JP2015085296A - Centrifugal vacuum concentration device - Google Patents

Centrifugal vacuum concentration device Download PDF

Info

Publication number
JP2015085296A
JP2015085296A JP2013228104A JP2013228104A JP2015085296A JP 2015085296 A JP2015085296 A JP 2015085296A JP 2013228104 A JP2013228104 A JP 2013228104A JP 2013228104 A JP2013228104 A JP 2013228104A JP 2015085296 A JP2015085296 A JP 2015085296A
Authority
JP
Japan
Prior art keywords
heating element
vacuum
centrifugal
magnet
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013228104A
Other languages
Japanese (ja)
Inventor
信雄 村田
Nobuo Murata
信雄 村田
眞一 有賀
Shinichi Ariga
眞一 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rikakikai Co Ltd
Original Assignee
Tokyo Rikakikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rikakikai Co Ltd filed Critical Tokyo Rikakikai Co Ltd
Priority to JP2013228104A priority Critical patent/JP2015085296A/en
Publication of JP2015085296A publication Critical patent/JP2015085296A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a centrifugal vacuum concentration device which directly and uniformly heats a sample solution and efficiently condenses and dries the sample solution in a short time.SOLUTION: A centrifugal vacuum concentration device includes: a cup shaped vacuum vessel 11 having a lid member 11a for opening and closing an upper opening; a metal rotary heating element 12 which is rotatably provided in the vacuum vessel; rotary driving means 13 which rotates the rotary heating element; exhaust means 14 which decompresses the vacuum vessel; a sample vessel holding part 15 provided at the rotary heating element; and a magnet 16 which generates an eddy current in the rotary heating element by electromagnetic induction to cause the rotary heating element to produce heat; a non-contact temperature sensor 17 which detects a temperature of the rotary heating element; and magnet position adjusting means 18 which adjusts a position of the magnet relative to the rotary heating element.

Description

本発明は、遠心減圧濃縮装置に関し、詳しくは、減圧した真空容器内で試料溶液に遠心力を与えながらあらかじめ設定された温度に加熱することによって前記試料溶液を濃縮したり、試料を乾燥させたりする遠心減圧濃縮装置に関する。   The present invention relates to a centrifugal decompression and concentration apparatus, and more specifically, the sample solution is concentrated or heated by applying a centrifugal force to the sample solution in a depressurized vacuum vessel while heating to a preset temperature. The present invention relates to a centrifugal vacuum concentration apparatus.

遠心減圧濃縮装置(遠心エバポレータ)は、真空容器内に回転可能に設けた回転体に、試料溶液を注入した試料容器を支持させた状態で、真空容器内を真空排気するとともに、回転駆動手段によって回転体を高速で回転させることにより、試料溶液の濃縮や試料の乾燥を行うもので、真空容器の内周面にヒータを配置することにより、濃縮操作中の試料溶液を加熱できるようにしている(例えば、特許文献1参照。)。また、金属製容器内の被加熱物を加熱する手段として、前記金属製容器を囲むように回転体を配置し、該回転体に複数の永久磁石をN極とS極とが交互に位置するように配置したものが知られている(例えば、特許文献2参照。)。   The centrifugal vacuum concentrator (centrifugal evaporator) evacuates the vacuum vessel while rotating the vacuum vessel in a state where the sample vessel into which the sample solution is injected is supported on a rotating body provided rotatably in the vacuum vessel. By rotating the rotating body at a high speed, the sample solution is concentrated and the sample is dried. By arranging a heater on the inner peripheral surface of the vacuum vessel, the sample solution during the concentration operation can be heated. (For example, refer to Patent Document 1). Further, as a means for heating the object to be heated in the metal container, a rotating body is disposed so as to surround the metal container, and a plurality of permanent magnets are alternately arranged with N poles and S poles on the rotating body. Such an arrangement is known (for example, see Patent Document 2).

特開2002−331201号公報JP 2002-331120A 特開2004−76992号公報JP 2004-76992 A

しかし、真空容器の内周面にヒータを配置したものでは、真空容器内が減圧状態であり、ヒータと回転体とは非接触状態であるから、対流や伝導による加熱は行われず、放射(輻射)のみによる加熱となり、試料容器の真空容器外周面側のみが加熱される状態になるため、試料溶液に十分な熱を伝達することができず、加熱ムラ、蒸発ムラが生じることもあり、加熱効率に難点があった。   However, in the case where the heater is disposed on the inner peripheral surface of the vacuum vessel, the inside of the vacuum vessel is in a reduced pressure state, and the heater and the rotating body are not in contact with each other. ), And only the outer peripheral surface of the vacuum vessel of the sample container is heated, so that sufficient heat cannot be transferred to the sample solution, which may cause uneven heating and uneven evaporation. There were difficulties in efficiency.

また、特許文献2に記載された加熱手段は、金属製容器内に直接試料溶液を貯留した機器には有効であるが、真空容器内の回転体に保持された試料溶液を加熱することはできず、真空容器の周壁を加熱するのみであるから、遠心減圧濃縮装置における試料溶液の加熱効率を向上させることはできない。   Moreover, although the heating means described in Patent Document 2 is effective for an apparatus in which a sample solution is directly stored in a metal container, it is possible to heat the sample solution held by the rotating body in the vacuum container. In addition, since only the peripheral wall of the vacuum vessel is heated, the heating efficiency of the sample solution in the centrifugal vacuum concentration apparatus cannot be improved.

そこで本発明は、試料溶液を直接的かつ均等に、あらかじめ設定された温度に加熱することが可能で、試料溶液の濃縮や乾燥を効率よく短時間で確実に行うことができる遠心減圧濃縮装置を提供することを目的としている。   Therefore, the present invention provides a centrifugal vacuum concentration device that can heat a sample solution directly and evenly to a preset temperature, and can efficiently concentrate and dry the sample solution in a short time. It is intended to provide.

上記目的を達成するため、本発明の遠心減圧濃縮装置は、減圧した真空容器内で試料溶液に遠心力を与えながら加熱することによって前記試料溶液を濃縮する遠心減圧濃縮装置において、上部開口を開閉する蓋部材を有する有底筒状の真空容器と、該真空容器内に回転可能に設けられた金属製の回転発熱体と、該回転発熱体を回転させる回転駆動手段と、前記真空容器内を減圧する排気手段と、前記回転発熱体に設けられた試料容器保持部と、前記回転発熱体に電磁誘導により渦電流を発生させて発熱させる磁石と、前記回転発熱体の温度を検出する非接触温度センサと、前記回転発熱体に対する前記磁石の位置を調節する磁石位置調節手段とを備えていることを特徴としている。   To achieve the above object, the centrifugal vacuum concentrator of the present invention opens and closes an upper opening in a centrifugal vacuum concentrator for concentrating the sample solution by applying a centrifugal force to the sample solution in a vacuumed vacuum vessel. A bottomed cylindrical vacuum vessel having a lid member, a metal rotary heating element rotatably provided in the vacuum vessel, a rotation driving means for rotating the rotary heating element, and the inside of the vacuum vessel Exhaust means for depressurization, a sample container holding part provided in the rotary heating element, a magnet for generating heat by generating an eddy current by electromagnetic induction in the rotary heating element, and a non-contact for detecting the temperature of the rotary heating element A temperature sensor and a magnet position adjusting means for adjusting the position of the magnet with respect to the rotating heating element are provided.

さらに、本発明の遠心減圧濃縮装置は、前記回転発熱体が、アルミニウム合金、銅合金又は低炭素鋼で形成されていることを特徴とし、また、前記試料容器保持部が前記回転発熱体に設けられた有底筒状の容器保持部であること、あるいは、前記回転発熱体に穿設された有底筒状の容器保持穴であることを特徴としている。さらに、前記磁石が、前記真空容器の外周に設けられていること、あるいは、前記真空容器の底面下方に設けられていることを特徴としている。   Furthermore, the centrifugal vacuum concentrator of the present invention is characterized in that the rotating heating element is formed of an aluminum alloy, a copper alloy or low carbon steel, and the sample container holding portion is provided on the rotating heating element. It is a bottomed cylindrical container holding portion, or a bottomed cylindrical container holding hole formed in the rotary heating element. Furthermore, the magnet is provided on the outer periphery of the vacuum vessel, or is provided below the bottom surface of the vacuum vessel.

本発明の遠心減圧濃縮装置によれば、電磁誘導により発生する渦電流により回転発熱体を発熱させるので、発熱した回転発熱体に設けられた試料容器保持部を介して試料溶液を効率よく加熱することができる。これにより、沸点が高い溶媒でも短時間で蒸発させることができるので、試料溶液の濃縮や乾燥を効率よく短時間で行うことができる。そして、非接触温度センサで検出した温度に基づいて、回転発熱体に対する磁石の位置を磁石位置調節手段により調節することにより、回転発熱体の発熱量を調整することができ、試料溶液をあらかじめ設定された温度に確実に加熱することができる。   According to the centrifugal vacuum concentrator of the present invention, the rotating heating element is heated by the eddy current generated by electromagnetic induction, so that the sample solution is efficiently heated via the sample container holding portion provided in the generated heating heating element. be able to. Thereby, even a solvent having a high boiling point can be evaporated in a short time, so that concentration and drying of the sample solution can be performed efficiently and in a short time. Based on the temperature detected by the non-contact temperature sensor, the amount of heat generated by the rotating heating element can be adjusted by adjusting the position of the magnet relative to the rotating heating element using the magnet position adjusting means, and the sample solution is set in advance. Can be reliably heated to the set temperature.

本発明の遠心減圧濃縮装置の第1形態例を示す概略断面図である。It is a schematic sectional drawing which shows the 1st form example of the centrifugal vacuum concentration apparatus of this invention. 本発明の遠心減圧濃縮装置の第2形態例を示す概略断面図である。It is a schematic sectional drawing which shows the 2nd form example of the centrifugal vacuum concentration apparatus of this invention.

図1は、本発明の遠心減圧濃縮装置の第1形態例を示す概略断面図であって、この遠心減圧濃縮装置は、有底円筒状の真空容器11と、該真空容器11の内部に回転可能に設けられた回転発熱体12と、該回転発熱体12を回転させる駆動手段13と、前記真空容器11内を減圧する排気手段である真空ポンプ14と、前記回転発熱体12に設けられた複数の試料容器保持部15と、前記真空容器11の外側に設けられた永久磁石16と、真空容器11の外側から前記回転発熱体12の温度を検出する非接触温度センサ17と、前記回転発熱体12に対する前記永久磁石16の位置を調節する磁石位置調節手段18とを備えている。   FIG. 1 is a schematic cross-sectional view showing a first embodiment of a centrifugal decompression / concentration device of the present invention. The centrifugal decompression / concentration device is a bottomed cylindrical vacuum vessel 11 and rotates inside the vacuum vessel 11. Provided to the rotary heating element 12, the rotary heating element 12 that can be provided, a driving means 13 that rotates the rotary heating element 12, a vacuum pump 14 that is an exhaust means for reducing the pressure inside the vacuum vessel 11, and the rotary heating element 12. A plurality of sample container holders 15, a permanent magnet 16 provided outside the vacuum container 11, a non-contact temperature sensor 17 that detects the temperature of the rotary heating element 12 from the outside of the vacuum container 11, and the rotational heat generation Magnet position adjusting means 18 for adjusting the position of the permanent magnet 16 with respect to the body 12 is provided.

真空容器11は、永久磁石16の影響を受けないように、非磁性体、例えば、オーステナイト系ステンレス合金のような非磁性金属で形成されている。真空容器11の上部開口には、該上部開口を気密に閉塞可能な蓋部材11aが開閉可能に設けられており、真空容器11の底部中央には、前記駆動手段13を装着するための駆動手段装着部11bが開口している。   The vacuum vessel 11 is formed of a nonmagnetic material, for example, a nonmagnetic metal such as an austenitic stainless alloy so as not to be affected by the permanent magnet 16. A lid member 11a capable of airtightly closing the upper opening is provided at the upper opening of the vacuum container 11 so as to be openable and closable. A driving means for mounting the driving means 13 at the center of the bottom of the vacuum container 11 is provided. The mounting part 11b is open.

回転発熱体12は、磁束の変化による誘導電流で発生する渦電流のジュール熱によって発熱する金属で形成されており、電気抵抗が小さく、熱伝導率の高い金属で形成することが好ましい。回転発熱体12の中央は、駆動手段13によって回転する回転軸19の上部に着脱可能な状態で取り付けられ、回転発熱体12の内周部及び外周部には、前記試料容器保持部15となる有底筒状の容器保持筒15a,15bが内外二つの円周上に等間隔で設けられている。   The rotary heating element 12 is formed of a metal that generates heat due to Joule heat of eddy current generated by an induced current caused by a change in magnetic flux, and is preferably formed of a metal having low electrical resistance and high thermal conductivity. The center of the rotary heating element 12 is detachably attached to the upper part of the rotating shaft 19 that is rotated by the driving means 13. The sample container holding part 15 is provided on the inner and outer peripheral parts of the rotary heating element 12. Bottomed cylindrical container holding cylinders 15a and 15b are provided at equal intervals on the inner and outer circumferences.

容器保持筒15a,15bは、底部を外周側に向けて斜めに設けられるもので、通常、回転発熱体12と同種の金属で、溶接などによって回転発熱体12と一体的に作成されており、試料溶液を注入した試料容器20を収容可能な内面形状を有している。   The container holding cylinders 15a and 15b are provided obliquely with the bottom portion facing the outer peripheral side, and are usually made of the same type of metal as the rotary heating element 12 and integrally formed with the rotary heating element 12 by welding or the like. It has an inner surface shape that can accommodate the sample container 20 into which the sample solution has been injected.

駆動手段13は、前記駆動手段装着部11bに気密に装着される上部駆動部21と、該上部駆動部21に仕切壁22を介して配置される下部駆動部23とを有しており、上部駆動部21と下部駆動部23とには、円盤状のマグネットカップリング24a,24bがそれぞれ収納され、下部駆動部23には、下方のマグネットカップリング24bを回転させるモータ25が設けられている。   The drive means 13 includes an upper drive part 21 that is airtightly attached to the drive means attachment part 11b, and a lower drive part 23 that is disposed on the upper drive part 21 via a partition wall 22, and has an upper part. The drive unit 21 and the lower drive unit 23 accommodate disc-shaped magnet couplings 24a and 24b, respectively, and the lower drive unit 23 is provided with a motor 25 that rotates the lower magnet coupling 24b.

また、上部駆動部21の上部中央には、上方のマグネットカップリング24aに連結された前記回転軸19が貫通している。さらに、上部駆動部21の上壁部及び側壁部には、通気孔26a,26bがそれぞれ設けられ、該通気孔26a,26b及び排気管27を介して真空容器11の内部と前記真空ポンプ14とが連通した状態となっている。   Further, the rotary shaft 19 connected to the upper magnet coupling 24a passes through the upper center of the upper drive unit 21. Further, vent holes 26a and 26b are respectively provided in the upper wall portion and the side wall portion of the upper drive portion 21, and the inside of the vacuum vessel 11 and the vacuum pump 14 are connected via the vent holes 26a and 26b and the exhaust pipe 27. Is in a state of communication.

前記永久磁石16は、回転発熱体12の外周に配置されており、該永久磁石16の内周側で回転する回転発熱体12に磁束の変化を与えることができるようにしている。   The permanent magnet 16 is disposed on the outer periphery of the rotating heat generating body 12 so that a change in magnetic flux can be applied to the rotating heat generating body 12 rotating on the inner peripheral side of the permanent magnet 16.

永久磁石16を支持する前記磁石位置調節手段18は、回動軸18aから上方に立ち上がった揺動腕18bの上端部に永久磁石16を取り付けたものであって、図示しない駆動手段により回動軸18aを回動させて揺動腕18bの先端側を真空容器11の径方向に揺動させることにより、永久磁石16と真空容器11の外周面との距離、すなわち、真空容器11内で回転する回転発熱体12の外周と永久磁石16との距離を調節するように形成されている。   The magnet position adjusting means 18 for supporting the permanent magnet 16 is obtained by attaching the permanent magnet 16 to the upper end portion of the swing arm 18b rising upward from the rotation shaft 18a. The distance between the permanent magnet 16 and the outer peripheral surface of the vacuum vessel 11, that is, the rotation within the vacuum vessel 11, is obtained by turning 18 a and swinging the distal end side of the swing arm 18 b in the radial direction of the vacuum vessel 11. The distance between the outer periphery of the rotary heating element 12 and the permanent magnet 16 is adjusted.

前記非接触温度センサ17は、真空容器11の周壁に気密に設けられた測定窓17aを通して回転発熱体12の外周部の温度を非接触状態で検出するものであって、例えば、赤外線放射温度計が用いられている。   The non-contact temperature sensor 17 detects the temperature of the outer peripheral portion of the rotary heating element 12 in a non-contact state through a measurement window 17 a provided in an airtight manner on the peripheral wall of the vacuum vessel 11. For example, an infrared radiation thermometer Is used.

回転発熱体12の発熱量は、回転発熱体12と永久磁石16との距離と、回転発熱体12の回転速度とによって決まるので、回転発熱体12の回転速度を一定に保った状態で永久磁石16の位置を調節し、回転発熱体12と永久磁石16との距離を調節することにより、磁束密度を変化させて回転発熱体12の発熱量を調整することができる。永久磁石16の位置調節は、非接触温度センサ17で検出した回転発熱体12の温度があらかじめ設定された温度より高いときには、永久磁石16を真空容器11の外周面から離れる方向に向かって永久磁石16を移動させ、回転発熱体12の温度があらかじめ設定された温度より低いときには、永久磁石16を真空容器11の外周面に近付く方向に向かって永久磁石16を移動させればよく、手動で行っても、適宜な自動制御手段を用いて行ってもよい。   The amount of heat generated by the rotating heat generating element 12 is determined by the distance between the rotating heat generating element 12 and the permanent magnet 16 and the rotation speed of the rotating heat generating element 12, so that the permanent magnet can be maintained with the rotation speed of the rotating heat generating element 12 kept constant. By adjusting the position of 16 and adjusting the distance between the rotary heating element 12 and the permanent magnet 16, the amount of heat generated by the rotary heating element 12 can be adjusted by changing the magnetic flux density. When the temperature of the rotary heating element 12 detected by the non-contact temperature sensor 17 is higher than a preset temperature, the position of the permanent magnet 16 is adjusted so that the permanent magnet 16 moves away from the outer peripheral surface of the vacuum vessel 11. 16 is moved, and when the temperature of the rotary heating element 12 is lower than a preset temperature, the permanent magnet 16 may be moved in the direction approaching the outer peripheral surface of the vacuum vessel 11 and is performed manually. Alternatively, an appropriate automatic control means may be used.

このように形成した遠心減圧濃縮装置を使用して試料溶液の濃縮を行う際には、まず、蓋部材11aを開き、適量の試料溶液を注入した適当数の試料容器20を所定の容器保持筒15a,15bにそれぞれ挿入する。蓋部材11aを閉じ、真空ポンプ14を作動させて真空容器11内のガスを排気することによって真空容器11内を所定の減圧状態(真空状態)にした後、モータ25を作動させて回転発熱体12を回転させる。   When the sample solution is concentrated using the centrifugal vacuum concentrator thus formed, first, the lid member 11a is opened, and an appropriate number of sample containers 20 into which an appropriate amount of the sample solution has been injected are placed in a predetermined container holding cylinder. Inserted in 15a and 15b, respectively. After the lid member 11a is closed and the vacuum pump 14 is operated to exhaust the gas in the vacuum container 11, the vacuum container 11 is brought into a predetermined reduced pressure state (vacuum state), and then the motor 25 is operated to rotate the heating element. 12 is rotated.

回転発熱体12は、永久磁石16の内側を高速で回転することにより、回転発熱体12の外周部で磁束が急激に変化し、誘導電流によって渦電流が発生し、該渦電流によるジュール熱によって回転発熱体12の外周部が発熱して温度が上昇する。このとき、回転発熱体12を、アルミニウム合金、銅合金、低炭素鋼といった電気抵抗の小さな金属材料で形成することにより、渦電流の電流が大きくなってジュール熱の発生量も多くなり、回転発熱体12を効果的に昇温させることができる。   The rotating heating element 12 rotates at high speed inside the permanent magnet 16, so that the magnetic flux rapidly changes at the outer periphery of the rotating heating element 12, and an eddy current is generated by the induced current. The outer peripheral portion of the rotary heating element 12 generates heat and the temperature rises. At this time, when the rotary heating element 12 is formed of a metal material having a low electrical resistance such as an aluminum alloy, a copper alloy, or low carbon steel, the eddy current is increased and the amount of Joule heat generated is increased. The body 12 can be effectively heated.

また、非接触温度センサ17で検出した回転発熱体12の温度に応じて磁石位置調節手段18を作動させ、永久磁石16の位置を調節することにより、回転発熱体12の外周部の温度があらかじめ設定された温度になるように調整する。   Further, by operating the magnet position adjusting means 18 according to the temperature of the rotating heating element 12 detected by the non-contact temperature sensor 17 and adjusting the position of the permanent magnet 16, the temperature of the outer peripheral portion of the rotating heating element 12 is set in advance. Adjust to the set temperature.

回転発熱体12の外周部の温度上昇は、伝導によって回転発熱体12の全体に伝達され、容器保持筒15a,15bも伝導熱によって均等に昇温する。温度が上昇した容器保持筒15a,15bから試料容器20内の試料溶液には、輻射によって熱が伝達されるが、試料容器20の全体あるいは試料容器20における少なくとも試料溶液の貯留部分が容器保持筒15a,15b内に挿入されているため、容器保持筒15a,15bの内周面全体からの輻射によって試料容器20内の試料溶液を直接的かつ均等に加熱することができ、加熱ムラ、蒸発ムラを解消することができる。さらに、容器保持筒15a,15bの内周面に接触した試料容器20を介して伝熱によっても試料溶液を加熱することができる。   The temperature rise at the outer peripheral portion of the rotary heating element 12 is transmitted to the entire rotary heating element 12 by conduction, and the container holding cylinders 15a and 15b are also uniformly heated by conduction heat. Heat is transferred to the sample solution in the sample container 20 from the container holding cylinders 15a and 15b whose temperature has risen, but the entire sample container 20 or at least the sample solution storage part in the sample container 20 is the container holding cylinder. Since it is inserted in 15a, 15b, the sample solution in the sample container 20 can be directly and evenly heated by radiation from the entire inner peripheral surface of the container holding cylinders 15a, 15b. Can be eliminated. Furthermore, the sample solution can also be heated by heat transfer through the sample container 20 in contact with the inner peripheral surfaces of the container holding cylinders 15a and 15b.

したがって、濃縮操作中の試料溶液を、あらかじめ設定された温度に効果的に加熱できるので、沸点が高い溶媒でも短時間で蒸発させることができ、試料溶液の濃縮や試料の乾燥を効率よく短時間で行うことができる。さらに、蓋部材11aや上部駆動部21を含む真空容器11の内面を金属光沢状態にしておくことにより、特に、鏡面仕上げを施しておくことにより、温度上昇した回転発熱体12から真空容器11への熱移動量を抑制することができ、熱損失を低減して試料溶液の加熱効率を更に向上させることができる。また、回転発熱体12と回転軸19との間に断熱材を介在させることにより、回転発熱体12から回転軸19への熱移動も抑制することができる。これらのことから、真空容器11の内周面にヒータを設ける場合に比べて遠心減圧濃縮装置における操作効率を大幅に向上でき、消費電力量の削減も図ることができる。   Therefore, since the sample solution during the concentration operation can be effectively heated to a preset temperature, even a solvent having a high boiling point can be evaporated in a short time, and the sample solution can be concentrated and dried in a short time efficiently. Can be done. Further, the inner surface of the vacuum vessel 11 including the lid member 11a and the upper drive unit 21 is made to have a metallic luster state, and in particular, by applying a mirror finish to the vacuum vessel 11 from the rotating heating element 12 whose temperature has increased. The heat transfer amount of the sample solution can be suppressed, the heat loss can be reduced, and the heating efficiency of the sample solution can be further improved. Further, by interposing a heat insulating material between the rotating heat generating body 12 and the rotating shaft 19, heat transfer from the rotating heat generating body 12 to the rotating shaft 19 can also be suppressed. From these things, compared with the case where a heater is provided in the inner peripheral surface of the vacuum vessel 11, the operation efficiency in the centrifugal decompression and concentration apparatus can be greatly improved, and the power consumption can be reduced.

図2は、本発明の遠心減圧濃縮装置の第1形態例を示す概略断面図である。なお、以下の説明において、前記第1形態例に示した遠心減圧濃縮装置の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。   FIG. 2 is a schematic sectional view showing a first embodiment of the centrifugal vacuum concentrator of the present invention. In the following description, the same components as those of the centrifugal decompression and concentration apparatus shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本形態例に示す遠心減圧濃縮装置は、前記第1形態例に示した遠心減圧濃縮装置に対して、回転発熱体の構造と磁石の配置とが異なるのみで、他の構成は基本的に同一となっている。   The centrifugal vacuum concentration apparatus shown in the present embodiment is basically the same as the centrifugal vacuum concentration apparatus shown in the first embodiment except for the structure of the rotary heating element and the arrangement of the magnets. It has become.

本形態例では、永久磁石31を、磁石位置調節手段32を介して前記真空容器11の底面下方に配置するとともに、回転発熱体33には、試料容器20を保持する試料容器保持部34となる有底筒状の容器保持穴34a,34bを形成した本体部33aと、真空容器11の底面を挟んで前記永久磁石31に対向するように配置された円盤状の発熱部33bと、本体部33aと発熱部33bとを連結する伝熱部33cとを設けている。容器保持穴34a,34bは、本体部33aの厚みを利用して本体部33aに所定形状の穴を穿設したものであって、深さや内径は、保持する試料容器20に応じて設定されている。   In the present embodiment, the permanent magnet 31 is disposed below the bottom surface of the vacuum container 11 via the magnet position adjusting means 32, and the rotating heating element 33 serves as a sample container holding unit 34 that holds the sample container 20. A main body 33a in which bottomed cylindrical container holding holes 34a and 34b are formed, a disk-shaped heat generating part 33b disposed so as to face the permanent magnet 31 across the bottom surface of the vacuum container 11, and a main body 33a And a heat transfer section 33c that connects the heat generating section 33b. The container holding holes 34a and 34b are holes in which a predetermined shape is formed in the main body 33a using the thickness of the main body 33a, and the depth and inner diameter are set according to the sample container 20 to be held. Yes.

磁石位置調節手段32は、前記第1形態例に示した磁石位置調節手段と同様に、回動軸32aから真空容器11の外周方向に延出した揺動腕32bの先端部に永久磁石16を取り付けたものであって、図示しない駆動手段により回動軸32aを回動させて揺動腕32bの先端側を上下方向に揺動させることにより、永久磁石16と真空容器11の底面との距離、すなわち、真空容器11内で回転する発熱部33bと永久磁石16との距離を調節するように形成されている。   The magnet position adjusting means 32 is similar to the magnet position adjusting means shown in the first embodiment, and the permanent magnet 16 is attached to the tip of the swing arm 32b extending from the rotating shaft 32a in the outer peripheral direction of the vacuum vessel 11. The distance between the permanent magnet 16 and the bottom surface of the vacuum vessel 11 is provided by rotating the rotary shaft 32a by a driving means (not shown) and swinging the tip end side of the swing arm 32b in the vertical direction. That is, it is formed so as to adjust the distance between the heat generating portion 33 b rotating in the vacuum vessel 11 and the permanent magnet 16.

さらに、真空容器11の底面には、真空容器11の底板に気密に設けられた測定窓35aを通して発熱部33bの温度を検出する非接触温度センサ35が設けられており、非接触温度センサ35で検出した発熱部33bの温度に応じて、磁石位置調節手段32により永久磁石16と真空容器11の底面との距離を調節できるようにしている。   Further, a non-contact temperature sensor 35 for detecting the temperature of the heat generating portion 33 b is provided on the bottom surface of the vacuum vessel 11 through a measurement window 35 a provided in an airtight manner on the bottom plate of the vacuum vessel 11. The distance between the permanent magnet 16 and the bottom surface of the vacuum vessel 11 can be adjusted by the magnet position adjusting means 32 in accordance with the detected temperature of the heat generating portion 33b.

前記第1形態例と同様に、駆動手段13によって回転発熱体33を回転させると、永久磁石31に対向配置された発熱部33bが、磁束の変化による誘導電流で発生する渦電流のジュール熱により、永久磁石16の距離に応じて発熱し、昇温した発熱部33bの熱が伝熱部33cから本体部33aに伝導によって伝達され、容器保持穴34a,34bの内面を均等に昇温させ、容器保持穴34a,34bの内面からの輻射によって試料容器20内の試料溶液が加熱される。   Similarly to the first embodiment, when the rotary heating element 33 is rotated by the driving means 13, the heat generating portion 33b arranged opposite to the permanent magnet 31 is caused by Joule heat of eddy current generated by induced current due to change in magnetic flux. Then, heat is generated according to the distance of the permanent magnet 16, and the heat of the heat generating portion 33b that has been heated is transferred from the heat transfer portion 33c to the main body portion 33a by conduction, and the inner surfaces of the container holding holes 34a and 34b are heated uniformly. The sample solution in the sample container 20 is heated by radiation from the inner surfaces of the container holding holes 34a and 34b.

したがって、試料容器20内の試料溶液を直接的かつ均等に、あらかじめ設定された温度に加熱することができ、濃縮操作中の試料溶液を効果的に加熱できるので、試料溶液の濃縮や試料の乾燥を効率よく短時間で行うことができる。   Therefore, the sample solution in the sample container 20 can be directly and evenly heated to a preset temperature, and the sample solution during the concentration operation can be effectively heated. Therefore, the sample solution can be concentrated and the sample dried. Can be performed efficiently and in a short time.

なお、装置各部の構造は、試料容器の形状や試料容器の保持数などの各種条件に応じて適宜最適な構造を採用することができる。また、磁石の配置数は、回転発熱体を発熱させることができれば任意であり、磁力を向上させるためのヨークを設けることもできる。さらに、永久磁石に限らず、電磁石を用いてもよい。また、複数の磁石を配置したときの磁石の位置調節は、全ての磁石を移動させずに、一部の磁石だけを移動させて残りの磁石は固定しておくようにしてもよい。   As the structure of each part of the apparatus, an optimal structure can be adopted as appropriate according to various conditions such as the shape of the sample container and the number of sample containers held. Further, the number of magnets arranged is arbitrary as long as the rotary heating element can generate heat, and a yoke for improving the magnetic force can be provided. Furthermore, not only permanent magnets but electromagnets may be used. Further, the position adjustment of the magnets when a plurality of magnets are arranged may be performed by moving only some of the magnets and fixing the remaining magnets without moving all the magnets.

さらに、試料容器保持部は、保持する試料容器の形状、大きさに応じて任意の形状に形成することが可能であり、例えば、試料容器の上部に鍔が設けられている場合は、試料容器保持部の底部を開放して試料容器保持部を貫通孔とし、鍔を利用して試料容器を保持するようにしてもよい。   Furthermore, the sample container holding part can be formed in an arbitrary shape according to the shape and size of the sample container to be held. For example, when a ridge is provided on the sample container, the sample container You may make it open | release the bottom part of a holding | maintenance part, let a sample container holding part be a through-hole, and hold | maintain a sample container using a collar.

11…真空容器、11a…蓋部材、11b…駆動手段装着部、12…回転発熱体、13…駆動手段、14…真空ポンプ、15…試料容器保持部、15a,15b…容器保持筒、16…永久磁石、17…非接触温度センサ、17a…測定窓、18…磁石位置調節手段、18a…回動軸、18b…揺動腕、19…回転軸、20…試料容器、21…上部駆動部、22…仕切壁、23…下部駆動部、24a,24b…マグネットカップリング、25…モータ、26a,26b…通気孔、27…排気管、31…永久磁石、32…磁石位置調節手段、32a…回動軸、32b…揺動腕、33…回転発熱体、33a…本体部、33b…発熱部、33c…伝熱部、34…試料容器保持部、34a,34b…容器保持穴、35…非接触温度センサ、35a…測定窓 DESCRIPTION OF SYMBOLS 11 ... Vacuum container, 11a ... Lid member, 11b ... Driving means mounting part, 12 ... Rotating heating element, 13 ... Driving means, 14 ... Vacuum pump, 15 ... Sample container holding part, 15a, 15b ... Container holding cylinder, 16 ... Permanent magnet, 17 ... Non-contact temperature sensor, 17a ... Measurement window, 18 ... Magnet position adjusting means, 18a ... Rotating shaft, 18b ... Swing arm, 19 ... Rotating shaft, 20 ... Sample container, 21 ... Upper drive unit, 22 ... partition wall, 23 ... lower drive unit, 24a, 24b ... magnet coupling, 25 ... motor, 26a, 26b ... vent, 27 ... exhaust pipe, 31 ... permanent magnet, 32 ... magnet position adjusting means, 32a ... times Moving shaft, 32b ... Oscillating arm, 33 ... Rotary heating element, 33a ... Main body part, 33b ... Heat generating part, 33c ... Heat transfer part, 34 ... Sample container holding part, 34a, 34b ... Container holding hole, 35 ... Non-contact Temperature sensor, 35a ... Measurement

Claims (6)

減圧した真空容器内で試料溶液に遠心力を与えながら加熱することによって前記試料溶液を濃縮する遠心減圧濃縮装置において、上部開口を開閉する蓋部材を有する有底筒状の真空容器と、該真空容器内に回転可能に設けられた金属製の回転発熱体と、該回転発熱体を回転させる回転駆動手段と、前記真空容器内を減圧する排気手段と、前記回転発熱体に設けられた試料容器保持部と、前記回転発熱体に電磁誘導により渦電流を発生させて発熱させる磁石と、前記回転発熱体の温度を検出する非接触温度センサと、前記回転発熱体に対する前記磁石の位置を調節する磁石位置調節手段とを備えていることを特徴とする遠心減圧濃縮装置。   In a centrifugal vacuum concentration apparatus for concentrating the sample solution by applying a centrifugal force to the sample solution in a vacuumed vacuum vessel, the bottomed cylindrical vacuum vessel having a lid member that opens and closes the upper opening, and the vacuum A metal rotating heating element provided rotatably in the container, a rotation driving means for rotating the rotating heating element, an exhaust means for reducing the pressure in the vacuum container, and a sample container provided in the rotating heating element A holding unit; a magnet for generating heat by generating eddy currents in the rotating heating element by electromagnetic induction; a non-contact temperature sensor for detecting a temperature of the rotating heating element; and a position of the magnet with respect to the rotating heating element. A centrifugal decompression and concentration apparatus, comprising: a magnet position adjusting means. 前記回転発熱体は、アルミニウム合金、銅合金又は低炭素鋼で形成されていることを特徴とする請求項1記載の遠心減圧濃縮装置。   2. The centrifugal vacuum concentrator according to claim 1, wherein the rotary heating element is made of an aluminum alloy, a copper alloy, or low carbon steel. 前記試料容器保持部は、前記回転発熱体に設けられた有底筒状の容器保持部であることを特徴とする請求項1又は2記載の遠心減圧濃縮装置。   3. The centrifugal vacuum concentrating device according to claim 1, wherein the sample container holding part is a bottomed cylindrical container holding part provided in the rotating heating element. 前記試料容器保持部は、前記回転発熱体に穿設された有底筒状の容器保持穴であることを特徴とする請求項1又は2記載の遠心減圧濃縮装置。   The centrifugal decompression and concentration apparatus according to claim 1 or 2, wherein the sample container holding portion is a bottomed cylindrical container holding hole formed in the rotary heating element. 前記磁石は、前記真空容器の外周に設けられていることを特徴とする請求項1乃至4のいずれか1項記載の遠心減圧濃縮装置。   The centrifugal vacuum concentration apparatus according to any one of claims 1 to 4, wherein the magnet is provided on an outer periphery of the vacuum vessel. 前記磁石は、前記真空容器の底面下方に設けられていることを特徴とする請求項1乃至4のいずれか1項記載の遠心減圧濃縮装置。   The centrifugal decompression / concentration device according to any one of claims 1 to 4, wherein the magnet is provided below a bottom surface of the vacuum vessel.
JP2013228104A 2013-11-01 2013-11-01 Centrifugal vacuum concentration device Pending JP2015085296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013228104A JP2015085296A (en) 2013-11-01 2013-11-01 Centrifugal vacuum concentration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013228104A JP2015085296A (en) 2013-11-01 2013-11-01 Centrifugal vacuum concentration device

Publications (1)

Publication Number Publication Date
JP2015085296A true JP2015085296A (en) 2015-05-07

Family

ID=53048696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013228104A Pending JP2015085296A (en) 2013-11-01 2013-11-01 Centrifugal vacuum concentration device

Country Status (1)

Country Link
JP (1) JP2015085296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174991A (en) * 2015-03-18 2016-10-06 東京理化器械株式会社 Centrifugal decompression concentrator
CN110548304A (en) * 2019-09-07 2019-12-10 天津药明康德新药开发有限公司 centrifugal concentrator for removing boiling point solvent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879503A (en) * 1981-11-06 1983-05-13 Yamato Scient Co Ltd Centrifugal type vacuum concentrating device
JPH03249902A (en) * 1990-02-28 1991-11-07 Shimadzu Corp Centrifugal concentrating machine
JPH09983A (en) * 1995-06-16 1997-01-07 Hitachi Koki Co Ltd Centrifuge
JP2009510702A (en) * 2005-10-03 2009-03-12 マグテック エナジー,エルエルシー Torque-controlled magnetic heat generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879503A (en) * 1981-11-06 1983-05-13 Yamato Scient Co Ltd Centrifugal type vacuum concentrating device
JPH03249902A (en) * 1990-02-28 1991-11-07 Shimadzu Corp Centrifugal concentrating machine
JPH09983A (en) * 1995-06-16 1997-01-07 Hitachi Koki Co Ltd Centrifuge
JP2009510702A (en) * 2005-10-03 2009-03-12 マグテック エナジー,エルエルシー Torque-controlled magnetic heat generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174991A (en) * 2015-03-18 2016-10-06 東京理化器械株式会社 Centrifugal decompression concentrator
CN110548304A (en) * 2019-09-07 2019-12-10 天津药明康德新药开发有限公司 centrifugal concentrator for removing boiling point solvent

Similar Documents

Publication Publication Date Title
JP2002504413A (en) Method and apparatus for determining and controlling the temperature of evaporation of a liquid sample
JP5430577B2 (en) Labeling device with electrically heatable adhesive application roller
JP5384002B2 (en) Film forming apparatus and film forming method
JP2015085296A (en) Centrifugal vacuum concentration device
JP2015085295A (en) Centrifugal vacuum concentration device
CN107802148A (en) Magnetic blending jar can be cleaned automatically
CN103532443B (en) The electromagnetic suspension system of superposition transverse rotation magnetostatic field
JP2006236856A (en) Heating device of metallic can
JP2002093724A (en) Heat treatment apparatus
CN103266301B (en) Adjustable short range rapid temperature rise and drop evaporation stove and manufacture method thereof
JP6685096B2 (en) Centrifugal vacuum concentrator
CN104784946B (en) Concentration device capable of adjusting concentration rate dually
JP2009210869A5 (en)
JP6577211B2 (en) Centrifugal vacuum concentrator
RU2010132166A (en) DEVICE FOR VACUUM DRYING OF BIOMATERIALS
JP2010221116A (en) Rotary evaporator
JPH09983A (en) Centrifuge
JPS5879503A (en) Centrifugal type vacuum concentrating device
CN220911499U (en) Heating assembly, cooking device and cleaning device
JP6533911B1 (en) Electromagnetic induction heating device
JP6713604B2 (en) Film forming equipment
CN108851415B (en) Umbrella capable of expanding range
CN205821439U (en) A kind of evaporation coating instrument
JP2013244236A (en) Rice cooker
CN102812778A (en) Induction heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171128