JP2015081219A - Manufacturing method for ltg-based single crystal - Google Patents

Manufacturing method for ltg-based single crystal Download PDF

Info

Publication number
JP2015081219A
JP2015081219A JP2013220519A JP2013220519A JP2015081219A JP 2015081219 A JP2015081219 A JP 2015081219A JP 2013220519 A JP2013220519 A JP 2013220519A JP 2013220519 A JP2013220519 A JP 2013220519A JP 2015081219 A JP2015081219 A JP 2015081219A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
manufacturing
ltg
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013220519A
Other languages
Japanese (ja)
Other versions
JP6108349B2 (en
Inventor
智子 川瀬
Tomoko Kawase
智子 川瀬
島村 清史
Kiyoshi Shimamura
清史 島村
ビジョラ エンカルナシオン アントニア ガルシア
Villora Encarnacion Antonia Garcia
ビジョラ エンカルナシオン アントニア ガルシア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
National Institute for Materials Science
Original Assignee
Citizen Holdings Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, National Institute for Materials Science filed Critical Citizen Holdings Co Ltd
Priority to JP2013220519A priority Critical patent/JP6108349B2/en
Publication of JP2015081219A publication Critical patent/JP2015081219A/en
Application granted granted Critical
Publication of JP6108349B2 publication Critical patent/JP6108349B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method that reduces variance in composition of a raised LTG-based single crystal.SOLUTION: There is provided a manufacturing method of manufacturing an LTG-based single crystal by an EFG method using a single crystal manufacturing device (1) including a metal mold (30) which holds a raw material melt at an upper surface part (30a) and a moving mechanism (40) which moves a seed crystal (50). The method includes the steps of: setting a moving speed corresponding to the composition of a desired single crystal by using correspondence relation between a moving speed at which the seed crystal is moved by the moving mechanism and the ratio of a concentration of a constituent element taken in the single crystal to a concentration of a constituent element of the LTG-based single crystal of the raw material melt before the manufacture; and moving the seed crystal by the moving mechanism at the set moving speed while bringing the seed crystal into contact with the raw material melt held at the upper surface part.

Description

本発明は、LTG系単結晶の製造方法に関する。   The present invention relates to a method for producing an LTG single crystal.

LaTa0.5Ga5.514の化学式で表されるLTGの単結晶は、水晶と比べて圧電定数が大きく、水晶より高温まで圧電性が保持されるため、高温向けの圧電材料として注目されている。また、LTGにAlを添加して一部のGaをAlで置換したLTGAは、LTGより優れた高温特性を有することが知られている(例えば、非特許文献1を参照)。LTGAは、LaTa0.5Ga5.5−xAl14(0<x<5.5)の化学式で表される(例えば、非特許文献2を参照)。本明細書では、LTGの単結晶とLTGAの単結晶をまとめて「LTG系単結晶」と呼ぶ。 A single crystal of LTG represented by a chemical formula of La 3 Ta 0.5 Ga 5.5 O 14 has a piezoelectric constant larger than that of quartz and maintains piezoelectricity up to a higher temperature than quartz. It is attracting attention as. Moreover, it is known that LTGA in which Al is added to LTG and a part of Ga is substituted with Al has a high temperature characteristic superior to that of LTG (for example, see Non-Patent Document 1). LTGA is represented by a chemical formula of La 3 Ta 0.5 Ga 5.5-x Al x O 14 (0 <x <5.5) (see, for example, Non-Patent Document 2). In this specification, a single crystal of LTG and a single crystal of LTGA are collectively referred to as “LTG single crystal”.

LTG系単結晶は、現在、主にチョクラルスキー(Cz)法により製造されている。Cz法では、ルツボ内で対流する原料融液に種結晶を接触させ、上方に徐々に引き上げることにより単結晶を育成する。   LTG single crystals are currently produced mainly by the Czochralski (Cz) method. In the Cz method, a seed crystal is brought into contact with a raw material melt convection in a crucible, and a single crystal is grown by gradually pulling it upward.

一方、単結晶の製造方法として、育成される単結晶の形状を制御可能なEFG(Edge-defined Film-fed Growth)法も知られている(例えば、特許文献1を参照)。EFG法とは、原料融液を受容するルツボに立設されたスリットを有する金型(ダイ)の開口部に原料を導き、この開口部における原料に種結晶を接触させて徐々に引き上げることにより、単結晶を育成する方法である。例えば、特許文献1の単結晶製造装置は、原料融液が充填されたルツボと、ルツボ内に立設されてスリットを有するダイと、ルツボの開口部を除くルツボの上面を閉塞する蓋とを有し、種結晶保持具に保持された種結晶を、毛細管現象によりダイの上部に上昇した原料融液に接触させて引き上げることにより、単結晶を育成する。EFG法には、任意の断面形状の単結晶が得られるという利点がある。   On the other hand, as a single crystal manufacturing method, an EFG (Edge-defined Film-fed Growth) method capable of controlling the shape of a single crystal to be grown is also known (see, for example, Patent Document 1). In the EFG method, a raw material is introduced into an opening of a die (die) having a slit erected in a crucible for receiving a raw material melt, and a seed crystal is brought into contact with the raw material in this opening to gradually lift it. This is a method for growing a single crystal. For example, the single crystal manufacturing apparatus of Patent Document 1 includes a crucible filled with a raw material melt, a die standing in the crucible and having a slit, and a lid for closing the upper surface of the crucible except for the opening of the crucible. The single crystal is grown by bringing the seed crystal held by the seed crystal holder into contact with the raw material melt that has risen to the top of the die due to capillary action. The EFG method has an advantage that a single crystal having an arbitrary cross-sectional shape can be obtained.

特開2006−312571号公報JP 2006-312571 A

Hiroaki Takeda, Satoshi Tanaka, Shintaro Izukawa, Hiroyuki Shimizu, Takashi Nishida, Tadashi Shiosaki, “Effective Substitution of Aluminum for Gallium in Langasite-type Crystals for A Pressure Sensor Use at High Temperature”, IEEE International Ultrasonics Symposium, 2005, p.560Hiroaki Takeda, Satoshi Tanaka, Shintaro Izukawa, Hiroyuki Shimizu, Takashi Nishida, Tadashi Shiosaki, “Effective Substitution of Aluminum for Gallium in Langasite-type Crystals for A Pressure Sensor Use at High Temperature”, IEEE International Ultrasonics Symposium, 2005, p.560 Hiroaki TAKEDA, Jun-ichi YAMAURA, Takuya HOSHINA, Takaaki TSURUMI, “Cation distribution and piezoelectric properties of aluminum substituted La3Ta0.5Ga5.5O14 single crystals”, Journal of the Ceramic Society of Japan, 日本セラミックス協会発行, 2010, Vol. 118, No. 1380, p. 706-710Hiroaki TAKEDA, Jun-ichi YAMAURA, Takuya HOSHINA, Takaaki TSURUMI, “Cation distribution and piezoelectric properties of aluminum substituted La3Ta0.5Ga5.5O14 single crystals”, Journal of the Ceramic Society of Japan, Japan Ceramic Society, 2010, Vol. 118 , No. 1380, p. 706-710

図10(a)及び図10(b)は、非特許文献2の図2に示されている、それぞれ[001]方向と[120]方向に沿ったLTGAの結晶構造の模式図である。上記の通り、LTGの一部のGaがLTGAではAlに置換されるが、図10(a)と図10(b)に示すように、LTGAの結晶構造では、このGaとAlは、複数の候補位置のいずれかにあるということしか定まっていない。即ち、LTGAの結晶構造では、GaとAlのどちらが結晶中のどの位置にあるかということは、厳密には定まっていない。このため、LTGAの単結晶には、含まれるAlとGaの組成比が変動しやすい(バラつきやすい)という性質がある。   FIGS. 10A and 10B are schematic views of the LTGA crystal structures shown in FIG. 2 of Non-Patent Document 2, respectively along the [001] direction and the [120] direction. As described above, a part of Ga in LTG is replaced with Al in LTGA. However, as shown in FIGS. 10A and 10B, in the crystal structure of LTGA, Ga and Al are composed of a plurality of Ga and Al. It is only determined that it is in one of the candidate positions. That is, in the LTGA crystal structure, it is not strictly determined which position of Ga or Al is in the crystal. For this reason, a single crystal of LTGA has a property that the composition ratio between Al and Ga contained therein is likely to vary (varies easily).

このように、LTGAには結晶内の原子配置に一部不秩序性があるため、LTG系単結晶をCz法により育成しようとすると、原料融液の構成元素が固液界面で偏析する現象が起きやすい。この偏析により、固液界面付近の原料融液の組成は、育成前に準備したルツボ内の原料融液の組成(出発組成)からずれて行く。そして、固液界面付近の原料融液が周辺の原料融液と混ざり合って原料融液全体の組成を変化させて行くため、原料融液の組成変化に伴って、上方から下方にかけて組成分布(バラつき)をもった単結晶が育成されることになる。このような組成分布があると、製品の歩留まり等に悪影響を及ぼしてしまう。   As described above, since LTGA has some disorder in the atomic arrangement in the crystal, when attempting to grow an LTG single crystal by the Cz method, the constituent elements of the raw material melt segregate at the solid-liquid interface. Easy to get up. Due to this segregation, the composition of the raw material melt near the solid-liquid interface deviates from the composition (starting composition) of the raw material melt in the crucible prepared before the growth. And since the raw material melt near the solid-liquid interface mixes with the surrounding raw material melt and changes the composition of the entire raw material melt, the composition distribution (from the top to the bottom) with the composition change of the raw material melt ( A single crystal having a variation) is grown. Such a composition distribution adversely affects the product yield and the like.

そこで、本発明は、本構成を有しない場合と比べて、育成されるLTG系単結晶の組成のバラつきが低減される製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method with which the dispersion | variation in the composition of the LTG type | system | group single crystal to grow is reduced compared with the case where it does not have this structure.

本発明に係るLTG系単結晶の製造方法は、原料融液を上面部に保持する金型と、種結晶を移動させるための移動機構とを備えた単結晶製造装置を使用してEFG法によりLTG系単結晶を製造する方法であって、移動機構によって種結晶を移動させる移動速度と、製造前の原料融液におけるLTG系単結晶の構成元素の濃度に対する単結晶に取り込まれた構成元素の濃度の比との対応関係を用いて、所望の単結晶の組成に応じた移動速度を設定し、上面部に保持された原料融液に種結晶を接触させながら、設定された移動速度で移動機構によって種結晶を移動させるステップを有することを特徴とする。   The method for producing an LTG-based single crystal according to the present invention is based on the EFG method using a single crystal production apparatus having a mold for holding the raw material melt on the upper surface and a moving mechanism for moving the seed crystal. A method of manufacturing an LTG-based single crystal, in which a moving speed of moving a seed crystal by a moving mechanism and a concentration of constituent elements incorporated into the single crystal with respect to a concentration of constituent elements of the LTG-based single crystal in a raw material melt before manufacturing Using the correspondence with the concentration ratio, set the moving speed according to the composition of the desired single crystal and move at the set moving speed while bringing the seed crystal into contact with the raw material melt held on the upper surface. The method includes the step of moving the seed crystal by a mechanism.

本発明に係る製造方法において、移動速度を設定するステップでは、構成元素に含まれるAl又はGaについての濃度の比と、移動速度との対応関係を用いることが好ましい。   In the manufacturing method according to the present invention, it is preferable to use a correspondence relationship between the ratio of the concentration of Al or Ga contained in the constituent elements and the moving speed in the step of setting the moving speed.

本発明に係る製造方法において、移動速度を設定するステップでは、0.5mm/hより大きくかつ10mm/h未満の範囲内で移動速度を設定することが好ましい。   In the manufacturing method according to the present invention, in the step of setting the moving speed, it is preferable to set the moving speed within a range greater than 0.5 mm / h and less than 10 mm / h.

本発明によれば、本構成を有しない場合と比べて、育成されるLTG系単結晶の組成のバラつきを低減させることができる。   According to the present invention, the variation in the composition of the LTG single crystal to be grown can be reduced as compared with the case without this configuration.

単結晶製造装置1の概略断面図である。1 is a schematic cross-sectional view of a single crystal manufacturing apparatus 1. FIG. 単結晶製造装置1の一部分の斜視図である。1 is a perspective view of a part of a single crystal manufacturing apparatus 1. FIG. EFG法によるLTG系単結晶の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the LTG type | system | group single crystal by EFG method. 種結晶50から成長させた単結晶90を示す模式図である。2 is a schematic diagram showing a single crystal 90 grown from a seed crystal 50. FIG. 結晶の固化率gと結晶中のある構成元素の濃度比C/Cとの関係を示したグラフである。It is a graph showing the relationship between the concentration ratio C s / C 0 of the constituent elements with the crystal and solidification rate g of crystals. 図3の製造方法で育成されたLTGA単結晶の固化率gと結晶中のAl及びGaの濃度比C/Cとの関係を示したグラフである。Is a graph showing the relationship between LTGA were grown in the manufacturing process and solidification rate g of the single crystal and the concentration ratio C s / C 0 of the Al and Ga in the crystal of FIG. LTGA単結晶の育成時の引上げ速度と結晶中のAlの濃度比C/Cとの関係を示した表及びグラフである。LTGA is a table and graph showing the relationship between the pulling rate during growth of the single crystal and the concentration ratio C s / C 0 of the Al in the crystal. LTGA単結晶の育成時の引上げ速度と結晶中のGaの濃度比C/Cとの関係を示した表及びグラフである。LTGA is a table and graph showing the relationship between the pulling rate during growth of the single crystal and the concentration ratio C s / C 0 of Ga in the crystal. LTGA単結晶の固化率gと結晶中のAlの濃度比C/Cとの関係を、Cz法とEFG法について比較したグラフである。LTGA the relationship between the solidification rate g of the single crystal and the concentration ratio C s / C 0 of the Al in the crystal is a graph comparing the Cz method and EFG process. [001]方向と[120]方向に沿ったLTGAの結晶構造の模式図である。It is a schematic diagram of the crystal structure of LTGA along the [001] direction and the [120] direction.

以下、図面を参照し、本発明に係る製造方法について説明する。しかしながら、本発明が図面又は以下に記載される実施形態に限定されるものではないことを理解されたい。   The manufacturing method according to the present invention will be described below with reference to the drawings. However, it should be understood that the invention is not limited to the drawings or the embodiments described below.

この製造方法では、Cz法の設備に所望のスリット幅及び断面形状を有する金型を加えた単結晶製造装置を使用し、EFG法によりLTG系単結晶を製造する。その際、特に、原料融液に接触させた種結晶を引き上げるときの引上げ速度(移動速度の一例)Vを、0.5<V<10mm/hの範囲で調整する。   In this manufacturing method, an LTG-based single crystal is manufactured by the EFG method using a single crystal manufacturing apparatus in which a mold having a desired slit width and cross-sectional shape is added to Cz method equipment. At that time, in particular, the pulling speed (an example of the moving speed) V when pulling the seed crystal brought into contact with the raw material melt is adjusted in the range of 0.5 <V <10 mm / h.

EFG法の場合、原料融液(以下、単に「融液」ともいう)は、毛細管現象により金型のスリットを上昇して固液界面に供給されるので、一度界面近傍に供給された融液はルツボへ逆流しない。したがって、EFG法では、固液界面において元素の偏析が生じても、ルツボに残存している融液の組成には影響が及ばず、Cz法で結晶成長させる場合と比べて、結晶が成長する段階で生じ得る組成変化を抑制することが可能になる。更に、種結晶の引上げ速度を調整すれば、固液界面に供給された原料の組成が偏析により変化してしまう前に、所望の組成をもった結晶として固化させることができる。そこで、この製造方法では、引上げ速度を調整することにより、結晶成長の過程で生じ得るLTG系単結晶の組成変化を抑制することを図る。   In the case of the EFG method, the raw material melt (hereinafter also simply referred to as “melt”) is supplied to the solid-liquid interface by raising the slit of the mold by capillary action. Does not flow back to the crucible. Therefore, in the EFG method, even if element segregation occurs at the solid-liquid interface, the composition of the melt remaining in the crucible is not affected, and the crystal grows as compared with the case where the crystal is grown by the Cz method. It becomes possible to suppress a change in composition that may occur in stages. Furthermore, if the pulling rate of the seed crystal is adjusted, it can be solidified as a crystal having a desired composition before the composition of the raw material supplied to the solid-liquid interface changes due to segregation. Therefore, in this manufacturing method, by adjusting the pulling rate, an attempt is made to suppress a change in the composition of the LTG single crystal that may occur in the process of crystal growth.

図1は、単結晶製造装置1の概略断面図である。図2は、単結晶製造装置1の一部分の斜視図である。   FIG. 1 is a schematic cross-sectional view of a single crystal manufacturing apparatus 1. FIG. 2 is a perspective view of a part of the single crystal manufacturing apparatus 1.

単結晶製造装置1は、耐火物外枠10、耐火物外枠10の上部に配置された耐火物上蓋11、耐火物外枠10内に配置されたルツボ20、ルツボ20内に配置された金型30、金型30に対して種結晶50を上下動させるための移動機構40、及び移動機構40の上下動を制御する制御部60等から構成される。   The single crystal manufacturing apparatus 1 includes a refractory outer frame 10, a refractory top lid 11 disposed on the refractory outer frame 10, a crucible 20 disposed in the refractory outer frame 10, and a gold disposed in the crucible 20. The mold 30 includes a moving mechanism 40 for moving the seed crystal 50 up and down relative to the mold 30, and a control unit 60 for controlling the vertical movement of the moving mechanism 40.

耐火物外枠10及び耐火物上蓋11は、耐火煉瓦等から構成され、ルツボ20の周囲を覆っている。ルツボ20を加熱するための加熱部材(ヒータ等;不図示)は、耐火物の周囲に配置されている。また、耐火物外枠10及び耐火物上蓋11は、加熱されたルツボ20の急激な温度変化を抑制するために、保温性を有することが好ましい。耐火物上蓋11には、移動機構40を上下動させることができるように、開口部12が設けられている。   The refractory outer frame 10 and the refractory top cover 11 are made of refractory bricks or the like and cover the periphery of the crucible 20. A heating member (heater or the like; not shown) for heating the crucible 20 is disposed around the refractory. Moreover, it is preferable that the refractory outer frame 10 and the refractory top lid 11 have heat retaining properties in order to suppress a rapid temperature change of the heated crucible 20. The refractory top lid 11 is provided with an opening 12 so that the moving mechanism 40 can be moved up and down.

ルツボ20は、使用する融液を受容し得る耐熱性を有した金属材料から構成されており、所定の大きさの金型30をその内部に配置できるような形状を有する。   The crucible 20 is made of a metal material having heat resistance capable of receiving the melt to be used, and has a shape such that a predetermined size of the mold 30 can be disposed therein.

金型30は、毛細管現象を利用して融液を上昇させるためのスリット31を中間部に有する。金型30には、金型から成長する単結晶の所定の表面(例えば(100)面)の目印となる側面32が設定されている。また、金型30の側面32とスリット31とは平行に配置されている。なお、金型30の上面部30aには、毛細管現象で上昇した融液と接触するように種結晶50が位置決めされる。更に、金型30の幅はW2mm(例えば、20mm)、横はt2mm(例えば、10mm)である。   The mold 30 has a slit 31 for raising the melt by utilizing a capillary phenomenon at an intermediate portion. The mold 30 is provided with a side surface 32 serving as a mark of a predetermined surface (for example, (100) plane) of a single crystal grown from the mold. The side surface 32 of the mold 30 and the slit 31 are arranged in parallel. In addition, the seed crystal 50 is positioned on the upper surface portion 30a of the mold 30 so as to come into contact with the melt that has risen due to the capillary phenomenon. Further, the width of the mold 30 is W2 mm (for example, 20 mm), and the width is t2 mm (for example, 10 mm).

移動機構40は、ホルダ41、シャフト45及びモータ47を有する。ホルダ41は、種結晶50の基準面51(例えば(100)面)が金型30の側面32(金型基準面)と合うように、種結晶50を保持する。ただし、金型30の基準面は、側面32以外に設定してもよい。モータ47は、種結晶50を引き上げるための駆動部である。   The moving mechanism 40 includes a holder 41, a shaft 45, and a motor 47. The holder 41 holds the seed crystal 50 so that the reference plane 51 (for example, (100) plane) of the seed crystal 50 is aligned with the side surface 32 (mold reference plane) of the mold 30. However, the reference surface of the mold 30 may be set to other than the side surface 32. The motor 47 is a drive unit for pulling up the seed crystal 50.

制御部60は、例えばPCで構成され、CPU61と、メモリ62と、表示部63と、操作部64と、I/O65とを有する。移動機構40の上下動は、メモリ62に予め記憶されたプログラムに従って、CPU61がモータ47の動作を制御することにより行われる。移動機構40の移動速度(種結晶50の引上げ速度)は、操作部64を介して単結晶製造装置1の使用者により入力される。また、I/O65は、制御部60とモータ47との間でデータの受け渡しを行うためのインタフェースである。   The control unit 60 is configured by a PC, for example, and includes a CPU 61, a memory 62, a display unit 63, an operation unit 64, and an I / O 65. The moving mechanism 40 is moved up and down by the CPU 61 controlling the operation of the motor 47 in accordance with a program stored in the memory 62 in advance. The moving speed of the moving mechanism 40 (the pulling speed of the seed crystal 50) is input by the user of the single crystal manufacturing apparatus 1 through the operation unit 64. The I / O 65 is an interface for transferring data between the control unit 60 and the motor 47.

図3は、EFG法によるLTG系単結晶の製造方法の一例を示すフロー図である。   FIG. 3 is a flowchart showing an example of a method for producing an LTG single crystal by the EFG method.

まず、LTG系単結晶の原料を調製する(S10)。その際、目標の単結晶組成が得られるように例えば出発原料のLa、Ta、Ga、Alを秤量し、それらの原料を混合した上で、混合物を仮焼してLTGA焼結体(多結晶材料)を作製する。 First, a raw material for an LTG single crystal is prepared (S10). At that time, for example, starting materials La 2 O 3 , Ta 2 O 5 , Ga 2 O 3 , and Al 2 O 3 are weighed so as to obtain the target single crystal composition, and after mixing these raw materials, the mixture Is calcined to produce an LTGA sintered body (polycrystalline material).

続いて、種結晶50をホルダ41に取り付ける(S11)。また、ルツボ20内に金型30を配置し、ステップS10で調製された原料のLTGA焼結体を充填する(S12)。   Subsequently, the seed crystal 50 is attached to the holder 41 (S11). Moreover, the metal mold | die 30 is arrange | positioned in the crucible 20, and it fills with the raw material LTGA sintered compact prepared by step S10 (S12).

次に、種結晶50の基準面51(例えば(100)面)と金型30の側面32(金型基準面)とが平行になるように、種結晶50と金型30とを位置決めする(S13)。なお、種結晶50と金型30との位置決めは、移動機構40を上部で固定しているネジの締め具(不図示)を調整したり、金型30が固定されているルツボ20の位置を調整したりすることにより行われる。   Next, the seed crystal 50 and the mold 30 are positioned so that the reference plane 51 (for example, (100) plane) of the seed crystal 50 and the side surface 32 (mold reference plane) of the mold 30 are parallel to each other (see FIG. S13). The positioning of the seed crystal 50 and the mold 30 is performed by adjusting a screw fastener (not shown) that fixes the moving mechanism 40 at the top, or by adjusting the position of the crucible 20 to which the mold 30 is fixed. It is done by adjusting.

そして、不図示のヒータによってルツボ20を加熱して、原料のLTGA焼結体を溶融させる(S14)。加熱により原料が溶解して得られた融液は、金型30のスリット31に侵入して、毛細管現象によりスリット31内を上昇する。これにより、融液は金型30の上面部30aに溜まって、そこで保持される。   Then, the crucible 20 is heated by a heater (not shown) to melt the raw material LTGA sintered body (S14). The melt obtained by melting the raw material by heating enters the slit 31 of the mold 30 and rises in the slit 31 by capillary action. As a result, the melt accumulates on the upper surface portion 30a of the mold 30 and is held there.

次に、移動機構40を操作して種結晶50を降下させ、金型30の上部に保持されている融液に、種結晶50の先端を接触させる(S15)。種結晶50と接触した融液の接触部分では温度が低下して、単結晶が形成される。   Next, the moving mechanism 40 is operated to lower the seed crystal 50, and the tip of the seed crystal 50 is brought into contact with the melt held on the upper part of the mold 30 (S15). At the contact portion of the melt that is in contact with the seed crystal 50, the temperature is lowered and a single crystal is formed.

また、移動機構40により種結晶50を引き上げて結晶成長させる前に、制御部60を介して、種結晶50の引上げ速度を設定しておく(S16)。この引上げ速度は、後述する引上げ速度とLTG系単結晶の組成との対応関係を参照することにより、育成したい単結晶の組成に応じて適宜選択することができる。この製造方法では、育成されるLTG系単結晶の結晶組成を制御できるように、引上げ速度Vは0.5<V<10mm/hの範囲内で設定される。   Further, before pulling up the seed crystal 50 by the moving mechanism 40 to grow the crystal, the pulling speed of the seed crystal 50 is set through the control unit 60 (S16). This pulling rate can be appropriately selected according to the composition of the single crystal to be grown by referring to the correspondence relationship between the pulling rate described later and the composition of the LTG single crystal. In this manufacturing method, the pulling rate V is set within a range of 0.5 <V <10 mm / h so that the crystal composition of the LTG single crystal to be grown can be controlled.

引上げ速度を0.5mm/h以下とすると、あまりに低速であるため、単結晶の育成に時間がかかり過ぎて製品のコストが高くなる。また、単結晶の育成時間が長くなると、1回の育成でルツボ20や金型30が高温にさらされる時間が長くなるため、ルツボ20や金型30の消耗が早くなる。したがって、引上げ速度は0.5mm/hより大きく設定することが好ましい。   If the pulling speed is 0.5 mm / h or less, it is too slow, so that it takes too much time to grow a single crystal, and the cost of the product increases. In addition, when the growth time of the single crystal becomes long, the crucible 20 and the mold 30 are exposed to a high temperature in one growth, so that the crucible 20 and the mold 30 are consumed quickly. Therefore, it is preferable to set the pulling speed to be larger than 0.5 mm / h.

一方、引上げ速度を10mm/h以上とすると、種結晶の引上げが高速になり過ぎて、単結晶に多数の欠陥やクラックが発生し、最終的な製品の品質と歩留まりが悪くなる。また、一般的な育成炉の仕様では、引上げ速度の上限は10mm/hであることが多いため、それ以上の速度で種結晶を引き上げようとすると、単結晶製造装置の改造が必要になる可能性が高い。したがって、引上げ速度は10mm/h未満に設定することが好ましい。   On the other hand, if the pulling rate is 10 mm / h or more, the pulling of the seed crystal becomes too fast, and a large number of defects and cracks are generated in the single crystal, resulting in poor final product quality and yield. Also, in general growth furnace specifications, the upper limit of the pulling speed is often 10 mm / h, so if the seed crystal is pulled at a higher speed, it may be necessary to modify the single crystal manufacturing apparatus High nature. Therefore, it is preferable to set the pulling speed to less than 10 mm / h.

そして、移動機構40を操作して、ステップS16で設定された引上げ速度で種結晶50を連続的に引き上げる(S17)。種結晶50が徐々に引き上げられることによって、種結晶50を中心に単結晶が金型30の長手方向に拡張しながら結晶成長する。この単結晶は、最終的には金型30の幅W2よりわずかに小さいサイズまで拡張し、その後はほぼ同じ幅で成長する。   Then, the moving mechanism 40 is operated to continuously pull up the seed crystal 50 at the pulling speed set in step S16 (S17). By gradually pulling up the seed crystal 50, the single crystal grows while expanding in the longitudinal direction of the mold 30 around the seed crystal 50. This single crystal eventually expands to a size slightly smaller than the width W2 of the mold 30, and thereafter grows with substantially the same width.

単結晶が所望の大きさに成長した後に、移動機構40を操作して引上げ速度を更に上げるか、又はヒータにより融液の温度を更に上昇させて、金型30の上面部30aに保持されている融液から単結晶を切り離す(S18)。これにより、一連のプロセスを終了する。   After the single crystal has grown to a desired size, the moving mechanism 40 is operated to further increase the pulling speed, or the temperature of the melt is further increased by the heater, and held on the upper surface portion 30a of the mold 30. A single crystal is cut off from the melt (S18). Thereby, a series of processes is completed.

図4は、種結晶50から成長させた単結晶90を示す模式図である。図4において、矢印aは金型30の上面部30aからの鉛直方向を示し、矢印bは金型30の横t2方向を示し、矢印cは金型30の幅W2方向を示す。EFG法を使用して、種結晶50の基準面51を金型30の基準面に合わせることにより、種結晶50の基準面51に沿った基準面91を有する単結晶90が育成される。   FIG. 4 is a schematic diagram showing a single crystal 90 grown from the seed crystal 50. In FIG. 4, the arrow a indicates the vertical direction from the upper surface portion 30 a of the mold 30, the arrow b indicates the horizontal t <b> 2 direction of the mold 30, and the arrow c indicates the width W <b> 2 direction of the mold 30. The single crystal 90 having the reference surface 91 along the reference surface 51 of the seed crystal 50 is grown by aligning the reference surface 51 of the seed crystal 50 with the reference surface of the mold 30 using the EFG method.

単結晶製造装置1を使用して、図3に示したEFG法の製造方法により、LTGA単結晶を育成する実験を行った。図3のステップS14で得られる育成前のルツボ内の原料融液の組成(出発組成)がLaTa0.5Ga5.3Al0.214になるように、原料を調製した。そして、複数個のLTGA単結晶をそれぞれ異なる引上げ速度にて育成し、結晶の引上げ方向に沿った複数の測定点における組成を調べることにより、結晶の上部から下部(即ち、結晶成長の初期から終期)にわたる組成分布を調査した。具体的には、LTGAの構成元素に含まれるAlとGaについて、各測定点における結晶中の濃度を測定した。 An experiment for growing an LTGA single crystal was performed using the single crystal manufacturing apparatus 1 by the manufacturing method of the EFG method shown in FIG. The raw material was prepared so that the composition (starting composition) of the raw material melt in the crucible before growth obtained in step S14 in FIG. 3 would be La 3 Ta 0.5 Ga 5.3 Al 0.2 O 14 . Then, a plurality of LTGA single crystals are grown at different pulling speeds, and the composition at a plurality of measurement points along the pulling direction of the crystal is examined, so that the upper part and the lower part of the crystal (that is, the initial to the end of the crystal growth). ) Was investigated. Specifically, for Al and Ga contained in the constituent elements of LTGA, the concentration in the crystal at each measurement point was measured.

結晶の固化率をg、結晶成長前の融液中におけるある構成元素の濃度をC、結晶成長のある段階で結晶中に取り込まれるその構成元素の濃度をCとすると、それらの濃度比C/Cは、次の(1)式で表される。
/C=k(1−g)k−1 ・・・(1)
ここで、k(>0)は偏析係数であり、元素によって異なる値をとる。
When the solidification rate of the crystal is g, the concentration of a constituent element in the melt before crystal growth is C 0 , and the concentration of the constituent element taken into the crystal at a certain stage of crystal growth is C s , the concentration ratio thereof C s / C 0 is expressed by the following equation (1).
C s / C 0 = k (1-g) k−1 (1)
Here, k (> 0) is a segregation coefficient, which varies depending on the element.

図5は、結晶の固化率gと結晶中のある構成元素の濃度比C/Cとの関係を示したグラフである。偏析係数kが1より小さい元素は、結晶の成長に伴いルツボ中の融液が減少すると融液中におけるその元素の濃度が高くなるため、結晶成長が進むにつれて結晶中に取り込まれるその元素の濃度が高くなる。逆に、偏析係数kが1より大きい元素は、結晶の成長に伴いルツボ中の融液が減少すると融液中におけるその元素の濃度が低くなるため、結晶成長が進むにつれて結晶中に取り込まれるその元素の濃度が低くなる。濃度比C/Cが1であれば、結晶中に取り込まれる元素の濃度が結晶成長前の融液中におけるその構成元素の濃度(出発組成)と同じである。したがって、結晶成長中に濃度比C/Cが1(即ち、k=1)に保たれると、結晶全体を通して対象の元素の濃度にバラつきがなくなり、結晶の組成が均一になる。 FIG. 5 is a graph showing the relationship between the solidification rate g of the crystal and the concentration ratio C s / C 0 of a certain constituent element in the crystal. An element having a segregation coefficient k of less than 1 increases the concentration of the element in the melt when the melt in the crucible decreases as the crystal grows. Therefore, the concentration of the element incorporated into the crystal as the crystal growth proceeds. Becomes higher. Conversely, an element having a segregation coefficient k greater than 1 is incorporated into the crystal as the crystal growth proceeds because the concentration of the element in the melt decreases when the melt in the crucible decreases as the crystal grows. The element concentration is lowered. If the concentration ratio C s / C 0 is 1, the concentration of the element taken into the crystal is the same as the concentration (starting composition) of the constituent element in the melt before crystal growth. Therefore, if the concentration ratio C s / C 0 is maintained at 1 (ie, k = 1) during crystal growth, the concentration of the target element does not vary throughout the crystal, and the crystal composition becomes uniform.

図6(a)は、図3の製造方法で育成されたLTGA単結晶の固化率gと結晶中のAlの濃度比C/Cとの関係を示したグラフである。図6(b)は、図6(a)と同じ結晶について、固化率gとGaの濃度比C/Cとの関係を示したグラフである。固化率gは、結晶成長がどの程度進んでいるかを示す指標であり、0は育成開始時、1は投入した原料全てを結晶として引き上げた時に対応する。図6(a)及び図6(b)では、引上げ速度を1mm/h、3mm/h、5mm/h及び7mm/hとした場合(EFG法)の結果を重ねて示している。また、比較例として、Cz法で引上げ速度を1mm/hとした場合の結果も示している。 FIG. 6A is a graph showing the relationship between the solidification rate g of the LTGA single crystal grown by the manufacturing method of FIG. 3 and the concentration ratio C s / C 0 of Al in the crystal. FIG. 6B is a graph showing the relationship between the solidification rate g and the Ga concentration ratio C s / C 0 for the same crystal as FIG. The solidification rate g is an index indicating how much the crystal growth has progressed. 0 corresponds to the start of growth, and 1 corresponds to the case where all the introduced raw materials are pulled up as crystals. In FIG. 6A and FIG. 6B, the results when the pulling speed is 1 mm / h, 3 mm / h, 5 mm / h, and 7 mm / h (EFG method) are shown in an overlapping manner. In addition, as a comparative example, the result when the pulling speed is 1 mm / h by the Cz method is also shown.

図6(a)及び図6(b)に示すように、EFG法にて引上げ速度を速くすると、それぞれの元素の濃度比C/Cが1に近づく傾向が見られる。また、Cz法よりEFG法の方が濃度比C/Cが1に近いこともわかる。なお、図5〜図6(b)からわかるように、Alは偏析係数kが1より大きく、Gaは偏析係数kが1より小さい元素である。 As shown in FIGS. 6A and 6B, when the pulling rate is increased by the EFG method, the concentration ratio C s / C 0 of each element tends to approach 1. It can also be seen that the concentration ratio C s / C 0 is closer to 1 in the EFG method than in the Cz method. 5 to 6B, Al is an element having a segregation coefficient k larger than 1, and Ga is an element having a segregation coefficient k smaller than 1.

図7(a)及び図7(b)は、LTGA単結晶の育成時の引上げ速度と結晶中のAlの濃度比C/Cとの関係を示した表及びグラフである。引上げ速度は、1mm/h、3mm/h、5mm/h及び7mm/hの場合を示し、比較例としてCz法で1mm/hとした場合も示している。ここでの濃度比C/Cは、結晶成長前の融液中におけるAlの濃度Cと、結晶が4mm成長したときに(結晶の上端から下側に4mm移動した箇所で)結晶中に取り込まれたAlの濃度Cとの比である。また、図7(a)の偏析係数kは、濃度比C/Cの値をもとに(1)式から求めた値である。 FIGS. 7A and 7B are tables and graphs showing the relationship between the pulling rate during growth of the LTGA single crystal and the Al concentration ratio C s / C 0 in the crystal. The pulling speed is 1 mm / h, 3 mm / h, 5 mm / h, and 7 mm / h. As a comparative example, the pulling speed is 1 mm / h by the Cz method. Here, the concentration ratio C s / C 0 is the same as the concentration C 0 of Al in the melt before crystal growth and when the crystal grows 4 mm (at a place where the crystal moves 4 mm downward from the upper end of the crystal). which is the ratio of the concentration C s of the captured Al to. Further, the segregation coefficient k in FIG. 7A is a value obtained from the equation (1) based on the value of the concentration ratio C s / C 0 .

図7(b)に示すように、約0.5〜10mm/hの範囲内では、引上げ速度が速くなるほどAlの濃度比が1に近づいており、引上げ速度とLTGA単結晶の組成に相関があることがわかる。一方、約0.5〜10mm/hの範囲外では、Alの濃度比は、引上げ速度が遅くなるにつれて1.25程度に、逆に引上げ速度が速くなるにつれて1.05程度に収束(飽和)する傾向が見られる。したがって、0.5mm/hより大きくかつ10mm/h未満の範囲内における引上げ速度と濃度比の対応関係を用いて引上げ速度を調整することにより、Alについて所望の組成を有するLTGA単結晶を育成させることが可能になる。   As shown in FIG. 7B, within a range of about 0.5 to 10 mm / h, the higher the pulling rate, the closer the Al concentration ratio is to 1, and there is a correlation between the pulling rate and the composition of the LTGA single crystal. I know that there is. On the other hand, outside the range of about 0.5 to 10 mm / h, the concentration ratio of Al converges (saturates) to about 1.25 as the pulling speed decreases and conversely to about 1.05 as the pulling speed increases. The tendency to do is seen. Therefore, an LTGA single crystal having a desired composition with respect to Al is grown by adjusting the pulling rate using the correspondence relationship between the pulling rate and the concentration ratio in a range larger than 0.5 mm / h and less than 10 mm / h. It becomes possible.

図8(a)及び図8(b)は、LTGA単結晶の育成時の引上げ速度と結晶中のGaの濃度比C/Cとの関係を示した表及びグラフである。図8(a)及び図8(b)でも、図7(a)及び図7(b)と同じ引上げ速度で同様に求めたGaの濃度比C/C及び偏析係数kを示している。 FIGS. 8A and 8B are tables and graphs showing the relationship between the pulling rate during the growth of the LTGA single crystal and the Ga concentration ratio C s / C 0 in the crystal. 8 (a) and 8 (b) also show the Ga concentration ratio C s / C 0 and the segregation coefficient k obtained in the same manner at the same pulling speed as in FIGS. 7 (a) and 7 (b). .

AlとGaは互いに相反関係にあり、Alは偏析係数kが1より大きいのに対し、Gaは偏析係数kが1より小さい。そのため、図8(b)に示すように、Gaでは、図7(b)に示したAlの変位と相反する傾向が見られる。即ち、図8(b)に示すように、約0.5〜10mm/hの範囲内では、引上げ速度が速くなるほどGaの濃度比が1に近づいており、引上げ速度とLTGA単結晶の組成に相関があることがわかる。一方、約0.5〜10mm/hの範囲外では、Gaの濃度比は、引上げ速度が遅くなるにつれて0.98程度に、逆に引上げ速度が速くなるにつれて0.99程度に収束(飽和)する傾向が見られる。したがって、0.5mm/hより大きくかつ10mm/h未満の範囲内における引上げ速度と濃度比の対応関係を用いて引上げ速度を調整することにより、Gaについても所望の組成を有するLTGA単結晶を育成させることが可能になる。   Al and Ga are in a reciprocal relationship with each other. Al has a segregation coefficient k larger than 1, whereas Ga has a segregation coefficient k smaller than 1. Therefore, as shown in FIG. 8 (b), Ga tends to conflict with the displacement of Al shown in FIG. 7 (b). That is, as shown in FIG. 8B, within the range of about 0.5 to 10 mm / h, the higher the pulling rate, the closer the Ga concentration ratio is to 1, and the pulling rate and the composition of the LTGA single crystal are similar. It can be seen that there is a correlation. On the other hand, outside the range of about 0.5 to 10 mm / h, the Ga concentration ratio converges to about 0.98 as the pulling speed becomes slow, and conversely (saturates) to about 0.99 as the pulling speed becomes fast. The tendency to do is seen. Therefore, an LTGA single crystal having a desired composition with respect to Ga is grown by adjusting the pulling rate using the correspondence relationship between the pulling rate and the concentration ratio in a range larger than 0.5 mm / h and less than 10 mm / h. It becomes possible to make it.

図9は、LTGA単結晶の固化率gと結晶中のAlの濃度比C/Cとの関係を、Cz法とEFG法について比較したグラフである。図9でも、引上げ速度を1mm/h、3mm/h、5mm/h及び7mm/hとした場合(EFG法)の結果と、Cz法で引上げ速度を1mm/hとした場合の結果とを重ねて示している。 FIG. 9 is a graph comparing the relationship between the solidification rate g of the LTGA single crystal and the concentration ratio C s / C 0 of Al in the crystal for the Cz method and the EFG method. In FIG. 9 as well, the results when the pulling speed is 1 mm / h, 3 mm / h, 5 mm / h, and 7 mm / h (EFG method) and the results when the pulling speed is 1 mm / h by the Cz method are overlapped. It shows.

図9に示すように、固化率gが0の育成開始時には、Cz法では濃度比が1.4程度であるのに対し、EFG法ではどの引上げ速度でも濃度比が1.1〜1.2程度であり、より1に近い。このため、EFG法では、Cz法に比べて出発組成に近い状態で、結晶を引き上げ始められることがわかる。また、EFG法では、固化率gが大きくなり結晶成長が進んでも、Cz法に比べて濃度比の変化が緩やかであり、引上げ方向の組成が変化しにくいこともわかる。したがって、図3に示した製造方法で、EFG法にてLTGA単結晶を育成させることにより、出発組成に対する結晶組成のバラつきがCz法の場合と比べて低減され、結晶組成がより出発組成に近い単結晶を育成することが可能である。   As shown in FIG. 9, at the start of growth when the solidification rate g is 0, the concentration ratio is about 1.4 in the Cz method, whereas the concentration ratio is 1.1 to 1.2 at any pulling rate in the EFG method. Degree, closer to 1. For this reason, it can be seen that the EFG method can start pulling the crystal closer to the starting composition than the Cz method. It can also be seen that in the EFG method, even if the solidification rate g increases and crystal growth progresses, the concentration ratio changes more slowly than in the Cz method, and the composition in the pulling direction hardly changes. Therefore, by growing the LTGA single crystal by the EFG method in the manufacturing method shown in FIG. 3, the variation of the crystal composition with respect to the starting composition is reduced compared to the case of the Cz method, and the crystal composition is closer to the starting composition. Single crystals can be grown.

なお、Alが添加されていないLaTa0.5Ga5.514(LTG)の単結晶の場合でも、図6(b)、図8(a)及び図8(b)に示したものと同様の結果が得られた。 In addition, even in the case of a single crystal of La 3 Ta 0.5 Ga 5.5 O 14 (LTG) to which Al is not added, it is shown in FIGS. 6B, 8A, and 8B. Similar results were obtained.

以上説明してきたように、種結晶の引上げ速度が約0.5〜10mm/hの範囲内では、引上げ速度とLTG系単結晶の組成とに相関が見られる。したがって、0.5mm/hより大きくかつ10mm/h未満の範囲内における引上げ速度と、結晶中における構成元素の濃度比との対応関係を用いて引上げ速度を調整することにより、特にAlとGaについて所望の組成を有するLTG系単結晶を育成させることができる。このように、EFG法を使用し引上げ速度を調整する製造方法によれば、Cz法では組成にバラつきが生じやすいLTG系単結晶でも、結晶組成を制御することが可能になる。   As described above, when the pulling rate of the seed crystal is in the range of about 0.5 to 10 mm / h, there is a correlation between the pulling rate and the composition of the LTG single crystal. Therefore, by adjusting the pulling rate using the correspondence relationship between the pulling rate in the range of greater than 0.5 mm / h and less than 10 mm / h and the concentration ratio of the constituent elements in the crystal, particularly for Al and Ga. An LTG single crystal having a desired composition can be grown. As described above, according to the manufacturing method in which the pulling rate is adjusted using the EFG method, it is possible to control the crystal composition even in the LTG single crystal in which the composition is likely to vary in the Cz method.

1 単結晶製造装置
20 ルツボ
30 金型
31 スリット
40 移動機構
41 ホルダ
45 シャフト
47 モータ
50 種結晶
60 制御部
DESCRIPTION OF SYMBOLS 1 Single crystal manufacturing apparatus 20 Crucible 30 Mold 31 Slit 40 Moving mechanism 41 Holder 45 Shaft 47 Motor 50 Seed crystal 60 Control part

Claims (3)

原料融液を上面部に保持する金型と、種結晶を移動させるための移動機構とを備えた単結晶製造装置を使用してEFG法によりLTG系単結晶を製造する方法であって、
前記移動機構によって前記種結晶を移動させる移動速度と、製造前の前記原料融液におけるLTG系単結晶の構成元素の濃度に対する単結晶に取り込まれた当該構成元素の濃度の比との対応関係を用いて、所望の単結晶の組成に応じた移動速度を設定し、
前記上面部に保持された原料融液に前記種結晶を接触させながら、設定された前記移動速度で前記移動機構によって前記種結晶を移動させる、
ステップを有することを特徴とする製造方法。
A method of manufacturing an LTG-based single crystal by an EFG method using a single crystal manufacturing apparatus having a mold for holding a raw material melt on an upper surface portion and a moving mechanism for moving a seed crystal,
Correspondence between the moving speed at which the seed crystal is moved by the moving mechanism and the ratio of the concentration of the constituent element incorporated in the single crystal to the concentration of the constituent element of the LTG single crystal in the raw material melt before production Use to set the moving speed according to the composition of the desired single crystal,
Moving the seed crystal by the moving mechanism at the set moving speed while bringing the seed crystal into contact with the raw material melt held on the upper surface portion;
The manufacturing method characterized by having a step.
前記移動速度を設定するステップでは、前記構成元素に含まれるAl又はGaについての前記濃度の比と、前記移動速度との対応関係を用いる、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the step of setting the moving speed uses a correspondence relationship between the ratio of the concentration of Al or Ga contained in the constituent elements and the moving speed. 前記移動速度を設定するステップでは、0.5mm/hより大きくかつ10mm/h未満の範囲内で前記移動速度を設定する、請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein in the step of setting the moving speed, the moving speed is set within a range of greater than 0.5 mm / h and less than 10 mm / h.
JP2013220519A 2013-10-23 2013-10-23 Method for producing LTG single crystal Expired - Fee Related JP6108349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013220519A JP6108349B2 (en) 2013-10-23 2013-10-23 Method for producing LTG single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013220519A JP6108349B2 (en) 2013-10-23 2013-10-23 Method for producing LTG single crystal

Publications (2)

Publication Number Publication Date
JP2015081219A true JP2015081219A (en) 2015-04-27
JP6108349B2 JP6108349B2 (en) 2017-04-05

Family

ID=53012028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013220519A Expired - Fee Related JP6108349B2 (en) 2013-10-23 2013-10-23 Method for producing LTG single crystal

Country Status (1)

Country Link
JP (1) JP6108349B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722200A (en) * 1980-07-14 1982-02-05 Hitachi Ltd Method for growing single crystal plate
JP2006124223A (en) * 2004-10-28 2006-05-18 Shin Etsu Chem Co Ltd Method for manufacturing oxide single crystal
WO2012049846A1 (en) * 2010-10-13 2012-04-19 Tdk株式会社 Langasite-type oxide material, production method for same, and raw material used in production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722200A (en) * 1980-07-14 1982-02-05 Hitachi Ltd Method for growing single crystal plate
JP2006124223A (en) * 2004-10-28 2006-05-18 Shin Etsu Chem Co Ltd Method for manufacturing oxide single crystal
WO2012049846A1 (en) * 2010-10-13 2012-04-19 Tdk株式会社 Langasite-type oxide material, production method for same, and raw material used in production method

Also Published As

Publication number Publication date
JP6108349B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5633732B2 (en) Sapphire single crystal manufacturing method and sapphire single crystal manufacturing apparatus
CN103562443B (en) The manufacture method of SiC monocrystalline and manufacturing installation
JP5434801B2 (en) Method for producing SiC single crystal
JP5879102B2 (en) Method for producing β-Ga2O3 single crystal
CN103180492A (en) Langasite-type oxide material, production method for same, and raw material used in production method
JP2008105896A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP6015634B2 (en) Method for producing silicon single crystal
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
KR20150140754A (en) METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP2010059031A (en) Aluminum oxide single crystal and method for manufacturing the same
JP6108349B2 (en) Method for producing LTG single crystal
JPH09221379A (en) Device for producing crystal by czochralski method, production of crystal and crystal produced thereby
KR101934189B1 (en) SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SAME
JP2019094251A (en) Method for manufacturing single crystal
CN110284183B (en) ScAlMgO4Single crystal substrate and method for producing same
KR101679157B1 (en) Method for producing sic single crystal
JP4537305B2 (en) Crystal manufacturing method
JP7349100B2 (en) Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal
JP2014058414A (en) Method for producing silicon single crystal for evaluation
JP6992488B2 (en) Crucible for growing single crystals
JP2004203634A (en) Method of producing semiconductor single crystal
JP2004217504A (en) Graphite heater, apparatus and method for producing single crystal
JP2016132600A (en) Sapphire single crystal manufacturing apparatus and manufacturing method of sapphire single crystal
JP6400946B2 (en) Method for producing Si-Ge solid solution single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160427

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170228

R150 Certificate of patent or registration of utility model

Ref document number: 6108349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees