JP2015107699A - Dc power supply system - Google Patents

Dc power supply system Download PDF

Info

Publication number
JP2015107699A
JP2015107699A JP2013250589A JP2013250589A JP2015107699A JP 2015107699 A JP2015107699 A JP 2015107699A JP 2013250589 A JP2013250589 A JP 2013250589A JP 2013250589 A JP2013250589 A JP 2013250589A JP 2015107699 A JP2015107699 A JP 2015107699A
Authority
JP
Japan
Prior art keywords
power
power storage
current
storage device
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013250589A
Other languages
Japanese (ja)
Other versions
JP6293467B2 (en
Inventor
雅之 野木
Masayuki Nogi
雅之 野木
房男 伊藤
Fusao Ito
房男 伊藤
聡志 小泉
Satoshi Koizumi
聡志 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013250589A priority Critical patent/JP6293467B2/en
Publication of JP2015107699A publication Critical patent/JP2015107699A/en
Application granted granted Critical
Publication of JP6293467B2 publication Critical patent/JP6293467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To compensate for trolley voltage drop, enable absorption of regenerative electric power of a train, and contribute to energy saving by using electrical storage devices small in capacity as compared with conventional case in an entire feeder system.SOLUTION: A DC power supply system according to an embodiment includes: a first power converter converting AC power to DC power; a second power converter converting the AC power to the DC power, and connected to a DC side along with the first power converter via a feeder; and a plurality of electric power storage devices installed between the first and second power converters and connected to the feeder. Among the electric power storage devices, the electric power storage device farther to the nearest power converter exhibits a property that the electric storage device is easier to charge with electricity.

Description

本発明は、直流電気鉄道の電力供給システムに関する。   The present invention relates to a power supply system for a DC electric railway.

直流電気鉄道の電力供給システムである直流き電システムは、負荷変動が激しく、架線電圧変動が大きい特性を有している。   A DC power supply system, which is a power supply system for DC electric railways, has a characteristic that load fluctuations are severe and overhead line voltage fluctuations are large.

大きな架線電圧変動は、送電線と整流器の間に設けられた変圧器のインダクタンス成分による整流器の出力電圧変動やき電回路内の架線のインピーダンスによる電圧降下によって発生する。これに対応するため現在の直流き電システムでは、ラッシュ時の負荷が大きい時間帯に整流器設備を追加投入して、整流器の送り出し電圧が低下することを防いでいる。また、近年では低電圧変動率の整流器を設置することにより、同様の送り出し電圧低下を抑制することが行われている。   Large overhead line voltage fluctuations are caused by fluctuations in the output voltage of the rectifier due to the inductance component of the transformer provided between the transmission line and the rectifier, or by voltage drops due to the impedance of the overhead line in the feeder circuit. In order to cope with this, in the current DC feeding system, additional rectifier equipment is introduced during a time period when the load during rush is large, and the rectifier supply voltage is prevented from lowering. Further, in recent years, a similar drop in the supply voltage has been suppressed by installing a rectifier having a low voltage fluctuation rate.

一般に鉄道車両の消費電力量は比較的小さく、ピーク電力が大きい特性を有している。これは、力行時に大きなパワーを消費し、惰行中は小さな走行抵抗で走行することで消費電力量が小さいことに起因している。ピーク電力が大きい分、架線を流れる電流、整流器の出力する電流は大きく電圧降下も大きくなる。電圧降下を一定値、例えばDC1500Vのき電システムで列車のパンタ点電圧を900V以上に保つために、整流器設備は定格出力が大きくならざるをえず、き電システム内の平均消費電力とくらべ大きな定格出力を持つことになる。   In general, the amount of power consumed by a railway vehicle is relatively small, and the peak power is large. This is because a large amount of power is consumed during power running, and the amount of power consumption is small by running with a small running resistance during coasting. Since the peak power is large, the current flowing through the overhead wire and the current output from the rectifier are large and the voltage drop is large. In order to keep the voltage drop at a constant value, for example, a DC 1500V feeding system and the pant point voltage of the train above 900V, the rectifier equipment must have a larger rated output, which is larger than the average power consumption in the feeding system. It will have a rated output.

また、1日の中でも列車の密度はラッシュ時・閑散時で大きく変化するため、ラッシュ時でも架線電圧降下が所定値以内に収まるよう過負荷時投入用の設備を用意しなければならない。また、変換器(整流器あるいはPWMコンバータ)が故障した際に備え、待機二重系の設備、すなわち予備の変換器を設置する場合もある。   In addition, since the density of trains varies greatly during rush hours and during quiet days, equipment for overloading must be prepared so that the overhead line voltage drop falls within a predetermined value even during rush hours. In addition, there is a case where a standby duplex system, that is, a spare converter is installed in case a converter (rectifier or PWM converter) fails.

また、シリコン整流器によって構成される一般的な直流き電システムは、整流器は交流系統へ電力が逆潮流出来ないという問題もあり、列車が回生出来なくなる回生失効の要因ともされている。   Further, a general DC feeding system composed of silicon rectifiers has a problem that the rectifier cannot reversely flow power to the AC system, and is also considered as a cause of regenerative invalidation that prevents the train from regenerating.

実施形態は、これらの整流器設備の大量化、回生失効が発生する問題を同時に解決することを課題としている。   The embodiment has an object to simultaneously solve the problem that the rectifier equipment is mass-produced and regenerative invalidation occurs.

一実施形態に係る直流電力供給システムは、交流を直流に変換する第1の電力変換装置と、交流を直流に変換し、き電線を介して前記第1の電力変換装置と、共に直流側で接続される第2の電力変換装置と、前記第1及び第2の電力変換装置の間に設置され、前記き電線に接続される複数の蓄電装置とを具備する。前記複数の蓄電装置の内、最寄りの電力変換装置までの距離が遠い蓄電装置ほど、充電しやすい特性を有する。   A DC power supply system according to an embodiment includes a first power conversion device that converts alternating current to direct current, and converts the alternating current to direct current. A second power converter connected, and a plurality of power storage devices installed between the first and second power converters and connected to the feeder. Among the plurality of power storage devices, a power storage device that is farther away from the nearest power conversion device has a characteristic of being easily charged.

第1実施形態に係る蓄電装置を含む直流き電システムの全体構成を示す図である。1 is a diagram illustrating an overall configuration of a DC feeding system including a power storage device according to a first embodiment. 蓄電装置の構成を表す図である。It is a figure showing the structure of an electrical storage apparatus. 蓄電装置の充放電制御方法を表す図である。It is a figure showing the charging / discharging control method of an electrical storage apparatus. (a)は図3の屈折点a〜f各点のSOC−V特性を代表して表す図、(b)は屈折点cのSOC−V特性を表す図、(c)は屈折点dのSOC−V特性を表す図である。(A) is a diagram representing the SOC-V characteristics at each of the refraction points a to f in FIG. 3, (b) is a diagram representing the SOC-V characteristics at the refraction point c, and (c) is a diagram of the refraction point d. It is a figure showing a SOC-V characteristic. SOC−V特性の変更による充電のしやすさの変更を表す図である。It is a figure showing the change of the ease of charge by the change of a SOC-V characteristic. フローティング充放電制御を有する充放電方式を表す図である。It is a figure showing the charging / discharging system which has floating charging / discharging control. フローティング充放電制御におけるSOC−V特性を表す図である。It is a figure showing the SOC-V characteristic in floating charging / discharging control. 片送りき電区間の蓄電装置配置を表す図である。It is a figure showing the electrical storage apparatus arrangement | positioning of the one-feed electric power area. 複数のき電区間に分散配置された蓄電装置を表す図である。It is a figure showing the electrical storage apparatus distributedly arranged in the several feeding area.

以下、直流電力供給システムの実施形態について、図面を参照して説明する。   Hereinafter, embodiments of a DC power supply system will be described with reference to the drawings.

[第1実施形態]
図1は、直流電力供給システムの第1実施形態として、複数の蓄電装置を含む直流き電システムの全体構成を示す。
[First Embodiment]
FIG. 1 shows an overall configuration of a DC feeding system including a plurality of power storage devices as a first embodiment of a DC power supply system.

先ず、き電システムは送電線1の交流電力を電力変換装置2a、2bが変換してき電線3に対して直流電力を供給する。電力変換装置2a、2bの直流側は、き電線3および共通アースラインとしてのレール(図示されず)を介して並列接続される。電力変換装置2は例えばダイオード整流器あるいはPWMコンバータであり、変電所として設置される。き電線3の定格電圧は、例えばDC600V、DC750V、DC1500V、DC3000Vであり、その近辺の電圧で電圧変動が起きる。   First, the feeder system converts the AC power of the transmission line 1 by the power converters 2 a and 2 b and supplies the DC power to the electric wire 3. The direct current sides of the power converters 2a and 2b are connected in parallel via the feeder 3 and a rail (not shown) as a common ground line. The power converter 2 is a diode rectifier or a PWM converter, for example, and is installed as a substation. The rated voltage of the feeder 3 is, for example, DC600V, DC750V, DC1500V, DC3000V, and voltage fluctuations occur in the vicinity of the voltage.

電力変換器2aと2bの間に、蓄電装置4a〜4cが設置され、き電線に接続されている。蓄電装置4a〜4cは、き電線3およびレールを介して並列接続される。この蓄電装置4は例えば、図2に示すように蓄電素子6及び電力変換器7を含み、蓄電素子6は電力変換器7を介してき電線3と電力を送受する。電力変換器7は昇降圧チョッパであり、蓄電素子6は例えばリチウムイオン電池、ニッケル水素電池、または電気二重層キャパシタである。なお、蓄電装置4の端子電圧が架線電圧と同程度である場合、蓄電素子6を電力変換器8を通さずに、限流リアクトル及び高速度遮断器などを通してき電線に直結する構成としても良い。   Power storage devices 4a to 4c are installed between power converters 2a and 2b and connected to feeders. Power storage devices 4a-4c are connected in parallel via feeder 3 and a rail. The power storage device 4 includes, for example, a power storage element 6 and a power converter 7 as shown in FIG. 2, and the power storage element 6 sends and receives power to and from the electric wire 3 via the power converter 7. The power converter 7 is a step-up / step-down chopper, and the storage element 6 is, for example, a lithium ion battery, a nickel metal hydride battery, or an electric double layer capacitor. When the terminal voltage of the power storage device 4 is about the same as the overhead line voltage, the power storage element 6 may be directly connected to the feeder through the current limiting reactor and the high-speed circuit breaker without passing through the power converter 8. .

蓄電装置4a〜4cには、制御部5a〜5cがそれぞれ設けられている。制御部5は、蓄電装置のSOC(state of charge)を計測し、架線電圧およびSOC等に基づいて、蓄電装置4の充放電を制御する。   The power storage devices 4a to 4c are provided with control units 5a to 5c, respectively. Control unit 5 measures the SOC (state of charge) of the power storage device, and controls charging / discharging of power storage device 4 based on the overhead wire voltage, the SOC, and the like.

ここで蓄電装置4の最寄り電力変換装置2との位置関係が図1のように、蓄電装置4a4c、4bの順に近かい場合、蓄電装置4bが最も充電しやすく、ついで蓄電装置4c、4aが充電しやすくなるように、蓄電装置の充放電が制御部5a〜5cにより制御される。ここで充電しやすくすることは、単位時間あたりの充電電力量を大きくすることを指す。   Here, when the positional relationship between the power storage device 4 and the nearest power conversion device 2 is close to the power storage devices 4a4c and 4b as shown in FIG. 1, the power storage device 4b is most easily charged, and then the power storage devices 4c and 4a are charged. The charging / discharging of the power storage device is controlled by the control units 5a to 5c so as to facilitate the charging. Here, facilitating charging refers to increasing the amount of charging power per unit time.

最寄りの電力変換装置2までの距離が遠いほど、そこで電車により電力が消費された時の架線電圧は、架線の電気抵抗による電圧降下により低くなり、架線により無駄に電力が消費されてしまう。そこで、最寄りの電力変換装置までの距離が遠い電力変換装置ほど、充電しやすくなるように設定しておけば、電力変換装置は常に十分な電力を保持することが可能となる。つまり電力変換装置は常に適切なSOCを維持し放電可能な状態となる。この結果電力変換装置は、電車が電力を消費する際の架線電圧の降下を十分な放電により補うことができる。   As the distance to the nearest power converter 2 increases, the overhead line voltage when power is consumed by the train there becomes lower due to the voltage drop due to the electrical resistance of the overhead line, and power is wasted by the overhead line. Therefore, if the power conversion device that is farther away from the nearest power conversion device is set so as to be more easily charged, the power conversion device can always hold sufficient power. That is, the power conversion device always maintains an appropriate SOC and is in a dischargeable state. As a result, the power conversion device can compensate for the drop in the overhead line voltage when the train consumes power by sufficient discharge.

この充電のしやすさは、蓄電装置の充電制御方法や構成によって異なる。例えば、蓄電装置の充放電制御が、図3に示されるV−I特性と、図4に示されるSOC−V特性によって制御される方式について説明する。   The ease of charging varies depending on the charge control method and configuration of the power storage device. For example, a method in which the charge / discharge control of the power storage device is controlled by the VI characteristic shown in FIG. 3 and the SOC-V characteristic shown in FIG. 4 will be described.

蓄電装置の充放電電流は、図3に示される特性すなわち、架線電圧に対する出力電流で決まる。制御部5は架線電圧を参照しながら、蓄電装置4の充放電特性が図3のようになるように、蓄電装置4の電力変換器7を制御する。   The charge / discharge current of the power storage device is determined by the characteristics shown in FIG. 3, that is, the output current with respect to the overhead line voltage. The control unit 5 controls the power converter 7 of the power storage device 4 so that the charge / discharge characteristics of the power storage device 4 are as shown in FIG. 3 while referring to the overhead line voltage.

ただし、この図3に示されるV−I特性は、図4に示されるSOC−V特性によって変化する。図4(a)に示されるSOC−V特性は、図3の特性上の各屈折点a−fに対応、すなわち屈折点a〜f各点のSOC−V特性を代表して表している。また図4(a)の特性は、制御部5において各屈折点a−fについて設定される特性である(aとb、fとeは同値のSOC−V特性を持たせ共通化しても良い)。   However, the VI characteristic shown in FIG. 3 varies depending on the SOC-V characteristic shown in FIG. The SOC-V characteristic shown in FIG. 4A corresponds to each refraction point af on the characteristic of FIG. 3, that is, represents the SOC-V characteristic at each point of refraction points a to f. 4A is a characteristic set for each refraction point af in the control unit 5 (a and b, f and e may have the same SOC-V characteristic and may be shared. ).

例えば図3の屈折点cのSOC−V特性を図4(b)に示す。図4(b)は図3において架線電圧が徐々に低下し、蓄電装置が放電を開始する電圧を示している。制御部5は図4(b)のように設定された特性に従って蓄電装置4のSOCに応じて、放電開始電圧を制御する。   For example, FIG. 4B shows the SOC-V characteristic at the refraction point c in FIG. FIG. 4B shows a voltage at which the overhead line voltage gradually decreases in FIG. 3 and the power storage device starts discharging. Control unit 5 controls the discharge start voltage according to the SOC of power storage device 4 in accordance with the characteristics set as shown in FIG.

架線の定格電圧が1500V(図3横軸原点が1500V)の場合、SOCが例えば50%で設定電圧(放電開始架線電圧)が1400Vと設定され、この状態を図3の点cとする。図4(b)のように、この設定電圧はSOCが増加した場合は上昇し、定格電圧の1500Vに近づくので放電しやくなる。このとき図3において点cは右に移動されている。点cが右に移動されることで変更された特性に従って、制御部5は蓄電装置4の放電を制御する。逆にSOCが50%から減少した場合、設定電圧は低下し、より低い電圧で放電を開始することになるので、放電し難くなる。このとき図3において点cは左に移動されている。このように放電開始電圧をSOCに応じて制御することで、SOCはほぼ一定の例えば50%に制御される。   When the rated voltage of the overhead wire is 1500 V (the origin of the horizontal axis in FIG. 3 is 1500 V), the SOC is set to 50%, for example, and the set voltage (discharge start overhead wire voltage) is set to 1400 V, and this state is set as a point c in FIG. As shown in FIG. 4B, this set voltage rises when the SOC increases, and is easily discharged because it approaches the rated voltage of 1500V. At this time, the point c is moved to the right in FIG. The control unit 5 controls the discharge of the power storage device 4 according to the characteristic changed by moving the point c to the right. On the other hand, when the SOC decreases from 50%, the set voltage decreases and discharge starts at a lower voltage, so that it becomes difficult to discharge. At this time, the point c is moved to the left in FIG. Thus, by controlling the discharge start voltage in accordance with the SOC, the SOC is controlled to be substantially constant, for example, 50%.

また、例えば図3の屈折点dのSOC−V特性を図4(c)に示す。図4(c)は図3において架線電圧が徐々に上昇し、蓄電装置が充電を開始する電圧を示している。制御部5は図4(c)のように設定された特性に従って蓄電装置4のSOCに応じて、充電開始電圧を制御する。   Further, for example, the SOC-V characteristic at the refraction point d in FIG. 3 is shown in FIG. FIG. 4C illustrates a voltage at which the overhead line voltage gradually increases in FIG. 3 and the power storage device starts charging. Control unit 5 controls the charge start voltage according to the SOC of power storage device 4 in accordance with the characteristics set as shown in FIG.

上記同様に例えば架線の定格電圧が1500V(図3横軸原点が1500V)の場合、SOCが例えば50%で設定電圧(放電開始架線電圧)が1620Vに設定され、この状態を図3の点dとする。図4(c)のように、この設定電圧はSOCが増加した場合は上昇し、定格電圧の1500Vから遠ざかるので充電し難くなる。このとき図3において点dは右に移動されている。点dが右に移動されることで変更された特性に従って、制御部5は蓄電装置4の充電を制御する。逆にSOCが50%から減少した場合、設定電圧は低下し、より低い電圧で充電を開始することになるので、充電しやすくなる。このとき図3において点cは左に移動されている。このように充電開始電圧を制御することで、SOCはほぼ一定の例えば50%に制御される。   Similarly to the above, for example, when the rated voltage of the overhead line is 1500 V (the origin of the horizontal axis in FIG. 3 is 1500 V), the SOC is, for example, 50%, and the set voltage (discharge start overhead line voltage) is set to 1620 V. And As shown in FIG. 4C, this set voltage rises when the SOC increases, and it becomes difficult to charge because it moves away from the rated voltage of 1500V. At this time, in FIG. 3, the point d is moved to the right. The control unit 5 controls charging of the power storage device 4 according to the characteristic changed by moving the point d to the right. On the other hand, when the SOC decreases from 50%, the set voltage decreases, and charging is started at a lower voltage, which facilitates charging. At this time, the point c is moved to the left in FIG. By controlling the charging start voltage in this way, the SOC is controlled to be substantially constant, for example, 50%.

このように、図4(a)に示すような設定は、図3に示される特性すなわち各屈折点の設定電圧が、蓄電装置のSOCに基づいて決定されることを表している。   As described above, the setting shown in FIG. 4A represents that the characteristic shown in FIG. 3, that is, the set voltage at each refraction point is determined based on the SOC of the power storage device.

ここで前述したように、蓄電装置を充電しやすくするには、図3の屈折点d,eの設定電圧を低く設定、つまり左に移動すればよい。屈折点d,eの設定電圧を左に移動することで、より低い架線電圧で充電が行われるようになり、充電しやすくなる。   As described above, in order to easily charge the power storage device, the set voltages of the refraction points d and e in FIG. 3 may be set low, that is, moved to the left. By moving the set voltages of the refraction points d and e to the left, charging is performed with a lower overhead line voltage, and charging becomes easier.

また、図4(a)に示されるSOC−V特性において、より高いSOCにおいて、より低い架線電圧でも充電できるように、屈折点dおよびeそれぞれのSOC−V特性を図5(a)のように変更することで、蓄電装置を充電しやすくできる。図5(b)は例として屈折点dの場合を示す図である。この場合は、SOC−V特性をSOCが大きい側(右側)に20%移動して特性の設定を変更した例を示す。変更前は例えばSOCが60%のときに1650Vに設定されていた充電開始電圧が、変更後は同じSOC60%でも、充電開始電圧が1590Vの低い電圧に設定変更されている。   Further, in the SOC-V characteristics shown in FIG. 4A, the SOC-V characteristics of the refraction points d and e are as shown in FIG. 5A so that charging can be performed with a higher SOC at a lower overhead line voltage. By changing to, the power storage device can be easily charged. FIG. 5B is a diagram showing the case of the refraction point d as an example. In this case, an example is shown in which the SOC-V characteristics are moved 20% to the side with the higher SOC (right side) and the setting of the characteristics is changed. For example, the charge start voltage set to 1650 V when the SOC is 60% before the change is changed to a low voltage of 1590 V even after the change even if the SOC is 60% after the change.

このように本実施形態では、屈折点dおよびeそれぞれのSOC−V特性を、図4(a)の特性から図5(a)のようにSOCが大きい側(右側)に移動(設定変更)する。これにより蓄電装置は、より高いSOC及びより低い架線電圧で充電が行われるで、充電しやすくなる。図5(a)のように屈折点dおよびeのSOC−V特性を右側に移動すると、SOCが同一の条件で、図3における線deが架線電圧の低い側(左側)に移動することになる。すなわち制御部5は、図5(a)のように設定変更された屈折点dおよびeのSOC−V特性に基づいて、図3のV−I特性を変更(線deを左側に移動)し、蓄電装置の充放電を制御、すなわち充電しやすくする。   As described above, in the present embodiment, the SOC-V characteristics of the refraction points d and e are moved from the characteristics shown in FIG. 4A to the side where the SOC is larger (right side) as shown in FIG. 5A (setting change). To do. Accordingly, the power storage device is easily charged because it is charged with a higher SOC and a lower overhead line voltage. When the SOC-V characteristics of the refraction points d and e are moved to the right as shown in FIG. 5A, the line de in FIG. 3 moves to the low overhead wire voltage side (left side) under the same SOC. Become. That is, the control unit 5 changes the VI characteristic in FIG. 3 (moves the line de to the left) based on the SOC-V characteristic of the refraction points d and e that are changed as shown in FIG. The charge / discharge of the power storage device is controlled, that is, it is easily charged.

次に、前述の方式とは別に、フローティング充放電制御を用いる方式について説明する。   Next, a method using floating charge / discharge control will be described separately from the above method.

図3の制御では、屈折点cから屈折点dの間、すなわち放電開始点から充電開始点までは充放電電流が0であったが、フローティング充放電制御では図6のように、蓄電装置のSOCに応じて常に充電電流あるいは放電電流を流し、SOCを一定に保つように制御を行う。すなわち、SOCが目標値(例えば50%)より小さければ充電電流を屈折点cから屈折点dの間で流し、SOCが目標値より大きければ放電電流を屈折点cから屈折点dの間で流す。このとき流すSOC調整用の充放電電流を浮動充電電流Ifという。負の浮動充電電流Ifは放電電流を示す。   In the control of FIG. 3, the charge / discharge current was 0 between the refraction point c and the refraction point d, that is, from the discharge start point to the charge start point. However, in the floating charge / discharge control, as shown in FIG. Control is performed so that a charging current or a discharging current always flows according to the SOC and the SOC is kept constant. That is, if the SOC is smaller than a target value (for example, 50%), the charging current flows from the refraction point c to the refraction point d. If the SOC is larger than the target value, the discharging current flows from the refraction point c to the refraction point d. . The SOC adjustment charging / discharging current that flows at this time is referred to as a floating charging current If. A negative floating charging current If indicates a discharge current.

蓄電装置4が出力する電流は、前述の方式と同一で架線電圧に基づき、き電線へ充放電する電流を決定する方式であるが、特性中央部にフローティング充放電制御部gを設けている。フローティング充放電制御は、蓄電装置4のSOC状態に応じて、浮動充電電流(調整充放電電流)Ifを流しSOCを安定化しようとするものである。例えば図7のような特性である。   The current output from the power storage device 4 is the same as the above-described method, and is a method for determining the current to be charged / discharged to the feeder line based on the overhead line voltage. The floating charge / discharge control unit g is provided in the center of the characteristic. The floating charge / discharge control is intended to stabilize the SOC by flowing a floating charge current (adjusted charge / discharge current) If according to the SOC state of the power storage device 4. For example, the characteristic is as shown in FIG.

図7において、太い実線で示す特性hは初期特性であって、例えばSOCが50%で図3のように屈折点cd間において浮動充電電流Ifが0で、SOCが小さくなるにつれ屈折点cd間で流す浮動充電電流Ifを大きくし(図6において線cdを上方に移動し)、SOCが50%より大きくなるにつれ、浮動充電電流Ifを小さくする(図6において線cdを下方に移動、つまり放電電流を大きくする)特性である。尚、このようなフローティング充放電制御の特性は、制御部5が蓄電装置4を制御することにより実現される特性である。   In FIG. 7, a characteristic h indicated by a thick solid line is an initial characteristic. For example, the SOC is 50%, the floating charging current If is 0 between the refraction points cd as shown in FIG. 3, and the refraction point cd decreases as the SOC decreases. Is increased (moving line cd upward in FIG. 6), and as SOC is greater than 50%, floating charging current If is decreased (moving line cd downward in FIG. 6, ie, Characteristic of increasing discharge current). Such floating charge / discharge control characteristics are realized by the control unit 5 controlling the power storage device 4.

この初期特性hに対して、蓄電装置4を充電しやすい特性とするには、特性hを特性i又は特性jのように設定変更する。特性iの場合、制御部5は、より小さいSOC領域から充電するように、つまり初期特性hに対して同じSOCでも浮動充電電流Ifが大きくなるように蓄電装置4を制御する。又は、特性jのように制御部5は、浮動充電電流Ifの最大値が大きくなるように蓄電装置4を制御する。   In order to make the power storage device 4 easy to charge with respect to the initial characteristic h, the setting of the characteristic h is changed as the characteristic i or the characteristic j. In the case of the characteristic i, the control unit 5 controls the power storage device 4 so as to charge from a smaller SOC region, that is, so that the floating charging current If becomes large even with the same SOC with respect to the initial characteristic h. Alternatively, as in characteristic j, control unit 5 controls power storage device 4 so that the maximum value of floating charging current If is increased.

以上のように、充電電力量を積極的に増やすことによって、蓄電装置を積極的に放電し、電力変換装置2から遠い位置に設置された蓄電池の充電状態を安定したまま架線電圧低下を補償することが出来る。   As described above, by actively increasing the amount of charged power, the power storage device is actively discharged, and the overhead voltage drop is compensated while the state of charge of the storage battery installed at a position far from the power conversion device 2 remains stable. I can do it.

また、電力変換器2がダイオード整流器であって、直流き電システム内の負荷状態が軽負荷である場合、列車の回生が効かなくなる回生失効が発生する可能性がある。回生失効が発生すると、列車の運動エネルギーは車輪のブレーキシュウやブレーキ用抵抗器で熱として捨てられてしまい省エネルギーでない。   Further, when the power converter 2 is a diode rectifier and the load state in the DC feeding system is a light load, there is a possibility that a regeneration invalidation in which the regeneration of the train is not effective occurs. When regeneration expires, the kinetic energy of the train is discarded as heat by the wheel brake shoe or brake resistor, which is not energy saving.

本発明が適用されることで、き電システム全体として従来より小さい容量の蓄電装置で、架線電圧降下を補償し、列車の回生電力を吸収可能として省エネルギーに寄与することが可能になる。   By applying the present invention, a power storage device having a smaller capacity than the conventional power supply system as a whole can compensate for overhead voltage drop and absorb train regenerative power, thereby contributing to energy saving.

[第2実施形態]
次に、第2実施形態を図8に従って説明する。
[Second Embodiment]
Next, a second embodiment will be described with reference to FIG.

図8は第2実施形態に係る直流き電システムの全体構成を示す。図1と同一の構成要素には同一の参照符号を付し、詳細な説明は割愛する。6はき電線から電力供給を受けるとともに制動時に回生電力をき電線に供給する電車である。   FIG. 8 shows the overall configuration of a DC feeding system according to the second embodiment. The same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. 6 is a train that receives power from the feeder and supplies regenerative power to the feeder during braking.

図8に示すき電区間は、一端に電力変換装置2が接続され、他端が開放されている片送りき電区間である。このような片送りき電の場合についても、蓄電装置4は最寄りの電力変換装置2までの距離が遠い程、充電しやすい特性とする。すなわち充電しやすさの順は蓄電装置4bそして蓄電装置4aとする。尚、この充電しやすさの順は、制御部5a、5bのSOC−V特性等の設定により決定される。このように充電のしやすさを設定することで、架線電圧降下を補償し第1実施形態と同様の効果を得ることが出来る。   The feeding section shown in FIG. 8 is a one-feeding section in which the power conversion device 2 is connected to one end and the other end is open. Also in the case of such a one-feed power, the power storage device 4 has a characteristic that it is easily charged as the distance to the nearest power conversion device 2 increases. That is, the order of ease of charging is the power storage device 4b and the power storage device 4a. The order of the ease of charging is determined by the setting of the SOC-V characteristics of the control units 5a and 5b. By setting the ease of charging in this way, it is possible to compensate for the overhead line voltage drop and obtain the same effect as in the first embodiment.

[第3実施形態]
次に、第3実施形態を図9に従って説明する。
[Third Embodiment]
Next, a third embodiment will be described with reference to FIG.

図9は第3実施形態に係る直流き電システムの全体構成を示す。図1と同一の構成要素には同一の参照符号を付し、詳細な説明は割愛する。   FIG. 9 shows the overall configuration of a DC feeding system according to the third embodiment. The same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図9のき電システムでは、電力変換装置2aから電力変換装置2bの間のき電区間に蓄電装置4a、4bが設置され、電力変換装置2bから電力変換装置2cの間のき電区間に蓄電装置4cが設置されている。   In the power feeding system of FIG. 9, power storage devices 4a and 4b are installed in the power feeding section between the power conversion device 2a and the power conversion device 2b, and power storage is performed in the power feeding section between the power conversion device 2b and the power conversion device 2c. A device 4c is installed.

電力変換装置2a〜2b、電力変換装置2b〜2cのそれぞれのき電区間に設置される蓄電装置4は、本実施形態でも最寄りの電力変換装置2までの距離が遠い程充電しやすい特性とする。すなわち、電力変換装置2a〜2b間では蓄電装置4bが最寄りの電力変換装置2bに最も近く、ついで電力変換装置4aが電力変換装置2aに近いので、充電のしやすさは蓄電装置4a、4bの順とする。蓄電装置4cについては、電力変換装置2b〜2cの間で蓄電装置4cのみが設置されているので、このき電区間における蓄電装置の充電のしやすさの順位付けはない。   The power storage devices 4 installed in the power feeding sections of the power conversion devices 2a to 2b and the power conversion devices 2b to 2c have characteristics that are easier to charge as the distance to the nearest power conversion device 2 is longer in this embodiment. . That is, between the power conversion devices 2a to 2b, the power storage device 4b is closest to the nearest power conversion device 2b, and then the power conversion device 4a is close to the power conversion device 2a. In order. Regarding power storage device 4c, since only power storage device 4c is installed between power conversion devices 2b to 2c, there is no ranking of the ease of charging of power storage devices in this feeding section.

ここで、電力変換装置2bがこのき電系統から離脱した場合について説明する。例えば整流器設備の故障で電力変換装置2bがき電系統から離脱した場合、蓄電装置4a〜4cは電力変換装置2a、2cの間のき電区間に存在することになる。この様な場合における蓄電装置の充電のしやすさは、最寄りの電力変換装置までの距離が最も遠い蓄電装置4bを最も充電しやすくし、次に電力変換装置2aまでの距離が遠い蓄電装置4a、そして最後に蓄電装置4cの順で充電しやすくする。すなわち、制御部5a〜5cのSOC−V特性等の特性を、制御部5b、5a、5cの順に充電しやすい特性に設定する。   Here, the case where the power converter 2b is detached from the feeder system will be described. For example, when the power converter 2b is disconnected from the feeder system due to a failure of the rectifier facility, the power storage devices 4a to 4c are present in the feeder section between the power converters 2a and 2c. The ease of charging of the power storage device in such a case makes it easier to charge the power storage device 4b farthest to the nearest power conversion device, and then the power storage device 4a farthest to the power conversion device 2a. And finally, it is easy to charge in the order of the power storage device 4c. That is, characteristics such as the SOC-V characteristics of the control units 5a to 5c are set to characteristics that facilitate charging in the order of the control units 5b, 5a, and 5c.

このように電力変換装置の系統連係状況に応じて蓄電装置の充電のしやすさを変えれば、複数の電力変換装置のうち1つがき電系統から離脱したとしても、第1実施形態と同様の効果が得られ、列車のパンタ点電圧降下を効果的に補償することが出来る。これにより、整流器設備の故障に備えて従来必要とされていた変電所の予備機の台数を減らしたり、予備機の容量を減らすことが可能になる。   In this way, if the ease of charging of the power storage device is changed according to the grid connection status of the power conversion device, even if one of the plurality of power conversion devices is disconnected from the power grid, the same as in the first embodiment An effect is obtained, and a punter point voltage drop of a train can be effectively compensated. As a result, it is possible to reduce the number of substation spare machines that have been conventionally required in preparation for failure of the rectifier equipment and to reduce the capacity of the spare machines.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…送電線、2a,2b…電力変換装置、3…き電線、4a〜4c…蓄電装置、5a〜5c…制御部、6…蓄電素子、7…電力変換器。   DESCRIPTION OF SYMBOLS 1 ... Power transmission line, 2a, 2b ... Power converter device, 3 ... Feed line, 4a-4c ... Power storage device, 5a-5c ... Control part, 6 ... Power storage element, 7 ... Power converter.

Claims (6)

交流を直流に変換する第1の電力変換装置と、
交流を直流に変換し、き電線を介して前記第1の電力変換装置と、共に直流側で接続される第2の電力変換装置と、
前記第1及び第2の電力変換装置の間に設置され、前記き電線に接続される複数の蓄電装置と、を具備し、
前記複数の蓄電装置の内、最寄りの電力変換装置までの距離が遠い蓄電装置ほど、充電しやすい特性を有することを特徴とする直流電力供給システム。
A first power converter that converts alternating current to direct current;
A second power converter that converts alternating current to direct current and is connected to the first power converter via a feeder line on the DC side;
A plurality of power storage devices installed between the first and second power conversion devices and connected to the feeder lines,
A direct-current power supply system characterized in that a power storage device that is farther away from the nearest power conversion device among the plurality of power storage devices has a characteristic of being easily charged.
交流を直流に変換する電力変換装置と、
き電線を介して前記電力変換装置に接続され、前記電力変換装置から片送り送電となる位置に設置される複数の蓄電装置と、を具備し、
前記複数の蓄電装置の内、前記電力変換装置までの距離が遠い蓄電装置ほど、充電しやすい特性を有することを特徴とする直流電力供給システム。
A power converter for converting alternating current to direct current;
A plurality of power storage devices that are connected to the power conversion device via feeders and are installed at positions where single power transmission is performed from the power conversion device,
The direct-current power supply system, wherein among the plurality of power storage devices, a power storage device that is farther away from the power conversion device has a characteristic of being easily charged.
交流を直流に変換する第1の電力変換装置と、
交流を直流に変換し、き電線を介して前記第1の電力変換装置と、共に直流側で接続される第2の電力変換装置と、
交流を直流に変換し、き電線を介して前記第2の電力変換装置と、共に直流側で接続される第3の電力変換装置と、
前記第1及び第2の電力変換装置の間、または前記第2及び第3の電力変換装置の間に設置され、前記き電線に接続される複数の蓄電装置と、を具備し、
前記複数の蓄電装置の内、最寄りの電力変換装置までの距離が遠い蓄電装置ほど、充電しやすい特性を有し、
前記第1乃至第3の電力変換装置のうちいずれかの電力変換装置が前記直流電力供給システムから離脱した場合、蓄電装置の充電のしやすさが、離脱していない電力変換装置間の蓄電装置の配置に応じて再設定されることを特徴とする直流電力供給システム。
A first power converter that converts alternating current to direct current;
A second power converter that converts alternating current to direct current and is connected to the first power converter via a feeder line on the DC side;
A third power converter that converts alternating current to direct current and is connected to the second power converter via a feeder line on the direct current side;
A plurality of power storage devices installed between the first and second power converters or between the second and third power converters and connected to the feeder lines;
Among the plurality of power storage devices, the power storage device that is farther away from the nearest power conversion device has a characteristic of being easily charged,
When any one of the first to third power conversion devices is disconnected from the DC power supply system, the power storage device is not easily disconnected due to the ease of charging the power storage device. It is reset according to arrangement | positioning of DC power supply system characterized by the above-mentioned.
前記蓄電装置の充放電は、架線電圧に応じて充電電流及び放電電流が決定され、
前記蓄電装置は、充電開始電圧を引き下げることにより、充電しやすい特性に設定されることを特徴とする請求項1乃至3のいずれか1項に記載の直流電力供給システム。
Charging and discharging of the power storage device is determined according to the overhead line voltage charging current and discharging current,
The DC power supply system according to any one of claims 1 to 3, wherein the power storage device is set to a characteristic that facilitates charging by lowering a charging start voltage.
前記充電開始電圧とSOCとの関係を示すSOC−V特性が設定され、該SOC−V特性の設定を変更することにより、前記充電開始電圧が変更されることを特徴とする請求項4記載の直流電力供給システム。   5. The SOC-V characteristic indicating a relationship between the charge start voltage and SOC is set, and the charge start voltage is changed by changing the setting of the SOC-V characteristic. DC power supply system. 前記蓄電装置の充放電は、架線電圧に応じて充電電流及び放電電流が決定されると共に、前記蓄電装置のSOCに応じて該SOC調整用の浮動充電電流を流すフローティング充放電制御が行われ、
前記充電しやすい特性は、前記浮動充電電流の最大電流を大きくすることで達成されることを特徴とする請求項1乃至3のいずれか1項に記載の直流電力供給システム。
The charge / discharge of the power storage device is determined according to the overhead line voltage, the charge current and the discharge current are determined, and the floating charge / discharge control is performed to flow the SOC adjustment floating charge current according to the SOC of the power storage device.
The DC power supply system according to any one of claims 1 to 3, wherein the characteristics that facilitate charging are achieved by increasing a maximum current of the floating charging current.
JP2013250589A 2013-12-03 2013-12-03 DC power supply system Active JP6293467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013250589A JP6293467B2 (en) 2013-12-03 2013-12-03 DC power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013250589A JP6293467B2 (en) 2013-12-03 2013-12-03 DC power supply system

Publications (2)

Publication Number Publication Date
JP2015107699A true JP2015107699A (en) 2015-06-11
JP6293467B2 JP6293467B2 (en) 2018-03-14

Family

ID=53438442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013250589A Active JP6293467B2 (en) 2013-12-03 2013-12-03 DC power supply system

Country Status (1)

Country Link
JP (1) JP6293467B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019018824A (en) * 2017-07-21 2019-02-07 株式会社日立製作所 Control device and method for railroad system
CN109888854A (en) * 2017-11-22 2019-06-14 夏普株式会社 The control method and recording medium of electronic equipment, control device, electronic equipment
JP2019147447A (en) * 2018-02-27 2019-09-05 東日本旅客鉄道株式会社 Power supply system and control method of the system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7007685B2 (en) 2019-02-27 2022-01-25 株式会社フジ・テクノロジー Fluid switchgear and fluid switchgear

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105407A (en) * 2010-11-08 2012-05-31 Toshiba Corp Power storage system
JP2012166646A (en) * 2011-02-14 2012-09-06 Toshiba Corp Energy storage device and installation-operation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105407A (en) * 2010-11-08 2012-05-31 Toshiba Corp Power storage system
JP2012166646A (en) * 2011-02-14 2012-09-06 Toshiba Corp Energy storage device and installation-operation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019018824A (en) * 2017-07-21 2019-02-07 株式会社日立製作所 Control device and method for railroad system
CN109888854A (en) * 2017-11-22 2019-06-14 夏普株式会社 The control method and recording medium of electronic equipment, control device, electronic equipment
JP2019097310A (en) * 2017-11-22 2019-06-20 シャープ株式会社 Electronic apparatus, control device, control method for electronic apparatus, and control program
JP7007874B2 (en) 2017-11-22 2022-01-25 シャープ株式会社 Electronic devices, control devices, control methods for electronic devices, and control programs
JP2019147447A (en) * 2018-02-27 2019-09-05 東日本旅客鉄道株式会社 Power supply system and control method of the system
JP6998236B2 (en) 2018-02-27 2022-01-18 東日本旅客鉄道株式会社 Power supply system and control method of the system

Also Published As

Publication number Publication date
JP6293467B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
US9312717B2 (en) Electric energy storage device and installation-operation method thereof
CN109968992B (en) Direct-current traction power supply system for rail transit and control method thereof
JP5735061B2 (en) Train power supply system
JP4252953B2 (en) Power storage type feeder voltage compensation apparatus and method
KR101877098B1 (en) Rapid multi-level recharge system
JP6363465B2 (en) Power storage device
US10343872B2 (en) Elevator system having battery and energy storage device
JP4415874B2 (en) Charge and discharge method for transportation system
US9365175B2 (en) Power supply system for vehicle
JP5752562B2 (en) Control system for power storage device for DC electric railway
JP6293467B2 (en) DC power supply system
CN109968991B (en) Direct-current traction power supply system for rail transit and control method thereof
JP2004358984A (en) Direct current power supply equipment for electric railroad
JP4978354B2 (en) DC power storage device
JP2016032950A (en) Control device
JP6870678B2 (en) Power storage system
JP2011126298A (en) Power supply system for electric railroad
JP2010000810A (en) Feeder system of dc feeding network
JP6207917B2 (en) Control device
JP5509442B2 (en) Power converter and electric railway system
JP6259778B2 (en) Railway vehicle drive system
JP2015030406A (en) Electric power feeding system and power supply method
JP6135201B2 (en) Control device and control method for DC feeding substation
JP2015204665A (en) Electric power conversion apparatus, and railway vehicle comprising the same
JP2011168152A (en) Power storage system for electric railway

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180214

R150 Certificate of patent or registration of utility model

Ref document number: 6293467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150