JP2015098795A5 - - Google Patents

Download PDF

Info

Publication number
JP2015098795A5
JP2015098795A5 JP2013238013A JP2013238013A JP2015098795A5 JP 2015098795 A5 JP2015098795 A5 JP 2015098795A5 JP 2013238013 A JP2013238013 A JP 2013238013A JP 2013238013 A JP2013238013 A JP 2013238013A JP 2015098795 A5 JP2015098795 A5 JP 2015098795A5
Authority
JP
Japan
Prior art keywords
exhaust valve
valve
hydraulic oil
operating mechanism
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013238013A
Other languages
Japanese (ja)
Other versions
JP6091008B2 (en
JP2015098795A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2013238013A priority Critical patent/JP6091008B2/en
Priority claimed from JP2013238013A external-priority patent/JP6091008B2/en
Priority to PCT/JP2014/067799 priority patent/WO2015072175A1/en
Priority to CN201480059077.4A priority patent/CN105683512B/en
Priority to KR1020167011918A priority patent/KR101760648B1/en
Publication of JP2015098795A publication Critical patent/JP2015098795A/en
Publication of JP2015098795A5 publication Critical patent/JP2015098795A5/ja
Application granted granted Critical
Publication of JP6091008B2 publication Critical patent/JP6091008B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

排気弁動弁機構、ディーゼルエンジン及び排気弁動弁機構の排気弁冷却方法Exhaust valve valve mechanism, diesel engine, and exhaust valve cooling method for exhaust valve valve mechanism

本発明は、排気弁動弁機構、ディーゼルエンジン及び排気弁動弁機構の排気弁冷却方法に関する。 The present invention relates to an exhaust valve operating mechanism, a diesel engine, and an exhaust valve cooling method for an exhaust valve operating mechanism .

近年、舶用ディーゼルエンジンは、出力向上に伴って燃焼室の壁面温度が上昇する傾向にある。特に、一般的に無冷却式である排気弁は、底面部が高温の燃焼ガスに接して温度上昇するので、摩耗による排気弁の損耗が報告されている。このような排気弁の損耗は、排気弁が大きく冷却が困難な大口径エンジン(ピストン直径60cm以上)ほど大きな問題となる。
従来の舶用ディーゼルエンジンにおいては、排気弁の材質変更等により損耗の低減を図ることが行われている。
In recent years, marine diesel engines have a tendency that the wall surface temperature of the combustion chamber increases as the output increases. In particular, exhaust valves that are generally non-cooled are heated at the bottom surface in contact with high-temperature combustion gas, and exhaust valve wear due to wear has been reported. Such exhaust valve wear becomes a serious problem for large-diameter engines (piston diameter of 60 cm or more) that are difficult to cool because the exhaust valve is large.
In a conventional marine diesel engine, wear is reduced by changing the material of an exhaust valve or the like.

また、下記の特許文献1には、例えば2サイクル大型ディーゼルエンジンの一つのガス通路に配置されるバルブの内部に、ガス状の冷媒、または、少なくとも部分的にガス状の状態に遷移可能な複数の成分からなる冷媒を送り込む冷却機構が開示されている。   In Patent Document 1 below, for example, a plurality of gaseous refrigerants or at least partially transitionable to a gaseous state is provided inside a valve arranged in one gas passage of a two-cycle large diesel engine. A cooling mechanism for feeding a refrigerant composed of these components is disclosed.

特表2013−522513号公報Special table 2013-522513 gazette

上述したように、近年の船舶主機用ディーゼルエンジンは、高出力化に伴って排気弁の損耗が問題となっている。しかし、船舶主機用ディーゼルエンジンの信頼性や耐久性を向上させるためにも、排気弁を効率よく冷却することが望まれる。
本発明は、上記の課題を解決するためになされたもので、その目的とするところは、排気弁を冷却して信頼性や耐久性を向上させることができる排気弁動弁機構、ディーゼルエンジン及び排気弁動弁機構の排気弁冷却方法を提供することにある。
As described above, in recent diesel engines for ship main engines, exhaust valve wear has become a problem as the output increases. However, in order to improve the reliability and durability of the marine main engine diesel engine, it is desired to cool the exhaust valve efficiently.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an exhaust valve operating mechanism capable of cooling the exhaust valve to improve reliability and durability , a diesel engine, and An object of the present invention is to provide an exhaust valve cooling method for an exhaust valve operating valve mechanism .

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る排気弁動弁機構は、圧縮された作動油によって上部動弁機構へ伝達される駆動力を用いて開かれる排気弁を備えた排気弁動弁機構において、前記排気弁の弁体内部に形成されて前記作動油の一部を導入する冷媒循環流路と、前記上部動弁機構の筐体を貫通して設けられた排油流路とを備え、前記排気弁が開いたとき、前記冷媒循環流路の出口開口と前記排油流路の入口開口とが連通して前記作動油の一部に流れを生じさせ、前記排気弁が閉じたとき、前記冷媒循環流路の前記出口開口が塞がれて前記作動油の流れが留まることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
Exhaust valve valve operating mechanism according to the present invention, in the exhaust valve valve mechanism provided with an exhaust valve to be opened by using a driving force transmitted to the upper valve operating mechanism by compressed working fluid, the valve body of the exhaust valve A refrigerant circulation passage formed inside for introducing a part of the hydraulic oil, and an oil discharge passage provided through the casing of the upper valve mechanism, when the exhaust valve is opened The outlet opening of the refrigerant circulation passage and the inlet opening of the oil discharge passage communicate with each other to cause a flow in part of the hydraulic oil, and when the exhaust valve is closed, the refrigerant circulation passage The outlet opening is blocked, and the flow of the hydraulic oil remains .

このような排気弁動弁機構によれば、排気弁の弁体内部に形成されて作動油の一部を導入する冷媒循環流路と、上部動弁機構の筐体を貫通して設けられた排油流路とを備え、排気弁の開閉動作時に、冷媒循環流路の出口開口と排油流路の入口開口とが連通して作動油の一部に流れを生じさせるので、排気弁動弁機構に用いる作動油の一部を有効利用して排気弁を確実に冷却することができる。 According to such an exhaust valve valve mechanism , the coolant circulation passage formed inside the valve body of the exhaust valve and introducing a part of the hydraulic oil, and the casing of the upper valve mechanism are provided. When the exhaust valve opens and closes, the outlet opening of the refrigerant circulation channel and the inlet opening of the drainage channel communicate with each other to cause a part of the hydraulic oil to flow. The exhaust valve can be reliably cooled by effectively utilizing part of the hydraulic oil used in the valve mechanism.

上記の発明において、前記排油流路には流量制御部を設けることが好ましく、これにより、冷却に使用する作動油の流量を適切に制御することができる。なお、好適な流量制御部としては、オリフィスの他、負荷に応じて流路断面積を最適化できるサーボ弁等を例示できる。   In the above invention, it is preferable to provide a flow rate control unit in the drain oil flow path, whereby the flow rate of hydraulic oil used for cooling can be appropriately controlled. In addition, as a suitable flow control part, the servo valve etc. which can optimize a flow-path cross-sectional area according to load other than an orifice can be illustrated.

上記の発明において、下部動弁機構のピストンストロークは、前記排気弁開閉動作に必要な値に対して前記作動油の排油量に応じた値を加えて設定されることが好ましく、これにより、排気弁の冷却により一部の作動油が排油流路へ流出する排油量を補うことができる。すなわち、下部動弁機構のピストンストロークは、作動油による排気弁冷却を行わない場合と比較して、排油量に相当する作動油供給量分だけ長い値に設定すればよい。 In the above invention, the piston stroke below Budoben mechanism, it is preferable to set by adding a value corresponding to the oil discharge amount of the working oil to the value required opening and closing of the exhaust valve, which Thus, it is possible to make up for the amount of oil that flows out from the part of the hydraulic oil to the oil discharge passage by cooling the exhaust valve. That is, the piston stroke of the lower valve mechanism may be set to a value that is longer by the amount of hydraulic oil supplied corresponding to the amount of exhaust oil than when the exhaust valve is not cooled by hydraulic oil.

上記の発明において、前記冷媒循環流路の出口開口と前記排油流路の入口開口とが連通する位置は、排気弁リフトLが、シート部面積と通路最小面積とを等しくした排気弁リフト量(L1)以上(LL1)となるように設定されることが好ましく、これにより、エンジン性能に影響を与えることなく作動油の一部を利用した排気弁冷却が可能になる。 In the above invention, the position at which the outlet opening of the refrigerant circulation flow path and the inlet opening of the oil discharge flow path communicate with each other is such that the exhaust valve lift L equals the seat area and the minimum passage area. It is preferable to set it so that it is (L1) or more (L L1), and this makes it possible to cool the exhaust valve using a part of the hydraulic oil without affecting the engine performance.

本発明に係るディーゼルエンジンは、上記の排気弁動弁機構を備える。A diesel engine according to the present invention includes the exhaust valve operating mechanism described above.

本発明に係る排気弁動弁機構の排気弁冷却方法は、圧縮された作動油によって上部動弁機構へ伝達される駆動力を用いて開かれる排気弁を備えた排気弁動弁機構の排気弁冷却方法において、前記排気弁が開いたとき冷却媒体として前記作動油の一部を弁体内部に導入して循環させ、前記排気弁が閉じたとき前記作動油を前記弁体内部に導入しないことを特徴とするものである。 The method of the exhaust valves cooling the exhaust valve the valve operating mechanism according to the present invention, the exhaust valve of the exhaust valve valve mechanism provided with an exhaust valve to be opened by using a driving force transmitted to the upper valve operating mechanism by compressed working fluid In the cooling method, when the exhaust valve is opened, a part of the hydraulic oil is introduced into the valve body as a cooling medium and circulated, and when the exhaust valve is closed, the hydraulic oil is not introduced into the valve body. It is characterized by.

このような排気弁動弁機構の排気弁冷却方法によれば、排気弁開閉動作時に冷却媒体として作動油の一部を弁体内部に導入して循環させるので、排気弁の動弁機構に用いる作動油の一部を有効利用して排気弁を確実に冷却することができる。 According to such an exhaust valve cooling method of the exhaust valve operating mechanism, a part of the hydraulic oil is introduced into the valve body and circulated as a cooling medium when the exhaust valve is opened and closed. The exhaust valve can be reliably cooled by effectively using a part of the hydraulic oil to be used.

上述した本発明によれば、排気弁の動弁機構に用いる作動油の一部を有効利用して確実に冷却できるようになり、排気弁の信頼性や耐久性を向上させることができる。また、作動油の一部を有効利用するので、新たな冷媒及び冷媒供給系統を設ける場合と比較して構造変更が容易である。   According to the above-described present invention, a part of the hydraulic oil used for the valve operating mechanism of the exhaust valve can be effectively used and reliably cooled, and the reliability and durability of the exhaust valve can be improved. Further, since a part of the hydraulic oil is effectively used, the structure can be easily changed as compared with the case where a new refrigerant and a refrigerant supply system are provided.

本発明に係る排気弁動弁機構、ディーゼルエンジン及び排気弁動弁機構の排気弁冷却方法の一実施形態を示す図で、上部動弁機構に導入した作動油の一部を弁体内部に導く冷媒循環流路の分岐部を示す要部断面図である。1 is a diagram showing an embodiment of an exhaust valve operating mechanism, a diesel engine, and an exhaust valve cooling method for an exhaust valve operating mechanism according to the present invention, and a part of hydraulic oil introduced into an upper valve operating mechanism is guided into a valve body. It is principal part sectional drawing which shows the branch part of a refrigerant circulation flow path. 排気弁の弁体内部に設けられた冷媒循環流路を示す要部断面図である。It is principal part sectional drawing which shows the refrigerant | coolant circulation flow path provided in the valve body of an exhaust valve. 排気弁の開閉動作に伴う冷媒循環流路及び排油流路の連通(流動)状態を示す要部断面図であり、(a)は両流路が連通しないため作動油が非流動の状態、(b)は両流路が連通して作動油が流動する状態である。It is a principal part sectional view showing a communication (flow) state of a refrigerant circulation channel and an oil discharge channel accompanying opening and closing operation of an exhaust valve, and (a) is a state in which hydraulic fluid is not flowing because both channels do not communicate with each other. (B) is a state in which both flow paths communicate with each other and the hydraulic fluid flows. 下部動弁機構のピストンストロークを示す断面図で、(a)は従来構造、(b)は作動油の一部を排気弁冷却に利用する場合の構造である。It is sectional drawing which shows the piston stroke of a lower valve mechanism, (a) is a conventional structure, (b) is a structure in the case of utilizing a part of hydraulic fluid for exhaust valve cooling. 排気弁リフト、シート部面積及びシート最小面積を示す説明図である。It is explanatory drawing which shows an exhaust valve lift, a seat part area, and a seat minimum area. 冷媒循環流路及び排油流路の連通位置について好ましい設定の説明図であり、(a)はクランク角度に対する排気弁リフトの関係、(b)はクランク角度に対する開口面積の関係を示している。It is explanatory drawing of a preferable setting about the communication position of a refrigerant | coolant circulation flow path and an oil discharge flow path, (a) shows the relationship of the exhaust valve lift with respect to a crank angle, (b) has shown the relationship of the opening area with respect to a crank angle. 冷媒循環流路及び排油流路の連通位置について好ましくない設定の説明図であり、(a)はクランク角度に対する排気弁リフトの関係、(b)はクランク角度に対する開口面積の関係を示している。It is explanatory drawing of the setting which is unpreferable about the communication position of a refrigerant | coolant circulation flow path and an oil discharge flow path, (a) shows the relationship of the exhaust valve lift with respect to a crank angle, (b) has shown the relationship of the opening area with respect to a crank angle. . 作動油を圧縮して下部動弁機構から上部動弁機構へ伝達される駆動力を用いて開かれる排気弁を備えた排気弁動弁機構の概略構成図であり、下部動弁機構として電子制御式を採用した排気弁の構成例を示している。FIG. 2 is a schematic configuration diagram of an exhaust valve valve mechanism having an exhaust valve that is opened using a driving force that is compressed by hydraulic oil and transmitted from the lower valve mechanism to the upper valve mechanism, and is electronically controlled as the lower valve mechanism The structural example of the exhaust valve which employ | adopted the type | formula is shown. 作動油を圧縮して下部動弁機構から上部動弁機構へ伝達される駆動力を用いて開かれる排気弁を備えた排気弁動弁機構の概略構成図であり、下部動弁機構としてカム式を採用した排気弁の構成例を示している。FIG. 2 is a schematic configuration diagram of an exhaust valve valve mechanism having an exhaust valve that is opened using a driving force that is compressed by hydraulic oil and transmitted from the lower valve mechanism to the upper valve mechanism; 2 shows an example of the configuration of an exhaust valve that employs.

以下、本発明に係る排気弁動弁機構、ディーゼルエンジン及び排気弁動弁機構の排気弁冷却方法の一実施形態を図面に基づいて説明する。
本実施形態のディーゼルエンジンは、例えば船舶主機用ディーゼルエンジンであり、作動油を圧縮して下部動弁機構10から上部動弁機構20へ伝達される駆動力を用いて開かれる排気弁5を備えた排気弁動弁機構4を備えている。
Hereinafter, an embodiment of an exhaust valve operating mechanism, a diesel engine, and an exhaust valve cooling method for an exhaust valve operating mechanism according to the present invention will be described with reference to the drawings.
The diesel engine of the present embodiment is, for example, a marine main engine diesel engine, and includes an exhaust valve 5 that is opened using a driving force that is compressed from hydraulic oil and transmitted from the lower valve mechanism 10 to the upper valve mechanism 20 . The exhaust valve operating mechanism 4 is provided.

図8に示す排気弁構造において、気筒1内に形成された燃焼室2の上部に連通して排気流路3が設けられ、この排気流路3を開閉するようにして排気弁動弁機構4を備えた排気弁5が設けられている。
図8に示す排気弁動弁機構4は、下部動弁機構10及び上部動弁機構20を備えている。この排気弁動弁機構4は、下部動弁機構10で圧縮した作動油を上部動弁機構20へ供給して伝達される駆動力を用い、上部動弁機構20の空気ばね21に押し上げられて閉じた状態にある排気弁5を、作動油の圧力により押し下げて開くものである。なお、図中の符号6は、下部動弁機構10と上部動弁機構20との間を接続する作動油流路である。
In the exhaust valve structure shown in FIG. 8, an exhaust passage 3 is provided in communication with the upper part of the combustion chamber 2 formed in the cylinder 1, and the exhaust valve valve mechanism 4 is opened and closed so as to open and close the exhaust passage 3. An exhaust valve 5 is provided.
The exhaust valve valve mechanism 4 shown in FIG. 8 includes a lower valve mechanism 10 and an upper valve mechanism 20. The exhaust valve operating mechanism 4 is pushed up by the air spring 21 of the upper valve operating mechanism 20 using the driving force transmitted by supplying the hydraulic oil compressed by the lower valve operating mechanism 10 to the upper valve operating mechanism 20. The exhaust valve 5 in a closed state is opened by being pushed down by the pressure of hydraulic oil. In addition, the code | symbol 6 in a figure is the hydraulic fluid flow path which connects between the lower valve mechanism 10 and the upper valve mechanism 20.

図8に示す下部動弁機構10は、メインバルブ11a,11bを備えた電磁弁ユニット11を操作し、油圧シリンダ12内のピストン13を押し上げる電子制御式であるが、これに限定されることはない。例えば図9に示す排気弁動弁機構4Aのように、下部動弁機構10Aとしてピストン13をカム15により押し上げるカム式を採用してもよい。図9において、図中の符号16はピストン13を下向きに付勢しているばねである。
なお、電子制御式の排気弁動弁機構4及びカム式の排気弁動弁機構4Aは、何れの機構を採用しても後述する上部動弁機構20側の構成及び動作は同じである。
The lower valve mechanism 10 shown in FIG. 8 is an electronic control type that operates the electromagnetic valve unit 11 including the main valves 11a and 11b and pushes up the piston 13 in the hydraulic cylinder 12, but is not limited thereto. Absent. For example, a cam type in which the piston 13 is pushed up by the cam 15 as the lower valve mechanism 10A, such as the exhaust valve mechanism 4A shown in FIG. In FIG. 9, reference numeral 16 in the drawing denotes a spring that biases the piston 13 downward.
The electronically controlled exhaust valve valve mechanism 4 and the cam-type exhaust valve valve mechanism 4A have the same configuration and operation on the upper valve mechanism 20 described later regardless of which mechanism is employed.

上部動弁機構20は、排気弁5が上下方向に移動して排気流路3を開閉する動作を可能にするため、軸部5aの上下方向移動を可能に支持する開閉動作支持部材である。この上部動弁機構20は、上述した空気ばね21に加えて、下部動弁機構10から供給される作動油を受け入れるシリンダ部22内に設置されたピストン23を備えている。このピストン23は、軸部5aの上端部に取り付けられて一体に動作する。
また、軸部5aは、空気ばね21と傘部5bとの間において、軸受部24で上下方向のスライドが可能に支持されている。
The upper valve mechanism 20 is an opening / closing operation support member that supports the shaft portion 5a to move in the vertical direction so that the exhaust valve 5 can move in the vertical direction to open and close the exhaust passage 3. In addition to the air spring 21 described above, the upper valve mechanism 20 includes a piston 23 installed in a cylinder portion 22 that receives the hydraulic oil supplied from the lower valve mechanism 10. The piston 23 is attached to the upper end portion of the shaft portion 5a and operates integrally.
The shaft portion 5a is supported by the bearing portion 24 so as to be vertically slidable between the air spring 21 and the umbrella portion 5b.

このように、作動油を圧縮して下部動弁機構10,10Aから上部動弁機構20へ伝達される駆動力を用いて開かれる排気弁5を備えた船舶主機用ディーゼルエンジンの排気弁動弁機構4は、本実施形態において、図1〜図3に示すように、排気弁5の弁体内部に形成されて作動油の一部を導入する冷媒循環流路30と、上部動弁機構20の筐体25を貫通して設けられた排油流路40とを備えている。そして、冷媒循環流路30及び排油流路40は、排気弁5の開閉動作時において、冷媒循環流路30の出口開口31と排油流路40の入口開口41とが連通し、冷媒循環流路30に導入される作動油の一部に流れを生じさせる。 As described above, the exhaust valve operating valve of the diesel engine for the ship main engine provided with the exhaust valve 5 that is opened by using the driving force transmitted from the lower valve operating mechanism 10, 10 </ b> A to the upper valve operating mechanism 20 by compressing the hydraulic oil. As shown in FIGS. 1 to 3, the mechanism 4 is formed inside the valve body of the exhaust valve 5 to introduce a part of hydraulic oil, and the upper valve mechanism 20 in the present embodiment. And an oil drain passage 40 provided through the casing 25. The refrigerant circulation flow path 30 and the oil discharge flow path 40 communicate with the outlet opening 31 of the refrigerant circulation flow path 30 and the inlet opening 41 of the oil discharge flow path 40 when the exhaust valve 5 is opened and closed. A flow is generated in part of the hydraulic oil introduced into the flow path 30.

冷媒循環流路30は、作動油の入口32がシリンダ部22内に連通するようピストン23に開口し、ピストン23及び軸部5aの内部を通って傘部5bに至る。傘部5bの内部に設けられる冷媒循環流路30は、可能な限り底面に近い位置を全周にわたって通り、再度軸部5aを通って出口開口31に至る。すなわち、温度上昇しやすい排気弁5の傘部5bについては、できるだけ表面に近い位置を全周にわたって通る冷媒循環流路30を設けることが望ましい。
また、排気弁5が閉じた状態において、出口開口31は空気ばね21の内部に開口するが、出口開口31からの作動油流出を防止するため、フランジ26の上面に固定してリング壁27を設けてある。この結果、出口開口31は、排気弁5の開閉動作範囲において、排油流路40の入口開口41と連通する位置を除いて、軸受部24からリング壁27まで壁面により塞がれた状態となる。
The refrigerant circulation passage 30 opens to the piston 23 so that the hydraulic oil inlet 32 communicates with the inside of the cylinder portion 22, and reaches the umbrella portion 5b through the inside of the piston 23 and the shaft portion 5a. The refrigerant circulation passage 30 provided inside the umbrella portion 5b passes through a position as close to the bottom surface as possible over the entire circumference, and again reaches the outlet opening 31 through the shaft portion 5a. That is, with respect to the umbrella portion 5b of the exhaust valve 5 that easily rises in temperature, it is desirable to provide the refrigerant circulation passage 30 that passes through the entire circumference as close as possible to the surface.
Further, in the state where the exhaust valve 5 is closed, the outlet opening 31 opens into the air spring 21, but in order to prevent hydraulic oil from flowing out from the outlet opening 31, the ring wall 27 is fixed to the upper surface of the flange 26. It is provided. As a result, the outlet opening 31 is closed by the wall surface from the bearing portion 24 to the ring wall 27 except for the position communicating with the inlet opening 41 of the oil drainage flow path 40 in the opening / closing operation range of the exhaust valve 5. Become.

排油流路40は、上部動弁機構20の筐体25を貫通して設けられ、その入口開口41は、排気弁5が開となり、冷媒循環流路30の口開口31と連通する位置にある。そして、排油流路40の他端は、図示省略の作動油タンクに接続されている。
また、排油流路40の適所には、例えば筐体25の外壁面近傍等に、作動油の流出流量を制御する流量制御部としてオリフィス42を設けてある。このオリフィス42は、作動油の流出量が過大になることを防止するものである。なお、オリフィス42に代えて、負荷に応じて流路断面積を最適化できるサーボ弁等を採用してもよい。
Oil discharge passage 40 is provided through the housing 25 of the upper valve operating mechanism 20, the inlet opening 41, the position the exhaust valve 5 in an open, communicating with the outlet opening 31 out of the coolant circulation flow path 30 It is in. The other end of the oil drain passage 40 is connected to a hydraulic oil tank (not shown).
Further, an orifice 42 is provided at an appropriate position of the oil discharge passage 40 as a flow rate control unit for controlling the flow rate of the hydraulic oil, for example, in the vicinity of the outer wall surface of the housing 25. The orifice 42 prevents the amount of hydraulic oil outflow from becoming excessive. Instead of the orifice 42, a servo valve or the like that can optimize the cross-sectional area of the flow path according to the load may be employed.

上述した本実施形態によれば、排気弁5が全閉の状態では、下部動弁機構10からの作動油供給がなく、従って、排気弁5は空気ばね21から上向きの付勢を受けてシート面に密着している。このとき、冷媒循環流路30内の作動油は、作動油の供給がないことに加えて出口開口31が塞がれているため、流動することなく流路内に留まっている。
しかし、下部動弁機構10が動作すると作動油流路6を流れる作動油の流れ(矢印F)が生じ、上部動弁機構20のシリンダ部22内に流入する。このため、ピストン23には作動油の圧力が作用し、軸部5aを下向きに押し下げる力が発生するので、この力が空気ばねの付勢に打ち勝つことにより、ピストン23及び排気弁5が押し下げられて排気流路3は開状態となる。
According to the above-described embodiment, when the exhaust valve 5 is fully closed, no hydraulic oil is supplied from the lower valve mechanism 10, and therefore the exhaust valve 5 receives an upward bias from the air spring 21 and receives the seat. It is in close contact with the surface. At this time, the working oil in the refrigerant circulation flow path 30 remains in the flow path without flowing because the working oil is not supplied and the outlet opening 31 is blocked.
However, when the lower valve mechanism 10 operates, a hydraulic oil flow (arrow F) flows through the hydraulic oil flow path 6 and flows into the cylinder portion 22 of the upper valve mechanism 20. For this reason, the pressure of the hydraulic oil acts on the piston 23 to generate a force that pushes down the shaft portion 5a. By overcoming the bias of the air spring, the piston 23 and the exhaust valve 5 are pushed down. As a result, the exhaust passage 3 is opened.

また、シリンダ部2に流入した作動油の一部は、入口32から冷媒循環流路30に流入する。そして、図3(b)に示すように、出口開口31及び入口開口41の位置が一致または略一致して互いに連通状態になると、冷媒循環流路30内の作動油は、図中に矢印fで示すように流れて排気弁5を冷却する。このとき、排気弁5を冷却した作動油は排油流路40からオリフィス42に流量制御されて流出し、この流出分を補充するようにして新たな作動油が入口32から流入してくる。このため、冷媒循環流路30内の作動油は、排気弁5が作動して作動油の排油流路40と連通するタイミングでのみ流路内を循環して流れ、温度の低い作動油により効率よく確実に排気弁5を冷却する。 A part of the working oil that flows into the cylinder portion 2 2 flows from the inlet 32 to the refrigerant circulation channel 30. Then, as shown in FIG. 3B, when the positions of the outlet opening 31 and the inlet opening 41 coincide or substantially coincide with each other and are in communication with each other, the hydraulic oil in the refrigerant circulation passage 30 is shown by an arrow f in the figure. The exhaust valve 5 is cooled as shown in FIG. At this time, the hydraulic oil that has cooled the exhaust valve 5 flows out from the exhaust oil flow path 40 to the orifice 42 and flows out, and new hydraulic oil flows in from the inlet 32 so as to replenish this outflow. For this reason, the hydraulic oil in the refrigerant circulation flow path 30 flows through the flow path only at the timing when the exhaust valve 5 is activated and communicates with the hydraulic oil discharge flow path 40, and the hydraulic oil is cooled by the low temperature hydraulic oil. The exhaust valve 5 is cooled efficiently and reliably.

ところで、下部動弁機構10,10Aのピストンストロークは、すなわち油圧シリンダ12内のピストン13に与えられたピストンストロークは、排気弁5の冷却により一部の作動油(矢印f)が排油流路40へ流出する排油量を補うため、排気弁開閉動作に必要な値に対して、作動油の排油量に応じた値を加えて設定することが望ましい。   By the way, the piston stroke of the lower valve mechanisms 10 and 10A, that is, the piston stroke given to the piston 13 in the hydraulic cylinder 12 is such that a part of the hydraulic oil (arrow f) is drained by the cooling of the exhaust valve 5. In order to compensate for the amount of oil drained to 40, it is desirable to add a value corresponding to the amount of hydraulic oil drainage to the value required for the exhaust valve opening / closing operation.

具体的には、図4(a)に示す従来のピストンストロークHに対して、図4(b)に示すように、排油量を補うためのピストンストロークΔHを加えたピストンストローク(H<H+ΔH)に設定する。すなわち、下部動弁機構10に設定される本実施形態のピストンストロークは、排気弁冷却を行わない場合(従来構造)と比較して、排油量に相当する作動油供給量分だけ長い値に設定すればよい。
なお、図4(a),(b)は電子制御式の排気弁動弁機構4を示しているが、カム式の排気弁動弁機構4Aについても同様である。
More specifically, as shown in FIG. 4B, the piston stroke (H <H) is added to the conventional piston stroke H shown in FIG. + ΔH). That is, the piston stroke of the present embodiment set in the lower valve mechanism 10 is longer than the case where the exhaust valve is not cooled (conventional structure) by the amount of hydraulic oil supplied corresponding to the amount of oil discharged. You only have to set it.
Incidentally, FIG. 4 (a), (b), but shows the exhaust valve valve mechanism 4 electronically controlled, same is true for exhaust valves valve mechanism 4A of cam type.

また、冷媒循環流路30の出口開口31と排油流路40の入口開口41とが連通する位置(冷却油流路の連通位置)は、エンジン性能に影響を与えることなく作動油の一部を利用した排気弁冷却を可能とする設定が望ましい。このため、図5に示すように、実線で示す全閉位置と想像線で示す排気弁5の開位置とにより定まる排気弁リフトLについては、排気弁5とシート部との間に形成されるシート部面積Saと、排気流路3に設定されている通路最小面積Sbとが等しい排気弁リフト量をL1として、排気弁リフトLがL1以上(LL1)となるように設定する。 Further, the position where the outlet opening 31 of the refrigerant circulation passage 30 and the inlet opening 41 of the oil discharge passage 40 communicate with each other (the communication position of the cooling oil passage) is part of the hydraulic oil without affecting the engine performance. It is desirable to enable the exhaust valve cooling using the. For this reason, as shown in FIG. 5, the exhaust valve lift L determined by the fully closed position indicated by the solid line and the open position of the exhaust valve 5 indicated by the imaginary line is formed between the exhaust valve 5 and the seat portion. The exhaust valve lift L is set to be equal to or greater than L1 (L L1), where L1 is the exhaust valve lift amount in which the seat area Sa is equal to the minimum passage area Sb set in the exhaust flow path 3.

図6は、冷媒循環流路30及び排油流路40の連通位置について、好ましい設定の説明図である。図6(a)は、クランク角度に対する排気弁リフトの関係を示し、図6(b)は、クランク角度に対する開口面積(シート部面積Sa)の関係を示している。
排気弁5の排気弁リフト及び開口面積は、クランク角度が進むにつれて大きくなり、所定のクランク角度範囲内で一定値を維持した後に小さくなって閉じる。なお、図中の実線表示は排気弁冷却を行わない場合であり、破線表示が排気弁冷却により変化する部分である。
FIG. 6 is an explanatory diagram of preferable settings for the communication positions of the refrigerant circulation passage 30 and the oil discharge passage 40. FIG. 6A shows the relationship of the exhaust valve lift with respect to the crank angle, and FIG. 6B shows the relationship of the opening area (seat portion area Sa) with respect to the crank angle.
The exhaust valve lift and the opening area of the exhaust valve 5 are increased as the crank angle is advanced, and are closed after maintaining a constant value within a predetermined crank angle range. In addition, the solid line display in a figure is a case where exhaust valve cooling is not performed, and a broken line display is a part which changes with exhaust valve cooling.

一方、排気に使用される有効面積は、図6(b)に網掛けを施した領域であり、シート部面積(開口面積)Saが通路最小面積Sbより小さい領域の面積となる。
そして、図6(a)に示すように、通路最小面積Sbに対応するクランク角度の排気弁リフトLが、「シート部面積Sa=通路最小面積Sb」の排気弁リフト量L1となる。
従って、冷却油通路の連通位置については、排気弁リフトLが通路最小面積Sbに対応する排気弁リフトL1より大きな値となる領域に設定すれば、排気弁冷却により生じる面積の減少は排気に使用される有効面積の網掛け外となるため、エンジン性能に影響することなく排気弁冷却を行うことができる。
On the other hand, the effective area used for exhaust is the area shaded in FIG. 6B, and the sheet area (opening area) Sa is the area of the area smaller than the minimum passage area Sb.
Then, as shown in FIG. 6A, the exhaust valve lift L having a crank angle corresponding to the minimum passage area Sb is the exhaust valve lift amount L1 of “seat portion area Sa = passage minimum area Sb”.
Therefore, if the exhaust valve lift L is set to a region where the exhaust valve lift L is larger than the exhaust valve lift L1 corresponding to the minimum passage area Sb, the reduction in the area caused by the exhaust valve cooling is used for exhaust. Therefore, the exhaust valve can be cooled without affecting the engine performance.

しかし、図7(a),(b)に示すように、冷却油通路の連通が排気に使用される有効面積内の領域で行われると、作動油の一部が冷却に使用されて開弁操作に使用できる量が減少するので、排気弁5が開弁して燃焼室2内の燃焼排ガスを排出する際には、排気弁リフト及び開口面積の遅延が生じる。すなわち、破線で示す排気弁リフト及び開口面積は、排気に使用される有効面積内において実線表示よりクランク角度が進んだ方向に移動するので、このような遅延により図7(b)に示すハッチング部の面積が減少し、この結果、ガス交換不良によるエンジン性能が悪化することとなる。換言すれば、冷却油通路の連通位置について、排気弁リフトLが通路最小面積Sbに対応する排気弁リフトL1より大きな値となる領域に設定することにより、図7(b)のハッチング部に相当する領域は排気に使用される有効面積外となり、この結果、ガス交換不良によるエンジン性能の悪化を防止することができる。   However, as shown in FIGS. 7A and 7B, when communication of the cooling oil passage is performed in a region within an effective area used for exhaust, a part of the hydraulic oil is used for cooling to open the valve. Since the amount that can be used for the operation is reduced, when the exhaust valve 5 is opened and the exhaust gas in the combustion chamber 2 is discharged, the exhaust valve lift and the opening area are delayed. That is, the exhaust valve lift and the opening area indicated by the broken line move in a direction in which the crank angle is advanced from the solid line display within the effective area used for the exhaust, so that the hatching portion shown in FIG. As a result, the engine performance is deteriorated due to poor gas exchange. In other words, the communication position of the cooling oil passage is set to a region where the exhaust valve lift L is larger than the exhaust valve lift L1 corresponding to the passage minimum area Sb, which corresponds to the hatched portion in FIG. This area is outside the effective area used for exhaust, and as a result, deterioration of engine performance due to poor gas exchange can be prevented.

また、上述した本実施形態の船舶主機用ディーゼルエンジンの排気弁動弁機構4,4Aは、作動油を圧縮して下部動弁機構10,10Aから上部動弁機構20へ伝達される駆動力を用いて開かれる排気弁5の排気弁冷却方法として、排気弁5の開閉動作時に冷却媒体として排気弁動弁機構,4Aで使用する作動油の一部を弁体内部に導入して循環させることが可能になり、この結果、排気弁動弁機構4,4Aに用いる作動油の一部を有効利用して排気弁を確実に冷却することができる。 Further, the exhaust valve valve mechanisms 4 , 4 </ b> A of the above-described diesel engine for the main engine of the present embodiment compress driving oil and transmit the driving force transmitted from the lower valve mechanisms 10, 10 </ b> A to the upper valve mechanism 20. As an exhaust valve cooling method of the exhaust valve 5 that is opened by using, a part of the hydraulic oil used in the exhaust valve operating mechanisms 4 and 4A as a cooling medium is introduced into the valve body and circulated as a cooling medium when the exhaust valve 5 is opened and closed. it becomes possible, as a result, it is possible that by effectively utilizing the part of the hydraulic fluid used to Haiki Bendo valve Kiko 4,4A reliably cool the exhaust valve 5.

このように、上述した本実施形態によれば、排気弁動弁機構4,4Aに用いる作動油の一部を有効利用して確実に冷却できるようになり、排気弁の信頼性や耐久性を向上させることができる。また、作動油の一部を有効利用するので、新たな冷媒及び冷媒供給系統を設ける場合と比較して船舶主機用ディーゼルエンジンの構造変更が容易である。
なお、本発明は上述した実施形態に限定されることはなく、たとえば類似する舶用主機以外のディーゼルエンジンにも適用可能であるなど、その要旨を逸脱しない範囲内において適宜変更することができる。
Thus, according to the present embodiment described above, it will be able to reliably cooled by effectively utilizing the part of the hydraulic fluid used in the exhaust Bendo valve mechanism 4, 4A, reliability and durability of the exhaust valve 5 Can be improved. Further, since a part of the hydraulic oil is effectively used, it is easy to change the structure of the marine main engine diesel engine as compared with the case where a new refrigerant and a refrigerant supply system are provided.
Note that the present invention is not limited to the above-described embodiment, and can be appropriately modified within a range not departing from the gist of the invention, for example, applicable to a diesel engine other than a similar marine main engine.

1 気筒
2 燃焼室
3 排気流路
4,4A 排気弁動弁機構
5 排気弁
5a 軸部
5b 傘部
6 作動流路
10,10A 下部動弁機構
11 電磁弁ユニット
12 油圧シリンダ
13 ピストン
15 カム
16 ばね
20 上部動弁機構
21 空気ばね
22 シリンダ部
23 ピストン
24 軸受部
25 筐体
26 フランジ
27 リング壁
30 冷媒循環流路
31 出口開口
32 入口
40 排油流路
41 入口開口
42 オリフィス(流量制御部)
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Combustion chamber 3 Exhaust flow path 4, 4A exhaust valve valve mechanism 5 Exhaust valve 5a Shaft part 5b Umbrella part 6 Operation flow path 10, 10A Lower valve mechanism 11 Electromagnetic valve unit 12 Hydraulic cylinder 13 Piston 15 Cam 16 Spring DESCRIPTION OF SYMBOLS 20 Upper valve mechanism 21 Air spring 22 Cylinder part 23 Piston 24 Bearing part 25 Housing | casing 26 Flange 27 Ring wall 30 Refrigerant circulation flow path 31 Outlet opening 32 Inlet 40 Oil drainage path 41 Inlet opening 42 Orifice (flow control part)

Claims (6)

圧縮された作動油によって上部動弁機構へ伝達される駆動力を用いて開かれる排気弁を備えた排気弁動弁機構において、
前記排気弁の弁体内部に形成されて前記作動油の一部を導入する冷媒循環流路と、前記上部動弁機構の筐体を貫通して設けられた排油流路とを備え、
前記排気弁が開いたとき、前記冷媒循環流路の出口開口と前記排油流路の入口開口とが連通して前記作動油の一部に流れを生じさせ、前記排気弁が閉じたとき、前記冷媒循環流路の前記出口開口が塞がれて前記作動油の流れが留まることを特徴とする排気弁動弁機構
In an exhaust valve valve mechanism having an exhaust valve that is opened using a driving force transmitted to the upper valve mechanism by compressed hydraulic oil ,
A refrigerant circulation passage formed inside the valve body of the exhaust valve for introducing a part of the hydraulic oil, and an oil discharge passage provided through a housing of the upper valve mechanism,
When the exhaust valve is opened, the outlet opening of the refrigerant circulation channel and the inlet opening of the oil discharge channel communicate with each other to cause a part of the hydraulic oil to flow, and when the exhaust valve is closed, An exhaust valve operating mechanism characterized in that the outlet opening of the refrigerant circulation passage is closed and the flow of the hydraulic oil remains .
前記排油流路に流量制御部を設けたことを特徴とする請求項1に記載の排気弁動弁機構The exhaust valve operating mechanism according to claim 1, wherein a flow rate control unit is provided in the oil discharge passage. 部動弁機構のピストンストロークは、前記排気弁開閉動作に必要な値に対して前記作動油の排油量に応じた値を加えて設定されることを特徴とする請求項1または2に記載の排気弁動弁機構The piston stroke of the lower Budoben mechanism, according to claim 1 or 2, characterized in that it is set by adding a value corresponding to the oil discharge amount of the working oil to the value required opening and closing of the exhaust valve The exhaust valve operating mechanism described in 1. 前記冷媒循環流路の出口開口と前記排油流路の入口開口とが連通する位置は、排気弁リフトLが、シート部面積と通路最小面積とを等しくした排気弁リフト量(L1)以上(LL1)となるように設定されることを特徴とする請求項1から3のいずれか1項に記載の排気弁動弁機構The position where the outlet opening of the refrigerant circulation channel and the inlet opening of the oil discharge channel communicate with each other is such that the exhaust valve lift L is equal to or greater than the exhaust valve lift amount (L1) in which the seat area is equal to the minimum passage area ( 4. The exhaust valve operating mechanism according to claim 1, wherein the exhaust valve operating mechanism is set to satisfy L L1). 5. 請求項1から4のいずれか1項に記載の排気弁動弁機構を備えるディーゼルエンジン。A diesel engine comprising the exhaust valve operating mechanism according to any one of claims 1 to 4. 圧縮された作動油によって上部動弁機構へ伝達される駆動力を用いて開かれる排気弁を備えた排気弁動弁機構の排気弁冷却方法において、
前記排気弁が開いたとき冷却媒体として前記作動油の一部を弁体内部に導入して循環させ、前記排気弁が閉じたとき前記作動油を前記弁体内部に導入しないことを特徴とする排気弁動弁機構の排気弁冷却方法。
In an exhaust valve cooling method of an exhaust valve operating mechanism having an exhaust valve that is opened using a driving force transmitted to the upper valve operating mechanism by compressed hydraulic oil ,
When the exhaust valve is opened, a part of the hydraulic oil is introduced into the valve body as a cooling medium and circulated, and when the exhaust valve is closed, the hydraulic oil is not introduced into the valve body. An exhaust valve cooling method for an exhaust valve operating mechanism .
JP2013238013A 2013-11-18 2013-11-18 Exhaust valve valve mechanism, diesel engine, and exhaust valve cooling method for exhaust valve valve mechanism Expired - Fee Related JP6091008B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013238013A JP6091008B2 (en) 2013-11-18 2013-11-18 Exhaust valve valve mechanism, diesel engine, and exhaust valve cooling method for exhaust valve valve mechanism
PCT/JP2014/067799 WO2015072175A1 (en) 2013-11-18 2014-07-03 Exhaust valve operating mechanism, diesel engine, and method for cooling exhaust valve of exhaust valve operating mechanism
CN201480059077.4A CN105683512B (en) 2013-11-18 2014-07-03 The air bleeding valve cooling means of air bleeding valve valve mechanism, diesel engine and air bleeding valve valve mechanism
KR1020167011918A KR101760648B1 (en) 2013-11-18 2014-07-03 Exhaust valve operating mechanism, diesel engine, and method for cooling exhaust valve of exhaust valve operating mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013238013A JP6091008B2 (en) 2013-11-18 2013-11-18 Exhaust valve valve mechanism, diesel engine, and exhaust valve cooling method for exhaust valve valve mechanism

Publications (3)

Publication Number Publication Date
JP2015098795A JP2015098795A (en) 2015-05-28
JP2015098795A5 true JP2015098795A5 (en) 2016-03-10
JP6091008B2 JP6091008B2 (en) 2017-03-08

Family

ID=53057123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013238013A Expired - Fee Related JP6091008B2 (en) 2013-11-18 2013-11-18 Exhaust valve valve mechanism, diesel engine, and exhaust valve cooling method for exhaust valve valve mechanism

Country Status (4)

Country Link
JP (1) JP6091008B2 (en)
KR (1) KR101760648B1 (en)
CN (1) CN105683512B (en)
WO (1) WO2015072175A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6703868B2 (en) 2016-03-08 2020-06-03 三菱重工業株式会社 Valve gear and crosshead internal combustion engine
CN114829183A (en) 2019-10-15 2022-07-29 复合材料传动***有限责任公司 Composite vehicle driveshaft assembly with integrated end yoke and method of producing the same
JP7310059B2 (en) * 2020-07-14 2023-07-19 フジオーゼックス株式会社 COOLANT FILLING DEVICE FOR HOLE HEAD ENGINE VALVE AND METHOD FOR FILLING COOLANT

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560409U (en) * 1978-10-23 1980-04-24
JPS5952108U (en) * 1982-09-30 1984-04-05 いすゞ自動車株式会社 Internal combustion engine intake and exhaust valve cooling system
JPS60152009U (en) * 1984-03-21 1985-10-09 小沢 理夫 exhaust valve device
EP0570649B1 (en) * 1992-05-19 1996-08-14 New Sulzer Diesel Ag Device for controlling a hydraulic fluid flow, especially for fuel injection to an internal combustion engine
JPH07293212A (en) * 1994-04-28 1995-11-07 Nittan Valve Kk Exhaust valve cooler
DK173452B1 (en) * 1998-09-09 2000-11-20 Man B & W Diesel As Valve for an internal combustion engine and method for cooling such a valve
DE10249941B4 (en) * 2002-10-26 2005-11-10 Man B & W Diesel A/S Method and device for cooling a valve
DE102005048566A1 (en) * 2005-10-11 2007-04-12 Man Nutzfahrzeuge Ag Auto-ignition internal combustion engine with combustion chambers for high ignition pressures
JP5015975B2 (en) * 2009-02-04 2012-09-05 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド Cam-driven exhaust valve actuation system for large two-cycle diesel engines
JP2010261315A (en) * 2009-04-30 2010-11-18 Ats Inc Resting device of cylinder
DE102010011070B4 (en) 2010-03-11 2012-04-05 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland valve assembly

Similar Documents

Publication Publication Date Title
KR102496255B1 (en) Flow control valve
KR102429023B1 (en) Coolant control valve unit, and engine cooling system having this
US10024219B2 (en) Engine system having coolant control valve
US8671893B2 (en) Actuating mechanism to regulate a controllable coolant pump
KR102463203B1 (en) Coolant control valve unit, and cooling system having this
JP3928945B2 (en) Thermostat for dual cooling system
JP6091008B2 (en) Exhaust valve valve mechanism, diesel engine, and exhaust valve cooling method for exhaust valve valve mechanism
KR102394584B1 (en) Coolant control valve unit, and cooling system having this
JP2015098795A5 (en)
US11060440B2 (en) Integrated flow control valve and engine cooling system with the same
US10794262B2 (en) Integrated flow rate control valve assembly and engine cooling system including the same
JP2006097690A (en) Method and engine for operating engine
SE540998C2 (en) Combustion engine with pneumatic valve spring
JP5564206B2 (en) Cylinder head structure having valve cooling device and valve oiling device
JP2006057635A (en) Mounting arrangement for electric water pump
KR20190028226A (en) Control system of coolant control valve unit, and the control method
KR20180060470A (en) Engine having coolant control valve
SE540359C2 (en) Internal combustion engine
JP2020051268A (en) Oil supply device for internal combustion engine
KR20190062803A (en) Coolant control valve unit, and cooling system having this
KR102621555B1 (en) engine cooling water flow variable control device
KR102496796B1 (en) Cooling system for engine and control method thereof
KR102474351B1 (en) Engine system having coolant control valve
JP2007187137A (en) Internal combustion engine
JP6107798B2 (en) Cooling device for rotary piston engine