2017-09-01 2019-01-09 栗田工業株式会社 One-component water treatment agent and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047059A (en) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd Slime control method and slime control agent
JP2008012424A (en) * 2006-07-05 2008-01-24 Somar Corp Method of adding slime control agent
JP2009024895A (en) * 2007-07-17 2009-02-05 Miura Co Ltd Water treatment system and treatment method of cooling system circulation water
JP2012036108A (en) * 2010-08-04 2012-02-23 Aquas Corp Treatment method for open circulating cooling water system
JP2013158670A (en) * 2012-02-02 2013-08-19 Aquas Corp Treatment method for open-circulating cooling water system
WO2013146786A1 (en) * 2012-03-26 2013-10-03 栗田工業株式会社 Method for controlling microorganisms in aqueous system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047059A (en) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd Slime control method and slime control agent
JP2008012424A (en) * 2006-07-05 2008-01-24 Somar Corp Method of adding slime control agent
JP2009024895A (en) * 2007-07-17 2009-02-05 Miura Co Ltd Water treatment system and treatment method of cooling system circulation water
JP2012036108A (en) * 2010-08-04 2012-02-23 Aquas Corp Treatment method for open circulating cooling water system
JP2013158670A (en) * 2012-02-02 2013-08-19 Aquas Corp Treatment method for open-circulating cooling water system
WO2013146786A1 (en) * 2012-03-26 2013-10-03 栗田工業株式会社 Method for controlling microorganisms in aqueous system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020697B1 (en) * 2015-11-09 2016-11-02 栗田工業株式会社 Method for inhibiting concentration reduction of isothiazoline compounds
WO2017081875A1 (en) * 2015-11-09 2017-05-18 栗田工業株式会社 Method for suppressing reduction of isothiazoline compound concentration
CN108347934A (en) * 2015-11-09 2018-07-31 栗田工业株式会社 The concentration of iso thiazolinium compound reduces suppressing method
US10765115B2 (en) 2015-11-09 2020-09-08 Kurita Water Industries Ltd. Method for suppressing reduction of isothiazoline compound concentration
CN108347934B (en) * 2015-11-09 2021-06-04 栗田工业株式会社 Method for inhibiting decrease in concentration of isothiazoline compound
JP2018122267A (en) * 2017-02-02 2018-08-09 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, and method of treating uncharged material-containing water
WO2018142904A1 (en) * 2017-02-02 2018-08-09 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, method for treating water containing non-charged substance, operation method for reverse osmosis membrane, and reverse osmosis membrane device
JP2018187572A (en) * 2017-05-09 2018-11-29 オルガノ株式会社 Operation method for reverse osmosis membrane and reverse osmosis membrane device
JP6447687B1 (en) * 2017-09-01 2019-01-09 栗田工業株式会社 One-component water treatment agent and method for producing the same
WO2019044043A1 (en) * 2017-09-01 2019-03-07 栗田工業株式会社 Single-liquid-type water treatment agent and method for manufacturing same
JP2019043891A (en) * 2017-09-01 2019-03-22 栗田工業株式会社 One-pack type water treatment agent and method for producing the same

Also Published As

Publication number Publication date
JP6478455B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
CN110078194B (en) Method for producing hypobromous acid stabilizing composition, and method for inhibiting fouling of separation membrane
Jiang et al. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide
JP4317762B2 (en) Method for the preparation of biocides containing stabilized hypochlorite and bromide ion sources, and methods for controlling microbial fouling using the same
JP6478455B2 (en) Water sterilization method
JP6533056B2 (en) Filtration treatment system and filtration treatment method
JP3015508B2 (en) Disinfectant / bacteriostatic agent
EP2729419B1 (en) Multiple uses of amine salts for industrial water treatment
WO2016104356A1 (en) Method for controlling slime on separation membrane
JP2016120457A (en) Filtration treatment system and filtration treatment method
JP4959062B2 (en) Water treatment method
JP2015063475A (en) Antibacterial/algicidal method of cooling water system and antibacterial/algicidal agent
JP6649697B2 (en) Water sterilization method
JP5635596B2 (en) Halogenated amide biocidal compounds and methods of treating aqueous systems from near neutral to high pH
JP3915560B2 (en) Slime remover, slime remover composition and slime peel method
US20100183738A1 (en) Method and composition for inhibiting growth of microorganisms in industrial process waters in the presence of anionic anti-fouling additives
JP5928938B2 (en) Treatment method for open circulating cooling water system
US6811747B2 (en) Corrosion inhibitor
US20180177191A1 (en) Process for reducing the corrosiveness of a biocidal composition containing in situ generated sodium hypochlorite
JP2016120486A (en) Method for inhibiting slime in separation membrane
JP5281465B2 (en) Bactericidal algicide composition, water-based bactericidal algicide method, and method for producing bactericidal algicide composition
JP2013158669A (en) Treatment method for open-circulating cooling water system
JP6548870B2 (en) Method for controlling slime in papermaking process water
JP6630563B2 (en) Water sterilization method
KR20140088207A (en) Treating agent for ship ballast water and method for treating ship ballast water using same
JP6331364B2 (en) Corrosion reducing method and corrosion reducing agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180312

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6478455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees