JP2015098809A - Combustion state determining device of internal combustion engine using ion current - Google Patents

Combustion state determining device of internal combustion engine using ion current Download PDF

Info

Publication number
JP2015098809A
JP2015098809A JP2013238408A JP2013238408A JP2015098809A JP 2015098809 A JP2015098809 A JP 2015098809A JP 2013238408 A JP2013238408 A JP 2013238408A JP 2013238408 A JP2013238408 A JP 2013238408A JP 2015098809 A JP2015098809 A JP 2015098809A
Authority
JP
Japan
Prior art keywords
ion current
internal combustion
combustion engine
voltage fluctuation
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013238408A
Other languages
Japanese (ja)
Inventor
忍 杉崎
Shinobu Sugizaki
忍 杉崎
竹内 学
Manabu Takeuchi
学 竹内
宏治 平木
Koji Hiraki
宏治 平木
功 楠原
Isao Kusuhara
功 楠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Electric Manufacturing Co Ltd
Original Assignee
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Electric Manufacturing Co Ltd filed Critical Diamond Electric Manufacturing Co Ltd
Priority to JP2013238408A priority Critical patent/JP2015098809A/en
Publication of JP2015098809A publication Critical patent/JP2015098809A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem on erroneous determination of noise and knocking caused by electric noise superposed on ion current when oscillation caused by fluctuation of power source voltage from an alternator is transmitted to a secondary coil as noise, in determining knocking generated in an internal combustion engine from the ion current generated between ignition plugs in combustion of the internal combustion engine.SOLUTION: A combustion state determining device includes an ignition coil 30 composed of a primary coil 32, a secondary coil 34 and an iron core 36 and supplying high voltage to an ignition plug 20, ion current detecting means 50 for detecting ion current generated between electrodes of the ignition plug 20 by combustion of an internal combustion engine, knock determining means 72 for determining knocking generated in the internal combustion engine from an output signal of the ion current detected by the ion current detecting means 50, voltage fluctuation calculating means 74 for calculating voltage fluctuation to the ignition coil 30 from a battery side, and subtracting means 76 for subtracting electric noise by voltage fluctuation calculated by the voltage fluctuation calculating means 74, from the output signal of the ion current detected by the ion current detecting means 50.

Description

本発明は、自動車エンジン等の内燃機関の燃焼状態を判定する装置において、特に、イオン電流を用いた燃焼状態判定装置に関するものである。   The present invention relates to an apparatus for determining a combustion state of an internal combustion engine such as an automobile engine, and more particularly to a combustion state determination apparatus using an ionic current.

従来より、火花点火式の内燃機関において、内燃機関の燃焼時に点火プラグの電極間に生じるイオン電流から燃焼状態を判定する構成が知られており、検出されたイオン電流に重畳するノック成分を抽出して内燃機関に発生するノッキングを判定するものがある。しかし、イオン電流にはノック成分だけでなくノイズが重畳する場合がある。その原因の一つとしてオルタネータからのノイズがある。オルタネータからのノイズには、電源電圧変動からの揺れがノイズとして2次コイルに伝わりイオン電流に重畳する電気的ノイズと、オルタネータが動作することによる磁界の変化が、コイルの漏れ磁束に影響を及ぼしてイオン電流に重畳する電磁的ノイズとがあり、その周波数がノック成分と重複する場合は、ノック成分だけでなく、ノイズ成分をも抽出してしまい、その結果ノッキングの発生を誤判定してしまう問題がある。   Conventionally, in a spark ignition type internal combustion engine, a configuration for determining a combustion state from an ionic current generated between electrodes of a spark plug during combustion of the internal combustion engine is known, and a knock component superimposed on the detected ionic current is extracted. Some of them determine knocking occurring in an internal combustion engine. However, not only the knock component but also noise may be superimposed on the ion current. One of the causes is noise from the alternator. The noise from the alternator affects the leakage flux of the coil due to the electrical noise superimposed on the ionic current transmitted by the fluctuation from the power supply voltage to the secondary coil as noise and the change of the magnetic field due to the operation of the alternator. If there is electromagnetic noise superimposed on the ionic current and the frequency overlaps with the knock component, not only the knock component but also the noise component is extracted, and as a result, the occurrence of knocking is erroneously determined. There's a problem.

このようなオルタネータからのノイズによって内燃機関に発生するノッキングを誤判定することを防ぐために、例えば、特開平10−089216号公報(以下「特許文献1」)が知られている。特許文献1において、内燃機関の燃焼室内に設置される一対の電極に電圧を印加し燃焼室内の混合気が燃焼する際に発生するイオンを介してこの一対の電極間に流れるイオン電流に基づきノッキングが発生しているか否かを判定する第1のノッキング発生判定手段と、内燃機関のシリンダブロックに設置されるノック振動センサによって検出されるシリンダブロックの振動に基づきノッキングが発生しているか否かを判定する第2のノッキング発生判定手段と、第1のノッキング発生判定手段および第2のノッキング発生判定手段の双方でノッキングが発生したと判定されたときは点火時期を遅角制御し第1のノッキング発生判定手段もしくは第2のノッキング発生判定手段の少なくとも一方だけでノッキングが発生したと判定されたときは点火時期の遅角制御を禁止する点火時期制御手段と、を具備する内燃機関のノッキング制御装置が提案されている。   In order to prevent erroneous determination of knocking occurring in an internal combustion engine due to such noise from the alternator, for example, Japanese Patent Laid-Open No. 10-089216 (hereinafter “Patent Document 1”) is known. In Patent Document 1, a voltage is applied to a pair of electrodes installed in a combustion chamber of an internal combustion engine, and knocking is performed based on an ionic current flowing between the pair of electrodes via ions generated when an air-fuel mixture in the combustion chamber burns. Whether or not knocking has occurred based on the vibration of the cylinder block detected by the first knocking occurrence determining means for determining whether or not the engine has occurred and the knock vibration sensor installed in the cylinder block of the internal combustion engine. When it is determined that knocking has occurred in both the second knocking occurrence determining means and the first knocking occurrence determining means and the second knocking occurrence determining means, the ignition timing is retarded to control the first knocking. When it is determined that knocking has occurred in at least one of the occurrence determination means or the second knock occurrence determination means Knocking control apparatus for an internal combustion engine comprising an ignition timing control means for prohibiting the retard control of the fire season, it has been proposed.

また、別の例として、特開平11−013615号公報(以下「特許文献2」)も知られている。特許文献2において、内燃機関の燃焼室に配設された点火プラグとグランドとの間を流れる電流に基づきプレイグニッションの発生を検出するプレイグニッション検出手段と、バッテリ側からの電圧変動量が所定範囲内のとき、前記プレイグニッション検出手段によるプレイグニッションの検出を許可する検出許可手段とを具備するプレイグニッション検出装置が提案されている。   As another example, Japanese Patent Application Laid-Open No. 11-014615 (hereinafter “Patent Document 2”) is also known. In Patent Document 2, preignition detection means for detecting occurrence of preignition based on a current flowing between a spark plug disposed in a combustion chamber of an internal combustion engine and a ground, and a voltage fluctuation amount from a battery side within a predetermined range A pre-ignition detection device is provided that includes detection permission means for permitting detection of pre-ignition by the pre-ignition detection means.

特開平10−089216号公報Japanese Patent Laid-Open No. 10-089216 特開平11−013615号公報Japanese Patent Laid-Open No. 11-013615

しかしながら、上記従来の内燃機関の燃焼状態判定装置では次のような問題が生じている。即ち、特許文献1では、イオン電流に基づくノッキング判定および振動ノックセンサに基づくノッキング判定の双方を実行し、双方でノッキング発生と判定されたときにだけ遅角制御し、少なくとも一方でノッキング発生と判定されないときは進角制御することにより内燃機関出力の低下、ドライバビリティの悪化を防止することが可能となると提唱されているが、オルタネータが動作しノック成分と重複する周波数をもった電気的ノイズ又は電磁的ノイズがイオン電流に重畳する場合は、イオン電流に基づくノッキング判定がノッキング発生と誤判定された状態が続く恐れがあり、その結果、長時間振動ノックセンサのみでノッキング発生を判定することとなり、判定の精度が低下してしまう。また、イオン電流に基づくノッキング判定を行う装置と振動ノックセンサの両方を備えて連携させる構成が必要となり、コストアップに繋がる問題もある。   However, the above-described conventional combustion state determination device for an internal combustion engine has the following problems. That is, in Patent Document 1, both the knocking determination based on the ion current and the knocking determination based on the vibration knock sensor are executed, and the delay angle control is performed only when it is determined that knocking occurs in both, and it is determined that knocking occurs at least on the other hand. If not, it has been proposed that by controlling the advance angle, it is possible to prevent a decrease in the output of the internal combustion engine and a deterioration in drivability, but the electric noise or the If electromagnetic noise is superimposed on the ionic current, the knocking determination based on the ionic current may continue to be erroneously determined as knocking, and as a result, the occurrence of knocking will be determined only by the long-time vibration knock sensor. , The accuracy of the determination is reduced. In addition, a configuration in which both a device for performing knocking determination based on an ionic current and a vibration knock sensor are provided to cooperate with each other, which leads to an increase in cost.

また、特許文献2では、1次側の電圧変動量が小さいときにはプレイグニッションの発生と誤認識されるような信号波形が2次側に現れることがないため、内燃機関のプレイグニッション発生が的確に検出されると提唱されているが、オルタネータが動作している間はイオン電流に対して電気的ノイズ又は電磁的ノイズが重畳するため、ノイズの強度によっては長時間に亘って検出が許可されないこととなり、燃焼状態が悪化する問題が生じる。   Further, in Patent Document 2, when the voltage fluctuation amount on the primary side is small, a signal waveform that is mistakenly recognized as occurrence of pre-ignition does not appear on the secondary side, so that occurrence of pre-ignition in the internal combustion engine is accurately performed. Although it is proposed to be detected, electrical noise or electromagnetic noise is superimposed on the ionic current while the alternator is operating, so detection may not be allowed for a long time depending on the intensity of the noise. As a result, there arises a problem that the combustion state deteriorates.

本発明は上記の課題に鑑みなされたもので、オルタネータからイオン電流に重畳するノイズのうち、特に電気的ノイズに関して除去を行い、内燃機関の燃焼状態を正確に判定することができるイオン電流を用いた内燃機関の燃焼状態判定装置を提供することを目標とする。   The present invention has been made in view of the above-mentioned problems. Among the noises superposed on the ionic current from the alternator, the ionic current capable of accurately determining the combustion state of the internal combustion engine by removing particularly the electrical noise is used. It is an object of the present invention to provide a combustion state determination device for an internal combustion engine.

上記課題を解決するために、本発明は次のような構成とする。即ち、複数の気筒を有する内燃機関と、当該気筒のシリンダ内へ供給された混合気に着火を行う点火プラグと、当該点火プラグへ高電圧を供給する1次コイルと2次コイルと鉄芯からなる点火コイルと、前記内燃機関の燃焼によって前記点火プラグの電極間に発生するイオン電流を検出するイオン電流検出手段と、当該イオン電流検出手段が検出したイオン電流の出力信号から前記内燃機関に生じるノッキングを判定するノック判定手段と、を備えたイオン電流を用いた内燃機関の燃焼状態判定装置において、バッテリ側から前記点火コイルへの電圧変動を算出する電圧変動算出手段と、当該電圧変動算出手段が算出した電圧変動による電気的ノイズを前記イオン電流検出手段が検出したイオン電流の出力信号から減算する減算手段と、を備えることを特徴とするイオン電流を用いた内燃機関の燃焼状態判定装置とする。   In order to solve the above problems, the present invention has the following configuration. That is, an internal combustion engine having a plurality of cylinders, an ignition plug that ignites an air-fuel mixture supplied into the cylinder of the cylinder, a primary coil, a secondary coil, and an iron core that supply high voltage to the ignition plug An ignition coil, an ion current detecting means for detecting an ion current generated between the electrodes of the ignition plug due to combustion of the internal combustion engine, and an output signal of the ion current detected by the ion current detecting means is generated in the internal combustion engine An internal combustion engine combustion state determination device using an ionic current comprising knock determination means for determining knocking, voltage fluctuation calculation means for calculating voltage fluctuation from the battery side to the ignition coil, and the voltage fluctuation calculation means Subtracting means for subtracting electrical noise due to voltage fluctuation calculated by the ionic current output signal detected by the ionic current detecting means. And combustion state determination device for an internal combustion engine using an ion current, characterized in Rukoto.

上記請求項1の発明においては、前記電圧変動算出手段が算出する電気的ノイズ(V2)は、以下の(数1)から求められる構成としてもよい。
(数1)

Figure 2015098809
V1:バッテリ側の電圧、C1:点火コイルが有する寄生容量、C2:イオン電流検出手段に配設されたダイオードが有する寄生容量、R1:イオン電流検出手段に配設された検出抵抗の抵抗値、n:自然数 In the first aspect of the invention, the electrical noise (V2) calculated by the voltage fluctuation calculating means may be obtained from the following (Equation 1).
(Equation 1)
Figure 2015098809
V1: Voltage on the battery side, C1: Parasitic capacitance of the ignition coil, C2: Parasitic capacitance of the diode provided in the ionic current detection means, R1: Resistance value of the detection resistor provided in the ionic current detection means, n: natural number

上記の構成によれば、複数の気筒を有する内燃機関と、当該気筒のシリンダ内へ供給された混合気に着火を行う点火プラグと、当該点火プラグへ高電圧を供給する1次コイルと2次コイルと鉄芯からなる点火コイルと、前記内燃機関の燃焼によって前記点火プラグの電極間に発生するイオン電流を検出するイオン電流検出手段と、当該イオン電流検出手段が検出したイオン電流の出力信号から前記内燃機関に生じるノッキングを判定するノック判定手段と、を備えたイオン電流を用いた内燃機関の燃焼状態判定装置において、バッテリ側から前記点火コイルへの電圧変動を算出する電圧変動算出手段と、当該電圧変動算出手段が算出した電圧変動による電気的ノイズを前記イオン電流検出手段が検出したイオン電流の出力信号から減算する減算手段と、を備えることとすることで、オルタネータからイオン電流に重畳するノイズのうち、特に電気的ノイズに関して除去を行い、内燃機関の燃焼状態を正確に判定することができるイオン電流を用いた内燃機関の燃焼状態判定装置が実現できる。   According to the above configuration, the internal combustion engine having a plurality of cylinders, the ignition plug for igniting the air-fuel mixture supplied into the cylinder of the cylinder, the primary coil and the secondary for supplying high voltage to the ignition plug An ignition coil composed of a coil and an iron core, an ion current detection means for detecting an ion current generated between the electrodes of the ignition plug by combustion of the internal combustion engine, and an output signal of the ion current detected by the ion current detection means In the combustion state determination device for an internal combustion engine using an ionic current, the voltage fluctuation calculation means for calculating the voltage fluctuation from the battery side to the ignition coil, the knock determination means for determining knocking occurring in the internal combustion engine, Subtracting the electrical noise caused by the voltage fluctuation calculated by the voltage fluctuation calculating means from the output signal of the ionic current detected by the ion current detecting means. An internal combustion engine using an ionic current that can remove the noise superimposed on the ionic current from the alternator, particularly with respect to electrical noise, and accurately determine the combustion state of the internal combustion engine. An engine combustion state determination device can be realized.

本発明の第1の実施例とするイオン電流検出機能を有した内燃機関用の点火装置のブロック図を示す。1 is a block diagram of an ignition device for an internal combustion engine having an ion current detection function according to a first embodiment of the present invention. 第1の実施例とするイオン電流検出機能を有した内燃機関用の点火装置に影響を及ぼす電気的ノイズを示す。The electrical noise which affects the ignition device for internal combustion engines which has the ion current detection function as a 1st Example is shown. 第1の実施例とするイオン電流検出機能を有した内燃機関用の点火装置の動作構成を示す図である。It is a figure which shows the operation | movement structure of the ignition device for internal combustion engines which has the ion current detection function as a 1st Example. (a)はオルタネータからの電気的ノイズが重畳したイオン電流波形のタイムチャート、(b)は電気的ノイズを除去した正常時のイオン電流波形のタイムチャート、(c)は電気的ノイズを除去したノック発生時のイオン電流波形のタイムチャートを示す。(A) is a time chart of an ion current waveform on which electrical noise from an alternator is superimposed, (b) is a time chart of a normal ion current waveform from which electrical noise has been removed, and (c) is an electrical noise removed. The time chart of the ion current waveform at the time of knock occurrence is shown. (a)はイオン電流検出手段で検出したイオン電流出力信号、(b)は電圧変動手段が算出した電気的ノイズ、(c)は減算手段で減算後のイオン電流出力信号のタイムチャートをそれぞれ示す。(A) is an ion current output signal detected by the ion current detection means, (b) is an electrical noise calculated by the voltage fluctuation means, and (c) is a time chart of the ion current output signal after subtraction by the subtraction means. . (a)はノイズ減算前のイオン電流出力信号の周波数解析を、(b)はノイズ減算後のイオン電流出力信号の周波数解析を示す。(A) shows the frequency analysis of the ion current output signal before noise subtraction, and (b) shows the frequency analysis of the ion current output signal after noise subtraction.

以下に、本発明の実施の形態を示す実施例を図1乃至図6に基づいて説明する。   Hereinafter, an example showing the embodiment of the present invention will be described with reference to FIGS.

本発明の第1の実施例とするイオン電流検出機能を有した内燃機関用の点火装置のブロック図を図1に、イオン電流検出機能を有した内燃機関用の点火装置に影響を及ぼす電気的ノイズを図2に、イオン電流検出機能を有した内燃機関用の点火装置の動作構成を示す図を図3に、(a)はオルタネータからの電気的ノイズが重畳したイオン電流波形のタイムチャート、(b)は電気的ノイズを除去した正常時のイオン電流波形のタイムチャート、(c)は電気的ノイズを除去したノック発生時のイオン電流波形のタイムチャートを図4に、(a)はイオン電流検出手段で検出したイオン電流出力信号、(b)は電圧変動手段が算出した電気的ノイズ、(c)は減算手段で減算後のイオン電流出力信号のタイムチャートを図5に、(a)はノイズ減算前のイオン電流出力信号の周波数解析を、(b)はノイズ減算後のイオン電流出力信号の周波数解析を図6にそれぞれ示す。   FIG. 1 is a block diagram of an ignition apparatus for an internal combustion engine having an ion current detection function according to a first embodiment of the present invention. FIG. 2 is a diagram showing an operation configuration of an ignition device for an internal combustion engine having an ion current detection function, FIG. 3A is a time chart of an ion current waveform in which electrical noise from an alternator is superimposed, (B) is a time chart of a normal ion current waveform from which electrical noise is removed, (c) is a time chart of an ion current waveform at the time of knock generation from which electrical noise is removed, and FIG. The ion current output signal detected by the current detection means, (b) is the electrical noise calculated by the voltage fluctuation means, (c) is a time chart of the ion current output signal after subtraction by the subtraction means, FIG. No Frequency analysis before the ion current output signal subtraction, respectively (b) in FIG. 6 the frequency analysis of the ion current output signal after noise subtraction.

図1において、点火コイル30は1次コイル32、2次コイル34、及び、鉄芯36からなり、当該1次コイル32の低圧側は自動車用バッテリ10と接続され、電源電圧が入力される。また、当該バッテリ10は車載用機器に対して電圧供給を行うと共に、オルタネータ80からの発電動作によって充電が行われる。さらに、当該2次コイル34の高圧側は内燃機関のシリンダ内へ高電圧を放電する点火プラグ20と接続されている。   In FIG. 1, an ignition coil 30 is composed of a primary coil 32, a secondary coil 34, and an iron core 36. The low voltage side of the primary coil 32 is connected to a vehicle battery 10 and receives a power supply voltage. The battery 10 supplies a voltage to the in-vehicle device and is charged by a power generation operation from the alternator 80. Further, the high voltage side of the secondary coil 34 is connected to a spark plug 20 that discharges a high voltage into the cylinder of the internal combustion engine.

また、前記1次コイル32の高圧側はIGBT(絶縁ゲートバイポーラトランジスタ)からなるスイッチング素子40と接続され、当該スイッチング素子40は前記点火コイル30から内燃機関の各シリンダに適した放電タイミングとなるようにパルス波からなる点火信号を入力されている。当該スイッチング素子40のゲートに対して点火信号が入力されるとコレクタ電流が流れるため、前記バッテリ10から前記1次コイル32に1次電流が蓄えられる。そして、当該スイッチング素子40に対する点火信号が遮断されると電磁誘導によって前記2次コイル34に放電電流が発生し、前記点火プラグ20へ高電圧が放出される。   The high voltage side of the primary coil 32 is connected to a switching element 40 made of an IGBT (insulated gate bipolar transistor), and the switching element 40 has a discharge timing suitable for each cylinder of the internal combustion engine from the ignition coil 30. An ignition signal made up of a pulse wave is input to. When an ignition signal is input to the gate of the switching element 40, a collector current flows, so that the primary current is stored in the primary coil 32 from the battery 10. When the ignition signal for the switching element 40 is interrupted, a discharge current is generated in the secondary coil 34 by electromagnetic induction, and a high voltage is released to the spark plug 20.

また、前記2次コイル34の低圧側は前記内燃機関の燃焼により前記点火プラグ20の電極間に発生するイオン電流を検出するためのイオン電流検出手段50に接続される。さらに、当該イオン電流検出手段50は前記2次コイル34の低圧側にツェナーダイオード52のカソード側を接続し、当該ツェナーダイオード52のアノード側はダイオード54のアノードと接続されてグランドに接続されている。   The low pressure side of the secondary coil 34 is connected to an ion current detection means 50 for detecting an ion current generated between the electrodes of the spark plug 20 due to combustion of the internal combustion engine. Further, the ion current detecting means 50 connects the cathode side of the Zener diode 52 to the low voltage side of the secondary coil 34, and the anode side of the Zener diode 52 is connected to the anode of the diode 54 and connected to the ground. .

また、前記ツェナーダイオード52はバイアス電源を生成するためのコンデンサ56を並列に接続する。そして、当該コンデンサ56は前記ツェナーダイオード52のカソード側に対してプラス側を配置し、前記ツェナーダイオード52のアノード側に対してマイナス側を配置して接続される。   The Zener diode 52 is connected in parallel with a capacitor 56 for generating a bias power source. The capacitor 56 is connected such that the positive side is disposed with respect to the cathode side of the Zener diode 52 and the negative side is disposed with respect to the anode side of the Zener diode 52.

また、前記ツェナーダイオード52及び前記コンデンサ56の前記2次コイル34の接続と逆方向は検出抵抗58を接続し、当該検出抵抗58を介してオペアンプ60の反転入力端子(−)に接続され、非反転入力端子(+)は前記グランドに接続されている。さらに、当該オペアンプ60の反転入力端子(−)と出力端子には前記検出抵抗58とは別の抵抗62が並列に接続されている。   In addition, a detection resistor 58 is connected in the opposite direction to the connection of the secondary coil 34 of the Zener diode 52 and the capacitor 56, and is connected to the inverting input terminal (−) of the operational amplifier 60 via the detection resistor 58. The inverting input terminal (+) is connected to the ground. Furthermore, a resistor 62 other than the detection resistor 58 is connected in parallel to the inverting input terminal (−) and the output terminal of the operational amplifier 60.

上記からイオン電流検出機能を有した内燃機関用の点火装置が構成され、前記スイッチング素子40に入力されている点火信号が立ち上がると、前記バッテリ10から前記1次コイル32に1次電流が蓄えられる。そして、前記スイッチング素子40に入力されている点火信号が立下がると、前記鉄芯36と介して前記2次コイル34に電磁誘導により高電圧が発生する。これにより、図1中の矢印に示すように、前記点火プラグ20→前記2次コイル34→前記ツェナーダイオード52及び前記コンデンサ56→前記ダイオード54→前記グランドの経路で放電電流が流れる。このとき、前記コンデンサ56は前記ツェナーダイオード52のブレークダウン電圧に対応して充電される。   From the above, an ignition device for an internal combustion engine having an ion current detection function is configured, and when an ignition signal input to the switching element 40 rises, a primary current is stored in the primary coil 32 from the battery 10. . When the ignition signal input to the switching element 40 falls, a high voltage is generated in the secondary coil 34 through the iron core 36 by electromagnetic induction. As a result, as indicated by an arrow in FIG. 1, a discharge current flows through the path of the spark plug 20 → the secondary coil 34 → the Zener diode 52 and the capacitor 56 → the diode 54 → the ground. At this time, the capacitor 56 is charged corresponding to the breakdown voltage of the Zener diode 52.

また、前記2次コイル34から前記点火プラグ20の電極間への放電が終息すると、前記コンデンサ56に充電されていた電荷をバイアス電源として前記点火プラグ20の電極間にイオン電流が発生する。イオン電流は図1中の矢印に示すように、前記抵抗62→前記検出抵抗58→前記コンデンサ56→前記2次コイル34→前記点火プラグ20の経路でイオン電流が流れる。このイオン電流の大きさに応じて前記オペアンプ60の出力端子から出力信号が出力される。   When the discharge from the secondary coil 34 to the electrodes of the spark plug 20 ends, an ionic current is generated between the electrodes of the spark plug 20 using the electric charge charged in the capacitor 56 as a bias power source. As indicated by the arrow in FIG. 1, the ion current flows through the path of the resistor 62 → the detection resistor 58 → the capacitor 56 → the secondary coil 34 → the spark plug 20. An output signal is output from the output terminal of the operational amplifier 60 according to the magnitude of the ion current.

図2において、前記オルタネータ80の発電動作によって前記バッテリ10に電圧変動が生じる。この電圧変動が電気的ノイズであり、スイッチング素子40に対する点火信号が遮断された後も、僅かな電流が1次コイルに流れているため、前記バッテリ10に生じた電気的ノイズが前記1次コイル32へと重畳し、電磁誘導によって前記鉄芯36を介して前記2次コイル34に重畳する。また、前記2次コイル34に重畳した電気的ノイズの影響によって前記イオン電流検出手段50内の素子に対しても電気的ノイズが重畳する。この電気的ノイズが前記イオン電流検出手段50に重畳することで検出されるイオン電流にノイズが重畳する。特に前記イオン電流検出手段50に備えられた前記検出抵抗58がノイズの影響を受ける。図2中には前記オルタネータ80からの電気的ノイズを波線矢印として示している。   In FIG. 2, voltage variation occurs in the battery 10 due to the power generation operation of the alternator 80. This voltage fluctuation is an electrical noise, and even after the ignition signal to the switching element 40 is cut off, a small amount of current still flows through the primary coil, so that the electrical noise generated in the battery 10 is the primary coil. It superimposes on 32 and superimposes on the secondary coil 34 via the iron core 36 by electromagnetic induction. Further, electrical noise is also superimposed on the elements in the ion current detection means 50 due to the influence of the electrical noise superimposed on the secondary coil 34. Noise is superimposed on the ion current detected by superimposing the electrical noise on the ion current detecting means 50. In particular, the detection resistor 58 provided in the ion current detection means 50 is affected by noise. In FIG. 2, the electrical noise from the alternator 80 is shown as a wavy arrow.

図3において、車両の電子制御を行うECU70を備え、当該ECU70は前記オルタネータ80により変動する電源電圧と、その変動する電源電圧によって電気的ノイズが重畳する素子の寄生容量や抵抗成分からイオン電流に重畳する電気的ノイズを算出する機能を有した電圧変動算出手段74を備える。また、当該ECU70は前記イオン電流検出手段50によって出力された出力信号からイオン出力を演算する機能を有した演算手段78と、当該電圧変動算出手段74が算出した電気的ノイズを当該演算手段78が算出したイオン出力から減算する機能を有した減算手段76を備える。さらに、当該ECU70は当該減算手段76によって電気的ノイズが除去されたイオン出力から内燃機関の燃焼に生じるノッキングを判定する機能を有したノック判定手段72を備える。   In FIG. 3, an ECU 70 for electronically controlling the vehicle is provided. The ECU 70 converts the power supply voltage that is changed by the alternator 80 and the ionic current from the parasitic capacitance or resistance component of the element on which electrical noise is superimposed by the changed power supply voltage. A voltage fluctuation calculating means 74 having a function of calculating electric noise to be superimposed is provided. Further, the ECU 70 has a calculation means 78 having a function of calculating an ion output from an output signal output by the ion current detection means 50, and the calculation means 78 outputs the electrical noise calculated by the voltage fluctuation calculation means 74. Subtracting means 76 having a function of subtracting from the calculated ion output is provided. Further, the ECU 70 includes a knock determination unit 72 having a function of determining knocking that occurs in the combustion of the internal combustion engine from the ion output from which electrical noise has been removed by the subtraction unit 76.

また、前記電圧変動算出手段74は前記バッテリ10の電圧をサンプリングしている。さらに、前記ノック判定手段72は前記減算手段76によって電気的ノイズが除去されたイオン出力を波形処理したイオン電流波形からノック成分を抽出し、内燃機関の燃焼に生じたノッキングを判定している。   Further, the voltage fluctuation calculating means 74 samples the voltage of the battery 10. Further, the knock determination means 72 extracts a knock component from an ion current waveform obtained by waveform-processing the ion output from which electrical noise has been removed by the subtraction means 76, and determines knocking that has occurred in the combustion of the internal combustion engine.

図4において、図4(a)は前記オルタネータ80からの電気的ノイズが重畳したイオン電流波形のタイムチャートを示す。X軸は時間を、Y軸はイオン波形出力を示している。また、イオン電流波形に対して前記オルタネータ80からの電気的ノイズが重畳していると上下に揺らぐ波形となる。特に、図4(a)中に示したX部は内燃機関にノッキングが生じた際にノック成分が重畳される位相であり、ノック成分も上下に揺らぐ波形となるため、前記オルタネータ80からの電気的ノイズと非常に類似している。ノック成分が重畳したイオン電流波形は後述する図4(c)に示しており、図4(a)のX部と(c)のX´部を比較すると類似していることが確認できる。   In FIG. 4, FIG. 4 (a) shows a time chart of an ion current waveform on which electrical noise from the alternator 80 is superimposed. The X axis represents time, and the Y axis represents ion waveform output. Further, when electrical noise from the alternator 80 is superimposed on the ion current waveform, the waveform fluctuates up and down. In particular, the portion X shown in FIG. 4A is a phase in which knock components are superimposed when knocking occurs in the internal combustion engine, and the knock components also have a waveform that fluctuates up and down. Very similar to noise. The ion current waveform on which the knock component is superimposed is shown in FIG. 4C described later, and it can be confirmed that the X portion in FIG. 4A is similar to the X ′ portion in FIG.

また、図4(b)及び(c)はノイズ減算処理後のイオン電流波形のタイムチャートを示し、(b)は正常な燃焼を、(c)はノック発生時の燃焼を示している。さらに、X軸は時間を、Y軸はイオン波形出力を示し、イオン電流波形は内燃機関の燃焼中は検出できず、シリンダ内の燃焼が終息すると立ち上がりピーク値まで上昇し、ピーク値まで達すると減少していく構成は図4(a)と同様である。しかし、図4(b)及び(c)のイオン電流波形は前記減算手段76によって前記オルタネータ80からの電気的ノイズが除去された波形となるため、波形が検出される全域に上下に揺らぐ減少は見られない。   4B and 4C show time charts of the ion current waveform after the noise subtraction process, FIG. 4B shows normal combustion, and FIG. 4C shows combustion when knocking occurs. Furthermore, the X axis shows time, the Y axis shows the ion waveform output, the ion current waveform cannot be detected during combustion of the internal combustion engine, and rises to the peak value when the combustion in the cylinder ends, and reaches the peak value The decreasing configuration is the same as that in FIG. However, since the ionic current waveforms in FIGS. 4B and 4C are waveforms from which the electrical noise from the alternator 80 has been removed by the subtracting means 76, there is no reduction that fluctuates up and down over the entire area where the waveforms are detected. can not see.

また、図4(c)中に示すX´部の上下に揺らぐ波形がノック成分を示し、このノック成分が前記ノック判定手段72のノックBPFで抽出されてノッキングの判定が行われる。さらに、ノック成分の大きさからノッキングの強度がわかる。   Further, the waveform that fluctuates in the vertical direction of the X ′ portion shown in FIG. 4C represents a knock component, and this knock component is extracted by the knock BPF of the knock determination means 72 to determine knocking. Further, the strength of knocking can be understood from the magnitude of the knocking component.

図5において、図5(a)は前記イオン電流検出手段50で検出したイオン電流出力信号を示す。X軸は時間を、Y軸はイオン出力を示し、イオン出力は前記点火プラグ20の電極間に生じたイオン電流からの前記オペアンプ60の出力信号を示したものである。このイオン出力には前記オルタネータ80の電圧変動による電気的ノイズが重畳しており、周波数成分を持った波形となっている。また、図5(b)は前記オルタネータ80による電気的ノイズを前記電圧変動算出手段74で算出した理論上の算出ノイズ(V2)を示す。図5(a)と同様にX軸は時間を、Y軸はイオン出力を示している。前記電圧変動算出手段74は前記バッテリ10の電圧と、前記1次及び2次コイル32,34の寄生容量と、前記ツェナーダイオード52及び前記ダイオード54の寄生容量と、前記検出抵抗の抵抗値と、から理論上とする電気的ノイズから生じる前記オペアンプ60の出力信号の電圧値を求めている。   5A shows an ion current output signal detected by the ion current detecting means 50. FIG. The X axis represents time, the Y axis represents ion output, and the ion output represents the output signal of the operational amplifier 60 from the ion current generated between the electrodes of the spark plug 20. This ion output is superimposed with electrical noise due to voltage fluctuations of the alternator 80, resulting in a waveform having a frequency component. FIG. 5B shows theoretical calculated noise (V2) obtained by calculating the electric noise generated by the alternator 80 by the voltage fluctuation calculating means 74. As in FIG. 5A, the X axis represents time, and the Y axis represents ion output. The voltage fluctuation calculating means 74 includes the voltage of the battery 10, the parasitic capacitance of the primary and secondary coils 32, 34, the parasitic capacitance of the Zener diode 52 and the diode 54, the resistance value of the detection resistor, Thus, the voltage value of the output signal of the operational amplifier 60 resulting from theoretical electrical noise is obtained.

図5(a)と(b)を比べてみると、双方とも周波数成分を持った波形となっており、(a)の前記イオン電流検出手段50で検出したイオン電流出力信号の波形が鋭角に変化しているものの、類似した形状の波形となっているのがわかる。また、図5(c)は前記減算手段76によりイオン電流出力信号から算出ノイズ(V2)を減算した電気的ノイズを除去したイオン電流出力信号を示す。X軸は時間を、Y軸はイオン出力を示している。   Comparing FIGS. 5A and 5B, both have waveforms having frequency components, and the waveform of the ion current output signal detected by the ion current detecting means 50 in FIG. Although it is changing, it can be seen that the waveform has a similar shape. FIG. 5C shows an ionic current output signal obtained by removing electrical noise obtained by subtracting the calculated noise (V2) from the ionic current output signal by the subtracting means 76. The X axis represents time and the Y axis represents ion output.

図6において、図6(a)は前記イオン電流検出手段50で検出したイオン電流出力信号を周波数解析した結果を示す。(a)の周波数解析結果では、オルタネータノイズと同周波数領域のP部、Q部、R部において、前記オルタネータ80からの影響を受けていることがわかる。しかし、図6(b)は前記減算手段76により算出ノイズを減算したイオン電流信号を周波数解析した結果を示し、(b)の周波数解析結果では、(a)内に示したP部、Q部、R部と同一の周波数領域とするP´部、Q´部、R´部において周波数強度が弱まっていることから、前記オルタネータ80から影響を受けていた電気的ノイズに関する周波数成分が取り除かれていることがわかる。   6A shows the result of frequency analysis of the ion current output signal detected by the ion current detecting means 50. FIG. From the frequency analysis result of (a), it can be seen that the P, Q, and R portions in the same frequency region as the alternator noise are affected by the alternator 80. However, FIG. 6B shows the result of frequency analysis of the ion current signal obtained by subtracting the calculated noise by the subtracting means 76. In the frequency analysis result of FIG. 6B, the P part and Q part shown in FIG. Since the frequency intensity is weak in the P ′ portion, Q ′ portion, and R ′ portion, which have the same frequency region as the R portion, the frequency component related to the electrical noise that has been affected by the alternator 80 is removed. I understand that.

また、前記電圧変動算出手段74による算出ノイズ(V2)は、(数1)から求めている。
(数1)

Figure 2015098809
V1:前記バッテリ10の電圧、C1:前記1次及び2次コイル32,34の寄生容量、C2:前記ツェナーダイオード52及び前記ダイオード54の寄生容量、R1:前記検出抵抗の抵抗値、n:自然数 Further, the calculation noise (V2) by the voltage fluctuation calculation means 74 is obtained from (Equation 1).
(Equation 1)
Figure 2015098809
V1: voltage of the battery 10, C1: parasitic capacitance of the primary and secondary coils 32 and 34, C2: parasitic capacitance of the Zener diode 52 and the diode 54, R1: resistance value of the detection resistor, n: natural number

また、(数1)は前記電圧変動算出手段74が前回算出した電気的ノイズをV2(n−1)と表現しており、nは今回の算出を、(n−1)は前回の算出を示す。   (Equation 1) expresses the electrical noise previously calculated by the voltage fluctuation calculation means 74 as V2 (n-1), where n is the current calculation and (n-1) is the previous calculation. Show.

上記構成により、前記イオン電流検出手段50が検出したイオン電流の出力信号から前記電圧変動算出手段74が算出した算出ノイズ(V2)を減算することで、前記オルタネータ80による電気的ノイズを除去したイオン電流出力信号が得られる。また、電気的ノイズを除去したイオン電流出力信号に対して波形処理を行ったイオン電流波形から内燃機関の燃焼に生じるノッキングの誤判定を防ぐことができる。このことは、周波数解析結果より、ノイズ重畳時は、特定の周波数に強度が見られ、この周期がノック成分と同じであればノック誤判定される可能性があるが、電気的ノイズを減算することでその周波数での強度が削減されノックの誤判定を防ぐ効果があることがわかる。   With the above configuration, the ion from which the electrical noise due to the alternator 80 has been removed is obtained by subtracting the calculated noise (V2) calculated by the voltage fluctuation calculating means 74 from the output signal of the ion current detected by the ion current detecting means 50. A current output signal is obtained. In addition, it is possible to prevent erroneous determination of knocking that occurs in combustion of the internal combustion engine from the ion current waveform obtained by performing waveform processing on the ion current output signal from which electrical noise has been removed. From the frequency analysis results, this indicates that when noise is superimposed, the intensity is seen at a specific frequency, and if this period is the same as the knock component, there is a possibility that a knock will be erroneously determined, but the electrical noise is subtracted. Thus, it can be seen that the intensity at the frequency is reduced, and the effect of preventing erroneous determination of knocking is obtained.

なお、実施例1の変形例として、前記イオン電流検出手段50の回路構成は設計事項に講じて任意に変更してもよい。また、前記ノック判定手段72、前記電圧変動算出手段74、前記減算手段76、及び、前記演算手段78は前記ECU70内に構築された機能としたが、これらを個別に備える構成としてもよい。さらに、前記電圧変動算出手段74は前記バッテリ10の電圧と、前記1次及び2次コイル32,34の寄生容量と、前記ツェナーダイオード52及び前記ダイオード54の寄生容量と、前記検出抵抗の抵抗値と、をサンプリングして理論上の算出ノイズ(V2)を求めたが、前記イオン電流検出手段50の回路構成に応じてサンプリングする対象は変更されるものとしてもよし、サンプリングされる対象の変更に応じて算出方法を変更してもよい。   As a modification of the first embodiment, the circuit configuration of the ion current detecting means 50 may be arbitrarily changed depending on design matters. Further, although the knock determination means 72, the voltage fluctuation calculation means 74, the subtraction means 76, and the calculation means 78 are functions built in the ECU 70, they may be configured separately. Further, the voltage fluctuation calculating means 74 is configured to detect the voltage of the battery 10, the parasitic capacitances of the primary and secondary coils 32, 34, the parasitic capacitances of the Zener diode 52 and the diode 54, and the resistance value of the detection resistor. And the theoretically calculated noise (V2) was obtained, but the sampling target may be changed according to the circuit configuration of the ion current detecting means 50, and the sampled target may be changed. The calculation method may be changed accordingly.

また、前記1次及び2次コイル32,34の寄生容量と、前記ツェナーダイオード52及び前記ダイオード54の寄生容量と、前記検出抵抗の抵抗値とを固定値として、前記電圧変動算出手段74に記憶されるものとしてもよいし、その場合は、前記点火コイル30及び前記イオン電流検出手段50の回路構成に応じて前記電圧変動算出手段74に記憶される固定値も変更されるものとしてよい。   In addition, the parasitic capacitances of the primary and secondary coils 32 and 34, the parasitic capacitances of the Zener diode 52 and the diode 54, and the resistance value of the detection resistor are stored as fixed values in the voltage fluctuation calculation means 74. In this case, the fixed value stored in the voltage fluctuation calculating unit 74 may be changed according to the circuit configuration of the ignition coil 30 and the ion current detecting unit 50.

10:バッテリ
20:点火プラグ
30:点火コイル
32:1次コイル
34:2次コイル
36:鉄芯
40:スイッチング素子
50:イオン電流検出手段
52:ツェナーダイオード
54:ダイオード
56:コンデンサ
58:検出抵抗
60:オペアンプ
62:抵抗
70:ECU
72:ノック判定手段
74:電圧変動算出手段
76:減算手段
78:演算手段
80:オルタネータ
10: Battery
20: Spark plug
30: Ignition coil
32: Primary coil
34: Secondary coil
36: Iron core
40: Switching element
50: Ion current detection means
52: Zener diode
54: Diode
56: Capacitor
58: Sense resistor
60: Operational amplifier
62: Resistance
70: ECU
72: Knock determination means
74: Voltage fluctuation calculation means
76: Subtraction means
78: Calculation means
80: Alternator

Claims (2)

複数の気筒を有する内燃機関と、
当該気筒のシリンダ内へ供給された混合気に着火を行う点火プラグと、
当該点火プラグへ高電圧を供給する1次コイルと2次コイルと鉄芯からなる点火コイルと、
前記内燃機関の燃焼によって前記点火プラグの電極間に発生するイオン電流を検出するイオン電流検出手段と、
当該イオン電流検出手段が検出したイオン電流の出力信号から前記内燃機関に生じるノッキングを判定するノック判定手段と、を備えたイオン電流を用いた内燃機関の燃焼状態定装置において、
バッテリ側から前記点火コイルへの電圧変動を算出する電圧変動算出手段と、
当該電圧変動算出手段が算出した電圧変動による電気的ノイズを前記イオン電流検出手段が検出したイオン電流の出力信号から減算する減算手段と、を備えることを特徴とするイオン電流を用いた内燃機関の燃焼状態判定装置。
An internal combustion engine having a plurality of cylinders;
A spark plug for igniting the air-fuel mixture supplied into the cylinder of the cylinder;
A primary coil for supplying high voltage to the spark plug, a secondary coil, and an ignition coil composed of an iron core;
Ion current detection means for detecting an ion current generated between the electrodes of the spark plug by combustion of the internal combustion engine;
In a combustion state determination device for an internal combustion engine using an ion current, comprising: knock determination means for determining knocking occurring in the internal combustion engine from an output signal of the ion current detected by the ion current detection means,
Voltage fluctuation calculating means for calculating voltage fluctuation from the battery side to the ignition coil;
Subtracting means for subtracting electrical noise due to voltage fluctuation calculated by the voltage fluctuation calculating means from an output signal of the ionic current detected by the ionic current detecting means, and an internal combustion engine using an ionic current, Combustion state determination device.
前記電圧変動算出手段が算出する電気的ノイズ(V2)は、以下の(数1)から求められることを特徴とする請求項1に記載のイオン電流を用いた内燃機関の燃焼状態判定装置。
(数1)
Figure 2015098809
V1:バッテリ側の電圧
C1:点火コイルが有する寄生容量
C2:イオン電流検出手段に配設されたダイオードが有する寄生容量
R1:イオン電流検出手段に配設された検出抵抗の抵抗値
n:自然数
The combustion state determination device for an internal combustion engine using an ionic current according to claim 1, wherein the electrical noise (V2) calculated by the voltage fluctuation calculation means is obtained from the following (Equation 1).
(Equation 1)
Figure 2015098809
V1: Battery-side voltage C1: Parasitic capacitance C2 of the ignition coil: Parasitic capacitance R1 of a diode provided in the ion current detection means R1: Resistance value n of a detection resistor provided in the ion current detection means n: Natural number
JP2013238408A 2013-11-19 2013-11-19 Combustion state determining device of internal combustion engine using ion current Pending JP2015098809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013238408A JP2015098809A (en) 2013-11-19 2013-11-19 Combustion state determining device of internal combustion engine using ion current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013238408A JP2015098809A (en) 2013-11-19 2013-11-19 Combustion state determining device of internal combustion engine using ion current

Publications (1)

Publication Number Publication Date
JP2015098809A true JP2015098809A (en) 2015-05-28

Family

ID=53375576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013238408A Pending JP2015098809A (en) 2013-11-19 2013-11-19 Combustion state determining device of internal combustion engine using ion current

Country Status (1)

Country Link
JP (1) JP2015098809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6328293B1 (en) * 2017-04-19 2018-05-23 三菱電機株式会社 Control device and control method for internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089216A (en) * 1996-09-19 1998-04-07 Toyota Motor Corp Knocking control device for internal combustion engine
JPH10184432A (en) * 1996-12-24 1998-07-14 Hitachi Ltd Engine controller
JPH1113615A (en) * 1997-06-23 1999-01-19 Denso Corp Preignition detecting device for internal combustion engine
JPH11315775A (en) * 1998-04-30 1999-11-16 Denso Corp Ionic current detection device
US6945229B1 (en) * 2004-08-31 2005-09-20 Visteon Global Technologies, Inc. System for engine knock control
JP2014066173A (en) * 2012-09-26 2014-04-17 Daihatsu Motor Co Ltd Ion current detection circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089216A (en) * 1996-09-19 1998-04-07 Toyota Motor Corp Knocking control device for internal combustion engine
JPH10184432A (en) * 1996-12-24 1998-07-14 Hitachi Ltd Engine controller
JPH1113615A (en) * 1997-06-23 1999-01-19 Denso Corp Preignition detecting device for internal combustion engine
JPH11315775A (en) * 1998-04-30 1999-11-16 Denso Corp Ionic current detection device
US6945229B1 (en) * 2004-08-31 2005-09-20 Visteon Global Technologies, Inc. System for engine knock control
JP2014066173A (en) * 2012-09-26 2014-04-17 Daihatsu Motor Co Ltd Ion current detection circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6328293B1 (en) * 2017-04-19 2018-05-23 三菱電機株式会社 Control device and control method for internal combustion engine

Similar Documents

Publication Publication Date Title
JP3715868B2 (en) Knock control device for internal combustion engine
US6789409B2 (en) Knock detection apparatus for internal combustion engine
JP2009108760A (en) Internal combustion engine combustion state detection device and its method
JP2001082304A (en) Knocking control device of internal combustion engine
US8939132B2 (en) Ignition control apparatus
JP4975054B2 (en) Ignition diagnostic device for internal combustion engine
JP3633580B2 (en) Misfire detection device for internal combustion engine
JP4573048B2 (en) Misfire detection device for internal combustion engine
JP4445008B2 (en) Combustion state detection method and apparatus for internal combustion engine
JP2006077762A (en) Ion current detecting device for internal combustion engine
JP2015098809A (en) Combustion state determining device of internal combustion engine using ion current
JP2009508131A (en) Device for detecting the measurement signal, in particular the signal corresponding to the ion flow between the electrodes of the ignition plug of the internal combustion engine, on the high voltage side
JP6437039B2 (en) Ignition device for internal combustion engine
JP2008261304A (en) Ion current detection device for internal combustion engine
WO2016063430A1 (en) Misfire detection method for internal combustion engine
JP2014070504A (en) Ion current detection device
JP2014070507A (en) Ignition device for internal combustion engine
JP3577217B2 (en) Spark plug smoldering detector for internal combustion engine
JP5662891B2 (en) Spark discharge detection method and spark discharge detection device
JP4169266B2 (en) Ignition device for internal combustion engine
JP4134879B2 (en) Ion current detection device for internal combustion engine
JP2014070505A (en) Ion current detection device
US10167841B2 (en) Internal-combustion-engine combustion state detecting apparatus
JP6026298B2 (en) Ion current detector
JP2015190396A (en) Ion current detector for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205