JP2015113319A - Rhodium catalyst and method for manufacturing optically active compound using the same - Google Patents

Rhodium catalyst and method for manufacturing optically active compound using the same Download PDF

Info

Publication number
JP2015113319A
JP2015113319A JP2013258070A JP2013258070A JP2015113319A JP 2015113319 A JP2015113319 A JP 2015113319A JP 2013258070 A JP2013258070 A JP 2013258070A JP 2013258070 A JP2013258070 A JP 2013258070A JP 2015113319 A JP2015113319 A JP 2015113319A
Authority
JP
Japan
Prior art keywords
optically active
following general
general formula
rhodium
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013258070A
Other languages
Japanese (ja)
Other versions
JP6213991B2 (en
Inventor
韓 立彪
Li-Biao Han
立彪 韓
祥波 王
xiang-bo Wang
祥波 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013258070A priority Critical patent/JP6213991B2/en
Publication of JP2015113319A publication Critical patent/JP2015113319A/en
Application granted granted Critical
Publication of JP6213991B2 publication Critical patent/JP6213991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new rhodium complex stable in the air, easy in handling and using an inexpensive optically active H-phosphinate HP(O)R(OR') as a ligand, and a method for asymmetrically hydrogenating olefins efficiently using the same.SOLUTION: The rhodium complex compound has a structure represented by the following general formula (I). (Where in the formula (I), Rand Rare carbon substituents which may be the same or different, and two olefins coordinated in Rh may combine with each other as shown by a dotted line to form a ring structure.)

Description

本発明は、新規なロジウム触媒及びこれを用いる光学活性化合物の製造に関するものである。   The present invention relates to a novel rhodium catalyst and production of an optically active compound using the same.

光学活性化合物は、医薬や機能性材料などの製造において欠かせない出発物質である。金属触媒を用いるオレフィン類の不斉水素化は、光学活性化合物を製造する効率のよい手段として知られている。これらの触媒反応には、不斉誘導するため、光学活性配位子を用いる。これらの光学活性配位子の構造が生成物の不斉選択性に対し著しく影響を与える。代表的な光学活性配位子の例として、光学活性2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル(BINAP)配位子などが知られている。
しかし、過去40数年間の研究によって、いくつかの効率的な不斉水素化方法が開発されたものの、実用的な観点で依然多くの問題を抱えている。一つは、反応に使用する不斉配位子が極めて高価なものが多いことである。もう一つは、これらの配位子には光学活性なホスフィン類が多く用いられているが、これらのホスフィン類は空気に酸化されやすく、失活しやすいため、これらの取り扱いにあたっては、酸素のない環境が必要なことである(非特許文献1〜8)。
Optically active compounds are essential starting materials in the production of pharmaceuticals and functional materials. Asymmetric hydrogenation of olefins using a metal catalyst is known as an efficient means for producing optically active compounds. In these catalytic reactions, an optically active ligand is used for asymmetric induction. The structure of these optically active ligands significantly affects the asymmetric selectivity of the product. As an example of a typical optically active ligand, an optically active 2,2′-bis (diphenylphosphino) -1,1′-binaphthyl (BINAP) ligand and the like are known.
However, although several efficient asymmetric hydrogenation methods have been developed in the past 40 years of research, they still have many problems from a practical viewpoint. One is that many asymmetric ligands used in the reaction are extremely expensive. The other is that many optically active phosphines are used for these ligands, but these phosphines are easily oxidized to air and easily deactivated. No environment is necessary (Non-Patent Documents 1 to 8).

一方、近年、二置換ホスファイトH-P(O)(OR)2が金属触媒配位子として用い得ることがしられるようになった。ホスフィン類と異なり、二置換ホスファイト類は、空気中で安定であるため、化合物の取り扱いは空気中で行うことができる。(非特許文献9) On the other hand, recently, disubstituted phosphites HP (O) (OR) 2 can be used as metal catalyst ligands. Unlike phosphines, disubstituted phosphites are stable in air, so the compound can be handled in air. (Non-patent document 9)

また、光学活性ホスフィンオキシドH-P(O)R1R2を金属触媒配位子として用いる不斉水素化反応も報告されている(非特許文献10、11)。しかしながら、これらの光学ホスフィン類は、カラム分割法により単離する必要があるため、微少量しか合成できない。また、不斉選択率も低い(最高不斉選択率85% ee)。 An asymmetric hydrogenation reaction using optically active phosphine oxide HP (O) R 1 R 2 as a metal catalyst ligand has also been reported (Non-patent Documents 10 and 11). However, since these optical phosphines need to be isolated by a column resolution method, only a very small amount can be synthesized. Also, the asymmetric selectivity is low (maximum asymmetric selectivity 85% ee).

一方、光学活性H-ホスフィナート類HP(O)R(OR’)は、空気中で安定な化合物であり、また、安価な原料から大量に製造することが可能である(特許文献1、非特許文献12〜14)。   On the other hand, the optically active H-phosphinates HP (O) R (OR ′) is a compound that is stable in the air and can be produced in large quantities from inexpensive raw materials (Patent Document 1, Non-patent). References 12-14).

特許第4649590号Patent No. 4649590

J. M. Brown,in:Comprehensive Asymmetric Catalysis (Eds.:E. N. Jacobsen,A. Pfaltz,H. Yamamoto),Springer,Berlin,1999,p. 121.J. M. Brown, in: Comprehensive Asymmetric Catalysis (Eds .: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, 1999, p. 121. T. Ohkuma,M. Kitamura,R. Noyori,in:Catalytic Asymmetric synthesis 2nd ed. (Ed.:I. Ojima),Wiley-Interscience,New York,2000,p. 1.T. Ohkuma, M. Kitamura, R. Noyori, in: Catalytic Asymmetric synthesis 2nd ed. (Ed .: I. Ojima), Wiley-Interscience, New York, 2000, p. 1. A. Grabulosa,P-stereogenic ligands in enantioselective catalysis,(Ed.:A. Grabulosa),The Royal Society of Chemistry,2011,p. 361.A. Grabulosa, P-stereogenic ligands in enantioselective catalysis, (Ed .: A. Grabulosa), The Royal Society of Chemistry, 2011, p. 361. R. Noyori,T. Ohkuma,Angew. Chem. 2001,113,40-75; Angew. Chem. Int. Ed. 2001,40,40-73.R. Noyori, T. Ohkuma, Angew. Chem. 2001, 113, 40-75; Angew. Chem. Int. Ed. 2001, 40, 40-73. W. S. Knowles,Angew. Chem. 2002,114,2096-2107; Angew. Chem. Int. Ed. 2002,41,1998-2007.W. S. Knowles, Angew. Chem. 2002, 114, 2096-2107; Angew. Chem. Int. Ed. 2002, 41, 1998-2007. W. Tang,X. Zhang,Chem. Rev. 2003,103,3029-3069.W. Tang, X. Zhang, Chem. Rev. 2003, 103, 3029-3069. G. Erre,S. Enthaler,K. Junge,S. Gladiali,M. Beller,Coord. Chem. Rev. 2008,252,471-491.G. Erre, S. Enthaler, K. Junge, S. Gladiali, M. Beller, Coord. Chem. Rev. 2008, 252, 471-491. S. Gladiali,E. Alverico,K. Junge,M. Beller,Chem. Soc. Rev . 2011,40,3744-3763.S. Gladiali, E. Alverico, K. Junge, M. Beller, Chem. Soc. Rev. 2011, 40, 3744-3763. G. Y. Li,Angew. Chem. 2001,113,1561-1564; Angew. Chem. Int. Ed. 2001,40,1513-1516.G. Y. Li, Angew. Chem. 2001, 113, 1561-1564; Angew. Chem. Int. Ed. 2001, 40, 1513-1516. X. Jiang,A. J. Minnaard,B. Hessen,B. L. Feringa,A. L. L. Duchateau,J. G. O. Andrien,J. A. F. Boogers,J. G. de Vieres,Org. lett. 2003,5,1503-1506.X. Jiang, A. J. Minnaard, B. Hessen, B. L. Feringa, A. L. L. Duchateau, J. G. O. Andrien, J. A. F. Boogers, J. G. de Vieres, Org. Lett. 2003, 5, 1503-1506. X. Jiang,M. van den Berg,A. J. Minnaard,B. L. Feringa and J. G. de Vieres,Tetrahedron:Asymmetriy,2004,15,2223-2229.X. Jiang, M. van den Berg, A. J. Minnaard, B. L. Feringa and J. G. de Vieres, Tetrahedron: Asymmetriy, 2004, 15, 2223-2229. Xu,C.-Q. Zhao,L.-B. Han,J. Am. Chem. Soc. 2008,130,12648-12655.Xu, C.-Q. Zhao, L.-B. Han, J. Am. Chem. Soc. 2008, 130, 12648-12655. D. Gatineau,L. Giordano,G. Buono,J. Am. Chem. Soc. 2011,133,10728-10731D. Gatineau, L. Giordano, G. Buono, J. Am. Chem. Soc. 2011, 133, 10728-10731 R. Bodalski,J. Koszuk,Phosphorus,Sulfur,Silicon Relat. Elem. 1989,44,99-102.R. Bodalski, J. Koszuk, Phosphorus, Sulfur, Silicon Relat. Elem. 1989, 44, 99-102.

本発明は、空気中で安定で、取り扱いが容易であり、且つ、安価な光学活性H-ホスフィナート類HP(O)R(OR’)を配位子とする新規なロジウム錯体を合成し、これを用いる効率のよいオレフィン類の不斉水素化方法を開発することを課題とする。   The present invention synthesizes a novel rhodium complex having a ligand of the optically active H-phosphinates HP (O) R (OR ′) that is stable in air, easy to handle, and inexpensive. It is an object to develop an efficient method for asymmetric hydrogenation of olefins using benzene.

本発明者らは、光学活性H-ホスフィナート類のロジウムへの配位挙動を研究する過程で、偶然にも、リン上の立体配置が保持されたまま、P(O)H基がP(OH)基に互変異性化し、ゆっくりとロジウムに配位することを究明した。X線構造解析の結果、驚くべきことに、二つのP(OH)基がロジウムスルホン酸塩のスルホン酸アニオンと水素結合を形成し、環状錯体が形成されることがわかった。この環状構造の形成により、安定な立体構造の錯体が形成される。
そこで、本発明者らは、これを用いてオレフィン類の不斉水素化を試みたところ、高い不斉収率で効率よく不斉水素化反応が進行することを見出した。また、本発明者らは、この不斉水素化反応が、予め形成されたロジウム錯体を反応系に加えるのではなく、光学活性H-ホスフィナート類とロジウムスルホン酸塩を反応系に加えることによっても、良好に進行することを見出した。
本発明は、これらの知見に基づいて完成されたものである。
In the process of studying the coordination behavior of optically active H-phosphinates to rhodium, the present inventors happened that the P (O) H group was changed to P (OH) while maintaining the configuration on phosphorus. ) Group was tautomerized and slowly coordinated to rhodium. As a result of X-ray structural analysis, it was surprisingly found that two P (OH) groups formed hydrogen bonds with sulfonate anions of rhodium sulfonate, and a cyclic complex was formed. By forming this cyclic structure, a complex having a stable steric structure is formed.
Therefore, the present inventors tried to perform asymmetric hydrogenation of olefins using this, and found that the asymmetric hydrogenation reaction proceeded efficiently with a high asymmetric yield. In addition, the present inventors do not add a preformed rhodium complex to the reaction system, but add an optically active H-phosphinate and rhodium sulfonate to the reaction system. , Found to proceed well.
The present invention has been completed based on these findings.

すなわち、この出願は、以下の発明を提供する。
〈1〉以下の一般式(I)で表される構造を有する、ロジウム錯体化合物。

Figure 2015113319
(上記式(I)中、R1 2は、同じでも異なってもよい炭素置換基であり、Rhに配位する二つのオレフィンは、点線で示すように互いに結合し、環構造を形成してもよい)
〈2〉以下の一般式(II)で表される光学活性H-ホスフィナート類と以下の一般式(III)で表されるロジウムスルホン酸塩を反応させることを特徴とする、〈1〉に記載のロジウム錯体化合物の製造方法。
Figure 2015113319
(上記式(II)中のR1 2は、同じでも異なってもよい炭素置換基である)
Figure 2015113319
(上記式(III)中のRhに配位する二つのオレフィンは、点線で示すように互いに結合し、環構造を形成してもよい)
〈3〉〈1〉に記載のロジウム錯体化合物からなる、オレフィン類の不斉水素化反応用触媒。
〈4〉〈1〉に記載のロジウム錯体化合物を触媒として、以下の一般式(IV)で表されるオレフィン類を不斉水素化することを特徴とする、以下の一般式(V)で表される光学活性化合物の製造方法。
Figure 2015113319
(上記式(IV)中のR5〜R8は、水素、炭素置換基、ヘテロ原子官能基から選択される基を表す。但し、R5及びR7、または、R6およびR8は、互いに異なる基であり、また、R5〜R8中、水素の個数は0か1である)
Figure 2015113319
(上記式(V)中のR5〜R8は、式(IV)中のR5〜R8と同じ基である)
〈5〉以下の一般式(II)で表される光学活性H-ホスフィナート類と以下の一般式(III)で表されるロジウムスルホン酸塩を反応系に加え、系中で形成されるロジウム錯体化合物を単離することなく、そのまま触媒として用いることを特徴とする、〈4〉に記載の光学活性化合物の製造方法。
Figure 2015113319
(上記式(II)中のR1 2は、同じでも異なってもよい炭素置換基である)
Figure 2015113319
(上記式(III)中のRhに配位する二つのオレフィンは、点線で示すように互いに結合し、環構造を形成してもよい) That is, this application provides the following inventions.
<1> A rhodium complex compound having a structure represented by the following general formula (I).
Figure 2015113319
(In the above formula (I), R 1 and R 2 are the same or different carbon substituents, and two olefins coordinated to Rh are bonded to each other to form a ring structure as shown by the dotted line. You may)
<2> An optically active H-phosphinate represented by the following general formula (II) and a rhodium sulfonate represented by the following general formula (III) are reacted: Of the rhodium complex compound.
Figure 2015113319
(R 1 and R 2 in the above formula (II) are the same or different carbon substituents)
Figure 2015113319
(Two olefins coordinated to Rh in the above formula (III) may be bonded to each other to form a ring structure as shown by the dotted line)
<3> A catalyst for asymmetric hydrogenation reaction of olefins, comprising the rhodium complex compound according to <1>.
<4> An olefin represented by the following general formula (IV) is asymmetrically hydrogenated using the rhodium complex compound described in <1> as a catalyst, and represented by the following general formula (V) A method for producing an optically active compound.
Figure 2015113319
(R 5 to R 8 in the above formula (IV) represent a group selected from hydrogen, a carbon substituent, and a heteroatom functional group, provided that R 5 and R 7 , or R 6 and R 8 are They are different from each other, and the number of hydrogen in R 5 to R 8 is 0 or 1)
Figure 2015113319
(R 5 to R 8 in the formula (V) are the same group as R 5 to R 8 in formula (IV))
<5> A rhodium complex formed in the system by adding an optically active H-phosphinate represented by the following general formula (II) and a rhodium sulfonate represented by the following general formula (III) to the reaction system The method for producing an optically active compound according to <4>, wherein the compound is used as it is as a catalyst without isolation.
Figure 2015113319
(R 1 and R 2 in the above formula (II) are the same or different carbon substituents)
Figure 2015113319
(Two olefins coordinated to Rh in the above formula (III) may be bonded to each other to form a ring structure as shown by the dotted line)

一般式(I)のロジウム錯体化合物を触媒として用いることにより、オレフィン類を効率よく不斉水素化することができる。
また、一般式(I)のロジウム錯体は、空気中で安定で、取り扱いが容易であり、且つ、安価な光学活性H-ホスフィナート類HP(O)R(OR’)と、ロジウムスルホン酸塩類とから、高い収率で容易に得ることができる。
By using the rhodium complex compound of the general formula (I) as a catalyst, olefins can be efficiently asymmetrically hydrogenated.
In addition, the rhodium complex of the general formula (I) is stable in air, easy to handle, and inexpensive, the optically active H-phosphinates HP (O) R (OR ′), rhodium sulfonates, Therefore, it can be easily obtained with a high yield.

(RP)-[(-)MenO]PhP(O)HとRh(COD)2]OTfとから形成されたロジウム錯体(Ib)のORTEP図(MenOはメントキシをCODはロジウムに対し2座配位した1,5−シクロオクタジエンを、また、OTfはトリフルオロメチルスルホン酸基を、それぞれ表す)。ORTEP diagram of rhodium complex (Ib) formed from (R P )-[(-) MenO] PhP (O) H and Rh (COD) 2 ] OTf (MenO is menthoxy, COD is bidentate to rhodium 1,5-cyclooctadiene positioned, and OTf represents a trifluoromethylsulfonic acid group, respectively).

本発明のロジウム錯体化合物は、以下の一般式(I)で表される。

Figure 2015113319
(上記式(I)中、R1 2は、同じでも異なってもよい炭素置換基であり、Rhに配位する二つのオレフィンは、点線で示すように互いに結合し、環構造を形成してもよい)
1 2の炭素置換基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、t−ブチル基などのC1〜C4アルキル基、2−i−プロピル−5−メチル−シクロヘキシル基(メンチル基)などのシクロアルキル基、フェニル基、ナフチル基などのアリール基、ベンジル基、フェネチル基などのアリールアルキル基が挙げられる。
Rhに配位するオレフィンとしては、例えば、エチレン、プロピレン、2−ノルボルネンが挙げられる。二つのオレフィンが環構造を形成する例としては、1,5−シクロオクタジエン、2,5−ノルボルナジエンが挙げられる。 The rhodium complex compound of the present invention is represented by the following general formula (I).
Figure 2015113319
(In the above formula (I), R 1 and R 2 are the same or different carbon substituents, and two olefins coordinated to Rh are bonded to each other to form a ring structure as shown by the dotted line. You may)
Examples of the carbon substituent for R 1 and R 2 include C1-C4 alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and a t-butyl group, and 2-i-propyl-5- Examples thereof include cycloalkyl groups such as methyl-cyclohexyl group (menthyl group), aryl groups such as phenyl group and naphthyl group, and arylalkyl groups such as benzyl group and phenethyl group.
Examples of the olefin coordinated with Rh include ethylene, propylene, and 2-norbornene. Examples of two olefins forming a ring structure include 1,5-cyclooctadiene and 2,5-norbornadiene.

具体的なロジウム錯体の一例として、R1が(−)メンチル基であり、R2がベンジル基またはフェニル基であり、Rhに配位するオレフィンが1,5−シクロオクタジエンである場合を、以下の一般式(I’)に示す。

Figure 2015113319
As an example of a specific rhodium complex, when R 1 is a (-) menthyl group, R 2 is a benzyl group or a phenyl group, and the olefin coordinated to Rh is 1,5-cyclooctadiene, It is shown in the following general formula (I ′).
Figure 2015113319

本発明のロジウム錯体化合物は、以下の一般式(II)で表される光学活性H-ホスフィナート類と以下の一般式(III)で表されるロジウムスルホン酸塩を反応させることにより得られる。

Figure 2015113319
(上記式(II)中のR1 2は、同じでも異なってもよい炭素置換基である)
Figure 2015113319
(上記式(III)中のRhに配位する二つのオレフィンは、点線で示すように互いに結合し、環構造を形成してもよい)
一般式(II)および(III)における炭素置換基およびRhに配位するオレフィンとしては、一般式(I)について上述したものと同様のものが挙げられる。 The rhodium complex compound of the present invention can be obtained by reacting an optically active H-phosphinate represented by the following general formula (II) with a rhodium sulfonate represented by the following general formula (III).
Figure 2015113319
(R 1 and R 2 in the above formula (II) are the same or different carbon substituents)
Figure 2015113319
(Two olefins coordinated to Rh in the above formula (III) may be bonded to each other to form a ring structure as shown by the dotted line)
Examples of the olefin coordinated to the carbon substituent and Rh in the general formulas (II) and (III) include the same as those described above for the general formula (I).

具体的なロジウムスルホン酸塩の一例として、Rhに配位するオレフィンが1,5−シクロオクタジエンである場合を、以下の式(III’)に示す。

Figure 2015113319
As a specific example of rhodium sulfonate, the case where the olefin coordinated to Rh is 1,5-cyclooctadiene is shown in the following formula (III ′).
Figure 2015113319

本発明のロジウム錯体化合物を触媒として不斉水素化されるオレフィン類は、以下の一般式(IV)で表すことができる。

Figure 2015113319
(上記式(IV)中のR5〜R8は、水素、炭素置換基、ヘテロ原子官能基から選択される基を表す。但し、R5及びR7、または、R6およびR8は、互いに異なる基であり、また、R5〜R8中、水素の個数は0か1である)
5〜R8の炭素置換基としては、例えば、C1〜C4アルキル基、シクロアルキル基、フェニル基、ナフチル基などのアリール基、ベンジル基、フェネチル基などのアリールアルキル基などが挙げられるが、これらに限定されるものではない。
また、R5〜R8のヘテロ原子官能基としては、例えば、保護基で保護されていてもよいアミノ基、カルボキシル基などの官能基が挙げられるが、これらに限定されるものではない。 The olefins to be asymmetrically hydrogenated using the rhodium complex compound of the present invention as a catalyst can be represented by the following general formula (IV).
Figure 2015113319
(R 5 to R 8 in the above formula (IV) represent a group selected from hydrogen, a carbon substituent, and a heteroatom functional group, provided that R 5 and R 7 , or R 6 and R 8 are They are different from each other, and the number of hydrogen in R 5 to R 8 is 0 or 1)
Examples of the carbon substituent of R 5 to R 8 include an aryl group such as a C1 to C4 alkyl group, a cycloalkyl group, a phenyl group, and a naphthyl group, and an arylalkyl group such as a benzyl group and a phenethyl group. It is not limited to these.
Examples of the hetero atom functional group of R 5 to R 8 include, but are not limited to, functional groups such as an amino group and a carboxyl group that may be protected with a protective group.

当該水素化により得られる光学活性化合物は、以下の一般式(V)で表すことができる。

Figure 2015113319
(上記式(V)中のR5〜R8は、式(IV)中のR5〜R8と同じ基である) The optically active compound obtained by the hydrogenation can be represented by the following general formula (V).
Figure 2015113319
(R 5 to R 8 in the formula (V) are the same group as R 5 to R 8 in formula (IV))

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

実施例1.ロジウム錯体化合物の合成
(1)ロジウム錯体(Ia)の合成
窒素雰囲気下、(RP)-[(-)MenO](PhCH2)P(O)H(MenOはメントキシを表す)(0.183g,0.62mmol)とRh(COD)2]OTf((COD)2はロジウムに対し2座配位した1,5−シクロオクタジエンを、また、OTfはトリフルオロメチルスルホン酸基を、それぞれ表す)(145.2mg,0.31mmol)をトルエン(4mL)に溶かし、室温で一晩攪拌した。オレンジ色の沈殿が生じた。沈殿を濾過し乾燥させることにより、0.285gグラム(収率94%)のロジウム錯体(Ia)が得られた。
(2)ロジウム錯体(Ib)の合成
同様な操作により、(RP)-[(-)MenO]PhP(O)Hを用いることにより、対応するロジウム錯体(Ib)が95%の収率で得られた。
Example 1. Synthesis of rhodium complex compound (1) Synthesis of rhodium complex (Ia) Under a nitrogen atmosphere, (R P )-[(-) MenO] (PhCH 2 ) P (O) H (MenO represents menthoxy) (0.183 g, 0.62 mmol) and Rh (COD) 2 ] OTf ((COD) 2 represents 1,5-cyclooctadiene bidentate to rhodium, and OTf represents a trifluoromethylsulfonic acid group) ( 145.2 mg, 0.31 mmol) was dissolved in toluene (4 mL) and stirred at room temperature overnight. An orange precipitate formed. The precipitate was filtered and dried, yielding 0.285 g grams (94% yield) of rhodium complex (Ia).
(2) Synthesis of rhodium complex (Ib) Using the same procedure, (R P )-[(-) MenO] PhP (O) H is used to obtain the corresponding rhodium complex (Ib) in a yield of 95%. Obtained.

これらの錯体の物理的特性および1H NMRのデータは、以下のとおりである。
ロジウム錯体(Ia)
オレンジ色の固体,融点:162℃(分解).1H NMR(400MHz,CD2Cl2):δ8.32(br,2H),7.51(d,J = 7.2Hz,4H),7.34-7.24(m,6H),5.321(br,2H),5.318(br,2H),4.39-4.30(m,2H),3.43-3.37(m,2H),2.34-2.20(m,4H),1.94(br,4H),1.73(br,4H),1.62-1.54(m,6H),1.34-1.21(m,4H),1.18-1.09(m,2H),1.05(d,J = 7.2Hz,6H),0.99(d,J = 6.4Hz,6H), 0.95(d,J = 6.8Hz,6H),0.92-0.83(m,2H). 13C NMR(101MHz,CD2Cl2):133.90,130.46,128.83,127.04,102.86(d,J = 89.1Hz),77.11(t,J = 6.6Hz),50.14,44.91,42.25,34.50,32.09,30.98,28.87,26.07,23.18,22.54,21.78,15.98. 13C NMR(101MHz,THF-d8):134.36,130.56,128.59,126.74,102.35(d,J = 70.9Hz),76.75,50.26,44.94,41.99,34.56,31.90,30.75,28.66,26.04,23.07,22.28,21.57,15.85. 31P NMR(162MHz,CD2Cl2):141.9(d,J = 209.6).
ロジウム錯体(Ib)
オレンジ色固体,142℃(分解).1H NMR(400MHz,CD2Cl2):δ9.23(br,2H),7.83-7.78(m,4H),7.46(d,J = 3.6Hz,6H),5.51(br,2H),5.33(br,2H),3.65-3.55(m,2H),2.71-2.61(m,2H),2.55-2.51(m,2H),2.30-2.20(m,6H),1.57-1.53(m,2H),1.45-1.42(m,2H),1.08-1.02(m,2H),0.94(d,J = 7.2Hz,6H),0.90-0.80(m,6H),0.78(d,J = 6.8Hz,6H),0.61-0.54(m,4H),0.51(d,J = 6.4Hz,6H). 13C NMR(101MHz,CD2Cl2):131.4,130.9(t,J = 7.6),128.4,105.4(d,J = 5.7),103.9(d,J = 5.7),77.11(t,J = 6.7),48.9,42.0,34.4,31.7,31.7,28.9,25.1,23.0,22.1,21.4,15.4. 31P NMR(162MHz,CD2Cl2):122.9(d,J = 206.2).
The physical properties and 1 H NMR data of these complexes are as follows:
Rhodium complex (Ia)
Orange solid, melting point: 162 ° C (decomposition). 1 H NMR (400 MHz, CD 2 Cl 2 ): δ 8.32 (br, 2H), 7.51 (d, J = 7.2 Hz, 4H), 7.34-7.24 (m, 6H), 5.321 (br, 2H), 5.318 (br, 2H), 4.39-4.30 (m, 2H), 3.43-3.37 (m, 2H), 2.34-2.20 (m, 4H), 1.94 (br, 4H), 1.73 (br, 4H), 1.62-1.54 (m, 6H), 1.34-1.21 (m, 4H), 1.18-1.09 (m, 2H), 1.05 (d, J = 7.2Hz, 6H), 0.99 (d, J = 6.4Hz, 6H), 0.95 ( d, J = 6.8 Hz, 6H), 0.92-0.83 (m, 2H). 13 C NMR (101 MHz, CD 2 Cl 2 ): 133.90, 130.46, 128.83, 127.04, 102.86 (d, J = 89.1 Hz), 77.11 (t, J = 6.6 Hz), 50.14, 44.91, 42.25, 34.50, 32.09, 30.98, 28.87, 26.07, 23.18, 22.54, 21.78, 15.98. 13 C NMR (101 MHz, THF-d8): 134.36, 130.56, 128.59, 126.74, 102.35 (d, J = 70.9 Hz), 76.75, 50.26, 44.94, 41.99, 34.56, 31.90, 30.75, 28.66, 26.04, 23.07, 22.28, 21.57, 15.85. 31 P NMR (162 MHz, CD 2 Cl 2 ): 141.9 (d, J = 209.6).
Rhodium complex (Ib)
Orange solid, 142 ° C (decomposition). 1 H NMR (400 MHz, CD 2 Cl 2 ): δ 9.23 (br, 2H), 7.83-7.78 (m, 4H), 7.46 (d, J = 3.6 Hz, 6H), 5.51 (br, 2H), 5.33 (br, 2H), 3.65-3.55 (m, 2H), 2.71-2.61 (m, 2H), 2.55-2.51 (m, 2H), 2.30-2.20 (m, 6H), 1.57-1.53 (m, 2H) , 1.45-1.42 (m, 2H), 1.08-1.02 (m, 2H), 0.94 (d, J = 7.2Hz, 6H), 0.90-0.80 (m, 6H), 0.78 (d, J = 6.8Hz, 6H ), 0.61-0.54 (m, 4H), 0.51 (d, J = 6.4 Hz, 6H). 13 C NMR (101 MHz, CD 2 Cl 2 ): 131.4, 130.9 (t, J = 7.6), 128.4, 105.4 ( d, J = 5.7), 103.9 (d, J = 5.7), 77.11 (t, J = 6.7), 48.9, 42.0, 34.4, 31.7, 31.7, 28.9, 25.1, 23.0, 22.1, 21.4, 15.4. 31 P NMR (162 MHz, CD 2 Cl 2 ): 122.9 (d, J = 206.2).

また、ロジウム錯体(Ib)については、X線構造解析によりその構造を確認した。図1にそのORTEP図を示す。
図1の(a)においては、明瞭化のため、水素原子の表示が省かれている。図1の(b)においては、明瞭化のため、水素原子、1,5−シクロオクタジエン、および、メントール基の表示が省かれている。選択された結合距離(A)および角度(°)は、以下のとおりである:P(1)-Rh(1)=2.2580(13),P(2)-Rh(1) 2.2558(13),P(1)-O(1) 1.621(4),P(1)-O(2) 1.580(5),P(2)-O(3) 1.592(4),P(2)-O(4) 1.598(4),O(2)-O(6) 2.550,O(3)-O(5) 2.568,S(1)-O(5) 1.386(7),S(1)-O(6) 1.311(11),S(1)-O(7) 1.602(15);O(1)-P(1)-O(2) 105.1(2),O(3)-P(2)-O(4) 106.6(2),P(1)-Rh(1)-P(2) 90.77(5).
図1に示すように、この錯体には、二分子のH-ホスフィナート配位子から生じたOH基とスルホン酸基の二つのO原子の間に水素結合が二つ存在し、これにより、P-Rh-Pの配位を含めた環状構造が形成されている。
The rhodium complex (Ib) was confirmed by X-ray structural analysis. FIG. 1 shows the ORTEP diagram.
In FIG. 1A, the display of hydrogen atoms is omitted for clarity. In FIG. 1 (b), the hydrogen atom, 1,5-cyclooctadiene, and menthol group are omitted for the sake of clarity. The selected bond distance (A) and angle (°) are as follows: P (1) -Rh (1) = 2.2580 (13), P (2) -Rh (1) 2.2558 (13), P (1) -O (1) 1.621 (4), P (1) -O (2) 1.580 (5), P (2) -O (3) 1.592 (4), P (2) -O (4 1.598 (4), O (2) -O (6) 2.550, O (3) -O (5) 2.568, S (1) -O (5) 1.386 (7), S (1) -O (6 1.311 (11), S (1) -O (7) 1.602 (15); O (1) -P (1) -O (2) 105.1 (2), O (3) -P (2) -O (4) 106.6 (2), P (1) -Rh (1) -P (2) 90.77 (5).
As shown in FIG. 1, this complex has two hydrogen bonds between the two O atoms of the OH group and the sulfonic acid group generated from the bimolecular H-phosphinate ligand. A cyclic structure including the coordination of -Rh-P is formed.

これらの結果から、上記ロジウム錯体(Ia)および(Ib)の構造は、以下の式(I’)に示すとおりであり、また、上述のロジウム錯体の合成反応は以下の反応式(VI)に示すとおりであることが確認された。
なお、下記の式(I’)および(VI)において、Rは、錯体(Ia)ではCH2Phであり、錯体(Ib)ではPhである。

Figure 2015113319
Figure 2015113319
From these results, the structures of the rhodium complexes (Ia) and (Ib) are as shown in the following formula (I ′), and the synthesis reaction of the rhodium complex is represented by the following reaction formula (VI). It was confirmed as shown.
In the following formulas (I ′) and (VI), R is CH 2 Ph in the complex (Ia) and Ph in the complex (Ib).
Figure 2015113319
Figure 2015113319

実施例2.予め形成されたロジウム錯体化合物を反応系に加えることによる、オレフィン類の不斉水素化
実施例1で合成したロジウム錯体(Ia)(R=CH2Ph)を用いて、以下に示すオレフィンの不斉水素化反応を行った。

Figure 2015113319
具体的には、ロジウム錯体(Ia)(0.3mg,0.00048mmol)と各種オレフィン類(10.5mg,0.048mmol)をジクロロメタン(6mL)に溶かし、室温で5気圧の水素を加えた。10分後、反応を止め、生成物をシリカゲルカラムにより単離した。光学活性カラムを用いて、液体クロマトグラフィーを用いて、光学純度を決定した。オレフィン2bについては、反応時間を12時間とした。
用いた原料オレフィンと得られた反応生成物の収率および光学純度(鏡像体過剰率ee)を以下の表1にまとめた。 Example 2 Asymmetric hydrogenation of olefins by adding a pre-formed rhodium complex compound to the reaction system Using the rhodium complex (Ia) (R = CH 2 Ph) synthesized in Example 1, A simultaneous hydrogenation reaction was performed.
Figure 2015113319
Specifically, rhodium complex (Ia) (0.3 mg, 0.00048 mmol) and various olefins (10.5 mg, 0.048 mmol) were dissolved in dichloromethane (6 mL), and 5 atm hydrogen was added at room temperature. After 10 minutes, the reaction was stopped and the product was isolated by a silica gel column. Optical purity was determined using liquid chromatography using an optically active column. For olefin 2b, the reaction time was 12 hours.
The raw material olefin used and the yield and optical purity (enantiomeric excess ee) of the obtained reaction product are summarized in Table 1 below.

表1.ロジウム錯体(Ia)触媒による各種オレフィン類の不斉水素化Table 1. Asymmetric hydrogenation of various olefins with rhodium complex (Ia) catalyst

Figure 2015113319
Figure 2015113319

実施例3.光学活性H-ホスフィナート類とロジウムスルホン酸塩を反応系に加えることによる、オレフィン類の不斉水素化
以下の表2に示す種々の光学活性H-ホスフィナート類と以下の表3のRhの欄に示すロジウム化合物を反応系において混合し、形成されるロジウム錯体を単離することなく、そのまま直接不斉水素化に用いた。その結果を表3に示す。光学活性H-ホスフィナート類とロジウムスルホン酸塩を反応系に加えることによっても、光学活性なオレフィン類が得られることが示される。
Example 3 FIG. Asymmetric hydrogenation of olefins by adding optically active H-phosphinates and rhodium sulfonate to the reaction system. Various optically active H-phosphinates shown in Table 2 below and the Rh column in Table 3 below. The rhodium compounds shown were mixed in the reaction system and used directly for asymmetric hydrogenation without isolation of the rhodium complex formed. The results are shown in Table 3. It is shown that optically active olefins can also be obtained by adding optically active H-phosphinates and rhodium sulfonate to the reaction system.

表2.実験に用いた光学活性H-ホスフィナート類Table 2. Optically active H-phosphinates used in the experiment

Figure 2015113319
Figure 2015113319

表3.光学活性H-ホスフィナート類とロジウムスルホン酸塩を反応系に加えることによる、不斉水素化反応 [a]
表3中の注[a]〜[h]は、以下のとおりである。
[a]:他に断りのない限り、反応は原料オレフィン2aの0.048M溶液を用いて行われた。
[b]:収率は1H NMRによる収率である。
[c]:鏡像体過剰率(ee)はキラルHPLCにより測定した。その絶対配置は報告されたデータとの対比により決定した。
[d]:リガンドは5mol%用いた。
[e]:35℃で反応を行った。
[f]:水素圧20atmで反応を行った。
[g]:Rp/Sp=50/50の1を使用した。
[h]:0.1当量の水を添加した。
Table 3. Asymmetric hydrogenation reaction by adding optically active H-phosphinates and rhodium sulfonate to the reaction system [a]
Notes [a] to [h] in Table 3 are as follows.
[a]: Unless otherwise noted, the reactions were performed using a 0.048M solution of raw olefin 2a.
[b]: Yield is the yield by 1 H NMR.
[c]: Enantiomeric excess (ee) was measured by chiral HPLC. Its absolute configuration was determined by comparison with the reported data.
[d]: 5 mol% of the ligand was used.
[e]: Reaction was performed at 35 ° C.
[f]: Reaction was performed at a hydrogen pressure of 20 atm.
[g]: 1 of Rp / Sp = 50/50 was used.
[h]: 0.1 equivalent of water was added.

Figure 2015113319
Figure 2015113319

Claims (5)

以下の一般式(I)で表される構造を有する、ロジウム錯体化合物。
Figure 2015113319
(上記式(I)中、R1 2は、同じでも異なってもよい炭素置換基であり、Rhに配位する二つのオレフィンは、点線で示すように互いに結合し、環構造を形成してもよい)
A rhodium complex compound having a structure represented by the following general formula (I).
Figure 2015113319
(In the above formula (I), R 1 and R 2 are the same or different carbon substituents, and two olefins coordinated to Rh are bonded to each other to form a ring structure as shown by the dotted line. You may)
以下の一般式(II)で表される光学活性H-ホスフィナート類と以下の一般式(III)で表されるロジウムスルホン酸塩を反応させることを特徴とする、請求項1に記載のロジウム錯体化合物の製造方法。
Figure 2015113319
(上記式(II)中のR1 2は、同じでも異なってもよい炭素置換基である)
Figure 2015113319
(上記式(III)中のRhに配位する二つのオレフィンは、点線で示すように互いに結合し、環構造を形成してもよい)
The rhodium complex according to claim 1, wherein an optically active H-phosphinate represented by the following general formula (II) is reacted with a rhodium sulfonate represented by the following general formula (III): Compound production method.
Figure 2015113319
(R 1 and R 2 in the above formula (II) are the same or different carbon substituents)
Figure 2015113319
(Two olefins coordinated to Rh in the above formula (III) may be bonded to each other to form a ring structure as shown by the dotted line)
請求項1に記載のロジウム錯体化合物からなる、オレフィン類の不斉水素化反応用触媒。   A catalyst for asymmetric hydrogenation reaction of olefins, comprising the rhodium complex compound according to claim 1. 請求項1に記載のロジウム錯体化合物を触媒として、以下の一般式(IV)で表されるオレフィン類を不斉水素化することを特徴とする、以下の一般式(V)で表される光学活性化合物の製造方法。
Figure 2015113319
(上記式(IV)中のR5〜R8は、水素、炭素置換基、ヘテロ原子官能基から選択される基を表す。但し、R5及びR7、または、R6およびR8は、互いに異なる基であり、また、R5〜R8中、水素の個数は0か1である)
Figure 2015113319
(上記式(V)中のR5〜R8は、式(IV)中のR5〜R8と同じ基である)
An optical compound represented by the following general formula (V), wherein the olefin represented by the following general formula (IV) is asymmetrically hydrogenated using the rhodium complex compound according to claim 1 as a catalyst. Process for producing active compounds.
Figure 2015113319
(R 5 to R 8 in the above formula (IV) represent a group selected from hydrogen, a carbon substituent, and a heteroatom functional group, provided that R 5 and R 7 , or R 6 and R 8 are They are different from each other, and the number of hydrogen in R 5 to R 8 is 0 or 1)
Figure 2015113319
(R 5 to R 8 in the formula (V) are the same group as R 5 to R 8 in formula (IV))
以下の一般式(II)で表される光学活性H-ホスフィナート類と以下の一般式(III)で表されるロジウムスルホン酸塩を反応系に加え、系中で形成されるロジウム錯体化合物を単離することなく、そのまま触媒として用いることを特徴とする、請求項4に記載の光学活性化合物の製造方法。
Figure 2015113319
(上記式(II)中のR1 2は、同じでも異なってもよい炭素置換基である)
Figure 2015113319
(上記式(III)中のRhに配位する二つのオレフィンは、点線で示すように互いに結合し、環構造を形成してもよい)
An optically active H-phosphinate represented by the following general formula (II) and a rhodium sulfonate represented by the following general formula (III) are added to the reaction system, and a rhodium complex compound formed in the system is simply added. It uses as a catalyst as it is, without separating, The manufacturing method of the optically active compound of Claim 4 characterized by the above-mentioned.
Figure 2015113319
(R 1 and R 2 in the above formula (II) are the same or different carbon substituents)
Figure 2015113319
(Two olefins coordinated to Rh in the above formula (III) may be bonded to each other to form a ring structure as shown by the dotted line)
JP2013258070A 2013-12-13 2013-12-13 Rhodium catalyst and method for producing optically active compound using the same Active JP6213991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013258070A JP6213991B2 (en) 2013-12-13 2013-12-13 Rhodium catalyst and method for producing optically active compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258070A JP6213991B2 (en) 2013-12-13 2013-12-13 Rhodium catalyst and method for producing optically active compound using the same

Publications (2)

Publication Number Publication Date
JP2015113319A true JP2015113319A (en) 2015-06-22
JP6213991B2 JP6213991B2 (en) 2017-10-18

Family

ID=53527452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258070A Active JP6213991B2 (en) 2013-12-13 2013-12-13 Rhodium catalyst and method for producing optically active compound using the same

Country Status (1)

Country Link
JP (1) JP6213991B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111196759A (en) * 2018-11-16 2020-05-26 上海博志研新药物技术有限公司 Preparation method of cinacalcet hydrochloride and intermediate thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064604A1 (en) * 2001-02-14 2002-08-22 Japan Science And Technology Corporation Process for preparation of alkenylphosphine oxides or alkenylphosphinic esters
JP2002265479A (en) * 2001-03-08 2002-09-18 Japan Science & Technology Corp Optically active alkenylphosphinate compounds and method for producing the same
JP2005518926A (en) * 2002-03-01 2005-06-30 ケミー ソシエタ ペル アチオニ Metal catalysts for chemoselective, regioselective and stereoselective reactions and their corresponding precursors
JP2006137710A (en) * 2004-11-12 2006-06-01 National Institute Of Advanced Industrial & Technology Method for producing menthyl phenylphosphinate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064604A1 (en) * 2001-02-14 2002-08-22 Japan Science And Technology Corporation Process for preparation of alkenylphosphine oxides or alkenylphosphinic esters
JP2002265479A (en) * 2001-03-08 2002-09-18 Japan Science & Technology Corp Optically active alkenylphosphinate compounds and method for producing the same
JP2005518926A (en) * 2002-03-01 2005-06-30 ケミー ソシエタ ペル アチオニ Metal catalysts for chemoselective, regioselective and stereoselective reactions and their corresponding precursors
JP2006137710A (en) * 2004-11-12 2006-06-01 National Institute Of Advanced Industrial & Technology Method for producing menthyl phenylphosphinate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, T. ET AL., CHEMISTRY LETTERS, vol. 42, no. 9, JPN6017014949, 2013, pages 1065 - 7 *
EMMICK, T. L. ET AL., JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 90(13), JPN6010027429, 1968, pages 3459 - 3465 *
GELDBACH, T. J. ET AL., ORGANOMETALLICS, vol. Vol.20, JPN6017014951, 2001, pages 2990 - 7 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111196759A (en) * 2018-11-16 2020-05-26 上海博志研新药物技术有限公司 Preparation method of cinacalcet hydrochloride and intermediate thereof
CN111196759B (en) * 2018-11-16 2023-03-24 上海博志研新药物技术有限公司 Preparation method of cinacalcet hydrochloride and intermediate thereof

Also Published As

Publication number Publication date
JP6213991B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
Gallen et al. Coordination chemistry and catalysis with secondary phosphine oxides
Carboni et al. Supramolecular ligand–ligand and ligand–substrate interactions for highly selective transition metal catalysis
US8697909B2 (en) Preparation of α,β-ethylenically unsaturated carboxylic salts by catalytic carboxylation of alkenes
JP4188086B2 (en) Novel N-phenylpyrrole bisphosphane compounds and their metal complexes
Lee et al. Hemilabile β-aminophosphine ligands derived from 1, 3, 5-triaza-7-phosphaadamantane: Application in aqueous ruthenium catalyzed nitrile hydration
KR101953211B1 (en) Method for producing compound with carbonyl group by using ruthenium carbonyl complex having tridentate ligand as dehydrogenation oxidation catalyst
JP2007536338A (en) Ruthenium complex with 2- (aminomethyl) pyridine and phosphine, process for its preparation and use as catalyst
Li et al. Rh-catalyzed regio-and enantioselective allylic phosphinylation
US8716507B2 (en) Iron(II) catalysts containing diimino-diphosphine tetradentate ligands and their synthesis
Chapurina et al. LiCl-effect on asymmetric intramolecular hydroamination catalyzed by binaphthylamido yttrium complexes
Chen et al. Chiral cyclopalladated complex promoted asymmetric synthesis of diester-substituted P, N-ligands via stepwise hydrophosphination and hydroamination reactions
JPWO2017043552A1 (en) Process for producing alkenyl phosphorus compound
Gallen et al. Synthesis and coordination chemistry of enantiopure t-BuMeP (O) H
CN105585593A (en) Novel pyridyl crown ether-containing chiral diphosphine ligand and application thereof in asymmetric catalytic reaction
JP5920834B2 (en) Metal complex compound, hydrogen production catalyst and hydrogenation reaction catalyst containing the metal complex compound, and hydrogen production method and hydrogenation method using the catalyst
Alayrac et al. Recent advances in synthesis of P-BH 3 compounds
JP6213991B2 (en) Rhodium catalyst and method for producing optically active compound using the same
CA2591126A1 (en) Process for the preparation of aminiphosphine ligands and their use in metal catalysts
JP6923542B2 (en) Monocarbonyl Ruthenium Catalyst and Monocarbonyl Osmium Catalyst
Fernández-Pérez et al. Ring-opening of enantiomerically pure oxa-containing heterocycles with phosphorus nucleophiles
US9765005B2 (en) Methods of using homogenous rhodium catalysts with N-heterocyclic carbene ligands for the hydroformylation of olefins and substituted olefins
US20130281747A1 (en) Cobalt phosphine alkyl complexes for the asymmetric hydrogenation of alkenes
Doran et al. Neutral vs. cationic rhodium (I) complexes of bulky N-phosphino sulfinamide ligands: Coordination modes and its influence in the asymmetric hydrogenation of Z-MAC
Biricik et al. P N Bond Cleavage during the Insertion of Carbon Fragments into PIII N Bonds in Bis (diphenylphosphino) Amines
JP6551922B2 (en) Process for producing alcohol by hydrogenation of carboxylic acid compound, and ruthenium complex used in the process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170913

R150 Certificate of patent or registration of utility model

Ref document number: 6213991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250