JP2015103516A - Metal catalyst electrode having inverse opal structure for fuel cell and method of manufacturing the same - Google Patents

Metal catalyst electrode having inverse opal structure for fuel cell and method of manufacturing the same Download PDF

Info

Publication number
JP2015103516A
JP2015103516A JP2014053894A JP2014053894A JP2015103516A JP 2015103516 A JP2015103516 A JP 2015103516A JP 2014053894 A JP2014053894 A JP 2014053894A JP 2014053894 A JP2014053894 A JP 2014053894A JP 2015103516 A JP2015103516 A JP 2015103516A
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
opal structure
metal catalyst
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014053894A
Other languages
Japanese (ja)
Inventor
ソン ヨン−ウン
Yung Eun Sung
ソン ヨン−ウン
チョ ヨン−フン
Yong Hun Cho
チョ ヨン−フン
キム オク−ヒ
Ok Hee Kim
キム オク−ヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seoul National University Industry Foundation
Original Assignee
Seoul National University Industry Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seoul National University Industry Foundation filed Critical Seoul National University Industry Foundation
Publication of JP2015103516A publication Critical patent/JP2015103516A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a metal catalyst electrode for a fuel cell having an inverse opal structure capable of improving substance delivery and enhancing efficiency of water management owing to structural advantage in a fuel cell, having durability, and capable of being directly formed on a gas diffusion layer, and also to provide a method of manufacturing the same.SOLUTION: A method of manufacturing a metal catalyst electrode having an inverse opal structure for a fuel cell is provided which includes the steps of: pre-processing the surface of a gas diffusion layer (GDL); forming a template on the gas diffusion layer; forming a metal framework after impregnating a metal precursor solution into the template; and removing the template.

Description

本発明は、燃料電池の膜/電極接合体(Membrane−Electrode Assembly、MEA)に含まれる触媒層として使用される逆オパール構造の金属触媒電極、およびその製造方法に関する。   The present invention relates to a metal catalyst electrode having an inverse opal structure used as a catalyst layer included in a membrane / electrode assembly (MEA) of a fuel cell, and a method for producing the same.

水素は、地球上で最も豊富な元素であって、温室ガスおよび汚染物質を排出することなく新再生エネルギーに変換できる。特に、反応物間の化学反応により生じる化学エネルギーを直接電気エネルギーに変換させる燃料電池の燃料として水素を使用する場合、内燃機関の約2.5倍に相当する優れた効率を示す。よって、水素を用いた燃料電池は、エネルギー変換のための有望な未来の技術として大きく注目を浴びている。   Hydrogen is the most abundant element on earth and can be converted to new renewable energy without emitting greenhouse gases and pollutants. In particular, when hydrogen is used as a fuel for a fuel cell that directly converts chemical energy generated by a chemical reaction between reactants into electrical energy, it exhibits excellent efficiency corresponding to about 2.5 times that of an internal combustion engine. Therefore, fuel cells using hydrogen are attracting much attention as a promising future technology for energy conversion.

このような燃料電池は、使用される電解質の種類によって高分子電解質燃料電池(PEMFC)、アルカリ燃料電池(AFC)、リン酸燃料電池(PAFC)、溶融炭酸塩燃料電池(MCFC)、固体酸化物燃料電池(SOFC)などに分けられる。その中でも特に、高分子電解質燃料電池は、作動温度が相対的に低く、小型化が可能であり、エネルギー密度が大きく、燃料として水素またはメタノールの使用が可能なので、分散エネルギー利用システムの一軸として活用されるときに大きさおよび組み合わせにおいて柔軟性を発揮することができて、商用化に最も近付いたものと評価されている。   Such fuel cells may be polymer electrolyte fuel cells (PEMFC), alkaline fuel cells (AFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), solid oxides depending on the type of electrolyte used. It is divided into fuel cells (SOFC). In particular, polymer electrolyte fuel cells have a relatively low operating temperature, can be miniaturized, have a high energy density, and can use hydrogen or methanol as a fuel. It can be flexible in size and combination when done, and is considered the closest to commercialization.

高分子電解質燃料電池において、燃料電池の性能を左右する核心構成要素である膜/電極接合体(Membrane−Electrode Assembly、MEA)は、電極の役目をする触媒と、電解質の役目をする膜とが一体型に接合された構造を持つが、前記触媒として主に高価の白金(Pt)粒子を使用するため、これが燃料電池の商業化を妨げる最も大きな障害物として作用している。   In a polymer electrolyte fuel cell, a membrane / electrode assembly (MEA), which is a core component that determines the performance of a fuel cell, is composed of a catalyst serving as an electrode and a membrane serving as an electrolyte. Although it has a unitary structure, it mainly uses expensive platinum (Pt) particles as the catalyst, and this acts as the biggest obstacle to the commercialization of fuel cells.

したがって、電極構造の細心なデザインを介して物質伝達(mass transfer)を向上させかつ水管理(water management)を改善することにより、白金の使用量を最小化する必要が切実に求められている。   Therefore, there is an urgent need to minimize the amount of platinum used by improving mass transfer and improving water management through a meticulous design of the electrode structure.

これに関連し、従来の炭素ナノチューブなどの炭素系ナノ素材を白金触媒粒子の支持体として使用する電極が知られているが(非特許文献1〜3)、このような電極は炭素ナノチューブの製造のために高難易度および高費用の製造過程によって得られる。また、燃料電池の運転に応じて炭素支持体の腐食および酸化が発生して耐久性の低下が懸念され、溶液工程をベースとして製造されるため、触媒層で白金触媒粒子が消失してしまうという問題点を持つ。   In this connection, electrodes using carbon-based nanomaterials such as conventional carbon nanotubes as a support for platinum catalyst particles are known (Non-Patent Documents 1 to 3). For obtained by high difficulty and high cost manufacturing process. In addition, corrosion and oxidation of the carbon support occurs in accordance with the operation of the fuel cell, and there is a concern about a decrease in durability, and the platinum catalyst particles disappear in the catalyst layer because it is manufactured based on a solution process. Has a problem.

前述した従来の電極の問題点を解決するための代案として、逆オパール(Inverse Opal、IO)構造を有する白金触媒電極を考慮することができる。   As an alternative to solve the above-described problems of the conventional electrode, a platinum catalyst electrode having an inverse opal (IO) structure can be considered.

ここで、逆オパール構造とは、ナノ単位の小さい構造が周期的に繰り返され、このように周期的に配列された空間的構造の長さが大略可視光線の波長に相応する場合、視野の角度に応じて多様な色を示す結晶構造たるオパール構造に気孔を形成して作った構造を意味する。   Here, the inverted opal structure is a structure in which small nano-unit structures are periodically repeated, and the length of the spatial structure arranged in this way roughly corresponds to the wavelength of visible light. It means a structure made by forming pores in the opal structure, which is a crystal structure that shows various colors.

このような逆オパール構造は、3次元的に整列され且つ相互接続された開気孔からなる構造を持つため、向上した物質伝達および効果的な水管理が可能であると予想されるが、それにも拘らず、逆オパール構造を燃料電池、特に高分子電解質燃料電池に電極として適用した事例は見つけるのが難しい。これは、逆オパール構造の触媒層を備えた膜/電極接合体の製造の際に工程の煩わしさが非常に大きいためである。   Such an inverse opal structure is composed of open pores that are three-dimensionally aligned and interconnected, so that it is expected that improved mass transfer and effective water management are possible. Nevertheless, it is difficult to find a case where the inverse opal structure is applied as an electrode to a fuel cell, particularly a polymer electrolyte fuel cell. This is because the process is very troublesome in the production of a membrane / electrode assembly provided with a catalyst layer having an inverse opal structure.

具体的に、逆オパール構造体の製作の際に、一般に使用されるコロイドテンプレート法では、コロイド粒子の自己組み立て(self−assembly)のための支持体として、ガラススライド、シリコンウエハー、ITO(indium tin oxide)、FTO(fluorine−doped tin oxide)などのように平滑かつ均一な表面を有する基板を要求するため、粗くて不均一かつ化学的に異質的な表面を有するガス拡散層(Gas Diffusion Layer、GDL)上に逆オパール構造の触媒層を直接形成することは現実的に不可能であり、必ず逆オパール構造の触媒層をガス拡散層へ転写(transfer)する過程がさらに行われなければならないと思われたためである。   Specifically, in the fabrication of inverted opal structures, a commonly used colloidal template method uses a glass slide, silicon wafer, ITO (indium tin) as a support for self-assembly of colloidal particles. gas diffusion layer (Gas Diffusion Layer) having a rough, non-uniform, and chemically heterogeneous surface in order to require a substrate having a smooth and uniform surface, such as Oxide) and FTO (fluorine-doped tin oxide). It is practically impossible to directly form a catalyst layer having an inverse opal structure on the GDL), and a process for transferring the catalyst layer having an inverse opal structure to a gas diffusion layer must be further performed. This is because it seemed.

Chai, G. S., Shin, I. S. & Yu, J.-S. Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Adv. Mater. 16, 2057-2061 (2004)Chai, GS, Shin, IS & Yu, J.-S.Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells.Adv. Mater. 16, 2057-2061 (2004) Wang, C. et al. Proton exchange membrane fuel cells with carbon nanotubebased electrodes. Nano Lett. 4, 345-348 (2004)Wang, C. et al. Proton exchange membrane fuel cells with carbon nanotubebased electrodes.Nano Lett. 4, 345-348 (2004) Yuan, F. L. & Ryu, H. J. The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphologyas a catalyst support material for a polymer electrolyte membrane fuel cell. Nanotechnology 15, S596-S602 (2004)Yuan, F. L. & Ryu, H. J. The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphologyas a catalyst support material for a polymer electrolyte membrane fuel cell.Nanotechnology 15, S596-S602 (2004)

本発明の目的は、その構造的利点により燃料電池において物質伝達の向上および水管理の効率性の増進が可能であり、耐久性も有するうえ、ガス拡散層上に直接形成できる、逆オパール構造の燃料電池用金属触媒電極、およびその製造方法を提供することにある。   The object of the present invention is that it has an inverted opal structure that can improve the mass transfer and increase the efficiency of water management in the fuel cell due to its structural advantages, has durability, and can be directly formed on the gas diffusion layer. An object of the present invention is to provide a metal catalyst electrode for a fuel cell and a method for producing the same.

上記目的を達成するために、本発明は、燃料電池用逆オパール構造(inverse opal structure)の金属触媒電極を提供する。   In order to achieve the above object, the present invention provides a metal catalyst electrode having an inverse opal structure for a fuel cell.

また、本発明は、(a)ガス拡散層(GDL)の表面を前処理する段階と、(b)前記ガス拡散層上にテンプレートを形成する段階と、(c)前記テンプレートに金属前駆体溶液を浸透させた後、金属骨格(skeleton)を形成する段階と、(d)前記テンプレートを除去する段階とを含んでなる、燃料電池用逆オパール構造の金属触媒電極の製造方法を提供する。   The present invention also includes (a) a step of pretreating the surface of the gas diffusion layer (GDL), (b) a step of forming a template on the gas diffusion layer, and (c) a metal precursor solution on the template. A method for producing a metal catalyst electrode having an inverted opal structure for a fuel cell, comprising: forming a metal skeleton after impregnating the substrate; and (d) removing the template.

本発明に係る燃料電池用逆オパール構造を持つ金属触媒電極は、濃度損失を最小化する一方で、3次元に整列され且つ相互接続された開気孔構造によって高い有効空隙率、効果的な触媒活用および物質伝達、並びに効率的な水管理を可能にして性能が顕著に向上した燃料電池を実現することができる。特に、画期的に向上した出力密度および水管理能力をベースとして、既存の燃料電池に比べて白金の使用量を減らしながら性能はさらに優れた実際単位電池の実現が可能である。ひいては、本発明に係る金属触媒電極は、触媒金属のみからなるため、既存の炭素材料または炭素系支持体によって支持された金属触媒を含む触媒電極に比べて電極の腐食問題および金属触媒の消失が発生するおそれがない。   The metal catalyst electrode having an inverse opal structure for a fuel cell according to the present invention minimizes the concentration loss, and has a high effective porosity and effective catalyst utilization by an open pore structure that is three-dimensionally aligned and interconnected. In addition, it is possible to realize a fuel cell with significantly improved performance by enabling mass transfer and efficient water management. In particular, based on the dramatically improved power density and water management capability, it is possible to realize an actual unit cell with further improved performance while reducing the amount of platinum used compared to existing fuel cells. As a result, since the metal catalyst electrode according to the present invention is composed of only the catalyst metal, the corrosion problem of the electrode and the disappearance of the metal catalyst are lost as compared with the catalyst electrode including the metal catalyst supported by the existing carbon material or the carbon-based support. There is no risk of occurrence.

また、本発明に係る燃料電池用逆オパール構造を持つ金属触媒電極の製造方法は、燃料電池の膜/電極接合体に含まれる逆オパール構造の金属触媒電極を製造するに際して、逆オパール構造の金属触媒電極を別に製造した後でこれをガス拡散層に転写する煩わしい過程なしで、前述したように優れた性能を有する逆オパール構造の金属触媒電極を容易かつ経済的に製造することができる。   The method for producing a metal catalyst electrode having an inverse opal structure for a fuel cell according to the present invention is a method for producing a metal catalyst electrode having an inverse opal structure included in a membrane / electrode assembly of a fuel cell. A metal catalyst electrode having an inverted opal structure having excellent performance as described above can be easily and economically produced without a troublesome process of transferring the catalyst electrode to a gas diffusion layer after it is separately manufactured.

図1(a)および図1(b)はそれぞれ従来の燃料電池用膜/電極接合体(MEA)、および本発明に係る燃料電池用逆オパール構造の金属触媒電極を含む膜/電極接合体を示す概念図である。1 (a) and 1 (b) show a conventional membrane / electrode assembly for a fuel cell (MEA) and a membrane / electrode assembly including a metal catalyst electrode having an inverted opal structure for a fuel cell according to the present invention. FIG. 本発明に係る燃料電池用逆オパール構造を持つ金属触媒電極の製造方法の各段階を示すフローチャートである。3 is a flowchart showing each stage of a method of manufacturing a metal catalyst electrode having an inverse opal structure for a fuel cell according to the present invention. 本発明に係る燃料電池用逆オパール構造を持つ金属触媒電極の製造方法の各段階を示す概念図、および該当段階で得られる構造体に対する電界放射型走査電子顕微鏡(FE−SEM)イメージである。It is a conceptual diagram which shows each step of the manufacturing method of the metal catalyst electrode which has the reverse opal structure for fuel cells which concerns on this invention, and a field emission type | mold scanning electron microscope (FE-SEM) image with respect to the structure obtained at a relevant step. パルス電着時のデューティサイクル(duty cycle)、パルス印加/中断時間(on/off time)および電流密度(current density)の変化による逆オパール構造の微細構造が変化することを示す電界放射型走査電子顕微鏡(FE−SEM)イメージである。Field-emission scanning electrons showing that the microstructure of the inverse opal structure changes due to changes in duty cycle, pulse application / interruption time (on / off time), and current density (current density) during pulse electrodeposition It is a microscope (FE-SEM) image. 図5(a)および図5(b)はそれぞれ本発明の実施例で製造された逆オパール構造の電極を備えた膜/電極接合体(MEA)を含んで製造される単セルの構造を示す写真、および本発明の実施例で製造された逆オパール構造の白金電極を含む膜/電極接合体の断面と各層の部分拡大度を示す電界放射型走査電子顕微鏡(FE−SEM)イメージである。FIGS. 5 (a) and 5 (b) each show a structure of a single cell manufactured including a membrane / electrode assembly (MEA) having an inverted-opal structure electrode manufactured in an embodiment of the present invention. It is a field emission type | mold scanning electron microscope (FE-SEM) image which shows the cross section of the film | membrane / electrode assembly containing the platinum electrode of the reverse opal structure manufactured in the Example of this invention, and each layer, and the partial expansion degree of each layer. 本発明の実施例で製造された逆オパール構造の電極に対するX線回折分析(XRD)結果である。3 is an X-ray diffraction analysis (XRD) result for an electrode having an inverse opal structure manufactured in an example of the present invention. 図7(a)および図7(b)はそれぞれ既存のPt/C電極、および本発明の実施例で製造された逆オパール構造の白金電極に対するX線光電子スペクトル(XPS)分析結果である。FIGS. 7A and 7B are X-ray photoelectron spectrum (XPS) analysis results for the existing Pt / C electrode and the platinum electrode of the inverse opal structure manufactured in the example of the present invention, respectively. 既存のPt/C電極、および本発明の実施例で製造された逆オパール構造の白金電極それぞれにおいて白金酸化状態の分布を示すグラフである。It is a graph which shows the distribution of a platinum oxidation state in each of the existing Pt / C electrode and the platinum electrode of the inverse opal structure manufactured in the Example of this invention. 本発明に係る逆オパール構造の白金電極基盤の膜/電極接合体、および従来の膜/電極接合体に対する燃料電池単位セルの運転条件による分極(polarization)曲線および出力密度(power density)曲線である。4 is a polarization curve and a power density curve according to the operating conditions of a fuel cell unit cell with respect to a platinum electrode-based membrane / electrode assembly having a reverse opal structure according to the present invention and a conventional membrane / electrode assembly. .

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に係る金属触媒電極は、逆オパール(Inverse Opal、IO)構造からなり、燃料電池、特に、高分子電解質燃料電池(Polymer Electrolyte Membrane Fuel Cell、PEMFC)において膜/電極接合体(membrane electrode assembly)の触媒層として使用できる。   The metal catalyst electrode according to the present invention has an inverse opal (IO) structure, and is a membrane / electrode assembly in a fuel cell, in particular, a polymer electrolyte fuel cell (PEMFC). ).

また、前記金属触媒電極はガス拡散層(Gas Diffusion Barrier、GDL)上に直接形成されることを特徴とする。   The metal catalyst electrode may be directly formed on a gas diffusion layer (GDL).

従来では、炭素繊維で出来たカーボンペーパーからなるガス拡散層のように粗くて不均一な表面を有する基材上に直接逆オパール構造体を形成させることが可能な方案が全くなかった。よって、逆オパール構造を持つ光結晶などを、粗くて不均一な表面を有する基材上に積層するためには、ガラススライド、シリコンウエハー、ITO(indium tin oxide)基板、FTO(fluorine−doped oxide)基板などのように平滑かつ均一な表面を有する基板上に逆オパール構造の層を形成した後、これを粗くて不均一な表面を有する基材上に転写(transfer)する過程をさらに行わなければならないので、工程が非常に煩わしくて不経済であった。   Conventionally, there has been no method capable of directly forming an inverted opal structure on a substrate having a rough and non-uniform surface, such as a gas diffusion layer made of carbon paper made of carbon fiber. Therefore, in order to laminate a photonic crystal having an inverse opal structure on a substrate having a rough and non-uniform surface, a glass slide, a silicon wafer, an ITO (indium tin oxide) substrate, an FTO (fluorine-doped oxide) ) After forming a layer of an inverse opal structure on a substrate having a smooth and uniform surface such as a substrate, a process of transferring the layer onto a substrate having a rough and uneven surface must be further performed. Therefore, the process is very troublesome and uneconomical.

これに反し、本発明に係る逆オパール構造を持つ金属触媒電極は、別の転写過程を行うことなく、ガス拡散層(GDL)上に直接形成されることを特徴とする。   On the other hand, the metal catalyst electrode having an inverse opal structure according to the present invention is characterized in that it is directly formed on the gas diffusion layer (GDL) without performing another transfer process.

本発明に係る金属触媒電極は、マクロ気孔(macro pore)が3次元的かつ規則的に整列された逆オパール構造特有のメリットを有する。すなわち、本発明に係る金属触媒電極は、高い比表面積、低い屈曲度(tortuosity)、および相互接続された(interconnected)気孔を持つため、燃料電池、特に高分子電解質燃料電池の膜/電極接合体(MEA)に触媒層として導入される場合、炭素系支持体を備える白金触媒層などの既存の触媒層に比べて向上した物質伝達(mass transfer)および効率的な水管理(water management)を達成することができる。   The metal catalyst electrode according to the present invention has a merit peculiar to the inverse opal structure in which the macropores are three-dimensionally and regularly arranged. That is, since the metal catalyst electrode according to the present invention has a high specific surface area, a low degree of flexibility, and interconnected pores, the membrane / electrode assembly of a fuel cell, particularly a polymer electrolyte fuel cell. When introduced as a catalyst layer in (MEA), improved mass transfer and efficient water management compared to existing catalyst layers such as platinum catalyst layers with carbon-based supports can do.

より具体的に、第一に、本発明に係る金属触媒電極は、従来の金属触媒層の屈曲構造に比べて低い屈曲度を持つ非常に開放され且つ拡散経路からなるため、物質輸送および伝導性の向上を促進させる。その上、電極反応が発生しうるより大きい界面領域(interfacial area)を持つため、反応速度を向上させる。さらに、触媒層の厚さ減少を可能とすることにより、既存の触媒層とは異なりイオノマー(ionomer)を含む必要がない。これに加えて、最後に、金属触媒粒子が逆オパール構造全体で結束された統合(intergrated)構造を持つため、金属触媒粒子の損失を防ぐことができる。   More specifically, firstly, the metal catalyst electrode according to the present invention is very open and has a diffusion path having a low degree of bending compared to the bent structure of the conventional metal catalyst layer, so that mass transport and conductivity are achieved. Promote improvement. In addition, since it has a larger interfacial area where electrode reaction can occur, the reaction rate is improved. Further, by allowing the thickness of the catalyst layer to be reduced, unlike existing catalyst layers, it is not necessary to include an ionomer. In addition, since the metal catalyst particles have an integrated structure in which the entire inverse opal structure is bound, loss of the metal catalyst particles can be prevented.

既存のCCM(Catalyst Coated Membrane)法によって製造され、炭素支持体によって支持される白金触媒を含む触媒層を備える膜/電極接合体(図1(a))などの無秩序な構造の電極では、気体分子は気孔壁と他の粒子によってその動きが妨害される傾向があるので、本発明に係る金属触媒電極のように逆オパール構造を持つ触媒電極を備える膜/電極接合体(図1(b))に比べて顕著に低い質量拡散率(mass diffusivity)を示す。   In an electrode having a disordered structure such as a membrane / electrode assembly (FIG. 1 (a)), which is manufactured by an existing CCM (Catalyst Coated Membrane) method and includes a catalyst layer including a platinum catalyst supported by a carbon support, Since the movement of molecules tends to be hindered by pore walls and other particles, a membrane / electrode assembly having a catalyst electrode having an inverse opal structure like the metal catalyst electrode according to the present invention (FIG. 1B) ) Shows a significantly lower mass diffusivity.

これに反し、本発明に係る金属触媒電極は、開気孔および相互接続された気孔構造により一層向上した質量拡散率を示し、これによりさらに薄い電極に製造できる。   On the other hand, the metal catalyst electrode according to the present invention exhibits a further improved mass diffusivity due to the open pores and the interconnected pore structure, thereby making it possible to produce thinner electrodes.

一方、本発明に係る逆オパール構造の金属触媒電極は、燃料電池の膜/電極接合体において触媒層をなす素材として主に用いられる白金(Pt)だけでなく、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)またはイリジウム(Ir)などの別の白金族金属、または前記白金族金属の1種以上と鉄(Fe)、コバルト(Co)またはニッケル(Ni)との合金からなってもよい。   On the other hand, the metal catalyst electrode having an inverted opal structure according to the present invention is not only platinum (Pt) mainly used as a material forming a catalyst layer in a membrane / electrode assembly of a fuel cell, but also ruthenium (Ru), rhodium (Rh). ), Palladium (Pd), another platinum group metal such as osmium (Os) or iridium (Ir), or one or more of the platinum group metals and iron (Fe), cobalt (Co) or nickel (Ni) It may be made of an alloy.

以下、本発明に係る燃料電池用逆オパール構造の金属触媒電極の製造方法について説明する。   Hereinafter, the manufacturing method of the metal catalyst electrode of the reverse opal structure for fuel cells which concerns on this invention is demonstrated.

図2に示すように、本発明に係る燃料電池用逆オパール構造の金属触媒電極の製造方法は、(a)ガス拡散層(GDL)の表面を前処理(pre−treatment)する段階と、(b)前記ガス拡散層上にテンプレート(template)を形成する段階と、(c)前記テンプレートに金属前駆体溶液を浸透させた後、金属骨格を形成する段階と、(d)前記テンプレートを除去する段階とを含んでなる。次に、上記段階(a)〜段階(d)について詳細に説明する。   As shown in FIG. 2, the method for manufacturing a metal catalyst electrode having an inverse opal structure for a fuel cell according to the present invention includes: (a) pre-treating the surface of the gas diffusion layer (GDL); b) forming a template on the gas diffusion layer; (c) impregnating the template with a metal precursor solution and then forming a metal skeleton; and (d) removing the template. And comprising steps. Next, the steps (a) to (d) will be described in detail.

前記段階(a)は、ガス拡散層上に逆オパール構造の金属触媒電極を直接形成するための事前段階であって、ガス拡散層と、後述する逆オパール構造の形成のための鋳型であるテンプレート間の接着性を向上させるために、ガス拡散層の表面を前処理する段階である。   The step (a) is a preliminary step for directly forming a metal catalyst electrode having an inverse opal structure on the gas diffusion layer, and is a template serving as a template for forming the gas diffusion layer and the inverse opal structure described later. In order to improve the adhesion between the two, the surface of the gas diffusion layer is pretreated.

具体的に、本段階では、ガス拡散層上にテンプレートを形成するに先立ち、ガス拡散層とテンプレート間の接着性の向上のために、ガス拡散層の表面にリンカー(linker)を導入する。   Specifically, in this stage, before forming the template on the gas diffusion layer, a linker is introduced on the surface of the gas diffusion layer in order to improve the adhesion between the gas diffusion layer and the template.

例えば、後述する本発明の実施例でのように、カルボキシル基で官能化された球状ポリスチレン(PS)コロイド粒子を用いて、表面にチオール基を有するカーボンブラック(carbon black)からなるガス拡散層上にテンプレートを形成する場合には、リンカーとしてアルカンチオール(alkanethiol)をガス拡散層の表面に導入するために、1,2−エタンジチオールなどの表面改質用化合物が溶解された溶液に基板たるガス拡散層を浸漬させて本段階を行うことができる。   For example, as in the embodiments of the present invention to be described later, on a gas diffusion layer made of carbon black having thiol groups on the surface using spherical polystyrene (PS) colloidal particles functionalized with carboxyl groups. When a template is formed on the substrate, a gas serving as a substrate in a solution in which a surface modifying compound such as 1,2-ethanedithiol is dissolved in order to introduce alkanethiol as a linker to the surface of the gas diffusion layer. This step can be performed by immersing the diffusion layer.

前記段階(b)では、表面処理されたガス拡散層上に、逆オパール構造の金属触媒電極を形成するための鋳型であるテンプレートを形成する。   In the step (b), a template which is a template for forming a metal catalyst electrode having an inverse opal structure is formed on the surface-treated gas diffusion layer.

本段階を行うための具体的な方法、または形成されるテンプレートの素材などは、特に限定されないが、好ましくは、毛細管力(capillary force)を用いた結晶化、重力を用いた沈降による結晶化、または表面電荷を帯びた粒子の静電気的反発力を用いた結晶化などによって、球状高分子コロイド粒子が3次元的に整列されたコロイド結晶を製造することができる。   A specific method for performing this step, or a material of a template to be formed is not particularly limited, but preferably, crystallization using capillary force, crystallization by precipitation using gravity, Alternatively, colloidal crystals in which spherical polymer colloidal particles are three-dimensionally aligned can be produced by crystallization using electrostatic repulsion of particles having surface charge.

この際、コロイド粒子が分散した溶液内に含まれた球状高分子コロイド粒子は、前記段階(a)の表面処理を通じてガス拡散層に導入されたリンカーによってガス拡散層に強く結合し、自己組み立て(self−assembly)によって、コロイド結晶からなるテンプレートを形成する。   At this time, the spherical polymer colloidal particles contained in the solution in which the colloidal particles are dispersed are strongly bonded to the gas diffusion layer by the linker introduced into the gas diffusion layer through the surface treatment of the step (a), and self-assembly ( A template made of colloidal crystals is formed by self-assembly).

図3(a)および図3(b)は、球状高分子コロイド粒子が分散した懸濁液を用いて、毛細管力によって3次元整列コロイド結晶テンプレートを得る過程を示す概念図、およびこれにより得られるコロイド結晶テンプレートの模式図と電界放射型走査電子顕微鏡(FE−SEM)イメージを示している。   3 (a) and 3 (b) are conceptual diagrams showing a process of obtaining a three-dimensional aligned colloidal crystal template by capillary force using a suspension in which spherical polymer colloidal particles are dispersed, and are obtained thereby. A schematic diagram of a colloidal crystal template and a field emission scanning electron microscope (FE-SEM) image are shown.

図3(a)および図3(b)によれば、本段階では、球状ポリスチレン(PS)粒子などの高分子コロイド粒子を含む懸濁液内の水がメニスカス(meniscus)から蒸発するとき、高分子コロイド粒子が持続的に周囲懸濁液の対流性流体流れ(convective fluid flow)によって3相接触線(triple−phase contact line)近くに移送され、これと同時に、フィルムが乾燥しながら毛細管力が高分子コロイド粒子を引っ張って、整列された密集構造のコロイド結晶テンプレートを形成する。   According to FIGS. 3 (a) and 3 (b), at this stage, when the water in the suspension containing polymer colloidal particles such as spherical polystyrene (PS) particles evaporates from the meniscus, Molecular colloidal particles are continuously transported near the triple-phase contact line by the convective fluid flow of the surrounding suspension, and at the same time, the capillary force is increased while the film is dry. The polymer colloidal particles are pulled to form an ordered dense colloidal crystal template.

一方、前記高分子コロイド粒子は、その種類が特に限定されず、ポリスチレン(polystyren)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリアクリレート(polyacrylate)、ポリアルファメチルスチレン(poly−α−methylstyrene)、ポリベンジルメタクリレート(polybenzyl methacrylate)、ポリフェニルメタクリレート(polyphenyl methacrylate)、ポリジフェニルメタクリレート(polydiphenyl methacrylate)、ポリシクロヘキシルメタクリレート(polycyclohexyl methacrylate)、スチレン−アクリロニトリル共重合体(styrene−acrylonitrile copolymer)、またはスチレン−メチルメタクリレート共重合体(styrene−methacrylate copolymer)などからなってもよい。   On the other hand, the type of the polymer colloidal particles is not particularly limited. Polystyrene, polymethylmethacrylate, polyacrylate, polyalphamethylstyrene, polybenzylmethacrylate, polybenzylmethacrylate, polymethylmethacrylate, polyacrylate, polyalphamethylstyrene, polybenzylmethacrylate. (Polybenzyl methacrylate), polyphenyl methacrylate, polydiphenyl methacrylate, polycyclohexyl methacrylate, styrene-acrylonitrile copolymer, styrene-acrylonitrile crylonitrile copolymer), or styrene - methyl methacrylate copolymer (styrene-methacrylate copolymer) may be made from such.

また、前記高分子コロイド懸濁液は、親水性(hydrophilicity)および表面張力などの変化を通じて高分子コロイド粒子の自己組み立ておよび結晶化を促進するために、非イオン性界面活性剤をさらに含むことができる。   In addition, the polymer colloidal suspension may further include a nonionic surfactant to promote self-assembly and crystallization of the polymer colloid particles through changes in hydrophilicity and surface tension. it can.

本段階では、コロイド懸濁液の蒸発速度および濃度が増加すると、より厚いテンプレートを得ることができるため、溶媒蒸発速度または溶液濃度を変化させて所望のテンプレート厚さを実現することができる。   At this stage, as the evaporation rate and concentration of the colloidal suspension increases, a thicker template can be obtained, so that the desired template thickness can be achieved by changing the solvent evaporation rate or solution concentration.

前記段階(c)は、テンプレートに金属前駆体溶液を浸透させた後、金属骨格を形成する段階であって、具体的に、前記段階(b)で形成されたコロイド結晶からなるテンプレートの内部に所望の金属または合金の前駆体を浸透させた後、電気化学蒸着法、ゾルゲル法、沈澱法、酸化物還元法、溶媒熱合成法、CVD法、無電解メッキ法、熱分解法などを用いて金属骨格を形成する。   The step (c) is a step of forming a metal skeleton after impregnating the metal precursor solution into the template, specifically, inside the template formed of the colloidal crystal formed in the step (b). After impregnating the precursor of the desired metal or alloy, using electrochemical deposition method, sol-gel method, precipitation method, oxide reduction method, solvent thermal synthesis method, CVD method, electroless plating method, thermal decomposition method, etc. A metal skeleton is formed.

上記で金属骨格を形成するための方法として言及された多様な方法の中でも、電気化学蒸着法は、金属骨格を構成する物質がテンプレート内の格子間空間で成長して如何なる亀裂があっても満たしていくので、空間をほぼ完全に満たすことができ、テンプレートの除去後にも収縮がほとんど起こらず、機械的強度が増加するという利点を持つため、他の方法に比べてより好ましく、特に定電流−パルス電着法(Galvanostatic−pulsed electrodeposition)を用いる場合には、蒸着物の物理的性質および基板との接着性を向上させ、パルス振幅および蒸着時間を調節して金属の核生成および結晶成長を個別的に制御することができるという付加的な利点も一緒に持つ。   Among the various methods mentioned above as the method for forming the metal skeleton, the electrochemical vapor deposition method is satisfied even if any material that forms the metal skeleton grows in the interstitial space in the template and there are any cracks. Since it has the advantage that the space can be almost completely filled, the shrinkage hardly occurs after the removal of the template, and the mechanical strength is increased. When using pulsed electrodeposition (Galvanostatic-pulsed deposition), the physical properties of the deposit and the adhesion to the substrate are improved, and the nucleation and crystal growth of the metal are individually controlled by adjusting the pulse amplitude and deposition time. Together with the additional advantage of being able to control automatically.

次に、前記段階(d)は、逆オパール構造の金属触媒骨格のみを残すためにテンプレートを除去する段階であって、その具体的な遂行方法については特別な制限がない。たとえば、トルエンやアセトンなどの有機溶媒を用いてテンプレートを溶解させるか、或いは低温でか焼(calcination)を施してテンプレートを燃焼させることにより、除去することができる。   Next, the step (d) is a step of removing the template in order to leave only the metal catalyst skeleton having an inverse opal structure, and there is no particular limitation on a specific method for performing the step. For example, the template can be removed by dissolving the template using an organic solvent such as toluene or acetone, or by calcining the template at a low temperature.

次に、本発明について実施例に基づいて詳細に説明する。これらの実施例は例示的なものに過ぎず、本発明の範囲を限定するものではない。   Next, the present invention will be described in detail based on examples. These examples are illustrative only and are not intended to limit the scope of the invention.

<実施例:逆オパール構造の白金電極の製造>
下記1.および2.を経て、本発明に係る逆オパール構造の白金電極を製造した。
<Example: Production of platinum electrode with inverted opal structure>
1. And 2. Then, a platinum electrode having an inverse opal structure according to the present invention was manufactured.

[1.オパール構造のポリスチレン(PS)テンプレートの製造]
基板としては、1,2−エタンジチオールを溶解させたエタノール溶液(10mM)に12時間以上浸漬させて表面処理した、MPL(Microporous layer)を含むガス拡散層(GDL)(35BC、SGL)を準備した。参照として、前記MPLは、カーボンブラックおよび5重量%のポリテトラフルオロエチレン(polytetrafluoroethylene)を含んでなり、表面処理によってガス拡散層の表面に導入されたアルカンチオールは、ポリスチレン粒子表面のカルボキシル基およびMPLに含まれたカーボンブラック表面の末端チオール基と相互作用することにより、一種のバインダーまたはカップリング剤としての役目をする。
[1. Production of Opal Polystyrene (PS) Template]
Prepared as a substrate is a gas diffusion layer (GDL) (35BC, SGL) containing MPL (Microporous layer) that has been surface-treated by immersing it in an ethanol solution (10 mM) in which 1,2-ethanedithiol is dissolved for 12 hours or more. did. For reference, the MPL comprises carbon black and 5% by weight of polytetrafluoroethylene, and the alkanethiol introduced to the surface of the gas diffusion layer by the surface treatment includes the carboxyl group on the polystyrene particle surface and the MPL. It acts as a kind of binder or coupling agent by interacting with the terminal thiol group on the surface of carbon black contained in.

一方、0.5wt%の非イオン界面活性剤(IGEPAL Co−30)0.36gおよびMilli−Q water80mLを混合した後、これを、カルボキシル基で官能化されたポリスチレン(Carboxylated PS)ラテックス粒子(平均粒径:520nm)が分散した10重量%の水性懸濁液0.5gに添加して、テンプレート製造のためのポリスチレンコロイド懸濁液を準備した。   Meanwhile, after mixing 0.36 g of 0.5 wt% nonionic surfactant (IGEPAL Co-30) and 80 mL of Milli-Q water, this was mixed with carboxyl functionalized polystyrene (Carboxylated PS) latex particles (average A polystyrene colloidal suspension for template production was prepared by adding to 0.5 g of a 10% by weight aqueous suspension in which the particle size was 520 nm).

次に、図3(a)に示すように、前記基板を前記ポリスチレン懸濁液に浸した後、濡らしておいた。そして、30分間超音波処理した後、65℃のオーブンで一定の相対湿度で2日以上乾燥させてガス拡散層上にオパール構造のポリスチレンテンプレートを形成した。   Next, as shown in FIG. 3A, the substrate was immersed in the polystyrene suspension and then wetted. Then, after ultrasonic treatment for 30 minutes, the polystyrene template having an opal structure was formed on the gas diffusion layer by drying in a 65 ° C. oven at a constant relative humidity for 2 days or more.

[2.逆オパール構造の白金(Pt)電極の製造]
10mMのKClに溶解された10mMのHPtCl溶液を含むメッキ槽で、白金板およびAg/AgClをそれぞれ対向電極および基準電極として備えた3極セルを用いて、定電流−パルス電着(Galvanostatic−pulsed electrodeposition)を行ってポリスチレンテンプレートの表面および内部に白金を蒸着した。蒸着の際に、ポリスチレンテンプレートの下に位置したガス拡散層は作動電極として作用した。
[2. Production of platinum (Pt) electrode with inverted opal structure]
In a plating bath containing 10 mM H 2 PtCl 4 solution dissolved in 10 mM KCl, constant current-pulse electrodeposition (using a three-electrode cell with a platinum plate and Ag / AgCl as a counter electrode and a reference electrode, respectively) Platinum was vapor-deposited on the surface and inside of the polystyrene template by performing Galvanostatic-pulsed electrodeposition. During the deposition, the gas diffusion layer located under the polystyrene template served as the working electrode.

蒸着完了の後、白金が蒸着された基板を12時間トルエンに浸漬させてポリスチレン粒子を除去した。その後、基板を溶液から取り出して水洗した後、電極内の空間に残った水および汚染物質を除去するために大気雰囲気および130℃で4時間加熱した。その後、選択的な段階として、残っている有機溶媒を除去し且つ白金酸化を最小化するために、水素雰囲気および180℃で2時間熱処理した。   After completion of the deposition, the substrate on which platinum was deposited was immersed in toluene for 12 hours to remove polystyrene particles. Thereafter, the substrate was taken out of the solution and washed with water, and then heated in an air atmosphere and 130 ° C. for 4 hours in order to remove water and contaminants remaining in the space in the electrode. Thereafter, as an optional step, heat treatment was performed in a hydrogen atmosphere and 180 ° C. for 2 hours to remove the remaining organic solvent and minimize platinum oxidation.

図4はパルス電着時のデューティサイクル(duty cycle)、パルス印加/中断時間(on/off time)および電流密度(current density)の変化による逆オパール構造の微細構造が変化することを示す電界放射型走査電子顕微鏡(FE−SEM)イメージである。   FIG. 4 shows field emission showing that the microstructure of the inverse opal structure changes due to changes in duty cycle, pulse application / interruption time (on / off time), and current density (current density) during pulse electrodeposition. It is a type | mold scanning electron microscope (FE-SEM) image.

より優れた形状を有する電極の表面を得るために、電流密度(current density)、デューティサイクルおよび電荷密度(charge density)を変化させた。一方、総電荷密度(total charge density)は、理論上の白金ローディング(loading)が0.2mgcm−2に該当する4Ccm−2に固定した。ところが、誘導結合プラズマ(ICP)質量分析計を用いて測定した結果、ガス拡散層に蒸着された白金の含量は0.12mgcm−2であった。そして、それぞれの逆オパール構造電極の厚さは約1〜2μmであった(図5(b)参照)。よって、1Ccm−2の総電荷が蒸着された。これは0.03mgcm−2の白金蒸着体および約0.5μmの厚さに該当する。ポリスチレン球状粒子はガス拡散層上に5〜20個の層として蒸着され、これに対応する厚さは約3〜12μmであった。逆オパール構造の白金球(sphere)の場合、厚さは約3〜4個の層(1.5〜2μm)であった。厚さは、制限された白金の量、保存された逆オパール構造および円滑な陽子輸送を考慮して決定された。高分子電解質燃料電池において従来の電極の通常の厚さが約5〜10μm程度であることを考慮すると、逆オパール構造の白金電極は、より短い拡散経路と反応物およびイオンの増加した伝導度を持つため、既存の電極に比べて優れる。これは、陽子輸送のためのイオノマーの使用が不要であることを意味する。 In order to obtain an electrode surface having a better shape, the current density, duty cycle and charge density were varied. On the other hand, the total charge density was fixed at 4 Ccm −2 corresponding to a theoretical platinum loading of 0.2 mgcm −2 . However, as a result of measurement using an inductively coupled plasma (ICP) mass spectrometer, the content of platinum deposited on the gas diffusion layer was 0.12 mgcm −2 . And the thickness of each reverse opal structure electrode was about 1-2 micrometers (refer FIG.5 (b)). Thus, a total charge of 1 Ccm −2 was deposited. This corresponds to a platinum deposition of 0.03 mg cm −2 and a thickness of about 0.5 μm. The polystyrene spherical particles were deposited as 5 to 20 layers on the gas diffusion layer, and the corresponding thickness was about 3 to 12 μm. In the case of a platinum sphere having an inverted opal structure, the thickness was about 3 to 4 layers (1.5 to 2 μm). The thickness was determined taking into account the limited amount of platinum, the conserved inverse opal structure and smooth proton transport. Considering that the typical thickness of conventional electrodes in polymer electrolyte fuel cells is about 5-10 μm, the inverse opal platinum electrode has a shorter diffusion path and increased conductivity of reactants and ions. Because it has, it is superior to existing electrodes. This means that the use of ionomers for proton transport is unnecessary.

また、白金壁の厚さは約10〜15μmであった。これは走査電子顕微鏡(SEM)イメージと表面の比率を大略的に計算することにより得られた。   Moreover, the thickness of the platinum wall was about 10-15 micrometers. This was obtained by roughly calculating the ratio of the scanning electron microscope (SEM) image to the surface.

一方、オパール構造のテンプレートの場合、骨格壁(skeletal wall)は、元来のポリスチレン球状粒子が接する地点における孔(hole)を介して相互接続されたマクロ気孔(macro pore)を含む。実際に、コロイド結晶テンプレート方法によって電着から得られる逆オパール材料の構造は、一般に、所望の材料でテンプレートの格子間(interstitial)空間を満たして形成される。ところが、このような現象は、本実施例で製造された逆オパール構造の白金電極からは観察されなかった。その代わり、白金はシェル(shell)を作りながらポリスチレン球状粒子を取り囲んだ(図1(b)および図3(d)参照)。   On the other hand, in the case of a template having an opal structure, the skeleton wall includes macro pores interconnected through holes at a point where the original polystyrene spherical particles contact. In fact, the structure of the inverse opal material obtained from electrodeposition by the colloidal crystal template method is generally formed to fill the interstitial space of the template with the desired material. However, such a phenomenon was not observed from the platinum electrode having the inverse opal structure manufactured in this example. Instead, platinum surrounded the polystyrene spherical particles making a shell (see FIG. 1 (b) and FIG. 3 (d)).

逆オパール構造の電極上に白金成分が存在するかを確認するために、X線回折分析(XRD)を行った結果、図6に示した該当XRDスペクトルにおいて40.06°、46.54°、および67.86°で現れる3つの主要ピークはそれぞれ白金の(111)面、(200)面および(220)面に該当する。約27°で現れる特性ピークはガス拡散層のMPLに含まれた炭素によって発生したものである。逆オパール構造を持つ電極基盤の膜/電極接合体上に形成された白金粒子のサイズは、Scherrer式およびX線回折データを用いて約8〜11nmと計算された。   As a result of performing X-ray diffraction analysis (XRD) in order to confirm whether a platinum component is present on an electrode having an inverse opal structure, 40.06 °, 46.54 ° in the corresponding XRD spectrum shown in FIG. And three major peaks appearing at 67.86 ° correspond to the (111), (200) and (220) planes of platinum, respectively. The characteristic peak appearing at about 27 ° is generated by carbon contained in the MPL of the gas diffusion layer. The size of the platinum particles formed on the electrode-based membrane / electrode assembly having an inverse opal structure was calculated to be about 8 to 11 nm using the Scherrer equation and X-ray diffraction data.

また、逆オパール構造の電極における白金の酸化状態を確認するために、X線光電子スペクトル(XPS)を得て分析した結果、逆オパール構造の電極における白金の酸化状態は既存のPt/C電極とは非常に異なることを確認することができた。すなわち、図7に示した該当スペクトルは既存のPt/C電極から由来し、白金の4fコアレベルピークは主にPt(0)から由来するが(図7(a)参照)、逆オパール構造を持つ白金電極の場合、主要ピークはPt(II)から由来することを示す(図7(b)参照)。また、IO電極における白金酸化状態の分布は既存の電極におけるPt/Cとは異なる(図8参照)。ところが、白金表面の酸化状態は熱処理条件に敏感であり、セル作動中に容易に変わるため、このような結果はセルの性能とは関連性が大きくない。   In addition, as a result of obtaining and analyzing X-ray photoelectron spectrum (XPS) in order to confirm the oxidation state of platinum in the electrode of the reverse opal structure, the oxidation state of platinum in the electrode of the reverse opal structure is the same as that of the existing Pt / C electrode. Could be confirmed to be very different. That is, the corresponding spectrum shown in FIG. 7 is derived from an existing Pt / C electrode, and the 4f core level peak of platinum is mainly derived from Pt (0) (see FIG. 7 (a)), but has an inverse opal structure. In the case of a platinum electrode, the main peak is derived from Pt (II) (see FIG. 7B). In addition, the distribution of the platinum oxidation state in the IO electrode is different from Pt / C in the existing electrode (see FIG. 8). However, since the oxidation state of the platinum surface is sensitive to heat treatment conditions and easily changes during cell operation, such results are not significantly related to cell performance.

<実験例:本発明の実施例で製造された逆オパール構造の電極を含む膜/電極接合体(MEA)に対する性能試験>
次のように、前記実施例で製造された逆オパール構造の電極を用いて膜/電極接合体(MEA)を製造した後、これを含む単セルを製造した。
<Experimental Example: Performance Test for Membrane / Electrode Assembly (MEA) Containing Inverse Opal Structure Electrode Produced in Example of the Present Invention>
As described below, a membrane / electrode assembly (MEA) was manufactured using the inverted-opal structure electrode manufactured in the above example, and then a single cell including the same was manufactured.

すなわち、前記実施例において特定の条件(ピーク電流密度:50mAcm−2、on/off time:50/100ms、総電荷:4Ccm−2)でパルス電着を行って製造された逆オパール構造の電極をカソードとして使用し、40重量%のPt/Cはアノード触媒として使用した。この際、Pt/C触媒は、イソプロピルアルコール、脱イオン水およびパーフルオロスルホン酸イオノマーの混合物に分散させた後、0.12〜0.20mgPt・cm−2の含量でイオン伝導膜(Nafion 212、DuPont)のアノード側に噴霧によって塗布された。その後、ガス拡散層(35BC carbon paper、SGL)をアノード側に配置した。このように製造された膜/電極接合体を、蛇行性ガス流路(serpentine gas flow channel)を備えた面積5cmの黒鉛板を備えた単セルユニット内に挿入した後、組み立てた(図5(a)参照)。 That is, an electrode having an inverted opal structure manufactured by performing pulse electrodeposition under specific conditions (peak current density: 50 mAcm −2 , on / off time: 50/100 ms, total charge: 4 Ccm −2 ) in the above-described embodiment. Used as the cathode and 40 wt% Pt / C was used as the anode catalyst. At this time, the Pt / C catalyst was dispersed in a mixture of isopropyl alcohol, deionized water and perfluorosulfonic acid ionomer, and then the ion conductive membrane (Nafion 212, 0.25 mg Pt · cm −2 ). DuPont) was applied by spraying to the anode side. Thereafter, a gas diffusion layer (35BC carbon paper, SGL) was disposed on the anode side. The membrane / electrode assembly manufactured in this way was inserted into a single cell unit provided with a graphite plate having an area of 5 cm 2 and provided with a serpentine gas flow channel (FIG. 5). (See (a)).

上述のように組み立てられた単セルの活性化(activation)および分極(polarization)試験は、燃料電池テストシステム(CNL Energy)を用いてcurrent−sweep−hold法で行った。具体的に、current−sweep rateは10mAcm−2−1であった。電流密度が0.5、1.0、1.5、2.0、2.5、3および4Acmに到達するとき、電流を10分間維持した。そして、活性化途中でセル電圧が0.35Vに到達すると、電流は0に再設定(reset)した。 The activation and polarization tests of the single cell assembled as described above were performed by a current-sweep-hold method using a fuel cell test system (CNL Energy). Specifically, the current-sweep rate was 10 mAcm −2 S −1 . When the current density reached 0.5, 1.0, 1.5, 2.0, 2.5, 3 , and 4 Acm 2 , the current was maintained for 10 minutes. When the cell voltage reached 0.35 V during activation, the current was reset to 0.

分極曲線はcurrent−sweep法および高分子電解質燃料電池(PEMFC)テストシステムを用いて得られた。活性化および分極試験は、完全加湿されたH/O(または空気)を用いて行われた。アノード化学量論(anode stoichiometry)、Oに対するカソード化学量論(cathode stoichiometry)および空気化学量論(air stoichiometry)はそれぞれ2、9.5および2であり、総出口圧力(totla outlet pressure)は150kPaであった。セル温度は、活性化試験中には80℃に維持し、分極試験中には室温に維持した。カソードデッドエンドモード(cathodic dead−end mode)を行う場合には、Oの流量は最小化され、セルの出口は閉鎖された。 Polarization curves were obtained using a current-sweep method and a polymer electrolyte fuel cell (PEMFC) test system. Activation and polarization tests were performed using fully humidified H 2 / O 2 (or air). The anode stoichiometry, the cathode stoichiometry for O 2 and the air stoichiometry are 2, 9.5 and 2, respectively, and the total outlet pressure is the total outlet pressure. It was 150 kPa. The cell temperature was maintained at 80 ° C. during the activation test and at room temperature during the polarization test. In the case of cathodic dead-end mode, the O 2 flow rate was minimized and the cell outlet was closed.

図9は本発明に係る逆オパール構造を持つ白金電極基盤の膜/電極接合体および従来の膜/電極接合体に対する分極(polarization)曲線および出力密度(power density)曲線である。図9(a)および図9(b)は、それぞれカソードデッドエンドモードによって70℃で完全加湿されたH/Oを用いて白金ローディングが約0.12mgPt・cm−2である場合、および室温で周辺湿度のH/Oを用いて白金ローディングが約0.12mgPt・cm−2である場合の結果であり、図9(c)および図9(d)は、米国エネルギー省基準(US Department of Energy’s reference)による標準燃料電池試験条件によって80℃で完全加湿されたH/Airを用いるとき、それぞれ白金ローティングが0.12mgPt・cm−2および0.12mgPt・cm−2である場合の結果を示す。 FIG. 9 shows a polarization curve and a power density curve for a platinum electrode-based membrane / electrode assembly having an inverse opal structure according to the present invention and a conventional membrane / electrode assembly. FIG. 9 (a) and FIG. 9 (b) show a platinum loading of about 0.12 mg Pt · cm −2 with H 2 / O 2 fully humidified at 70 ° C. by cathode dead-end mode, respectively, and FIG. 9 (c) and FIG. 9 (d) are the results when the platinum loading is about 0.12 mg Pt · cm −2 using H 2 / O 2 at ambient temperature and ambient humidity. US Department of Energy's when by reference) using a H 2 / Air was completely moistened with 80 ° C. by standard fuel cell test conditions, the platinum low computing each 0.12mgPt · cm -2 and 0.12mgPt · cm -2 The result is shown.

図9より、高分子電解質燃料電池(PEMFC)における逆オパール構造電極基盤の膜/電極接合体(MEA)は逆オパール構造特有の形態学的利点、相互接続された気孔構造、および開放された電極表面からの向上した有効拡散率によって類似した白金ローディングを有する既存の膜/電極接合体より高い性能を示すことが分かる。   From FIG. 9, the membrane / electrode assembly (MEA) based on the inverse opal structure electrode in the polymer electrolyte fuel cell (PEMFC) has a morphological advantage unique to the inverse opal structure, an interconnected pore structure, and an open electrode. It can be seen that the improved effective diffusivity from the surface shows higher performance than existing membrane / electrode assemblies with similar platinum loading.

例えば、既存の膜/電極接合体の場合、0.6Vでの電流密度は235mAcm−2であったが、上記と類似した白金ローディングを有する本発明に係る逆オパール構造電極基盤の膜/電極接合体に対して同一の条件で測定された電流密度は440mAcmであって、約185%だけ著しく増加した数値を示した(図9(a)参照)。また、H/airで標準条件の下に測定が行われた場合にも、本発明に係る逆オパール構造電極基盤の性能がさらに良かった(図9(c)および図9(d)参照)。 For example, in the case of an existing membrane / electrode assembly, the current density at 0.6 V was 235 mAcm −2 , but the inverse opal structure electrode substrate membrane / electrode junction according to the present invention having a platinum loading similar to the above is used. The current density measured under the same conditions for the body was 440 mAcm 2 , indicating a value that was significantly increased by about 185% (see FIG. 9A). Moreover, the performance of the inverted opal structure electrode substrate according to the present invention was even better when the measurement was performed under standard conditions at H 2 / air (see FIG. 9 (c) and FIG. 9 (d)). .

特に、白金ローディングがより高くてさらに厚い電極が使用されるときには差異がさらに顕著になるが(図9(d)参照)。これは、さらに厚い電極において反応物および生成物の伝達に起因する濃度損失(concentration loss)が増加するものの、その増加幅は既存の膜/電極接合体を使用する場合がさらに大きいためである。   In particular, the difference becomes even more pronounced when platinum loading is higher and thicker electrodes are used (see FIG. 9 (d)). This is because, although the concentration loss due to the transfer of reactants and products increases in the thicker electrode, the increase width is larger when the existing membrane / electrode assembly is used.

具体的に、さらに厚い電極の場合には、反応物が反応の起こる触媒層に到達するためにさらに遠い距離を拡散していなければならない。同様に、さらに厚い電極は、生成物が燃料電池から除去されるためにはより遠い距離を拡散していかなければならない必要がある。   Specifically, in the case of a thicker electrode, the reactant must diffuse a greater distance in order to reach the catalyst layer where the reaction takes place. Similarly, thicker electrodes need to diffuse a greater distance in order for the product to be removed from the fuel cell.

一方、図9(a)〜図9(d)のそれぞれにおける挿入図では、両側の膜/電極接合体間の電力密度差が0.7V以下の電圧では顕著になるが、0.7V以上の電圧では顕著にならない。これは0.7V以上の電位が電荷伝達制御領域(charge transfer−controlled region)にあるためである。   On the other hand, in the insets in FIGS. 9 (a) to 9 (d), the power density difference between the membrane / electrode assemblies on both sides becomes significant when the voltage is 0.7V or less, but is 0.7V or more. Not noticeable with voltage. This is because a potential of 0.7 V or more exists in the charge transfer-controlled region.

したがって、低電流領域(low−current region)における高分子電解質燃料電池の性能は両側の単位セルでほぼ同一であるが、高電流領域では、逆オパール構造電極を含む単位セルの場合、反応物の枯渇が逆オパール構造の形態的利点(例えば、相対的に大きい表面積による物質の容易な接近可能、非常に開放され且つ低い屈曲度を持つ構造、および相互接続されたマクロ気孔)によって減少するため、逆オパール構造の電極を含む単位セルが一層さらに高い出力密度を示す。   Therefore, the performance of the polymer electrolyte fuel cell in the low-current region is almost the same in the unit cells on both sides, but in the high-current region, in the case of the unit cell including the inverted opal structure electrode, Because depletion is reduced by the morphological advantages of inverted opal structures (e.g., easy accessibility of materials with relatively large surface area, very open and low flex structures, and interconnected macropores), A unit cell including an electrode having an inverse opal structure exhibits a higher power density.

また、白金触媒の電気化学的表面積(electrochemical surface area、ECSA)は、定電圧/定電流器(potentiostat/galvanostat)(IM−6、Zahner)を用いて循環電圧電流法(Cyclic Voltammetry、CV)で測定した。   Further, the electrochemical surface area (ECSA) of the platinum catalyst is a cyclic voltage current method (CV) using a constant voltage / galvanostat (IM-6, Zahner). It was measured.

電気化学的特性の測定は、前記実施例で製造された逆オパール構造の白金電極、白金板および飽和甘汞電極(saturated calomel electrode)をそれぞれ作動電極、対向電極および基準電極として備えた標準的な3−コンパートメント電気化学セル(standard three−compartment electrochemical cell)で定電圧器(PGSTAT128N、Autolab)を用いて実施した。全ての電位は標準水素電極(NHE)の電位を基準とし、全ての測定は常温で実施した。   The measurement of electrochemical characteristics was performed using standard inverted opal platinum electrodes, platinum plates and saturated calomel electrodes prepared in the above examples as working electrodes, counter electrodes, and reference electrodes, respectively. A three-compartment electrochemical cell was used using a voltage regulator (PGSTAT128N, Autolab). All potentials were based on the potential of a standard hydrogen electrode (NHE), and all measurements were performed at room temperature.

本発明に係る逆オパール構造の白金電極基盤の膜/電極接合体および従来の膜/電極接合体において、白金触媒の電気化学的表面積(electrochemical surface area、ECSA)は、定電圧/定電流器(IM−6、Zahner)を用いて循環電圧電流法(Cyclic Voltammetry、CV)で測定した。その結果、逆オパール構造を持つ白金電極基盤の膜/電極接合体の電気化学的表面積は24.13m−1であり、幾何学的表面積(Geometrical Surface Area、GSA)は40.04m−1であると測定された。これにより、白金活用度(ECSA/GSA)は約60.27%であることが分かる。一方、既存の膜/電極接合体の電気化学的表面積は57.01m−1であり、幾何学的表面積は93m−1であり、白金活用度は約61%であると測定された。 In the inverse opal-structured platinum electrode-based membrane / electrode assembly and the conventional membrane / electrode assembly according to the present invention, the electrochemical surface area (ECSA) of the platinum catalyst is a constant voltage / constant current device ( It was measured by the cyclic voltage current method (CV) using IM-6, Zahner. As a result, the electrochemical surface area of the platinum electrode-based membrane / electrode assembly having an inverse opal structure is 24.13 m 2 g −1 and the geometric surface area (GSA) is 40.04 m 2 g. Measured to be -1 . This shows that the platinum utilization (ECSA / GSA) is about 60.27%. On the other hand, the electrochemical surface area of the existing membrane / electrode assembly is 57.01m 2 g -1, geometric surface area is 93m 2 g -1, platinum utilization degree was measured to be about 61% It was.

上記結果によれば、既存の膜/電極接合体のGSAおよびECSAが逆オパール構造電極基盤の膜/電極接合体より高く測定されたが、さらに高いECSAが実際燃料電池運転条件で常にさらに優れた性能を示さない。しかも、GSA、ECSAおよび白金活用度(ECSA/GSA)の概念は触媒容量(catalytic capacity)に関連した水素吸着/脱着反応を説明するだけであり、膜/電極接合体における気体拡散、イオン伝導経路、陽子伝導度、水および物質伝達などの全体的な工程媒介変数を含まない。また、白金活用度には速度パラメータ(kinetic parameter)が含まれない。すなわち、これは、逆オパール電極基盤の膜/電極接合体が既存の膜/電極接合体とほぼ同一の白金活用度を持つ場合でもさらに向上した性能を示すことができることを示唆する。   According to the above results, the GSA and ECSA of the existing membrane / electrode assembly were measured higher than the membrane / electrode assembly of the inverted opal electrode base, but the higher ECSA was always better in actual fuel cell operating conditions. Does not show performance. Moreover, the concepts of GSA, ECSA and platinum utilization (ECSA / GSA) only describe hydrogen adsorption / desorption reactions related to catalytic capacity, gas diffusion in membrane / electrode assemblies, ion conduction pathways It does not include overall process parameters such as proton conductivity, water and mass transfer. In addition, the platinum utilization level does not include a kinetic parameter. That is, this suggests that the inverse opal electrode-based membrane / electrode assembly can exhibit further improved performance even when it has substantially the same platinum utilization as the existing membrane / electrode assembly.

燃料電池の損失は活性化損失、抵抗損失および濃度損失(または、物質伝達損失)の3つの範疇に分けることができる。この中でも、物質伝達損失は、全体電流密度の範囲にわたって発生するが、特に高制限電流領域(high limiting current region)、すなわち低電位領域で顕著になる。よって、高電流密度領域における分極は物質伝達損失を示す。   Fuel cell loss can be divided into three categories: activation loss, resistance loss and concentration loss (or mass transfer loss). Among these, the mass transfer loss occurs over the entire current density range, but is particularly noticeable in a high limiting current region, that is, a low potential region. Therefore, polarization in the high current density region indicates mass transfer loss.

逆オパール構造の電極は、相互接続され且つ表面に開放されている気孔空間からなって、既存の電極に比べて増加した有効空隙率および減少した拡散層の厚さを持つため、物質伝達が顕著に向上し、ひいてはこのような向上した物質伝達は優れた水管理につながることができる。このように一層優れた水管理能力を持つと、水が足りない場合に逆拡散(backdiffusion)、すなわち生成された水が分離膜を介して水濃度勾配によってカソードからアノードに拡散する現象を促進してセル性能の低下を防止することができる。   Inverse opal electrodes consist of interconnected and open pore spaces with increased effective porosity and reduced diffusion layer thickness compared to existing electrodes, resulting in significant mass transfer And thus such improved mass transfer can lead to superior water management. This superior water management capability promotes back diffusion when water is insufficient, that is, the phenomenon that the generated water diffuses from the cathode to the anode through the separation membrane due to the water concentration gradient. Cell performance can be prevented from decreasing.

上述したような効果は図9(b)から確認することができる。図9(b)によれば、常温および周辺湿度の下で既存の膜/電極接合体に対して0.6V(高電流密度領域)で測定された電流密度は666で367mAcm−2と急激に減少(45%減少)したが、逆オパール構造電極基盤の膜/電極接合体の場合には790で495mAcm−2と37%減少に止まった。すなわち、逆オパール構造電極基盤の膜/電極接合体は、非常に開放され且つ低い屈曲度を持つ構造と短い拡散経路によりさらに優れた水輸送能力を保有するため、低い湿度条件でもセル性能の低下が大きくないことが分かる。 The effects as described above can be confirmed from FIG. According to FIG. 9 (b), the current density measured at 0.6V (high current density region) with respect to the existing membrane / electrode assembly under normal temperature and ambient humidity is 666 and is 367 mAcm −2 abruptly. However, in the case of a membrane / electrode assembly based on an inverted opal structure electrode, it decreased to 495 mAcm -2 at 790, a 37% decrease. In other words, the membrane / electrode assembly based on the reverse opal structure electrode has a very open structure with a low degree of bending and a short diffusion path, so that it has better water transport capability, so that the cell performance deteriorates even in low humidity conditions. It is understood that is not large.

付け加えると、反応物と生成物は、メソ単位の気孔よりは主にマクロサイズの2次気孔(macro−sized secondary pore)を介して伝送され、単セルにおける膜/電極接合体の物質伝達はこのような2次加工によって支配される。よって、整列されたマクロ気孔構造を持つ逆オパール構造電極は実際燃料電池装置でさらに優れた性能とより効率的な水管理を実現することができる。   In addition, reactants and products are transmitted primarily through macro-sized secondary pores rather than meso-unit pores, and the mass transfer of membrane / electrode assemblies in single cells is this. It is governed by such secondary processing. Therefore, an inverted opal structure electrode having an aligned macroporous structure can actually achieve better performance and more efficient water management in a fuel cell device.

上述のように、逆オパール構造電極基盤の膜/電極接合体は、既存の膜/電極接合体よりさらに優れた性能を示し、特に、向上した物質伝達およびより優れた水管理に起因して周辺湿度条件および高電流領域でそのような性能の優秀性が著しい。   As mentioned above, reverse-opal electrode-based membrane / electrode assemblies perform better than existing membrane / electrode assemblies, especially in the periphery due to improved mass transfer and better water management Such performance excellence is significant in humidity conditions and high current regions.

また、既存の膜/電極接合体の開回路電圧(Open Circuit Voltage、OCV)は周辺湿度および常温で0.935Vであるが、本発明に係る逆オパール電極基盤の膜/電極接合体の開回路電圧は0.982Vである。このような差異は、白金の表面と酸素間の反応または逆オパール構造電極における不純物酸化に関連した混合カソード電位(mixed cathode potential)が既存の膜/電極接合体より低いことを示唆する。   Further, the open circuit voltage (Open Circuit Voltage, OCV) of the existing membrane / electrode assembly is 0.935 V at ambient humidity and room temperature, but the open circuit of the reverse opal electrode-based membrane / electrode assembly according to the present invention. The voltage is 0.982V. Such a difference suggests that the mixed cathode potential associated with the reaction between platinum surface and oxygen or the oxidation of impurities at the inverse opal structure electrode is lower than that of the existing membrane / electrode assembly.

したがって、高分子電解質燃料電池において膜/電極接合体の電極として本発明に係る逆オパール構造の電極を直接適用可能であることが分かる。そして、より重要な点は、逆オパール構造の電極は非常に低い白金ローティングを要求し、その性能は周囲湿度および加熱が類似した作動条件の下で一般な直接メタノール燃料電池(Direct Methanol Fuel Cell、DMFC)より一層さらに優れるという点である。また、他の燃料電池システムとは異なり、逆オパール電極を備えた燃料電池は、複雑なサブシステムまたはBOP(Balance of Plant)が全て不要であるため、マイクロ燃料電池への適用が有望である。   Therefore, it can be seen that the electrode of the inverse opal structure according to the present invention can be directly applied as the electrode of the membrane / electrode assembly in the polymer electrolyte fuel cell. And more importantly, the inverse opal electrode requires very low platinum rotting, and its performance is a direct direct methanol fuel cell (Direct Methanol Fuel Cell) under operating conditions with similar ambient humidity and heating. , DMFC). Further, unlike other fuel cell systems, a fuel cell equipped with an inverse opal electrode does not require any complicated subsystem or BOP (Balance of Plant), and therefore is promising for application to a micro fuel cell.

Claims (9)

燃料電池用逆オパール構造(inverse opal structure)の金属触媒電極。   A metal catalyst electrode having an inverse opal structure for a fuel cell. 前記燃料電池は、高分子電解質燃料電池(Polymer Electrolyte Membrane Fuel Cell、PEMFC)であり、ガス拡散層(Gas Diffusiion Barrier、GDL)上に形成されることを特徴とする、請求項1に記載の逆オパール構造の金属触媒電極。   2. The reverse of claim 1, wherein the fuel cell is a polymer electrolyte fuel cell (PEMFC), and is formed on a gas diffusion layer (Gas Diffusion Barrier, GDL). Opal structure metal catalyst electrode. (i)白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)およびイリジウム(Ir)よりなる群から選ばれる1種の白金族金属、または(ii)前記白金族金属の1種以上と鉄(Fe)、コバルト(Co)またはニッケル(Ni)との合金からなることを特徴とする、請求項1に記載の逆オパール構造の金属触媒電極。   (I) one platinum group metal selected from the group consisting of platinum (Pt), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os) and iridium (Ir), or (ii) The metal catalyst electrode having an inverse opal structure according to claim 1, wherein the metal catalyst electrode is made of an alloy of at least one platinum group metal and iron (Fe), cobalt (Co), or nickel (Ni). (a)ガス拡散層(GDL)の表面を前処理する段階と、
(b)前記ガス拡散層上にテンプレートを形成する段階と、
(c)前記テンプレートに金属前駆体溶液を浸透させた後、金属骨格を形成する段階と、
(d)前記テンプレートを除去する段階とを含んでなることを特徴とする、燃料電池用逆オパール構造の金属触媒電極の製造方法。
(A) pre-treating the surface of the gas diffusion layer (GDL);
(B) forming a template on the gas diffusion layer;
(C) impregnating the template with a metal precursor solution and then forming a metal skeleton;
(D) A method for producing a metal catalyst electrode having an inverse opal structure for a fuel cell, comprising the step of removing the template.
前記段階(a)で、前記ガス拡散層と前記テンプレート間の接着性の向上のために、前記ガス拡散層の表面にリンカーを導入することを特徴とする、請求項4に記載の燃料電池用逆オパール構造の金属触媒電極の製造方法。   5. The fuel cell according to claim 4, wherein, in the step (a), a linker is introduced to the surface of the gas diffusion layer in order to improve adhesion between the gas diffusion layer and the template. 6. A method for producing a metal catalyst electrode having an inverted opal structure. 前記段階(b)で、高分子コロイド懸濁液の蒸発および毛細管力による自己組み立てによって、前記ガス拡散層上に、コロイド結晶からなる前記テンプレートを形成することを特徴とする、請求項4に記載の燃料電池用逆オパール構造の金属触媒電極の製造方法。   5. The template comprising colloidal crystals is formed on the gas diffusion layer by evaporating a polymer colloidal suspension and self-assembly by capillary force in the step (b). Of manufacturing a metal catalyst electrode having an inverted opal structure for a fuel cell. 前記高分子コロイド粒子は、ポリスチレン(polystyren)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリアクリレート(polyacrylate)、ポリアルファメチルスチレン(poly−α−methylstyrene)、ポリベンジルメタクリレート(polybenzyl methacrylate)、ポリフェニルメタクリレート(polyphenyl methacrylate)、ポリジフェニルメタクリレート(polydiphenyl methacrylate)、ポリシクロヘキシルメタクリレート(polycyclohexyl methacrylate)、スチレン−アクリロニトリル共重合体(styrene−acrylonitrile copolymer)、またはスチレン−メチルメタクリレート共重合体(styrene−methacrylate copolymer)からなることを特徴とする、請求項6に記載の燃料電池用逆オパール構造の金属触媒電極の製造方法。   The polymer colloidal particles include polystyrene, polymethyl methacrylate, polyacrylate, polyalphamethylstyrene, polybenzyl methacrylate, polyphenyl methacrylate, polyphenyl methacrylate, polyphenyl methacrylate, polyphenyl methacrylate, polyphenyl methacrylate, polyphenyl methacrylate, and polyphenyl methacrylate. methylacrylate, polydiphenyl methacrylate, polycyclohexyl methacrylate, styrene-acrylonitrile copolymer (styrene-acrylonitrile copolymer). The method for producing a metal catalyst electrode having an inverse opal structure for a fuel cell according to claim 6, wherein the metal catalyst electrode is made of a styrene-methyl methacrylate copolymer or a styrene-methyl methacrylate copolymer. 前記段階(c)で、前記金属骨格は電気化学的蒸着法によって形成されることを特徴とする、請求項4に記載の燃料電池用逆オパール構造の金属触媒電極の製造方法。   [5] The method of claim 4, wherein the metal skeleton is formed by an electrochemical deposition method in the step (c). 前記段階(d)で、前記テンプレートは有機溶媒による溶解または低温か焼(calcination)によって除去されることを特徴とする、請求項4に記載の燃料電池用逆オパール構造の金属触媒電極の製造方法。   [5] The method of claim 4, wherein the template is removed by dissolution with an organic solvent or low temperature calcination in the step (d). .
JP2014053894A 2013-11-27 2014-03-17 Metal catalyst electrode having inverse opal structure for fuel cell and method of manufacturing the same Pending JP2015103516A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130145309A KR101534502B1 (en) 2013-11-27 2013-11-27 Catalytic metal electrode having inverse opal structure used for fuel cell and manufacturing method thereof
KR10-2013-0145309 2013-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015125664A Division JP6025230B2 (en) 2013-11-27 2015-06-23 Inverse opal structure metal catalyst electrode for fuel cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2015103516A true JP2015103516A (en) 2015-06-04

Family

ID=53379034

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014053894A Pending JP2015103516A (en) 2013-11-27 2014-03-17 Metal catalyst electrode having inverse opal structure for fuel cell and method of manufacturing the same
JP2015125664A Active JP6025230B2 (en) 2013-11-27 2015-06-23 Inverse opal structure metal catalyst electrode for fuel cell and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015125664A Active JP6025230B2 (en) 2013-11-27 2015-06-23 Inverse opal structure metal catalyst electrode for fuel cell and manufacturing method thereof

Country Status (2)

Country Link
JP (2) JP2015103516A (en)
KR (1) KR101534502B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549168A (en) * 2016-10-20 2017-03-29 哈尔滨工程大学 The preparation method of the three-dimensional Pd Ni nano-wire array catalyst of catalyzing hydrogen peroxide electroreduction
CN110783577A (en) * 2019-10-08 2020-02-11 华中科技大学 Platinum nickel cobalt alloy @ carbon nanotube composite material, and preparation and application thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101707205B1 (en) * 2015-12-10 2017-02-15 한국기초과학지원연구원 Method for fabricating a porous silver layer structure and method for measuring a fluorescence signal using the structure
KR101994680B1 (en) 2016-09-09 2019-07-01 한국과학기술원 3-dimensional nano-structure, method of manufacturing the same and fuel cell having the same
KR101960010B1 (en) * 2017-10-12 2019-03-19 국민대학교산학협력단 Electrode for supercapacitor and manufacturing method thereof
KR102139494B1 (en) 2018-08-02 2020-07-30 한국과학기술연구원 Method for manufacturing 3d porous thin film catalyst electrode for fuel cell
CN111659397A (en) * 2020-05-27 2020-09-15 北京化工大学 Preparation method of high-performance three-dimensional ordered macroporous mesoporous Ni-Co alloy electrocatalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200153A (en) * 2002-12-02 2004-07-15 Sanyo Electric Co Ltd Fuel cell and material for fuel cell gas diffusion layer
US20100209815A1 (en) * 2005-11-04 2010-08-19 Kent State University Nanostructured core-shell electrocatalysts for fuel cells
JP2010225473A (en) * 2009-03-24 2010-10-07 Toshiba Corp Fuel cell
CN103331157A (en) * 2013-07-15 2013-10-02 北京化工大学 Hierarchical pore Pt catalyst with high catalytic activity and preparation method
US20130273460A1 (en) * 2010-09-17 2013-10-17 Industry-University Cooperation Foundation Sogang University Spherical, porous carbon structure and a production method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409907B1 (en) * 1999-02-11 2002-06-25 Lucent Technologies Inc. Electrochemical process for fabricating article exhibiting substantial three-dimensional order and resultant article
JP2003002687A (en) * 2001-06-14 2003-01-08 Kanagawa Acad Of Sci & Technol Method for forming inverse opal structure photonics crystal
AU2003281460A1 (en) * 2002-07-18 2004-02-09 National Institute Of Advanced Industrial Science And Technology Method of manufacturing microwave reaction device and microwave reaction device
US20090087549A1 (en) * 2007-09-27 2009-04-02 Motorola, Inc. Selective coating of fuel cell electrocatalyst
JP5905033B2 (en) * 2011-02-24 2016-04-20 ナショナル ユニバーシティ オブ シンガポール Light reflecting fabric material and method of forming light reflecting fabric material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200153A (en) * 2002-12-02 2004-07-15 Sanyo Electric Co Ltd Fuel cell and material for fuel cell gas diffusion layer
US20100209815A1 (en) * 2005-11-04 2010-08-19 Kent State University Nanostructured core-shell electrocatalysts for fuel cells
JP2010225473A (en) * 2009-03-24 2010-10-07 Toshiba Corp Fuel cell
US20130273460A1 (en) * 2010-09-17 2013-10-17 Industry-University Cooperation Foundation Sogang University Spherical, porous carbon structure and a production method therefor
CN103331157A (en) * 2013-07-15 2013-10-02 北京化工大学 Hierarchical pore Pt catalyst with high catalytic activity and preparation method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6011068054; 池田宏之助編: 燃料電池のすべて 初版, 2001, p.210, 株式会社日本実業出版社 *
JPN6013005956; 燃料電池 開発最前線 自動車,携帯機器,家庭電源が変わる , 2001, p.64, 日経BP社 *
JPN6014052998; 燃料電池2004 初版, 2003, p.127, 日経BP社 *
JPN6015006326; Yan-Yan Song et al.: 'Nonenzymatic Glucose Detection by Using a Three-Dimensionally Ordered, Macroporous Platinum Template' Chem. Eur. J. 11, 2005, pp. 2177-2182 *
JPN6015006328; Jeffrey P. Bosco et al.: 'Synthesis and Characterization of Three-Dimensionally Ordered Macroporous (3DOM) Tungsten Carbide: A' Chem. Mater. Vol. 22, No. 3, 2010, pp. 966-973 *
JPN6015006330; Andreas Stein et al.: 'Design and functionality of colloidal-crystal-templated materials-chemical applications of inverse o' Chem. Soc. Rev. 42, 201304, pp. 2763-2803 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549168A (en) * 2016-10-20 2017-03-29 哈尔滨工程大学 The preparation method of the three-dimensional Pd Ni nano-wire array catalyst of catalyzing hydrogen peroxide electroreduction
CN106549168B (en) * 2016-10-20 2018-12-11 哈尔滨工程大学 The preparation method of the three-dimensional Pd-Ni nano-wire array catalyst of catalyzing hydrogen peroxide electroreduction
CN110783577A (en) * 2019-10-08 2020-02-11 华中科技大学 Platinum nickel cobalt alloy @ carbon nanotube composite material, and preparation and application thereof
CN110783577B (en) * 2019-10-08 2021-05-18 华中科技大学 Platinum nickel cobalt alloy @ carbon nanotube composite material, and preparation and application thereof

Also Published As

Publication number Publication date
JP6025230B2 (en) 2016-11-16
JP2015165518A (en) 2015-09-17
KR20150061326A (en) 2015-06-04
KR101534502B1 (en) 2015-07-07

Similar Documents

Publication Publication Date Title
JP6025230B2 (en) Inverse opal structure metal catalyst electrode for fuel cell and manufacturing method thereof
Uddin et al. High power density platinum group metal-free cathodes for polymer electrolyte fuel cells
Sheng et al. Doping Effect on Mesoporous Carbon-Supported Single-Site Bifunctional Catalyst for Zinc–Air Batteries
Kim et al. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure
CA2653856C (en) Electrode material comprising catalyst metal particles on a conductive support and a porous inorganic material coating
Menzel et al. Electrocatalysis using porous nanostructured materials
JP5484477B2 (en) Membrane electrode composite having an interface layer
Liu et al. Site-density engineering of single-atomic iron catalysts for high-performance proton exchange membrane fuel cells
Du et al. The effect of Nafion ionomer loading coated on gas diffusion electrodes with in-situ grown Pt nanowires and their durability in proton exchange membrane fuel cells
JP6628867B2 (en) Electrode catalyst, membrane electrode assembly and fuel cell using the electrode catalyst
CN105594033A (en) Carbon powder for catalyst, catalyst using the carbon powder for catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell
Wei et al. High performance polymer electrolyte membrane fuel cells (PEMFCs) with gradient Pt nanowire cathodes prepared by decal transfer method
CN108539206B (en) Catalysis layer full-order fuel cell electrode and membrane electrode
JP2012507119A5 (en)
Negro et al. Pt electrodeposited over carbon nano-networks grown on carbon paper as durable catalyst for PEM fuel cells
Chen et al. Review and development of anode electrocatalyst carriers for direct methanol fuel cell
CN108448138B (en) Preparation method of fuel cell electrode and membrane electrode with full-ordered structure of catalyst layer
WO2009001964A1 (en) Electrode catalyst substrate, method for producing the same, and solid polymer fuel cell
Wang et al. Nanostructured electrocatalytic materials and porous electrodes for direct methanol fuel cells
JP2022513631A (en) The catalyst, its manufacturing method, the electrodes containing it, the membrane-electrode assembly containing it, and the fuel cell containing it.
WO2006041212A1 (en) Membrane electrode assembly for fuel cell, method of producing same, and fuel cell
Bandapati et al. Platinum utilization in proton exchange membrane fuel cell and direct methanol fuel cell
CN108780900A (en) Fuel cell carbon dust and catalyst, electrode catalyst layer, membrane-electrode assembly and the fuel cell for using the fuel cell carbon dust
Pan et al. Enhanced triple-phase interface in PEMFC by proton conductor absorption on the Pt catalyst
Seselj et al. Catalyst Development for High‐Temperature Polymer Electrolyte Membrane Fuel Cell (HT‐PEMFC) Applications

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150818