JP2015081189A - Diagnostic operation device for elevator - Google Patents

Diagnostic operation device for elevator Download PDF

Info

Publication number
JP2015081189A
JP2015081189A JP2013221179A JP2013221179A JP2015081189A JP 2015081189 A JP2015081189 A JP 2015081189A JP 2013221179 A JP2013221179 A JP 2013221179A JP 2013221179 A JP2013221179 A JP 2013221179A JP 2015081189 A JP2015081189 A JP 2015081189A
Authority
JP
Japan
Prior art keywords
car
load
unit
natural frequency
elevator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013221179A
Other languages
Japanese (ja)
Inventor
聡 西江
Satoshi Nishie
聡 西江
佐々木 悟
Satoru Sasaki
悟 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Co Ltd
Original Assignee
Hitachi Building Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Systems Co Ltd filed Critical Hitachi Building Systems Co Ltd
Priority to JP2013221179A priority Critical patent/JP2015081189A/en
Publication of JP2015081189A publication Critical patent/JP2015081189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diagnostic operation device for an elevator that can properly diagnose a no-load state of car interior load without being affected by a rubber cushion subjected to a change in temperature.SOLUTION: In a diagnostic operation device 9, a measurement result of deflection amount of a rubber cushion 3 obtained by a distance sensor 4 that is located between a lower portion of a car 1 and a car frame 2 is measured by a waveform measurement section 12 as a vibration waveform under a condition where operation control for vibrating the car 1 is preformed by an operation control section 11, and an FFT analysis of the vibration waveform is performed by a fast Fourier transformation (FFT) analysis section 13, so as to calculate an initial natural frequency Fand a current natural frequency Fof the rubber cushion 3. On the basis of the initial natural frequency Fand a weight Mof the car 1 in the no-load state, a spring constant k of the rubber cushion 3 is calculated by an arithmetic processing section 14 and is registered in an initial value recording section 15. On the basis of the current natural frequency F, the weight Mof the car 1 and the spring constant k, a car interior load ΔM is calculated, and a no-load determination section 16 determines the no-load state where a calculation result of the car interior load ΔM is zero.

Description

本発明は、エレベータにおける運転機能の良否診断を行う機能を持つエレベータ用診断運転装置に関する。   The present invention relates to an elevator diagnostic operation apparatus having a function of performing a pass / fail diagnosis of an operation function in an elevator.

近年、エレベータには、運転機能の良否を診断する診断運転機能を設ける傾向がある。こうした診断運転を行う際には、乗りかご内の荷重がゼロの状態、即ち、乗りかご内に利用者(乗客)や荷物等が存在しない状態で行わなければ、毎回同一条件で診断することができず、診断精度を悪化させる虞がある。   In recent years, elevators tend to be provided with a diagnostic driving function for diagnosing the quality of a driving function. When performing such diagnostic driving, the diagnosis can be made under the same conditions each time unless the load in the car is zero, that is, when there is no user (passenger) or luggage in the car. There is a risk that the diagnostic accuracy may deteriorate.

そこで、診断運転を行う前に乗りかご内の荷重を計測する秤装置(荷重計)の検出値から乗りかご内の荷重がゼロであることを判定し、ゼロ判定ができた場合にのみ診断運転を行う手法に係る周知技術として、保守員無しに自動的、簡便にブレーキトルク上昇運転を実施する「巻上機のブレーキ保持トルク調整装置及びそのブレーキ保持トルク調整方法」(特許文献1参照)が挙げられる。   Therefore, before performing diagnostic operation, it is determined that the load in the car is zero from the detected value of the scale device (load meter) that measures the load in the car. As a well-known technique related to the technique of performing the above, there is “a brake holding torque adjusting device for a hoisting machine and its brake holding torque adjusting method” (see Patent Document 1) that automatically and simply performs a brake torque increasing operation without maintenance personnel. Can be mentioned.

特開2013−49568号公報JP 2013-49568 A

上述した特許文献1に係る技術は、乗りかご内の荷重を計測する秤装置(荷重計)が乗りかご下部に設けられており、乗りかごとかご枠との間に乗りかごの防振用に取り付けられた防振ゴムと、この防振ゴムの撓み量を検出するセンサと、を備え、センサ出力に基づいてかご内荷重を検出するように構成されているが、防振ゴムが気温変化に伴って膨張したり、収縮することを受け、センサで検出される撓み量にも影響が及ぶ結果、かご内荷重の検出にも誤差を生じるため、こうした場合には正確にかご内荷重のゼロ状態を診断できなくなってしまうという問題がある。   In the technique according to Patent Document 1 described above, a scale device (load meter) for measuring the load in the car is provided at the lower part of the car, and is used for vibration isolation of the car between the car and the car frame. It is equipped with an attached anti-vibration rubber and a sensor that detects the amount of deflection of the anti-vibration rubber, and is configured to detect the load in the car based on the sensor output. As a result, the amount of deflection detected by the sensor is affected as a result of expansion and contraction, resulting in an error in the detection of the load inside the car. There is a problem that it becomes impossible to diagnose.

本発明は、このような問題点を解決すべくなされたもので、その技術的課題は、防振ゴムの気温変化の影響を被らずに適確にかご内荷重のゼロ状態である無負荷状態を診断でき、その無負荷状態時に信頼性高く診断運転を実施できるエレベータ用診断運転装置を提供することにある。   The present invention has been made to solve such a problem, and its technical problem is that the load in the car is properly zero without being affected by the temperature change of the vibration-proof rubber. It is an object of the present invention to provide an elevator diagnostic operation device that can diagnose a state and can perform a diagnostic operation with high reliability in the no-load state.

上記技術的課題を解決するため、本発明は、建物に設けられたエレベータの乗りかご下部とかご枠との間に防振ゴム及び距離センサが設置され、当該防振ゴムの撓み量を当該距離センサによって計測した結果に基づいて当該乗りかご内のかご内荷重のゼロ状態を診断するエレベータ用診断運転装置であって、距離センサによる撓み量の計測結果を振動波形として計測する波形計測部と、波形計測部による振動波形を高速フーリエ変換解析して防振ゴムの固有振動数を算出する高速フーリエ変換解析部と、高速フーリエ変換解析部による固有振動数と無負荷状態での乗りかごの重量とに基づいて防振ゴムのばね定数を算出すると共に、当該固有振動数、当該乗りかごの重量、及び当該ばね定数に基づいてかご内荷重を算出する演算処理部と、演算処理部によるかご内荷重の算出結果がゼロ状態である無負荷状態を判定する無負荷判定部と、を備えたことを特徴とする。   In order to solve the above technical problem, the present invention provides an anti-vibration rubber and a distance sensor installed between a lower part of an elevator car provided in a building and a car frame. A diagnostic operation device for an elevator for diagnosing a zero state of a car load in the car based on a result measured by a sensor, a waveform measuring unit for measuring a measurement result of a deflection amount by a distance sensor as a vibration waveform; A fast Fourier transform analysis unit that calculates the natural frequency of the anti-vibration rubber by performing a fast Fourier transform analysis of the vibration waveform from the waveform measurement unit, and the natural frequency and the weight of the car in an unloaded state by the fast Fourier transform analysis unit A calculation unit that calculates a spring constant of the vibration isolating rubber based on the natural frequency, a weight of the car, and a load in the car based on the spring constant; Calculation results of the car load by the processing unit, characterized in that and a no-load determination unit determines a no-load state, which is a zero state.

本発明のエレベータ用診断運転装置によれば、上記構成により従来のように防振ゴムが気温変化で膨張したり、或いは収縮することによる影響を被らずに適確にかご内荷重のゼロ状態である無負荷状態を診断でき、その無負荷状態時に信頼性高く診断運転を実施できるようになる。   According to the diagnostic operation apparatus for elevators of the present invention, the above-described configuration ensures that the vibration-proof rubber does not expand or contract due to a change in temperature as in the conventional case, and the load in the car is accurately zero. The no-load state can be diagnosed, and the diagnosis operation can be performed with high reliability in the no-load state.

本発明の実施例1に係るエレベータ用診断運転装置及びその周辺装置を含むエレベータ診断運転制御システムの全体を示した概略図である。It is the schematic which showed the whole elevator diagnostic driving | operation control system containing the diagnostic driving | operation apparatus for elevators which concerns on Example 1 of this invention, and its peripheral device. 図1に示すエレベータ用診断運転装置による乗りかごの無負荷状態でのかご内荷重の算出に必要な診断運転時の適用データとなる初期値登録の動作処理を示したフローチャートである。FIG. 2 is a flowchart showing an initial value registration operation process serving as application data at the time of a diagnostic operation necessary for calculating a car load in a no-load state of the car by the elevator diagnostic operation device shown in FIG. 1. FIG. 図1に示すエレベータ用診断運転装置による図2で説明した初期値登録結果を用いた乗りかごのかご内荷重の算出結果に基づくかご内無人状態での診断運転の動作処理を示したフローチャートである。It is the flowchart which showed the operation process of the diagnostic driving | running | working in the unmanned state in a car based on the calculation result of the car in-car load using the initial value registration result demonstrated in FIG. 2 by the diagnostic driving | operation apparatus for elevators shown in FIG. .

以下に、本発明のエレベータ用診断運転装置について、実施例を挙げ、図面を参照して詳細に説明する。   Hereinafter, an elevator diagnostic operation apparatus according to the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1に係るエレベータ用診断運転装置9及びその周辺装置を含むエレベータ診断運転制御システムの全体を示した概略図である。図1を参照すれば、このエレベータ診断運転制御システムは、建物に設けられたエレベータの乗りかご1の診断運転を制御(実施又は延期)する機能を持つ診断運転装置9を備える他、診断運転装置9に対して外部からデータ入力等の操作を行う外部操作装置17と、乗りかご1の下部と乗りかご1を支えるためのかご枠2との間に設置された乗りかご1の振動を軽減するための防振ゴム3及び防振ゴム3の撓み量を計測するための距離センサ4と、を周辺装置として備える。その他、周知なエレベータ機構として、乗りかご1及び釣合い錘8に結合されて反らせ車7に架け渡たされた主ロープ5が巻回される巻上機6の図示されないモータを図示されないエレベータ制御装置が駆動して乗りかご1を建物に設けられた図示されない昇降路における目的の階に移動させる機能が持たされる。因みに、釣合い錘8は乗りかご1の昇降の負荷を軽減させるもので、主ロープ5は乗りかご1と釣合い錘8とを繋ぐものである。また、巻上機6は乗りかご1を昇降させるためのもので、反らせ車7は乗りかご1と釣合い錘8との衝突を避けるためのものである。   FIG. 1 is a schematic diagram showing an entire elevator diagnosis operation control system including an elevator diagnosis operation device 9 and its peripheral devices according to a first embodiment of the present invention. Referring to FIG. 1, this elevator diagnosis operation control system includes a diagnosis operation device 9 having a function of controlling (implementing or postponing) diagnosis operation of an elevator car 1 provided in a building. 9 reduces the vibration of the car 1 installed between the external operating device 17 that performs operations such as data input from the outside to the car 9 and the lower part of the car 1 and the car frame 2 for supporting the car 1. And a distance sensor 4 for measuring the amount of deflection of the anti-vibration rubber 3 are provided as peripheral devices. In addition, as a well-known elevator mechanism, an elevator control device (not shown) of a hoisting machine 6 on which a main rope 5 coupled to the car 1 and the counterweight 8 and spanned on the curling wheel 7 is wound is shown. Is driven to move the car 1 to a target floor in a hoistway (not shown) provided in the building. Incidentally, the counterweight 8 reduces the load of raising and lowering the car 1, and the main rope 5 connects the car 1 and the counterweight 8. The hoisting machine 6 is for raising and lowering the car 1, and the curling wheel 7 is for avoiding a collision between the car 1 and the counterweight 8.

このうち、診断運転装置9は、防振ゴム3の撓み量を距離センサ4によって計測した結果に基づいて診断運転装置9が乗りかご1内のかご内荷重のゼロ状態を診断した結果に応じて診断運転を実施又は延期する機能を持つ。具体的に云えば、診断運転装置9は、巻上機6との間で信号の送受信を行うと共に、距離センサ4からの撓み量の計測結果を示す計測信号及び外部操作装置17からのデータ入力信号を受信するインターフェース(I/F)回路10と、距離センサ4による撓み量の計測結果の計測信号をインターフェース(I/F)回路10を介して受信して振動波形として計測する波形計測部12と、波形計測部12による振動波形を高速フーリエ変換(FFT)解析して防振ゴム3の固有振動数F(具体的には後述する初期固有振動数F、現在固有振動数F)を算出する高速フーリエ変換(FFT)解析部13と、高速フーリエ変換解析部13による固有振動数F(初期固有振動数F)と無負荷状態での乗りかご1の重量Mとに基づいて防振ゴム3のばね定数kを算出すると共に、固有振動数F(現在固有振動数F)、乗りかご1の重量M、及びばね定数kに基づいてかご内荷重ΔMを算出する演算処理部14と、演算処理部14によるかご内荷重ΔMの算出結果がゼロ状態である無負荷状態を判定する無負荷判定部16と、を備えている。 Among these, the diagnostic operation device 9 is in accordance with the result of the diagnosis operation device 9 diagnosing the zero state of the car load in the car 1 based on the result of measuring the deflection amount of the anti-vibration rubber 3 by the distance sensor 4. Has the function to implement or postpone diagnostic operation. More specifically, the diagnostic operation device 9 transmits / receives a signal to / from the hoisting machine 6 and inputs a measurement signal indicating a measurement result of the deflection amount from the distance sensor 4 and a data input from the external operation device 17. An interface (I / F) circuit 10 that receives a signal, and a waveform measurement unit 12 that receives a measurement signal of a measurement result of the deflection amount by the distance sensor 4 via the interface (I / F) circuit 10 and measures it as a vibration waveform. Then, the vibration waveform obtained by the waveform measuring unit 12 is subjected to fast Fourier transform (FFT) analysis to determine the natural frequency F of the vibration-proof rubber 3 (specifically, an initial natural frequency F 0 and a current natural frequency F 1 described later). Based on the calculated fast Fourier transform (FFT) analysis unit 13, the natural frequency F (initial natural frequency F 0 ) by the fast Fourier transform analysis unit 13 and the weight M 0 of the car 1 in the unloaded state. An arithmetic processing unit that calculates the spring constant k of the vibration rubber 3 and calculates the in-car load ΔM based on the natural frequency F (current natural frequency F 1 ), the weight M 0 of the car 1, and the spring constant k. 14 and a no-load determination unit 16 that determines a no-load state in which the calculation result of the in-car load ΔM by the arithmetic processing unit 14 is zero.

また、診断運転装置9は、乗りかご1を低速で走行させた後に急停止させることで乗りかご1に対して振動を発生させるための運転制御を行う運転制御部11と、乗りかご1の重量M、並びに運転制御部11による運転制御で無負荷状態での乗りかご1を振動させたときの高速フーリエ変換解析部13で算出された固有振動数F(初期固有振動数F)と乗りかご1の重量Mとに基づいて演算処理部14により算出されたばね定数kを初期値として保存する初期値記録部15と、を備えている。因みに、初期値記録部15には、図示されない保守点検作業員により外部操作装置17からインターフェース(I/F)回路10を介して乗りかご1の重量Mが登録される。また、高速フーリエ変換解析部13による固有振動数F(初期固有振動数F、現在固有振動数F)の算出は、運転制御部11による運転制御で乗りかご1を振動させたときに距離センサ4で計測される防振ゴム3の撓み量を波形計測部12で振動波形とした計測結果を対象にして行われる。 In addition, the diagnostic operation device 9 includes an operation control unit 11 that performs operation control for causing the car 1 to vibrate by causing the car 1 to travel at a low speed and then suddenly stop, and the weight of the car 1. M 0 and the natural frequency F (initial natural frequency F 0 ) calculated by the fast Fourier transform analysis unit 13 when the car 1 in the no-load state is vibrated by the operation control by the operation control unit 11 and the ride An initial value recording unit 15 that stores the spring constant k calculated by the arithmetic processing unit 14 based on the weight M 0 of the car 1 as an initial value. Incidentally, in the initial value recording unit 15, the weight M 0 of the car 1 is registered from the external operation device 17 through the interface (I / F) circuit 10 by a maintenance inspection worker (not shown). The calculation of the natural frequency F (initial natural frequency F 0 , current natural frequency F 1 ) by the fast Fourier transform analysis unit 13 is the distance when the car 1 is vibrated by the operation control by the operation control unit 11. The measurement is performed on a measurement result obtained by using the waveform measuring unit 12 as the vibration waveform of the amount of deflection of the vibration isolating rubber 3 measured by the sensor 4.

図2は、実施例1に係る診断運転装置9による乗りかご1の無負荷状態でのかご内荷重ΔMの算出に必要な診断運転時の適用データとなる初期値登録の動作処理を示したフローチャートである。図2を参照すれば、初期値登録の動作処理では、まず保守点検作業員が乗りかご1の外部から外部操作装置17を使用して無負荷状態の乗りかご1の重量M(Kg)をインターフェース(I/F)回路10を介して波形計測部12、高速フーリエ変換解析部13、及び演算処理部14を経由して初期値記録部15に対して送信し、初期値記録部15が乗りかご1の重量Mを記録することで乗りかご重量登録(ステップS100)の処理が行われた後、乗りかご1内が無負荷状態であることを確認してからインターフェース(I/F)回路10を介して運転制御部11に対して初期値計測運転開始を指令する指令信号を送信することで初期値計測運転開始(ステップS101)の処理が行われる。 FIG. 2 is a flowchart illustrating an operation process of initial value registration serving as application data at the time of diagnostic operation necessary for calculating the car load ΔM in the unloaded state of the car 1 by the diagnostic operation device 9 according to the first embodiment. It is. Referring to FIG. 2, in the initial value registration operation process, first, a maintenance inspection worker uses the external operating device 17 from the outside of the car 1 to determine the weight M 0 (Kg) of the car 1 in the unloaded state. The data is transmitted to the initial value recording unit 15 via the interface (I / F) circuit 10 via the waveform measurement unit 12, the fast Fourier transform analysis unit 13, and the arithmetic processing unit 14, and the initial value recording unit 15 gets on. car weight registered by recording the weight M 0 of the car 1 after the process of (step S100) is performed, the interface after confirming that the car 1 is in a no-load state (I / F) circuit By transmitting a command signal for instructing the operation control unit 11 to start the initial value measurement operation via 10, the process for starting the initial value measurement operation (step S <b> 101) is performed.

次に、初期値計測運転開始の指令信号を受信した運転制御部11は、巻上機6を動作させて乗りかご1を低速で上昇(UP)させることで低速UP運転実施(ステップS102)の処理が行われた後、低速UP運転の実施時間を計測して予め内部に設定された所定時間を経過したか否かの判定(ステップS103)の処理が行われる。この判定の結果、所定時間を経過していなければ低速UP運転実施(ステップS102)の処理の前に戻ってそれ以降の処理を繰り返すが、所定時間を経過していれば運転制御部11は乗りかご1を停止することでエレベータ停止(ステップS104)の処理が行われる。このときの運転制御により乗りかご1は強制的な振動発生状態となる。   Next, the operation control unit 11 that has received the command signal for starting the initial value measurement operation operates the hoisting machine 6 and raises the car 1 at a low speed (UP) to execute the low speed UP operation (step S102). After the process is performed, a process of determining whether or not a predetermined time set in advance has elapsed by measuring the execution time of the low-speed UP operation is performed (step S103). As a result of this determination, if the predetermined time has not elapsed, the process returns to before the low-speed UP operation execution (step S102) and the subsequent processing is repeated, but if the predetermined time has elapsed, the operation control unit 11 takes the ride. By stopping the car 1, the elevator stop process (step S104) is performed. By the operation control at this time, the car 1 is in a forced vibration generation state.

次に、距離センサ4によるエレベータ停止時の乗りかご1とかご枠2との間の距離を計測することで防振ゴム3の撓み量を計測し、その計測信号がインターフェース(I/F)回路10を介して波形計測部12に送信され、波形計測部12では計測信号を受信して振動波形として計測して記録することで乗りかご振動波形計測(ステップS105)の処理が行われた後、その波形計測の時間が予め内部に設定された波形計測時間に到達しているか否かについての計測完了であるか否かの判定(ステップS106)の処理が行われる。この判定の結果、計測完了でなければ乗りかご振動波形計測(ステップS105)の処理の前に戻ってそれ以降の処理を繰り返すが、計測完了であれば波形計測部12はインターフェース(I/F)回路10を介して運転制御部11に対して計測完了信号を送信する。この計測完了信号を受信した運転制御部11では、エレベータを停止状態から動作状態に復帰させることでエレベータ復帰(ステップS107)の処理が行われる。   Next, the distance between the car 1 and the car frame 2 when the elevator is stopped by the distance sensor 4 is measured to measure the amount of deflection of the anti-vibration rubber 3, and the measurement signal is an interface (I / F) circuit. 10 is transmitted to the waveform measurement unit 12 via the vehicle 10, and the waveform measurement unit 12 receives the measurement signal, measures and records it as a vibration waveform, and then performs the car vibration waveform measurement (step S 105). A process of determining whether or not the measurement is completed as to whether or not the waveform measurement time has reached the waveform measurement time set in advance in advance (step S106) is performed. As a result of this determination, if the measurement is not completed, the process returns to the car vibration waveform measurement (step S105) and repeats the subsequent processes. However, if the measurement is completed, the waveform measurement unit 12 uses the interface (I / F). A measurement completion signal is transmitted to the operation control unit 11 via the circuit 10. In the operation control unit 11 that has received the measurement completion signal, the elevator return (step S107) is performed by returning the elevator from the stopped state to the operating state.

更に、波形計測部12は計測完了した振動波形のデータ信号を高速フーリエ変換解析部13に送信し、高速フーリエ変換解析部13では計測した振動波形を高速フーリエ変換解析し、最も振幅の大きい周波数を防振ゴム3の固有振動数Fの初期値を示す初期固有振動数F(Hz)として算出して特定(ステップS108)する処理が行われた後、その初期固有振動数Fを演算処理部14へ送信する。演算処理部14では初期値記録部15に登録された乗りかご1の重量Mと高速フーリエ変換解析部13から受信した防振ゴム3の初期固有振動数Fとに基づいて、防振ゴム3のばね定数k(N/m)を算出(ステップS109)する処理が行われた後、乗りかご1の重量Mとばね定数kを初期値記録部15に保存(ステップS110)する処理が行われ、その後に動作処理の終了となる。但し、演算処理部14では、防振ゴム3のばね定数k=(乗りかご1の重量M)×{2π×(防振ゴム3の初期固有振動数F)}なる関係の演算式を適用する。 Further, the waveform measuring unit 12 transmits the data signal of the vibration waveform that has been measured to the fast Fourier transform analyzing unit 13, and the fast Fourier transform analyzing unit 13 performs the fast Fourier transform analysis on the measured vibration waveform, and obtains the frequency having the largest amplitude. After the process of calculating and specifying (step S108) as the initial natural frequency F 0 (Hz) indicating the initial value of the natural frequency F of the anti-vibration rubber 3, the initial natural frequency F 0 is calculated. To the unit 14. Based on the weight M 0 of the car 1 registered in the initial value recording unit 15 and the initial natural frequency F 0 of the vibration isolating rubber 3 received from the fast Fourier transform analysis unit 13 in the arithmetic processing unit 14. After the process of calculating the spring constant k (N / m) of 3 (step S109), the process of storing the weight M 0 of the car 1 and the spring constant k in the initial value recording unit 15 (step S110) is performed. After that, the operation process ends. However, the arithmetic processing unit 14 calculates the spring constant k of the anti-vibration rubber 3 = (weight M 0 of the car 1) × {2π × (initial natural frequency F 0 of the anti-vibration rubber 3)} 2 Apply.

図3は、実施例1に係る診断運転装置9による図2で説明した初期値登録結果を用いた乗りかご1のかご内荷重ΔMの算出結果に基づくかご内無人状態での診断運転の動作処理を示したフローチャートである。図3を参照すれば、ここでの診断運転は、乗りかご1内が無負荷状態でなければ実施できない診断運転を行う場合を想定したもので、まず運転制御部11によりエレベータの待機時間が3分以上継続しているか否かの判定(ステップS200)の処理が行われる。この判定の結果、待機時間が3分以上継続していなければこの判定(ステップS200)の前に戻って処理を繰り返すが、待機時間が3分以上継続していれば運転制御部11は巻上機6を動作させて乗りかご1を低速で上昇(UP)させることで低速UP運転実施(ステップS201)の処理が行われた後、低速UP運転の実施時間を計測して予め内部に設定された所定時間を経過したか否かの判定(ステップS202)の処理が行われる。この判定の結果、所定時間を経過していなければ低速UP運転実施(ステップS202)の処理の前に戻ってそれ以降の処理を繰り返すが、所定時間を経過していれば運転制御部11は乗りかご1を停止することでエレベータ停止(ステップS203)の処理が行われる。このときの運転制御によっても、乗りかご1は強制的な振動発生状態となる。   FIG. 3 shows the operation process of the diagnostic operation in the unmanned state in the car based on the calculation result of the car load ΔM of the car 1 using the initial value registration result explained in FIG. 2 by the diagnostic driving device 9 according to the first embodiment. It is the flowchart which showed. Referring to FIG. 3, the diagnosis operation here assumes a case where a diagnosis operation that cannot be performed unless the inside of the car 1 is in a no-load state is performed. The process of determining whether or not it continues for more than minutes (step S200) is performed. As a result of this determination, if the standby time does not continue for 3 minutes or longer, the process returns to this determination (step S200) and repeats the process. After the processing of the low-speed UP operation (step S201) is performed by operating the machine 6 and raising the car 1 at a low speed (UP), the execution time of the low-speed UP operation is measured and set in advance. The process of determining whether or not the predetermined time has passed (step S202) is performed. As a result of this determination, if the predetermined time has not elapsed, the process returns to before the low-speed UP operation execution (step S202) and the subsequent processing is repeated, but if the predetermined time has elapsed, the operation control unit 11 gets on. By stopping the car 1, the elevator stop process (step S203) is performed. The car 1 is also in a forced vibration generation state by the operation control at this time.

次に、距離センサ4によるエレベータ停止時の乗りかご1とかご枠2との間の距離を計測することで防振ゴム3の撓み量を計測し、その計測信号がインターフェース(I/F)回路10を介して波形計測部12に送信され、波形計測部12では計測信号を受信して振動波形として計測して記録することで乗りかご振動波形計測(ステップS204)の処理が行われた後、その波形計測の時間が予め内部に設定された波形計測時間に到達しているか否かについての計測完了であるか否かの判定(ステップS205)の処理が行われる。この判定の結果、計測完了でなければ乗りかご振動波形計測(ステップS204)の処理の前に戻ってそれ以降の処理を繰り返すが、計測完了であれば波形計測部12はインターフェース(I/F)回路10を介して運転制御部11に対して計測完了信号を送信する。この計測完了信号を受信した運転制御部11はエレベータを停止状態から動作状態に復帰させることでエレベータ復帰(ステップS206)の処理が行われる。   Next, the distance between the car 1 and the car frame 2 when the elevator is stopped by the distance sensor 4 is measured to measure the amount of deflection of the anti-vibration rubber 3, and the measurement signal is an interface (I / F) circuit. 10 is transmitted to the waveform measurement unit 12, and the waveform measurement unit 12 receives the measurement signal and measures and records it as a vibration waveform to perform the car vibration waveform measurement (step S <b> 204). A process of determining whether or not the measurement has been completed (step S205) as to whether or not the waveform measurement time has reached a preset waveform measurement time is performed. As a result of this determination, if the measurement is not completed, the process returns to before the car vibration waveform measurement (step S204) and the subsequent processes are repeated. If the measurement is completed, the waveform measurement unit 12 uses the interface (I / F). A measurement completion signal is transmitted to the operation control unit 11 via the circuit 10. The operation control unit 11 that has received this measurement completion signal returns the elevator from the stopped state to the operating state, thereby performing the elevator return (step S206) process.

更に、波形計測部12は計測完了した振動波形のデータ信号を高速フーリエ変換解析部13に送信し、高速フーリエ変換解析部13では計測した振動波形を高速フーリエ変換解析し、最も振幅の大きい周波数を防振ゴム3の固有振動数Fの現在値を示す現在固有振動数F(Hz)として算出して特定(ステップS207)する処理が行われた後、現在固有振動数Fを演算処理部14へ送信する。演算処理部14では、初期値記録部15に登録された乗りかご1の重量M、防振ゴム3のばね定数k、及び高速フーリエ変換解析部13から受信した防振ゴム3の現在固有振動数Fに基づいて、現在の乗りかご1のかご内荷重ΔM(Kg)を算出(ステップS208)して無負荷判定部16に送信する。但し、演算処理部14では、かご内荷重ΔM=[(防振ゴム3のばね定数k)/{2π×(防振ゴム3の現在固有振動数F)}]−(乗りかご1の重量M)なる関係の演算式を適用する。 Further, the waveform measuring unit 12 transmits the data signal of the vibration waveform that has been measured to the fast Fourier transform analyzing unit 13, and the fast Fourier transform analyzing unit 13 performs the fast Fourier transform analysis on the measured vibration waveform, and obtains the frequency having the largest amplitude. After the processing of calculating and specifying (step S207) as the current natural frequency F 1 (Hz) indicating the current value of the natural frequency F of the anti-vibration rubber 3, the current natural frequency F 1 is calculated. 14 to send. In the arithmetic processing unit 14, the weight M 0 of the car 1 registered in the initial value recording unit 15, the spring constant k of the anti-vibration rubber 3, and the current natural vibration of the anti-vibration rubber 3 received from the fast Fourier transform analysis unit 13. based on the number F 1, and transmits car load ΔM current car 1 (Kg) is calculated (step S208) to the no-load determination unit 16. However, in the arithmetic processing unit 14, the load in the car ΔM = [(the spring constant k of the anti-vibration rubber 3) / {2π × (the current natural frequency F 1 of the anti-vibration rubber 3)} 2 ] − (of the car 1 applying an equation of the weight M 0) the relationship.

無負荷判定部16では、かご内荷重ΔMの算出値が予め演算処理部14に設定された閾値を参照して閾値未満であるか否かによりかご内無人状態であるか否かの判定(ステップS209)の処理が行われる。この判定の結果、かご内荷重ΔMの算出値が閾値未満のかご内無人状態であればその旨を示すかご内無人判定信号を演算処理部14へ送信し、演算処理部14では運転制御部11へ無負荷検出信号を送信し、これによって運転制御部11が無負荷状態で診断運転実施(ステップS210)する処理が行われてから動作処理の終了となるが、かご内荷重ΔMの算出値が閾値以上のかご内有人状態であればその旨を示すかご内有人判定信号を演算処理部14へ送信し、演算処理部14では運転制御部11へ有負荷検出信号を送信し、これによって運転制御部11が有負荷状態で診断運転延期(ステップS211)する処理が行われて診断運転を見送ってから動作処理の終了となる。   The no-load determination unit 16 determines whether or not the car is in an unattended state based on whether or not the calculated value of the in-car load ΔM is less than the threshold with reference to a threshold value set in the arithmetic processing unit 14 in advance (step) The process of S209) is performed. As a result of this determination, if the calculated value of the car load ΔM is less than the threshold, the car unmanned determination signal indicating that is sent to the arithmetic processing unit 14, and the arithmetic processing unit 14 operates the operation control unit 11. The no-load detection signal is transmitted to the operation control unit 11 to perform the diagnosis operation in the no-load state (step S210), and the operation process ends. However, the calculated value of the car load ΔM is If the car is in the caged state equal to or greater than the threshold value, a car manned determination signal indicating the fact is transmitted to the arithmetic processing unit 14, and the arithmetic processing unit 14 transmits a load detection signal to the operation control unit 11, thereby controlling the operation. The operation process is ended after the process that the diagnostic operation is postponed (step S211) is performed in the state where the unit 11 is loaded and the diagnostic operation is overlooked.

以上に説明したように、実施例1の診断運転装置9によれば、運転制御部11で乗りかご1を低速で走行させた後に急停止させることで乗りかご1に対して振動を発生させるための運転制御を行った条件下で乗りかご1の下部とかご枠2との間に設けられた距離センサ4による防振ゴム3の撓み量の計測結果を波形計測部12で振動波形として計測し、高速フーリエ変換解析部13で振動波形を高速フーリエ変換解析して防振ゴム3の初期固有振動数F、現在固有振動数Fを算出するものとし、演算処理部14により初期固有振動数Fと無負荷状態の乗りかご1の重量Mとに基づいて防振ゴム3のばね定数kを算出して初期値記録部15に登録すると共に、現在固有振動数F、乗りかご1の重量M、及び防振ゴム3のばね定数kに基づいて乗りかご1のかご内荷重ΔMを算出し、無負荷判定部16によりかご内荷重ΔMの算出結果がゼロ状態である無負荷状態を判定するため、従来のように防振ゴム3が気温変化で膨張したり、或いは収縮することによる影響を被らずに適確にかご内荷重ΔMのゼロ状態である無負荷状態を診断でき、その無負荷状態時に信頼性高く診断運転を実施できるようになる。 As described above, according to the diagnostic operation device 9 of the first embodiment, the operation control unit 11 causes the car 1 to vibrate by causing the car 1 to travel at a low speed and then suddenly stopping. The measurement result of the amount of deflection of the anti-vibration rubber 3 by the distance sensor 4 provided between the lower part of the car 1 and the car frame 2 is measured as a vibration waveform by the waveform measuring unit 12 under the condition where the operation control is performed. The fast natural Fourier transform analysis unit 13 performs fast Fourier transform analysis of the vibration waveform to calculate the initial natural frequency F 0 and the current natural frequency F 1 of the anti-vibration rubber 3. The arithmetic processing unit 14 calculates the initial natural frequency. The spring constant k of the anti-vibration rubber 3 is calculated based on F 0 and the weight M 0 of the unloaded car 1 and registered in the initial value recording unit 15, and the current natural frequency F 1 , the car 1 weight M 0, and rubber cushion 3 of the spring The car load ΔM of the car 1 is calculated based on the number k, and the no-load determination unit 16 determines the no-load state in which the calculation result of the car load ΔM is zero. 3 can accurately diagnose the no-load state, which is the zero state of the load in the car ΔM, without being affected by the expansion or contraction due to the temperature change, and the diagnostic operation with high reliability in the no-load state Can be implemented.

即ち、実施例1で説明した診断運転装置9では、従来のように防振ゴム3の撓み量を距離センサ4で検出した結果を直接用いることなく、その撓み量の振動波形を高速フーリエ変換解析して得た初期固有振動数Fを用いて演算処理部14により防振ゴム3のばね定数kを算出した結果を初期値記録部15に登録しておき、更に防振ゴム3のばね定数k及び現在固有振動数Fを用いて乗りかご1のかご内荷重ΔMを算出した結果に基づいて無負荷判定部16がかご内荷重ΔMのゼロ状態である無負荷状態を診断するため、より正確にかご内荷重ΔMを算出でき、乗りかご1内の無負荷検知の精度を向上することができる。 That is, in the diagnostic operation device 9 described in the first embodiment, the vibration waveform of the deflection amount is analyzed by the fast Fourier transform analysis without directly using the result of detecting the deflection amount of the anti-vibration rubber 3 by the distance sensor 4 as in the prior art. The result of calculating the spring constant k of the anti-vibration rubber 3 by the arithmetic processing unit 14 using the initial natural frequency F 0 obtained in this manner is registered in the initial value recording unit 15, and the spring constant of the anti-vibration rubber 3 is further registered. Since the no-load determination unit 16 diagnoses the no-load state in which the car load ΔM is zero based on the result of calculating the car load ΔM of the car 1 using k and the current natural frequency F 1. The car load ΔM can be accurately calculated, and the accuracy of detecting no load in the car 1 can be improved.

尚、図1を参照して実施例1として説明したエレベータ用診断運転装置9の構成は、機能毎に各部を分けた例であり、例えば高速フーリエ変換解析部13や無負荷判定部16は演算処理部14内に組み込むことも可能であるため、その構成上の形態は開示したものに限定されない。   The configuration of the elevator diagnostic operation apparatus 9 described as the first embodiment with reference to FIG. 1 is an example in which each unit is divided for each function. For example, the fast Fourier transform analysis unit 13 and the no-load determination unit 16 perform computation. Since it can also be incorporated in the processing unit 14, its structural form is not limited to that disclosed.

1 乗りかご
2 かご枠
3 防振ゴム
4 距離センサ
5 主ロープ
6 巻上機
7 反らせ車
8 釣合い錘
9 診断運転装置
10 インターフェース(I/F)回路
11 運転制御部
12 波形計測部
13 高速フーリエ変換(FFT)解析部
14 演算処理部
15 初期値記録部
16 無負荷判定部
DESCRIPTION OF SYMBOLS 1 Car 2 Car frame 3 Anti-vibration rubber 4 Distance sensor 5 Main rope 6 Hoisting machine 7 Warping wheel 8 Balance weight 9 Diagnostic operation device 10 Interface (I / F) circuit 11 Operation control part 12 Waveform measurement part 13 Fast Fourier transform (FFT) Analysis unit 14 Arithmetic processing unit 15 Initial value recording unit 16 No-load determination unit

Claims (3)

建物に設けられたエレベータの乗りかご下部とかご枠との間に防振ゴム及び距離センサが設置され、当該防振ゴムの撓み量を当該距離センサによって計測した結果に基づいて当該乗りかご内のかご内荷重のゼロ状態を診断するエレベータ用診断運転装置であって、
前記距離センサによる前記撓み量の計測結果を振動波形として計測する波形計測部と、前記波形計測部による前記振動波形を高速フーリエ変換解析して前記防振ゴムの固有振動数を算出する高速フーリエ変換解析部と、前記高速フーリエ変換解析部による前記固有振動数と無負荷状態での前記乗りかごの重量とに基づいて前記防振ゴムのばね定数を算出すると共に、当該固有振動数、当該乗りかごの重量、及び当該ばね定数に基づいてかご内荷重を算出する演算処理部と、前記演算処理部による前記かご内荷重の算出結果が前記ゼロ状態である無負荷状態を判定する無負荷判定部と、を備えたことを特徴とするエレベータ用診断運転装置。
Anti-vibration rubber and a distance sensor are installed between the elevator car lower part and the car frame provided in the building, and the amount of flexure of the anti-vibration rubber is measured by the distance sensor. A diagnostic operation device for an elevator for diagnosing a zero state of a car load,
A waveform measuring unit that measures a measurement result of the deflection amount by the distance sensor as a vibration waveform, and a fast Fourier transform that calculates a natural frequency of the anti-vibration rubber by performing a fast Fourier transform analysis on the vibration waveform by the waveform measuring unit. A spring constant of the anti-vibration rubber is calculated based on the natural frequency obtained by the analysis unit and the fast Fourier transform analysis unit and the weight of the car in an unloaded state, and the natural frequency and the car A calculation processing unit that calculates a load in the car based on the weight of the spring and the spring constant; and a no-load determination unit that determines a no-load state in which the calculation result of the load in the car by the calculation processing unit is the zero state; A diagnostic operation apparatus for an elevator, comprising:
請求項1記載のエレベータ用診断運転装置において、前記乗りかごに対して振動を発生させるための運転制御を行う運転制御部を備え、前記高速フーリエ変換解析部による前記固有振動数の算出は、前記運転制御部による前記運転制御で前記乗りかごを振動させたときに前記距離センサで計測される前記防振ゴムの前記撓み量を前記波形計測部で前記振動波形とした計測結果を対象にして行われることを特徴とするエレベータ用診断運転装置。   The elevator diagnostic operation apparatus according to claim 1, further comprising an operation control unit that performs operation control for generating vibrations to the car, wherein the calculation of the natural frequency by the fast Fourier transform analysis unit is performed as described above. When the car is vibrated by the operation control by the operation control unit, the amount of deflection of the anti-vibration rubber measured by the distance sensor when the car is vibrated is measured as a vibration waveform by the waveform measurement unit. A diagnostic operation apparatus for elevators. 請求項2記載のエレベータ用診断運転装置において、前記乗りかごの重量と、前記運転制御部による前記運転制御で無負荷状態での前記乗りかごを振動させたときの前記高速フーリエ変換解析部で算出された前記固有振動数と当該乗りかごの重量とに基づいて前記演算処理部により算出された前記ばね定数と、を初期値として保存する初期値記録部を備えたことを特徴とするエレベータ用診断運転装置。   The diagnostic operation apparatus for elevators according to claim 2, wherein the calculation is performed by the fast Fourier transform analysis unit when the weight of the car and the car in an unloaded state are vibrated by the operation control by the operation control unit. An elevator diagnosis comprising: an initial value recording unit for storing, as an initial value, the spring constant calculated by the arithmetic processing unit based on the natural frequency and the weight of the car Driving device.
JP2013221179A 2013-10-24 2013-10-24 Diagnostic operation device for elevator Pending JP2015081189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013221179A JP2015081189A (en) 2013-10-24 2013-10-24 Diagnostic operation device for elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013221179A JP2015081189A (en) 2013-10-24 2013-10-24 Diagnostic operation device for elevator

Publications (1)

Publication Number Publication Date
JP2015081189A true JP2015081189A (en) 2015-04-27

Family

ID=53012001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013221179A Pending JP2015081189A (en) 2013-10-24 2013-10-24 Diagnostic operation device for elevator

Country Status (1)

Country Link
JP (1) JP2015081189A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107337042A (en) * 2016-04-28 2017-11-10 通力股份公司 The scheme of proximity transducer temperature variation effects in compensating elevator mechanical brake
CN109655106A (en) * 2018-07-30 2019-04-19 杭州哲达科技股份有限公司 One kind being used for running device Ankang real-time monitoring system
CN109941855A (en) * 2017-12-21 2019-06-28 株式会社日立制作所 The control device and control method of lift appliance
CN110745666A (en) * 2019-11-28 2020-02-04 张敏 Elevator car with falling protection function
WO2020213090A1 (en) * 2019-04-17 2020-10-22 三菱電機株式会社 Elevator device and method of diagnosing wear of pulley thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107337042A (en) * 2016-04-28 2017-11-10 通力股份公司 The scheme of proximity transducer temperature variation effects in compensating elevator mechanical brake
CN107337042B (en) * 2016-04-28 2020-12-18 通力股份公司 Solution for compensating the effect of temperature variations of proximity sensors in the mechanical brake of an elevator
CN109941855A (en) * 2017-12-21 2019-06-28 株式会社日立制作所 The control device and control method of lift appliance
CN109655106A (en) * 2018-07-30 2019-04-19 杭州哲达科技股份有限公司 One kind being used for running device Ankang real-time monitoring system
WO2020213090A1 (en) * 2019-04-17 2020-10-22 三菱電機株式会社 Elevator device and method of diagnosing wear of pulley thereof
CN110745666A (en) * 2019-11-28 2020-02-04 张敏 Elevator car with falling protection function

Similar Documents

Publication Publication Date Title
JP2015081189A (en) Diagnostic operation device for elevator
JP6049902B2 (en) Elevator diagnostic equipment
JP5832258B2 (en) Elevator abnormality diagnosis device
JP6603483B2 (en) Abnormality detection apparatus and abnormality detection method
EP3632830B1 (en) Elevator car position determination
JP6987255B2 (en) Elevator diagnostic system
JP5822692B2 (en) Elevator diagnostic operation system
JP2013095554A (en) Cage vibration monitoring device for elevator
JP6614165B2 (en) Threshold decision method, threshold decision device, and elevator control system
JP4488216B2 (en) Elevator control device
CN105236223A (en) Inertia measuring system and method
JP6094516B2 (en) Elevator equipment
JP2014201412A (en) Automatic diagnostic device for elevator
KR102032491B1 (en) Method for measuring resistance of model ship using active vibration control technology
JP5494047B2 (en) Chassis dynamometer system for evaluating body vibration and method for evaluating body vibration
JP2012188257A (en) Elevator system
JP2014051374A (en) Vibration meter for elevator
JP6693622B1 (en) Elevator monitoring device and elevator monitoring method
CN108689273B (en) Elevator over-travel testing system and method
JP6741366B2 (en) Soundness diagnostic device
US20220348436A1 (en) Building facility vibration measurement device and management system
CN106976772B (en) Elevator takes sense diagnostic device and takes sense diagnostic method
JP2016069112A (en) Elevator device and earthquake temporary-restoration operation device of elevator device
CN110422716A (en) A kind of automatic testing method of the elevator without the weighing starting time
JP2018060383A (en) Processing apparatus and control system of appliance