JP2015095796A - Communication device, communication method, bandwidth dividing circuit, and bandwidth combining circuit - Google Patents

Communication device, communication method, bandwidth dividing circuit, and bandwidth combining circuit Download PDF

Info

Publication number
JP2015095796A
JP2015095796A JP2013234767A JP2013234767A JP2015095796A JP 2015095796 A JP2015095796 A JP 2015095796A JP 2013234767 A JP2013234767 A JP 2013234767A JP 2013234767 A JP2013234767 A JP 2013234767A JP 2015095796 A JP2015095796 A JP 2015095796A
Authority
JP
Japan
Prior art keywords
sub
band
modulation signal
circuit
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013234767A
Other languages
Japanese (ja)
Other versions
JP5642863B1 (en
Inventor
阿部 順一
Junichi Abe
阿部  順一
杉山 隆利
Takatoshi Sugiyama
隆利 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013234767A priority Critical patent/JP5642863B1/en
Application granted granted Critical
Publication of JP5642863B1 publication Critical patent/JP5642863B1/en
Publication of JP2015095796A publication Critical patent/JP2015095796A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transceivers (AREA)
  • Transmitters (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of intersymbol interference caused by division of a bandwidth decomposition adapter and improve signal transmission characteristic.SOLUTION: Dividing filters, among a plurality of dividing filters of a bandwidth dividing circuit, that divide a sub-modulation signal of the lowest frequency and a sub-modulation signal of the highest frequency, are each configured to have a filter coefficient for holding the frequency response in transition zones of modulation signals. Extraction files, among a plurality of extraction filters of a bandwidth combining circuit, that extract a sub-modulation signal of the lowest frequency and a sub-modulation signal of the highest frequency, are each configured to have a filter coefficient for holding the frequency response in transition zones of received signals. A modulation signal having a root roll-off characteristic is inputted from the bandwidth combining circuit to a receiving circuit, and a modulation signal having a full roll-off characteristic is demodulated by a demodulator.

Description

本発明は、無線通信または有線通信に用いられる通信装置において、異なる複数のユーザが限られた周波数帯域を有効利用するために、送信装置から周波数帯域を分割して送信された信号を受信装置で帯域合成して復調処理を行う通信装置、通信方法、帯域分割回路および帯域合成回路に関する。   The present invention relates to a communication apparatus used for wireless communication or wired communication, in which a plurality of different users effectively use a limited frequency band, and a signal transmitted by dividing the frequency band from the transmission apparatus is received by the reception apparatus. The present invention relates to a communication apparatus, a communication method, a band dividing circuit, and a band synthesizing circuit that perform band demodulation and demodulation processing.

図7は、従来の通信装置の構成例を示す(非特許文献1参照) 。図7(a) は送信装置、図7(b) は受信装置を示す。
図7(a) において、送信装置は、変調器1、ルートロールオフフィルタ2、帯域分割回路10を備える。変調器1は、送信するデータ信号をQPSKなどの変調方式で変調し、ルートロールオフフィルタ2を介して波形整形した変調信号を帯域分割回路10に入力する。
FIG. 7 shows a configuration example of a conventional communication device (see Non-Patent Document 1). FIG. 7A shows a transmitting apparatus, and FIG. 7B shows a receiving apparatus.
In FIG. 7 (a), the transmission apparatus includes a modulator 1, a root roll-off filter 2, and a band dividing circuit 10. The modulator 1 modulates the data signal to be transmitted by a modulation method such as QPSK, and inputs the modulated signal whose waveform is shaped via the root roll-off filter 2 to the band dividing circuit 10.

帯域分割回路10は、直並列変換回路12、FFT(高速フーリエ変換) 回路13、分割フィルタ141 〜14N (Nは2以上の整数)、周波数シフタ151 〜15N 、加算回路16、IFFT(高速逆フーリエ変換) 回路17、並直列変換回路18、D/A変換器19を備え、変調信号の帯域をN分割し、周波数軸上で分散配置して送信する構成である。変調信号の帯域を3分割(N=3)する例を図8に示す。 The band division circuit 10 includes a series-parallel conversion circuit 12, an FFT (Fast Fourier Transform) circuit 13, division filters 14 1 to 14 N (N is an integer of 2 or more), a frequency shifter 15 1 to 15 N , an addition circuit 16, and an IFFT. (Fast Inverse Fourier Transform) A circuit 17, a parallel-serial converter circuit 18, and a D / A converter 19 are provided, and the band of the modulation signal is divided into N parts and distributed and transmitted on the frequency axis. An example of dividing the modulation signal band into three (N = 3) is shown in FIG.

帯域分割回路10に入力する変調信号は直並列変換し、FFT回路13で高速フーリエ変換し、時間領域の信号から周波数領域の信号へ変換する(図8(a))。分割フィルタ141 〜14N は、周波数領域に変換された変調信号に対して、図8(b) の破線で示す信号帯域をN分割するフィルタ係数を周波数ごとに乗算し、N個のサブ変調信号を生成する。周波数シフタ151 〜15N は、各サブ変調信号を周波数軸上の所望の帯域に分散配置し、加算回路16で足し合わせることにより、分散配置されたサブ変調信号が生成される(図8(c))。この分散配置後のサブ変調信号は、IFFT回路17で高速逆フーリエ変換により周波数領域の信号から時間領域の信号へ変換され、並直列変換およびD/A変換して送信信号となる。 The modulation signal input to the band dividing circuit 10 is serial-parallel converted and fast Fourier transformed by the FFT circuit 13 to convert the time domain signal to the frequency domain signal (FIG. 8 (a)). The division filters 14 1 to 14 N multiply the modulated signal converted into the frequency domain by a filter coefficient for dividing the signal band indicated by the broken line in FIG. Generate a signal. The frequency shifters 15 1 to 15 N disperse and arrange the sub-modulated signals in a desired band on the frequency axis, and add them by the adder circuit 16 to generate sub-modulated signals that are distributed and arranged (FIG. 8 ( c)). The sub-modulated signal after the distributed arrangement is converted from a frequency domain signal to a time domain signal by high-speed inverse Fourier transform in the IFFT circuit 17, and converted into a transmission signal by parallel-serial conversion and D / A conversion.

図7(b) において、受信装置は、帯域合成回路20と復調器6を備える。帯域合成回路20は、A/D変換器21、直並列変換回路22、FFT回路23、抽出フィルタ241 〜24N 、周波数シフタ251 〜25N 、加算回路26、IFFT回路27、並直列変換回路28を備え、帯域をN分割されたサブ変調信号を分割前の変調信号に合成して復調する構成である。帯域が3分割(N=3)された変調信号を合成する例を図9に示す。 In FIG. 7 (b), the receiving device includes a band synthesis circuit 20 and a demodulator 6. The band synthesis circuit 20 includes an A / D converter 21, a serial-parallel conversion circuit 22, an FFT circuit 23, extraction filters 24 1 to 24 N , frequency shifters 25 1 to 25 N , an adder circuit 26, an IFFT circuit 27, and parallel-serial conversion. A circuit 28 is provided, and a sub-modulated signal whose band is divided into N is synthesized with a modulated signal before division and demodulated. An example of synthesizing a modulation signal whose band is divided into three (N = 3) is shown in FIG.

帯域合成回路20に入力する受信信号は、A/D変換および直並列変換し、FFT回路23で高速フーリエ変換し、時間領域の信号から周波数領域の受信信号へ変換する(図9(a))。抽出フィルタ241 〜24N は、周波数領域に変換された受信信号に対して、図9(b) の破線で示すフィルタ係数を周波数ごとに乗算し、送信側で周波数シフトされた各サブ変調信号を抽出する(図9(c))。周波数シフタ251 〜25N は、抽出されたサブ変調信号を送信側で周波数シフトされる前の帯域に戻し、加算回路26で足し合わせることにより、合成された変調信号を生成する(図9(d))。この合成後の変調信号は、IFFT回路27で高速逆フーリエ変換により周波数領域の信号から時間領域の信号へ変換され、並直列変換して出力される。復調器6は、帯域合成回路20から出力された変調信号を復調し、送信装置から送信されたデータ信号を復元する。 The received signal input to the band synthesizing circuit 20 is A / D converted and serial / parallel converted, and fast Fourier transformed by the FFT circuit 23 to convert the time domain signal to the frequency domain received signal (FIG. 9A). . Each of the extraction filters 24 1 to 24 N multiplies the reception signal converted into the frequency domain by a filter coefficient indicated by a broken line in FIG. Is extracted (FIG. 9 (c)). The frequency shifters 25 1 to 25 N return the extracted sub-modulated signal to the band before being frequency-shifted on the transmission side, and add it by the adding circuit 26 to generate a synthesized modulated signal (FIG. 9 ( d)). The combined modulation signal is converted from a frequency domain signal to a time domain signal by high-speed inverse Fourier transform in the IFFT circuit 27, and is subjected to parallel-serial conversion and output. The demodulator 6 demodulates the modulation signal output from the band synthesis circuit 20 and restores the data signal transmitted from the transmission device.

このような送信装置および受信装置を用いることにより、変調信号の占有帯域を分割して生成された各サブ変調信号を周波数軸上の任意の場所に分散配置できるため、異なる複数のユーザで不連続な空き周波数帯域を有効利用することができる。   By using such a transmission device and reception device, each sub-modulation signal generated by dividing the occupied band of the modulation signal can be distributed and distributed at arbitrary locations on the frequency axis, so that it is discontinuous among different users. It is possible to effectively use a vacant frequency band.

阿部, 山下,小林:“高周波数利用効率を実現するスペクトラム編集型帯域分散伝送の提案”信学技報 SAT2009-48, Dec 2009.Abe, Yamashita, Kobayashi: "Proposal of spectrum-editing band-dispersed transmission to achieve high frequency utilization efficiency" IEICE Tech. Reports SAT2009-48, Dec 2009. 阿部、山下、中平、小林:“スペクトラム編集型帯域分散伝送による既存衛星通信地球局の周波数利用効率向上の検討”信学技報 SAT2010-67, Oct 2010.Abe, Yamashita, Nakahira, Kobayashi: “Examination of frequency utilization efficiency improvement of existing satellite communication earth station by spectrum editing type band dispersion transmission” IEICE Technical Report SAT2010-67, Oct 2010.

送信側では、図8(c) に示すように、分割された各サブ変調信号がそれぞれルートロールオフ特性を有するように、分割フィルタ141 〜14N のフィルタ係数を設計する。なお、分割フィルタ141 ,14N の特性は、左右非対称にスペクトラム編集されている。 On the transmission side, as shown in FIG. 8 (c), the filter coefficients of the division filters 14 1 to 14 N are designed so that each divided sub-modulated signal has a root roll-off characteristic. The characteristics of the division filters 14 1 and 14 N are spectrum-edited asymmetrically.

図8(a) に示すシングルキャリア変調信号のロールオフ率をα、分割後のサブ変調信号のロールオフ率をβとするとき、図8(b) に示す分割フィルタ141 〜14N のフィルタ係数Hdk(f) は、次式で表される。 When the roll-off rate of the single carrier modulation signal shown in FIG. 8A is α and the roll-off rate of the sub-modulation signal after division is β, the filters of the division filters 14 1 to 14 N shown in FIG. The coefficient Hd k (f) is expressed by the following equation.

Figure 2015095796
ここで、fは周波数、fc k は分割後のサブ変調信号kの中心周波数、Bはロールオフフィルタの半値幅、Bk はサブ変調信号kの半値幅である。また、ルートロールオフ関数H(α,f,B)は、次式で表される。
Figure 2015095796
Where f is the frequency and f c k is the center frequency of the divided sub-modulation signal k, B is the half-value width of the roll-off filter, and B k is the half-value width of the sub-modulation signal k. The root roll-off function H (α, f, B) is expressed by the following equation.

Figure 2015095796
Figure 2015095796

受信側では、図9(a) に示すように、ロールオフ率βのルートロールオフ特性を有するサブ変調信号に対して、抽出フィルタ241 〜24N として、同じくロールオフ率βのルートロールオフフィルタを乗算する(図9(b))。これにより、図9(c) に示すように、抽出されたサブ変調信号はロールオフ率βのフルロールオフ特性を有する。 On the receiving side, as shown in FIG. 9 (a), for the sub-modulated signal having the root roll-off characteristic with the roll-off rate β, as the extraction filters 24 1 to 24 N , the root roll-off with the same roll-off rate β is obtained. The filter is multiplied (FIG. 9 (b)). As a result, as shown in FIG. 9 (c), the extracted sub-modulated signal has a full roll-off characteristic with a roll-off rate β.

抽出された各サブ変調信号を分割前の帯域に周波数シフトして合成する。このとき、隣接するサブ変調信号で電力が6dB低下する周波数、すなわち抽出フィルタのフィルタ特性における遮断周波数に相当する周波数同士を重ね合わせるように合成されるため、図9(d) に示すように、フルロールオフ特性を有するシングルキャリア変調信号が得られる。この信号は、フルロールオフ特性を有するため、符号間干渉が生じないので、このまま復調器6で復調できる。   Each extracted sub-modulated signal is frequency-shifted to the band before division and synthesized. At this time, because the frequency is reduced by 6 dB in the adjacent sub-modulated signal, that is, the frequencies corresponding to the cutoff frequency in the filter characteristics of the extraction filter are combined, as shown in FIG. A single carrier modulation signal having a full roll-off characteristic is obtained. Since this signal has a full roll-off characteristic, no intersymbol interference occurs, so that it can be demodulated by the demodulator 6 as it is.

ここで、図7に示す帯域分割回路10および帯域合成回路20だけを取り出し、これを「帯域分散アダプタ」として図10に示すような無線通信システムを構成する(非特許文献2)。すなわち、無線局Aおよび無線局Bは、既存のシングルキャリア変調信号を送受信する既存モデムとアンテナとの間に帯域分散アダプタを挿入し、既存モデムの出力信号を帯域分散アダプタにより周波数軸上で分割し、未使用帯域に分散配置することにより、周波数利用効率を向上させる構成である。   Here, only the band dividing circuit 10 and the band synthesizing circuit 20 shown in FIG. 7 are taken out, and this is used as a “band distribution adapter” to constitute a wireless communication system as shown in FIG. 10 (Non-Patent Document 2). That is, the wireless station A and the wireless station B insert a band dispersion adapter between the existing modem that transmits and receives an existing single carrier modulation signal and the antenna, and divide the output signal of the existing modem on the frequency axis by the band dispersion adapter. In addition, the frequency utilization efficiency is improved by distributing and arranging the unused bands.

図11は、既存モデムおよび帯域分散アダプタの回路構成例を示す。
図11において、既存モデムの送信回路は、変調器1、ルートロールオフフィルタ2およびD/A変換器3により構成され、帯域制限されたシングルキャリア変調信号を生成し、出力する。帯域分散アダプタの帯域分割回路10は、図7(a) に示す構成にA/D変換器11を加えた構成であり、送信回路の出力信号をA/D変換および直並列変換し、FFT回路13で時間領域から周波数領域の信号に変換し、分割フィルタ141 〜14N によりルートロールオフ特性を有する複数のサブ変調信号を生成し、周波数シフタ151 〜15N により未使用帯域に分散配置、IFFT回路17により時間領域の信号に変換し、並直列変換およびD/A変換して送信信号を出力する。
FIG. 11 shows a circuit configuration example of an existing modem and a bandwidth distribution adapter.
In FIG. 11, the transmission circuit of the existing modem is composed of a modulator 1, a root roll-off filter 2, and a D / A converter 3, and generates and outputs a band-limited single carrier modulation signal. The band dividing circuit 10 of the band distribution adapter has a configuration in which an A / D converter 11 is added to the configuration shown in FIG. 7A, and performs A / D conversion and serial-parallel conversion on the output signal of the transmission circuit, and an FFT circuit. 13 converts the signal from the time domain to the frequency domain, generates a plurality of sub-modulated signals having root roll-off characteristics by the division filters 14 1 to 14 N, and distributes them in the unused band by the frequency shifters 15 1 to 15 N The IFFT circuit 17 converts the signal into a time domain signal, performs parallel-serial conversion and D / A conversion, and outputs a transmission signal.

帯域分散アダプタの帯域合成回路20は、図7(b) に示す構成にD/A変換器29を加えた構成であり、受信信号を入力してA/D変換および直並列変換し、FFT回路23により時間領域から周波数領域の信号に変換し、抽出フィルタ241 〜24N によりフルロールオフ特性を有するサブ変調信号を抽出し、周波数シフタ251 〜25N で分割前の帯域にシフトし、合成する。合成された信号は、フルロールオフ特性を有するシングルキャリア変調信号である。これをIFFT回路27で時間領域の信号に変換し、並直列変換およびD/A変換して既存モデムの受信回路に入力する。 The band synthesizing circuit 20 of the band distribution adapter has a configuration in which a D / A converter 29 is added to the configuration shown in FIG. 7 (b), receives a received signal, performs A / D conversion and serial-parallel conversion, and an FFT circuit. 23, a signal in the time domain is converted into a signal in the frequency domain, sub-modulated signals having full roll-off characteristics are extracted by the extraction filters 24 1 to 24 N , and shifted to the band before the division by the frequency shifters 25 1 to 25 N , Synthesize. The synthesized signal is a single carrier modulation signal having a full roll-off characteristic. This is converted into a signal in the time domain by the IFFT circuit 27, subjected to parallel-serial conversion and D / A conversion, and input to the receiving circuit of the existing modem.

既存モデムの受信回路は、A/D変換器4、ルートロールオフフィルタ5および復調器6により構成され、帯域合成回路20の出力信号をA/D変換してルートロールオフフィルタ5を乗算し、復調器6で復調する。しかしながら、帯域合成回路20の出力信号は、図9(d) あるいは図12(d) に示すように、すでにフルロールオフ特性を有する。そのため、図12(e) ,(f) に示すように、受信回路内でさらにルートロールオフフィルタ5を乗算すると、ロールオフ特性を満足せず、符号間干渉が発生する。よって、信号伝送特性が劣化する課題がある。   The reception circuit of the existing modem includes an A / D converter 4, a root roll-off filter 5 and a demodulator 6. The output signal of the band synthesis circuit 20 is A / D converted and multiplied by the root roll-off filter 5. Demodulated by the demodulator 6. However, the output signal of the band synthesizing circuit 20 already has a full roll-off characteristic as shown in FIG. 9 (d) or FIG. 12 (d). For this reason, as shown in FIGS. 12E and 12F, if the root roll-off filter 5 is further multiplied in the receiving circuit, the roll-off characteristic is not satisfied, and intersymbol interference occurs. Therefore, there is a problem that the signal transmission characteristics deteriorate.

本発明は、帯域分散アダプタの分割に起因する符号間干渉の発生を防ぎ、信号伝送特性を改善させることができる通信装置、通信方法、帯域分割回路および帯域合成回路を提供することを目的とする。   An object of the present invention is to provide a communication device, a communication method, a band dividing circuit, and a band synthesizing circuit that can prevent the occurrence of intersymbol interference due to the division of the band dispersion adapter and improve the signal transmission characteristics. .

第1の発明は、変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成する複数の分割フィルタを備え、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力する帯域分割回路と、送信信号に対応する受信信号から各サブ変調信号を抽出する複数の抽出フィルタを備え、各サブ変調信号の帯域を分散配置前の帯域に戻して合成した変調信号を出力する帯域合成回路とを備え、送信回路から帯域分割回路に変調信号を入力し、帯域合成回路から出力される変調信号を受信回路のルートロールオフフィルタを介して復調器に入力して復調する構成である通信装置において、帯域分割回路の複数の分割フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を分割する分割フィルタは、それぞれ変調信号の遷移域の周波数特性を保持するフィルタ係数を有する構成であり、帯域合成回路の複数の抽出フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を抽出する抽出フィルタは、それぞれ受信信号の遷移域の周波数特性を保持するフィルタ係数を有する構成であり、帯域合成回路からルートロールオフ特性を有する変調信号を受信回路に入力し、復調器でフルロールオフ特性を有する変調信号を復調する。   1st invention is provided with the some division filter which produces | generates the sub modulation | alteration signal divided | segmented into the some zone | band on the frequency axis from the modulation signal, The transmission signal which distributedly arrange | positioned each sub modulation signal to the arbitrary places on a frequency axis And a plurality of extraction filters for extracting each sub-modulated signal from the received signal corresponding to the transmission signal, and the modulated signal synthesized by returning the band of each sub-modulated signal to the band before the distributed arrangement A band synthesizing circuit that outputs the modulated signal is input from the transmitting circuit to the band dividing circuit, and the modulated signal output from the band synthesizing circuit is input to the demodulator via the root roll-off filter of the receiving circuit and demodulated. In the communication device having the configuration, among the plurality of division filters of the band division circuit, the division filters for dividing the lowest frequency sub-modulation signal and the highest frequency sub-modulation signal are respectively provided. The extraction filter that has a filter coefficient that holds the frequency characteristics of the transition region of the modulation signal and extracts the sub-modulation signal of the lowest frequency and the sub-modulation signal of the highest frequency among the plurality of extraction filters of the band synthesis circuit is Each having a filter coefficient that holds the frequency characteristics of the transition region of the received signal, a modulated signal having a root roll-off characteristic from the band synthesis circuit is input to the receiving circuit, and a modulated signal having a full roll-off characteristic by a demodulator Is demodulated.

第1の発明の通信装置において、最低周波数のサブ変調信号および最高周波数のサブ変調信号を分割する分割フィルタは、フィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタであり、最低周波数のサブ変調信号および最高周波数のサブ変調信号を抽出する抽出フィルタは、フィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタである。   In the communication apparatus according to the first aspect of the invention, the division filter that divides the sub-modulation signal having the lowest frequency and the sub-modulation signal having the highest frequency is an asymmetric filter having a left-right asymmetric filter coefficient or a wide-band filter having a wider bandwidth than the sub-modulation signal. The extraction filter that extracts the lowest-frequency sub-modulation signal and the highest-frequency sub-modulation signal is an asymmetric filter with a left-right asymmetric filter coefficient or a wide-band filter wider than the bandwidth of the sub-modulation signal.

第2の発明は、送信回路から帯域分割回路に変調信号を入力し、帯域分割回路は、複数の分割フィルタで変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成し、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力し、帯域合成回路は、複数の抽出フィルタで送信信号に対応する受信信号から各サブ変調信号を抽出し、各サブ変調信号の帯域を分散配置前の帯域に戻して合成した変調信号を出力し、帯域合成回路から出力される変調信号を受信回路のルートロールオフフィルタを介して復調器に入力して復調する通信方法において、帯域分割回路の複数の分割フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を分割する分割フィルタは、それぞれ変調信号の遷移域の周波数特性を保持するフィルタ係数を有し、帯域合成回路の複数の抽出フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を抽出する抽出フィルタは、それぞれ受信信号の遷移域の周波数特性を保持するフィルタ係数を有し、帯域合成回路からルートロールオフ特性を有する変調信号を受信回路に入力し、復調器でフルロールオフ特性を有する変調信号を復調する。   According to a second aspect of the present invention, the modulation signal is input from the transmission circuit to the band dividing circuit, and the band dividing circuit generates sub-modulated signals divided into a plurality of bands on the frequency axis from the modulation signal by a plurality of dividing filters, A transmission signal in which the sub-modulated signal is distributed at any location on the frequency axis is output, and the band synthesis circuit extracts each sub-modulated signal from the received signal corresponding to the transmitted signal using multiple extraction filters. A communication method that outputs a modulated signal that is synthesized by returning the signal band to the band before the distributed arrangement, and that demodulates the modulated signal output from the band synthesizing circuit by inputting it to the demodulator via the root roll-off filter of the receiving circuit The division filter that divides the sub-modulation signal of the lowest frequency and the sub-modulation signal of the highest frequency among the plurality of division filters of the band division circuit is a frequency characteristic in the transition region of the modulation signal. Among the plurality of extraction filters of the band synthesis circuit, the extraction filter that extracts the lowest frequency sub-modulation signal and the highest frequency sub-modulation signal has the frequency characteristics of the transition region of the received signal, respectively. A modulation signal having a filter coefficient to be held and having a root roll-off characteristic is input from the band synthesis circuit to the receiving circuit, and a demodulator demodulates the modulation signal having the full roll-off characteristic.

第2の発明の通信方法において、最低周波数のサブ変調信号および最高周波数のサブ変調信号を分割する分割フィルタは、フィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタであり、最低周波数のサブ変調信号および最高周波数のサブ変調信号を抽出する抽出フィルタは、フィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタである。   In the communication method of the second invention, the division filter for dividing the sub-modulation signal having the lowest frequency and the sub-modulation signal having the highest frequency is an asymmetric filter whose filter coefficients are asymmetrical or a wide-band filter wider than the bandwidth of the sub-modulation signal. The extraction filter that extracts the lowest-frequency sub-modulation signal and the highest-frequency sub-modulation signal is an asymmetric filter with a left-right asymmetric filter coefficient or a wide-band filter wider than the bandwidth of the sub-modulation signal.

第3の発明は、変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成する複数の分割フィルタを備え、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力する帯域分割回路と、送信信号に対応する受信信号から各サブ変調信号を抽出する複数の抽出フィルタを備え、各サブ変調信号の帯域を分散配置前の帯域に戻して合成した変調信号を出力する帯域合成回路とを備え、送信回路から帯域分割回路に変調信号を入力し、帯域合成回路から出力される変調信号を受信回路のルートロールオフフィルタを介して復調器に入力して復調する構成である通信装置の帯域分割回路において、複数の分割フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を分割する分割フィルタは、それぞれ変調信号の遷移域の周波数特性を保持するフィルタ係数を有する構成である。   A third invention includes a plurality of division filters that generate sub-modulation signals that are divided into a plurality of bands on the frequency axis from the modulation signal, and a transmission signal in which each sub-modulation signal is dispersedly arranged at arbitrary locations on the frequency axis And a plurality of extraction filters for extracting each sub-modulated signal from the received signal corresponding to the transmission signal, and the modulated signal synthesized by returning the band of each sub-modulated signal to the band before the distributed arrangement A band synthesizing circuit that outputs the modulated signal is input from the transmitting circuit to the band dividing circuit, and the modulated signal output from the band synthesizing circuit is input to the demodulator via the root roll-off filter of the receiving circuit and demodulated. In the band dividing circuit of the communication device having the configuration, among the plurality of division filters, division filters that divide the lowest frequency sub-modulation signal and the highest frequency sub-modulation signal are respectively provided. A configuration having a filter coefficient for holding the frequency characteristic of the transition band of the modulated signal.

第3の発明の帯域分割回路において、最低周波数のサブ変調信号および最高周波数のサブ変調信号を分割する分割フィルタは、フィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタである。   In the band dividing circuit according to the third aspect of the invention, the dividing filter for dividing the sub-modulation signal having the lowest frequency and the sub-modulation signal having the highest frequency is an asymmetric filter having a bilaterally asymmetric filter coefficient or a wideband filter having a wider bandwidth than the sub-modulation signal. It is.

第4の発明は、第3の発明の帯域分割回路を含む通信装置の帯域合成回路において、複数の抽出フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を抽出する抽出フィルタは、それぞれ受信信号の遷移域の周波数特性を保持するフィルタ係数を有する構成であり、帯域合成回路からルートロールオフ特性を有する変調信号を受信回路に入力し、復調器でフルロールオフ特性を有する変調信号を復調する。   According to a fourth aspect of the present invention, in the band synthesizing circuit of the communication apparatus including the band dividing circuit according to the third aspect of the present invention, the extraction filter for extracting the lowest frequency sub-modulated signal and the highest frequency sub-modulated signal among the plurality of extraction filters is , Each having a filter coefficient that retains the frequency characteristics of the transition region of the received signal, a modulated signal having a root roll-off characteristic is input from the band synthesis circuit to the receiving circuit, and the demodulator has a full roll-off characteristic. Demodulate the signal.

第4の発明の帯域合成回路において、最低周波数のサブ変調信号および最高周波数のサブ変調信号を抽出する抽出フィルタは、フィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタである。   In the band synthesizing circuit according to the fourth aspect of the present invention, the extraction filter for extracting the sub-modulation signal having the lowest frequency and the sub-modulation signal having the highest frequency is an asymmetric filter having a left-right asymmetric filter coefficient or a wideband filter having a wider bandwidth than the sub-modulation signal. It is.

本発明は、送信側の帯域分割回路では、既存モデムなどの送信装置が出力する変調信号を複数のサブ変調信号に分割し、周波数軸上に分散配置して送信する。受信側の帯域合成回路では、受信信号からサブ変調信号を抽出して合成した変調信号を既存モデムなどの受信装置に入力する。このような構成において、分割および抽出時に分割前の信号の遷移域の周波数特性を保持するフィルタ係数を用いることにより、帯域合成回路からルートロールオフ特性を有する変調信号を受信回路に入力し、復調器でフルロールオフ特性を有する変調信号を復調することができ、符号間干渉の発生を防ぎ、伝送特性を向上させることができる。   According to the present invention, a transmission-side band dividing circuit divides a modulation signal output from a transmission device such as an existing modem into a plurality of sub-modulation signals, and distributes them on the frequency axis for transmission. In the reception side band synthesis circuit, a modulated signal extracted from the received signal and synthesized is input to a receiving apparatus such as an existing modem. In such a configuration, by using a filter coefficient that retains the frequency characteristics of the transition region of the signal before division at the time of division and extraction, a modulation signal having a root roll-off characteristic is input from the band synthesis circuit to the reception circuit and demodulated. The demodulator can demodulate the modulated signal having the full roll-off characteristic, prevent the occurrence of intersymbol interference, and improve the transmission characteristic.

また、帯域分割回路および帯域合成回路を帯域分散アダプタとして、既存モデムの送信回路および受信回路に接続して用いることができる。   Further, the band dividing circuit and the band synthesizing circuit can be used as a band distribution adapter by being connected to a transmission circuit and a reception circuit of an existing modem.

本発明の通信装置の実施例1の構成を示す図である。It is a figure which shows the structure of Example 1 of the communication apparatus of this invention. 実施例1の帯域分割回路10Aにおける帯域分割例を示す図である。It is a figure which shows the example of a band division in the band division circuit 10A of Example 1. FIG. 実施例1の帯域合成回路20Aにおける帯域合成例を示す図である。It is a figure which shows the band synthetic | combination example in 20 A of band synthetic | combination circuits of Example 1. FIG. 本発明の通信装置の実施例2の構成を示す図である。It is a figure which shows the structure of Example 2 of the communication apparatus of this invention. 実施例2の帯域分割回路10Bにおける帯域分割例を示す図である。It is a figure which shows the example of a band division in the band division circuit 10B of Example 2. FIG. 実施例2の帯域合成回路20Bにおける帯域合成例を示す図である。It is a figure which shows the band synthesis example in the band synthesis circuit 20B of Example 2. FIG. 従来の通信装置の構成例を示す図である。It is a figure which shows the structural example of the conventional communication apparatus. 従来の帯域分割回路10における帯域分割例を示す図である。It is a figure which shows the example of a band division in the conventional band division circuit. 従来の帯域合成回路20における帯域合成例を示す図である。It is a figure which shows the band synthetic | combination example in the conventional band synthetic | combination circuit 20. FIG. 帯域分散アダプタを用いた無線通信システムの構成例を示す図である。It is a figure which shows the structural example of the radio | wireless communications system using a band dispersion | distribution adapter. 既存モデムおよび帯域分散アダプタの回路構成例を示す図である。It is a figure which shows the circuit structural example of the existing modem and a band distribution adapter. 既存モデムおよび帯域分散アダプタにおける帯域合成例を示す図である。It is a figure which shows the example of a band synthesis in the existing modem and a band distribution adapter.

図1は、本発明の通信装置の実施例1の構成を示す。
図1において、実施例1の通信装置の帯域分散アダプタは、既存モデムの送信回路に接続される帯域分割回路10Aと、既存モデムの受信回路に接続される帯域合成回路20Aにより構成される。
FIG. 1 shows a configuration of a communication apparatus according to a first embodiment of the present invention.
In FIG. 1, the bandwidth distribution adapter of the communication apparatus according to the first embodiment includes a band division circuit 10A connected to a transmission circuit of an existing modem and a band synthesis circuit 20A connected to a reception circuit of the existing modem.

帯域分割回路10Aは、図11に示す帯域分散アダプタの帯域分割回路10の低周波数側および高周波数側の分割フィルタ141 ,14N を、遷移域保存型分割フィルタ14A1 ,14AN に置き換えた他は同じ構成である。帯域合成回路20Aは、図11に示す帯域分散アダプタの帯域合成回路20の低周波数側および高周波数側の抽出フィルタ241 ,24N を、遷移域保存型抽出フィルタ24A1 ,24AN に置き換えた他は同じ構成である。 In the band dividing circuit 10A, the low frequency side and high frequency side dividing filters 14 1 and 14 N of the band dividing circuit 10 of the band distribution adapter shown in FIG. 11 are replaced with transition band preserving type dividing filters 14A 1 and 14A N. Others have the same configuration. The band synthesis circuit 20A replaces the extraction filters 24 1 and 24 N on the low frequency side and the high frequency side of the band synthesis circuit 20 of the band dispersion adapter shown in FIG. 11 with the transition band preserving type extraction filters 24A 1 and 24A N. Others have the same configuration.

遷移域保存型分割フィルタ14A1 ,14AN および遷移域保存型抽出フィルタ24A1 ,24AN のフィルタ係数は、左右非対称、またはサブ変調信号の帯域幅よりも広い周波数特性を有するフィルタ係数にすることで、既存モデムの送信回路から出力されたシングルキャリア変調信号の遷移域の特性を保持して、シングルキャリア変調信号の分割、合成を実現する。 The filter coefficients of the transition region preserving division filters 14A 1 and 14A N and the transition region preserving extraction filters 24A 1 and 24A N are left-right asymmetric or filter coefficients having a frequency characteristic wider than the bandwidth of the sub-modulation signal. Thus, the characteristics of the transition region of the single carrier modulation signal output from the transmission circuit of the existing modem are maintained, and the division and synthesis of the single carrier modulation signal are realized.

帯域分割回路10Aは、既存モデムの送信回路から出力されるシングルキャリア変調信号をA/D変換および直並列変換し、FFT回路13で時間領域から周波数領域の信号に変換し、遷移域保存型分割フィルタ14A1 ,14AN および分割フィルタ142 〜14N-1 で複数のサブ変調信号に分割する。 The band division circuit 10A performs A / D conversion and serial / parallel conversion on the single carrier modulation signal output from the transmission circuit of the existing modem, and converts the signal from the time domain to the frequency domain by the FFT circuit 13, and performs the transition area preserving division The signals are divided into a plurality of sub-modulated signals by the filters 14A 1 and 14A N and the division filters 14 2 to 14 N−1 .

変調信号の帯域を3分割(N=3)する例を図2に示す。ここで、遷移域保存型分割フィルタ14A1 ,14A3 により、低周波数側および高周波数側の1つのサブ変調信号は、左右非対称、またはサブ変調信号の帯域幅よりも広い周波数特性を有するフィルタ係数を有するフィルタで分割される。すなわち、低周波数側の遷移域保存型分割フィルタ14A1 は、シングルキャリア変調信号の遷移域の周波数特性をそのまま通過させるフィルタ係数とする。例えば、図2(b1)に示すように、左半分を矩形フィルタである非対称フィルタとする、もしくは、図2(b2)に示すように、遷移域を通過域とする広帯域なフィルタとする。図2(b2)のフィルタ係数は、左右対称、左右非対称を問わない。 An example in which the modulation signal band is divided into three (N = 3) is shown in FIG. Here, due to the transition band preserving division filters 14A 1 and 14A 3 , one sub-modulation signal on the low frequency side and the high frequency side is left-right asymmetric, or a filter coefficient having a frequency characteristic wider than the bandwidth of the sub-modulation signal. Is divided by a filter having That is, the low-frequency-side transition region preserving division filter 14A 1 is a filter coefficient that passes the frequency characteristics of the transition region of the single carrier modulation signal as it is. For example, as shown in FIG. 2 (b1), the left half is an asymmetric filter that is a rectangular filter, or as shown in FIG. 2 (b2), it is a broadband filter having a transition band as a pass band. The filter coefficients in FIG. 2 (b2) may be left-right symmetric or left-right asymmetric.

同様に、高周波数側の遷移域保存型分割フィルタ14A3 は、シングルキャリア変調信号の遷移域の周波数特性をそのまま通過させるフィルタ係数とする。例えば、図2(b1),(b2)に示すように、右半分を矩形フィルタである非対称フィルタまたは広帯域なフィルタとする。 Similarly, the transition region preserving division filter 14A 3 on the high frequency side is a filter coefficient that passes the frequency characteristic of the transition region of the single carrier modulation signal as it is. For example, as shown in FIGS. 2 (b1) and 2 (b2), the right half is an asymmetric filter that is a rectangular filter or a broadband filter.

この遷移域保存型分割フィルタ14A1 ,14A3 により分割された低周波数側および高周波数側のサブ変調信号は、図2(c) に示すように左右のロールオフ率が異なる。左端および右端以外の分割フィルタ142 (〜14N-1 )は、左右対称のルートロールオフフィルタである。 The low-frequency side and high-frequency side sub-modulated signals divided by the transition band preserving division filters 14A 1 and 14A 3 have different left and right roll-off rates as shown in FIG. The division filters 14 2 (˜14 N-1 ) other than the left end and the right end are symmetric root roll-off filters.

これらの分割フィルタにより生成されたサブ変調信号は、周波数シフタ151 〜15N により周波数軸上の未使用帯域にシフトされ、加算回路16により1つの周波数軸上の信号にした後で、IFFT回路17で時間領域の信号に変換し、直並列変換およびD/A変換して送信する。 The sub-modulated signals generated by these division filters are shifted to an unused band on the frequency axis by the frequency shifters 15 1 to 15 N , converted into a signal on one frequency axis by the adder circuit 16, and then the IFFT circuit In 17, the signal is converted into a signal in the time domain, serial-parallel converted and D / A converted, and transmitted.

帯域合成回路20Aも同様であり、受信信号をA/D変換および直並列変換し、FFT23で時間領域から周波数領域の信号に変換し、遷移域保存型抽出フィルタ24A1 ,24AN および抽出フィルタ242 〜24N-1 で複数のサブ変調信号を抽出する。 The same applies to the band synthesizing circuit 20A. The received signal is A / D converted and serial-parallel converted, converted from a time domain signal to a frequency domain signal by the FFT 23, and the transition area preserving extraction filters 24A 1 and 24A N and the extraction filter 24 are converted. A plurality of sub-modulated signals are extracted from 2 to 24 N-1 .

変調信号の帯域を3分割(N=3)する例を図3に示す。ここで、遷移域保存型抽出フィルタ24A1 ,24A3 により、低周波数側および高周波数側の1つのサブ変調信号は、左右非対称、またはサブ変調信号の帯域幅よりも広い周波数特性を有するフィルタ係数を有するフィルタで抽出される。すなわち、低周波数側の遷移域保存型抽出フィルタ24A1 は、受信信号の遷移域の周波数特性をそのまま通過させるフィルタ係数とする。例えば、図3(b1)に示すように、左半分を矩形フィルタである非対称フィルタとする、もしくは、図3(b2)に示すように、遷移域を通過域とする広帯域なフィルタとする。図3(b2)のフィルタ係数は、左右対称、左右非対称を問わない。 An example in which the modulation signal band is divided into three (N = 3) is shown in FIG. Here, by the transition band preserving extraction filters 24A 1 and 24A 3 , one sub-modulation signal on the low frequency side and the high frequency side has a left-right asymmetrical filter coefficient having a frequency characteristic wider than the bandwidth of the sub-modulation signal. Is extracted with a filter having That is, the transition zone preserving extraction filter 24A 1 of the low frequency side, and as filter coefficients to pass a frequency characteristic of the transition band of the received signal. For example, as shown in FIG. 3 (b1), the left half is an asymmetric filter that is a rectangular filter, or as shown in FIG. 3 (b2), it is a broadband filter having a transition band as a pass band. The filter coefficients in FIG. 3 (b2) may be left-right symmetric or left-right asymmetric.

同様に、高周波数側の遷移域保存型抽出フィルタ24A3 は、受信信号の遷移域の周波数特性をそのまま通過させるフィルタ係数とする。例えば、図3(b1),(b2)に示すように、右半分を矩形フィルタである非対称フィルタまたは広帯域なフィルタとする。 Similarly, the transition band preserving extraction filter 24A 3 of the high-frequency side, and as filter coefficients to pass a frequency characteristic of the transition band of the received signal. For example, as shown in FIGS. 3 (b1) and 3 (b2), the right half is an asymmetric filter that is a rectangular filter or a broadband filter.

この遷移域保存型抽出フィルタ24A1 ,24A3 により抽出された低周波数側および高周波数側のサブ変調信号は、図3(c) に示すように左右のロールオフ率が異なる。左端および右端以外の抽出フィルタ242 (〜24N-1 )は、左右対称のルートロールオフフィルタである。 The low-frequency side and high-frequency side sub-modulated signals extracted by the transition band preserving type extraction filters 24A 1 and 24A 3 have different left and right roll-off rates as shown in FIG. The extraction filters 24 2 (˜24 N−1 ) other than the left end and the right end are symmetric root roll-off filters.

これらの抽出フィルタにより生成されたサブ変調信号は、周波数シフタ251 〜25N により分割前の帯域にシフトされ、加算回路26で合成される。これをIFFT回路27で時間領域の信号に変換し、直並列変換およびD/A変換する。これにより、ルートロールオフ特性を有するシングルキャリア変調信号が生成される(図3(d))。これを既存モデムの受信回路に入力する。 The sub-modulated signals generated by these extraction filters are shifted to the band before division by the frequency shifters 25 1 to 25 N and synthesized by the adder circuit 26. This is converted into a signal in the time domain by the IFFT circuit 27, and serial-parallel conversion and D / A conversion are performed. As a result, a single carrier modulation signal having a root roll-off characteristic is generated (FIG. 3 (d)). This is input to the receiving circuit of the existing modem.

このように、帯域分散アダプタの帯域合成回路20Aの出力信号がルートロールオフ特性を有することで、既存モデムの受信回路でルートロールオフフィルタ5を乗算することによりフルロールオフ特性の変調信号が得られ(図3(e),(f))、符号間干渉の発生を防ぎ、伝送特性を改善することができる。   As described above, the output signal of the band synthesizing circuit 20A of the band dispersion adapter has the root roll-off characteristic, so that the modulation signal having the full roll-off characteristic is obtained by multiplying the root roll-off filter 5 by the receiving circuit of the existing modem. (FIGS. 3E and 3F), it is possible to prevent the occurrence of intersymbol interference and improve the transmission characteristics.

図4は、本発明の通信装置の実施例2の構成を示す。
図4において、実施例2の通信装置の帯域分散アダプタは、既存モデムの送信回路に接続される帯域分割回路10Bと、既存モデムの受信回路に接続される帯域合成回路20Bにより構成される。
FIG. 4 shows the configuration of a second embodiment of the communication apparatus of the present invention.
In FIG. 4, the band distribution adapter of the communication apparatus according to the second embodiment includes a band division circuit 10B connected to a transmission circuit of an existing modem and a band synthesis circuit 20B connected to a reception circuit of the existing modem.

帯域分割回路10Bは、図1に示す実施例1の帯域分割回路10Aの分割フィルタ142 〜14N-1 を、フィルタ係数(ロールオフ率)が左右非対称の非対称分割フィルタ14B2 〜14BN-1 に置き換えた他は同様の構成である。帯域合成回路20Bは、図1に示す実施例1の抽出フィルタ242 〜24N-1 を、フィルタ係数(ロールオフ率)が左右非対称の非対称抽出フィルタ24B2 〜24BN-1 に置き換えた他は同様の構成である。 The band dividing circuit 10B uses the dividing filters 14 2 to 14 N-1 of the band dividing circuit 10A according to the first embodiment shown in FIG. 1 as asymmetric dividing filters 14B 2 to 14B N− whose filter coefficients (roll-off rates) are asymmetrical. The configuration is the same except that it is replaced with 1 . Other band synthesizing circuit 20B is the extraction filter 24 2 to 24 N-1 of the first embodiment shown in FIG. 1, the filter coefficients (roll-off rate) was replaced with asymmetric extraction filter 24B 2 ~24B N-1 asymmetrical Has the same configuration.

遷移域保存型分割フィルタ14A1 ,14AN および遷移域保存型抽出フィルタ24A1 ,24AN のフィルタ係数は、実施例1と同様に、左右非対称、またはサブ変調信号の帯域幅よりも広い周波数特性を有するフィルタ係数にすることで、既存モデムの送信回路から出力されたシングルキャリア変調信号の遷移域の特性を保持して、シングルキャリア変調信号の分割、合成を実現する。ただし、遷移域保存型分割フィルタ14A1 ,14AN にそれぞれ隣接する非対称分割フィルタ14B2 ,14BN-1 、および遷移域保存型抽出フィルタ24A1 ,24AN にそれぞれ隣接する非対称抽出フィルタ24B2 ,24BN-1 には、次のような制約がある。 The filter coefficients of the transition region preserving division filters 14A 1 and 14A N and the transition region preserving extraction filters 24A 1 and 24A N are asymmetrical to the left or right, or a frequency characteristic wider than the bandwidth of the submodulation signal. By using the filter coefficient having the above, the characteristics of the transition region of the single carrier modulation signal output from the transmission circuit of the existing modem are maintained, and the division and synthesis of the single carrier modulation signal are realized. However, the asymmetric division filters 14B 2 and 14B N−1 adjacent to the transition region preserving division filters 14A 1 and 14A N , respectively, and the asymmetric extraction filters 24B 2 and adjacent to the transition region preserving extraction filters 24A 1 and 24A N , respectively. 24B N-1 has the following restrictions.

変調信号の帯域を3分割(N=3)する例を図5,図6に示す。
図5(b1),(b2) に示すように、低周波数側の遷移域保存型分割フィルタ14A1 の高周波数側の遷移域(右端)のフィルタ係数と、隣接する非対称分割フィルタ14B2 の低周波数側の遷移域(左端)のフィルタ係数は、線対称の関係、すなわち同じロールオフ率で生成されたものとする。高周波数側の遷移域保存型分割フィルタ14A3 と隣接する非対称分割フィルタ14B2 についても同様である。
Examples of dividing the modulation signal band into three (N = 3) are shown in FIGS.
As shown in FIGS. 5 (b1) and 5 (b2), the filter coefficient in the transition region (right end) on the high frequency side of the transition region preserving division filter 14A 1 on the low frequency side and the low coefficient of the adjacent asymmetric division filter 14B 2 are shown. It is assumed that the filter coefficients in the frequency side transition region (left end) are generated with a line-symmetric relationship, that is, with the same roll-off rate. The same applies to the asymmetric splitting filter 14B 2 adjacent to the transition zone preserving splitting filter 14A 3 of the high frequency side.

図6(b1),(b2) に示すように、低周波数側の遷移域保存型抽出フィルタ24A1 の高周波数側の遷移域(右端)のフィルタ係数と、隣接する非対称抽出フィルタ24B2 の低周波数側の遷移域(左端)のフィルタ係数は、線対称の関係、すなわち同じロールオフ率で生成されたものとする。高周波数側の遷移域保存型抽出フィルタ24A3 と隣接する非対称抽出フィルタ24B2 についても同様である。 FIG 6 (b1), as shown in (b2), the filter coefficient of the transition band preserving extract the high-frequency side of the transition band of the filter 24A 1 of the low frequency side (right end) of the adjacent asymmetric extraction filter 24B 2 Low It is assumed that the filter coefficients in the frequency side transition region (left end) are generated with a line-symmetric relationship, that is, with the same roll-off rate. The same applies to asymmetric extraction filter 24B 2 adjacent to the transition zone preserving extraction filter 24A 3 of the high frequency side.

なお、帯域合成回路20Bの各分割フィルタのフィルタ係数は、送信側の帯域分割回路10Bにおいて、当該遷移域を生成した分割フィルタと同じフィルタ係数を有する、すなわちロールオフ率が同一である必要がある。   The filter coefficient of each division filter of the band synthesis circuit 20B needs to have the same filter coefficient as that of the division filter that generates the transition band in the transmission-side band division circuit 10B, that is, the roll-off rate must be the same. .

1 変調器
2 ルートロールオフフィルタ
3 D/A変換器
4 A/D変換器
5 ルートロールオフフィルタ
6 復調器
10,10A,10B 帯域分割回路
11 A/D変換器
12 直並列変換回路
13 FFT(高速フーリエ変換) 回路
141 〜14N 分割フィルタ
14A1 ,14AN 遷移域保存型分割フィルタ
14B2 〜14BN-1 非対称分割フィルタ
151 〜15N 周波数シフタ
16 加算回路
17 IFFT(高速逆フーリエ変換) 回路
18 並直列変換回路
19 D/A変換器
20,20A,20B 帯域合成回路
21 A/D変換器
22 直並列変換回路
23 FFT(高速フーリエ変換) 回路
241 〜24N 抽出フィルタ
24A1 ,24AN 遷移域保存型抽出フィルタ
24B2 〜24BN-1 非対称抽出フィルタ
251 〜25N 周波数シフタ
26 加算回路
27 IFFT(高速逆フーリエ変換) 回路
28 並直列変換回路
29 D/A変換器
DESCRIPTION OF SYMBOLS 1 Modulator 2 Root roll-off filter 3 D / A converter 4 A / D converter 5 Root roll-off filter 6 Demodulator 10, 10A, 10B Band division circuit 11 A / D converter 12 Serial-parallel conversion circuit 13 FFT ( Fast Fourier transform) circuit 14 1 to 14 N division filter 14A 1 , 14A N transition band preserving division filter 14B 2 to 14B N-1 asymmetric division filter 15 1 to 15 N frequency shifter 16 addition circuit 17 IFFT (fast inverse Fourier transform) ) Circuit 18 Parallel-serial conversion circuit 19 D / A converter 20, 20A, 20B Band synthesis circuit 21 A / D converter 22 Series-parallel conversion circuit 23 FFT (Fast Fourier Transform) circuit 24 1 to 24 N extraction filter 24A 1 , 24A N transition region preserving extraction filter 24B 2 to 24B N-1 asymmetric extraction filter 25 1 to 25 N frequency shifter 2 6 Adder Circuit 27 IFFT (Fast Inverse Fourier Transform) Circuit 28 Parallel Serial Converter 29 D / A Converter

第1の発明は、対向する無線局に、送信回路および受信回路を有するモデムと、該送信回路に接続される帯域分割回路および受信回路に接続される帯域合成回路を有する帯域分散アダプタとを備え、帯域分割回路は、送信回路から入力する変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成する複数の分割フィルタを備え、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力し、帯域合成回路は、対向する無線局の送信信号を受信した受信信号から各サブ変調信号を抽出する複数の抽出フィルタを備え、各サブ変調信号の帯域を分散配置前の帯域に戻して合成した変調信号を受信回路に出力し、受信回路は、帯域合成回路から出力される変調信号をルートロールオフフィルタを介して復調器に入力して復調する構成である通信装置において、帯域分割回路の複数の分割フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を分割する分割フィルタは、それぞれ変調信号の遷移域の周波数特性を保持するフィルタ係数を有し、かつフィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタであり、帯域合成回路の複数の抽出フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を抽出する抽出フィルタは、それぞれ受信信号の遷移域の周波数特性を保持するフィルタ係数を有し、かつフィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタであり、帯域合成回路からルートロールオフ特性を有する変調信号を受信回路のルートロールオフフィルタに入力し、ルロールオフ特性を有する変調信号を生成して復調器に入力して復調する。 According to a first aspect of the present invention, an opposing radio station includes a modem having a transmission circuit and a reception circuit, and a band distribution adapter having a band dividing circuit connected to the transmission circuit and a band synthesis circuit connected to the reception circuit. The band division circuit includes a plurality of division filters that generate sub-modulation signals divided into a plurality of bands on the frequency axis from the modulation signal input from the transmission circuit , and each sub-modulation signal is placed at an arbitrary location on the frequency axis. The transmission signal is distributed and the band synthesis circuit is equipped with multiple extraction filters that extract each sub-modulated signal from the received signal that received the transmission signal of the opposite radio station, and the band of each sub-modulated signal is distributed outputting a modulated signal by combining back to the previous band to the receiving circuit, the receiving circuit is input to the demodulator a modulated signal outputted from the band combining circuit via the Le chromatography trawl off filter In the communication device configured to adjust, the division filter that divides the sub-modulation signal of the lowest frequency and the sub-modulation signal of the highest frequency among the plurality of division filters of the band division circuit has the frequency characteristics of the transition region of the modulation signal, respectively. It has a filter coefficient for holding, and a broad wide-band filter than the bandwidth of the asymmetric filter or said sub modulation signal of the filter coefficient is asymmetric, among the plurality of extraction filter band synthesizing circuit, sub-modulation signal and the lowest frequency extracting filter for extracting a sub-modulation signal of the highest frequency have a filter coefficient for holding the frequency characteristic of the transition band of the respective received signals, and the filter coefficient is wider than the bandwidth of the asymmetric filter or said sub modulation signal asymmetrical a wide-band filter, a modulation signal having a root roll-off characteristic from the band combining circuit Enter the root roll-off filter signal circuit, which demodulates the input to the demodulator to generate a modulated signal having a full Ruroruofu characteristics.

第2の発明は、対向する無線局に、送信回路および受信回路を有するモデムと、該送信回路に接続される帯域分割回路および受信回路に接続される帯域合成回路を有する帯域分散アダプタとを備え、送信回路から帯域分割回路に変調信号を入力し、帯域分割回路は、複数の分割フィルタで変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成し、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力し、帯域合成回路は、対向する無線局の送信信号を受信した受信信号から、複数の抽出フィルタで各サブ変調信号を抽出し、各サブ変調信号の帯域を分散配置前の帯域に戻して合成した変調信号を出力し、受信回路は、帯域合成回路から出力される変調信号をルートロールオフフィルタを介して復調器に入力して復調する通信方法において、帯域分割回路の複数の分割フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を分割する分割フィルタは、それぞれ変調信号の遷移域の周波数特性を保持するフィルタ係数を有し、かつ左右非対称のフィルタ係数または該サブ変調信号の帯域幅より広帯域のフィルタ係数を有し、帯域合成回路の複数の抽出フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を抽出する抽出フィルタは、それぞれ受信信号の遷移域の周波数特性を保持するフィルタ係数を有し、かつ左右非対称のフィルタ係数または該サブ変調信号の帯域幅より広帯域のフィルタ係数を有し、帯域合成回路からルートロールオフ特性を有する変調信号を受信回路のルートロールオフフィルタに入力し、ルロールオフ特性を有する変調信号を生成して復調器に入力して復調する。 According to a second aspect of the present invention, an opposing radio station includes a modem having a transmission circuit and a reception circuit, and a band distribution adapter having a band dividing circuit connected to the transmission circuit and a band synthesis circuit connected to the reception circuit. The modulation signal is input from the transmission circuit to the band division circuit, and the band division circuit generates a sub modulation signal divided into a plurality of bands on the frequency axis from the modulation signal by a plurality of division filters, and the frequency of each sub modulation signal is generated. A transmission signal distributed at an arbitrary location on the axis is output, and the band synthesis circuit extracts each sub-modulated signal from the reception signal that has received the transmission signal of the opposite radio station by a plurality of extraction filters , outputting a modulated signal band synthesized back to the band before distributed modulated signal, the receiver circuit is input to a demodulator modulated signal outputted from the band combining circuit via the Le chromatography trawl off filter Among the plurality of division filters of the band division circuit, the division filter that divides the sub-modulation signal with the lowest frequency and the sub-modulation signal with the highest frequency holds the frequency characteristics of the transition region of the modulation signal, respectively. A filter coefficient having a left-right asymmetric filter coefficient or a filter coefficient that is wider than the bandwidth of the sub-modulation signal, and having the lowest frequency sub-modulation signal and the highest frequency of the plurality of extraction filters of the band synthesis circuit Each extraction filter that extracts a sub-modulated signal has a filter coefficient that retains the frequency characteristics of the transition region of the received signal, and has a filter coefficient that is asymmetrical to the left or right , or a filter coefficient that is wider than the bandwidth of the sub-modulated signal. , root roll-off filter of the receiving circuit a modulated signal having a root roll-off characteristic from the band combining circuit Type, demodulates input to the demodulator to generate a modulated signal having a full Ruroruofu characteristics.

第3の発明は、対向する無線局に、送信回路および受信回路を有するモデムと、該送信回路に接続される帯域分割回路および受信回路に接続される帯域合成回路を有する帯域分散アダプタとを備え、帯域分割回路は、送信回路から入力する変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成する複数の分割フィルタを備え、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力し、帯域合成回路は、対向する無線局の送信信号を受信した受信信号から各サブ変調信号を抽出する複数の抽出フィルタを備え、各サブ変調信号の帯域を分散配置前の帯域に戻して合成した変調信号を出力し、受信回路は、帯域合成回路から出力される変調信号をルートロールオフフィルタを介して復調器に入力して復調する構成である通信装置の帯域分割回路において、複数の分割フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を分割する分割フィルタは、それぞれ変調信号の遷移域の周波数特性を保持するフィルタ係数を有し、かつフィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタであるA third invention includes a modem having a transmission circuit and a reception circuit, and a band distribution adapter having a band dividing circuit connected to the transmission circuit and a band synthesizing circuit connected to the reception circuit, in a radio station facing each other. The band division circuit includes a plurality of division filters that generate sub-modulation signals divided into a plurality of bands on the frequency axis from the modulation signal input from the transmission circuit , and each sub-modulation signal is placed at an arbitrary location on the frequency axis. The transmission signal is distributed and the band synthesis circuit is equipped with multiple extraction filters that extract each sub-modulated signal from the received signal that received the transmission signal of the opposite radio station, and the band of each sub-modulated signal is distributed outputting a modulated signal by combining back to the previous band, the reception circuit is configured to demodulate the input to the demodulator via a modulated signal outputted from the band combining circuit Le chromatography trawl off filter In the band dividing circuit of the communication apparatus, among the plurality of division filters, the division filter that divides the sub-modulation signal with the lowest frequency and the sub-modulation signal with the highest frequency is a filter that holds the frequency characteristics of the transition region of the modulation signal, respectively. It has a coefficient, and the filter coefficient is wider broadband filter than the bandwidth of the asymmetric filter or said sub modulation signal asymmetrical.

第4の発明は、第3の発明の帯域分割回路を含む通信装置の帯域合成回路において、複数の抽出フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を抽出する抽出フィルタは、それぞれ受信信号の遷移域の周波数特性を保持するフィルタ係数を有し、かつフィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタであり、帯域合成回路からルートロールオフ特性を有する変調信号を受信回路のルートロールオフフィルタに入力し、ルロールオフ特性を有する変調信号を生成して復調器に入力して復調する。 According to a fourth aspect of the present invention, in the band synthesizing circuit of the communication apparatus including the band dividing circuit according to the third aspect of the present invention, the extraction filter for extracting the lowest frequency sub-modulated signal and the highest frequency sub-modulated signal among the plurality of extraction filters is , have a filter coefficient for holding the frequency characteristic of the transition band of the respective received signals, and a broad wide-band filter than the bandwidth of the asymmetric filter or said sub modulation signal of the filter coefficients is asymmetrical, root roll-off from the band combining circuit It receives the modulation signal having the characteristics on the root roll-off filter of the reception circuit, and demodulates input to the demodulator to generate a modulated signal having a full Ruroruofu characteristics.

Claims (8)

変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成する複数の分割フィルタを備え、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力する帯域分割回路と、
前記送信信号に対応する受信信号から前記各サブ変調信号を抽出する複数の抽出フィルタを備え、前記各サブ変調信号の帯域を前記分散配置前の帯域に戻して合成した変調信号を出力する帯域合成回路と
を備え、送信回路から前記帯域分割回路に前記変調信号を入力し、前記帯域合成回路から出力される変調信号を受信回路のルートロールオフフィルタを介して復調器に入力して復調する構成である通信装置において、
前記帯域分割回路の複数の分割フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を分割する分割フィルタは、それぞれ前記変調信号の遷移域の周波数特性を保持するフィルタ係数を有する構成であり、
前記帯域合成回路の複数の抽出フィルタのうち、前記最低周波数のサブ変調信号および前記最高周波数のサブ変調信号を抽出する抽出フィルタは、それぞれ前記受信信号の遷移域の周波数特性を保持するフィルタ係数を有する構成であり、
前記帯域合成回路からルートロールオフ特性を有する変調信号を前記受信回路に入力し、前記復調器でフルロールオフ特性を有する変調信号を復調する
ことを特徴とする通信装置。
A band division circuit that includes a plurality of division filters that generate sub-modulation signals that are divided into a plurality of bands on the frequency axis from the modulation signal, and that outputs a transmission signal in which each sub-modulation signal is distributed and arranged at arbitrary locations on the frequency axis When,
Band synthesis that includes a plurality of extraction filters that extract each sub-modulated signal from the received signal corresponding to the transmission signal, and outputs a modulated signal that is synthesized by returning the band of each sub-modulated signal to the band before the dispersion arrangement And a circuit for inputting the modulated signal from the transmitting circuit to the band dividing circuit and inputting the modulated signal output from the band synthesizing circuit to a demodulator through a root roll-off filter of the receiving circuit for demodulation. In a communication device that is
Of the plurality of division filters of the band division circuit, the division filter that divides the sub-modulation signal having the lowest frequency and the sub-modulation signal having the highest frequency has a filter coefficient that holds the frequency characteristics of the transition band of the modulation signal. And
Of the plurality of extraction filters of the band synthesis circuit, the extraction filter for extracting the sub-modulation signal of the lowest frequency and the sub-modulation signal of the highest frequency has a filter coefficient that holds the frequency characteristics of the transition region of the received signal, respectively. It is the composition which has,
A communication apparatus, wherein a modulation signal having a root roll-off characteristic is input from the band synthesis circuit to the reception circuit, and the modulation signal having a full roll-off characteristic is demodulated by the demodulator.
請求項1に記載の通信装置において、
前記最低周波数のサブ変調信号および前記最高周波数のサブ変調信号を分割する分割フィルタは、フィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタであり、
前記最低周波数のサブ変調信号および前記最高周波数のサブ変調信号を抽出する抽出フィルタは、フィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタである
ことを特徴とする通信装置。
The communication device according to claim 1,
The division filter that divides the lowest-frequency sub-modulation signal and the highest-frequency sub-modulation signal is an asymmetric filter having a left-right asymmetric filter coefficient or a wide-band filter wider than the bandwidth of the sub-modulation signal,
The extraction filter that extracts the sub-modulation signal having the lowest frequency and the sub-modulation signal having the highest frequency is an asymmetric filter having a left-right asymmetric filter coefficient or a wide-band filter having a wider bandwidth than the sub-modulation signal. apparatus.
送信回路から帯域分割回路に変調信号を入力し、
前記帯域分割回路は、複数の分割フィルタで前記変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成し、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力し、
帯域合成回路は、複数の抽出フィルタで前記送信信号に対応する受信信号から前記各サブ変調信号を抽出し、前記各サブ変調信号の帯域を前記分散配置前の帯域に戻して合成した変調信号を出力し、
前記帯域合成回路から出力される変調信号を受信回路のルートロールオフフィルタを介して復調器に入力して復調する通信方法において、
前記帯域分割回路の複数の分割フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を分割する分割フィルタは、それぞれ前記変調信号の遷移域の周波数特性を保持するフィルタ係数を有し、
前記帯域合成回路の複数の抽出フィルタのうち、前記最低周波数のサブ変調信号および前記最高周波数のサブ変調信号を抽出する抽出フィルタは、それぞれ前記受信信号の遷移域の周波数特性を保持するフィルタ係数を有し、
前記帯域合成回路からルートロールオフ特性を有する変調信号を前記受信回路に入力し、前記復調器でフルロールオフ特性を有する変調信号を復調する
ことを特徴とする通信方法。
The modulation signal is input from the transmission circuit to the band division circuit,
The band dividing circuit generates a sub modulation signal that is divided into a plurality of bands on the frequency axis from the modulation signal by a plurality of division filters, and a transmission signal in which each sub modulation signal is dispersedly arranged at an arbitrary place on the frequency axis Output
The band synthesizing circuit extracts each sub-modulated signal from the received signal corresponding to the transmission signal by a plurality of extraction filters, returns the band of each sub-modulated signal to the band before the dispersion arrangement, and combines the modulated signal Output,
In the communication method of demodulating the modulation signal output from the band synthesis circuit by inputting to the demodulator via the root roll-off filter of the reception circuit,
Of the plurality of division filters of the band division circuit, the division filter that divides the sub-modulation signal having the lowest frequency and the sub-modulation signal having the highest frequency each has a filter coefficient that holds the frequency characteristics of the transition region of the modulation signal. ,
Of the plurality of extraction filters of the band synthesis circuit, the extraction filter for extracting the sub-modulation signal of the lowest frequency and the sub-modulation signal of the highest frequency has a filter coefficient that holds the frequency characteristics of the transition region of the received signal, respectively. Have
A communication method comprising: inputting a modulated signal having a root roll-off characteristic from the band synthesis circuit to the receiving circuit; and demodulating the modulated signal having a full roll-off characteristic by the demodulator.
請求項3に記載の通信方法において、
前記最低周波数のサブ変調信号および前記最高周波数のサブ変調信号を分割する分割フィルタは、フィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタであり、
前記最低周波数のサブ変調信号および前記最高周波数のサブ変調信号を抽出する抽出フィルタは、フィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタである
ことを特徴とする通信方法。
The communication method according to claim 3, wherein
The division filter that divides the lowest-frequency sub-modulation signal and the highest-frequency sub-modulation signal is an asymmetric filter having a left-right asymmetric filter coefficient or a wide-band filter wider than the bandwidth of the sub-modulation signal,
The extraction filter that extracts the sub-modulation signal having the lowest frequency and the sub-modulation signal having the highest frequency is an asymmetric filter having a left-right asymmetric filter coefficient or a wide-band filter having a wider bandwidth than the sub-modulation signal. Method.
変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成する複数の分割フィルタを備え、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力する帯域分割回路と、
前記送信信号に対応する受信信号から前記各サブ変調信号を抽出する複数の抽出フィルタを備え、前記各サブ変調信号の帯域を前記分散配置前の帯域に戻して合成した変調信号を出力する帯域合成回路と
を備え、送信回路から前記帯域分割回路に前記変調信号を入力し、前記帯域合成回路から出力される変調信号を受信回路のルートロールオフフィルタを介して復調器に入力して復調する構成である通信装置の帯域分割回路において、
前記複数の分割フィルタのうち、最低周波数のサブ変調信号および最高周波数のサブ変調信号を分割する分割フィルタは、それぞれ前記変調信号の遷移域の周波数特性を保持するフィルタ係数を有する構成である
ことを特徴とする帯域分割回路。
A band division circuit that includes a plurality of division filters that generate sub-modulation signals that are divided into a plurality of bands on the frequency axis from the modulation signal, and that outputs a transmission signal in which each sub-modulation signal is distributed and arranged at arbitrary locations on the frequency axis When,
Band synthesis that includes a plurality of extraction filters that extract each sub-modulated signal from the received signal corresponding to the transmission signal, and outputs a modulated signal that is synthesized by returning the band of each sub-modulated signal to the band before the dispersion arrangement And a circuit for inputting the modulated signal from the transmitting circuit to the band dividing circuit and inputting the modulated signal output from the band synthesizing circuit to a demodulator through a root roll-off filter of the receiving circuit for demodulation. In the bandwidth dividing circuit of the communication device,
The division filter that divides the sub-modulation signal of the lowest frequency and the sub-modulation signal of the highest frequency among the plurality of division filters is configured to have a filter coefficient that holds the frequency characteristics of the transition region of the modulation signal. A characteristic band dividing circuit.
請求項5に記載の帯域分割回路において、
前記最低周波数のサブ変調信号および前記最高周波数のサブ変調信号を分割する分割フィルタは、フィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタである
ことを特徴とする帯域分割回路。
The band dividing circuit according to claim 5,
The division filter that divides the sub-modulation signal having the lowest frequency and the sub-modulation signal having the highest frequency is an asymmetric filter having a left-right asymmetric filter coefficient or a wide-band filter having a wider bandwidth than the bandwidth of the sub-modulation signal. Split circuit.
請求項5に記載の帯域分割回路を含む通信装置の帯域合成回路において、
前記複数の抽出フィルタのうち、前記最低周波数のサブ変調信号および前記最高周波数のサブ変調信号を抽出する抽出フィルタは、それぞれ前記受信信号の遷移域の周波数特性を保持するフィルタ係数を有する構成であり、
前記帯域合成回路からルートロールオフ特性を有する変調信号を前記受信回路に入力し、前記復調器でフルロールオフ特性を有する変調信号を復調する
ことを特徴とする帯域合成回路。
In the band synthesizing circuit of the communication device including the band dividing circuit according to claim 5,
Of the plurality of extraction filters, the extraction filter that extracts the lowest-frequency sub-modulation signal and the highest-frequency sub-modulation signal has a filter coefficient that holds the frequency characteristics of the transition region of the received signal. ,
A band synthesis circuit, wherein a modulation signal having a root roll-off characteristic is input from the band synthesis circuit to the reception circuit, and the modulation signal having a full roll-off characteristic is demodulated by the demodulator.
請求項7に記載の帯域合成回路において、
前記最低周波数のサブ変調信号および前記最高周波数のサブ変調信号を抽出する抽出フィルタは、フィルタ係数が左右非対称の非対称フィルタまたは該サブ変調信号の帯域幅より広い広帯域フィルタである
ことを特徴とする帯域合成回路。
The band synthesis circuit according to claim 7,
The extraction filter that extracts the sub-modulation signal having the lowest frequency and the sub-modulation signal having the highest frequency is an asymmetric filter having a bilaterally asymmetric filter coefficient or a wide-band filter having a wider bandwidth than the bandwidth of the sub-modulation signal. Synthesis circuit.
JP2013234767A 2013-11-13 2013-11-13 COMMUNICATION DEVICE, COMMUNICATION METHOD, BAND DIVISION CIRCUIT, AND BAND SYNTHESIS CIRCUIT Expired - Fee Related JP5642863B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013234767A JP5642863B1 (en) 2013-11-13 2013-11-13 COMMUNICATION DEVICE, COMMUNICATION METHOD, BAND DIVISION CIRCUIT, AND BAND SYNTHESIS CIRCUIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013234767A JP5642863B1 (en) 2013-11-13 2013-11-13 COMMUNICATION DEVICE, COMMUNICATION METHOD, BAND DIVISION CIRCUIT, AND BAND SYNTHESIS CIRCUIT

Publications (2)

Publication Number Publication Date
JP5642863B1 JP5642863B1 (en) 2014-12-17
JP2015095796A true JP2015095796A (en) 2015-05-18

Family

ID=52139152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013234767A Expired - Fee Related JP5642863B1 (en) 2013-11-13 2013-11-13 COMMUNICATION DEVICE, COMMUNICATION METHOD, BAND DIVISION CIRCUIT, AND BAND SYNTHESIS CIRCUIT

Country Status (1)

Country Link
JP (1) JP5642863B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016206922A1 (en) 2015-05-08 2016-11-10 Semiconductor Energy Laboratory Co., Ltd. touchscreen
JP6040356B1 (en) * 2015-09-28 2016-12-07 日本電信電話株式会社 Signal processing apparatus and signal processing method
JP2017204775A (en) * 2016-05-12 2017-11-16 日本電信電話株式会社 Communication system, communication method, and signal division circuit
WO2022018802A1 (en) * 2020-07-20 2022-01-27 日本電信電話株式会社 Wireless communication system, wireless communication method, and spectrum combination device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897651B2 (en) * 2014-06-23 2016-03-30 日本電信電話株式会社 COMMUNICATION METHOD, COMMUNICATION DEVICE, AND BAND SYNTHESIS CIRCUIT
JP5897650B2 (en) * 2014-06-23 2016-03-30 日本電信電話株式会社 COMMUNICATION METHOD, COMMUNICATION DEVICE, AND BAND SYNTHESIS CIRCUIT
CN107359884B (en) * 2016-05-09 2019-05-28 上海复旦微电子集团股份有限公司 Demodulation by filter method and receiver

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065612B2 (en) * 2009-04-01 2015-06-23 Nippon Telegraph And Telephone Corporation Wireless transmission method, wireless transmission system, and transmission apparatus and reception apparatus of wireless transmission system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016206922A1 (en) 2015-05-08 2016-11-10 Semiconductor Energy Laboratory Co., Ltd. touchscreen
JP6040356B1 (en) * 2015-09-28 2016-12-07 日本電信電話株式会社 Signal processing apparatus and signal processing method
JP2017204775A (en) * 2016-05-12 2017-11-16 日本電信電話株式会社 Communication system, communication method, and signal division circuit
WO2022018802A1 (en) * 2020-07-20 2022-01-27 日本電信電話株式会社 Wireless communication system, wireless communication method, and spectrum combination device

Also Published As

Publication number Publication date
JP5642863B1 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5642863B1 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, BAND DIVISION CIRCUIT, AND BAND SYNTHESIS CIRCUIT
KR102569182B1 (en) Method and apparatus for generating, transmitting and receiving signals based on a filter bank
Bellanger Physical layer for future broadband radio systems
US9281980B2 (en) Receiving apparatus and method, sending apparatus and method, front-end circuit, modulator, and transceiving system
JP2018510589A (en) Waveform design system and method for extending operating bandwidth
WO2013144897A2 (en) Hybrid Multicarrier Technique
CN105164947A (en) System and method for generalized multi-carrier frequency division multiplexing
JP2011176679A (en) Radio communication system, radio communication method, transmitting apparatus, and transmission method
Jin et al. Hybrid SSB OFDM-digital filter multiple access PONs
CN102960038B (en) Signal to be sent in carrier wave communication system
Liu et al. Peak-to-average power ratio of multicarrier faster-than-Nyquist signals: Distribution, optimization and reduction
CN1826781B (en) Modulation device, demodulation device, modulation method, and demodulation method
WO2018228460A1 (en) Phase tracking reference signal processing method and apparatus
CN102629886B (en) Broadcasting system
CN114422038A (en) Photon terahertz wireless communication method and system based on subcarrier OFDM
Nagapushpa et al. Studying applicability feasibility of OFDM in upcoming 5G network
WO2017114025A1 (en) Communication processing method, processor and communication equipment
US9893923B2 (en) Method for transmitting and receiving QAM signal in filter bank-based multicarrier communication system, and apparatus therefor
Ajitha et al. Cognitive radio technology with reduced PAPR and complexity for IoT-based OFDM networks
JP5897651B2 (en) COMMUNICATION METHOD, COMMUNICATION DEVICE, AND BAND SYNTHESIS CIRCUIT
EP3032790B1 (en) Generalized frequency division multiplexing radio transmission using frequency domain offset-qam
CN105281815B (en) MIMO communication method, base station device, and terminal
JP5680734B1 (en) Band distributed transmission system, band distributed transmission method, transmitter and receiver
JP5897650B2 (en) COMMUNICATION METHOD, COMMUNICATION DEVICE, AND BAND SYNTHESIS CIRCUIT
JP2013243526A (en) Wireless communication system and wireless communication method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141029

R150 Certificate of patent or registration of utility model

Ref document number: 5642863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees