JP2015080899A - Method for producing three-layer nonwoven fabric - Google Patents

Method for producing three-layer nonwoven fabric Download PDF

Info

Publication number
JP2015080899A
JP2015080899A JP2013219629A JP2013219629A JP2015080899A JP 2015080899 A JP2015080899 A JP 2015080899A JP 2013219629 A JP2013219629 A JP 2013219629A JP 2013219629 A JP2013219629 A JP 2013219629A JP 2015080899 A JP2015080899 A JP 2015080899A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
density polyethylene
fiber nonwoven
long
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013219629A
Other languages
Japanese (ja)
Other versions
JP6195776B2 (en
Inventor
辰太 森岡
Tatsuta Morioka
辰太 森岡
祐介 永塚
Yusuke Nagatsuka
祐介 永塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2013219629A priority Critical patent/JP6195776B2/en
Publication of JP2015080899A publication Critical patent/JP2015080899A/en
Application granted granted Critical
Publication of JP6195776B2 publication Critical patent/JP6195776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a heat-sealing three-layer nonwoven fabric excellent in printability.SOLUTION: There is prepared a first long fiber nonwoven fabric constituted of a first core-sheath type composite long fiber in which the sheath component is a high density polyethylene and the core component is a polyester. There is prepared an ultra fine fiber nonwoven fabric constituted of a polypropylene or polybutylene terephthalate ultra-fine fiber. There is prepared a second long fiber nonwoven fabric constituted of a second core-sheath type composite long fiber in which the sheath component is a linear low-density polyethylene and the core component is a polyester. The first long fiber nonwoven fabric and the ultra fine fiber nonwoven fabric are laminated and bonded using a high density polyethylene as a bonding component to obtain a two-layer laminate. The second long fiber nonwoven fabric is laminated on a surface of the ultra fine fiber nonwoven fabric and bonded using a linear low density polyethylene as a bonding component to obtain a three-layer laminate. The three-layer laminate is passed between a metal flat roll and a cotton roll so that the first long fiber nonwoven fabric is in contact with the metal flat roll to smooth the surface of the first long fiber nonwoven fabric.

Description

本発明は、片面がヒートシール層として機能しうる三層積層不織布の製造方法に関し、脱臭剤や乾燥剤等の粉末を収納して袋状物を得る際に好適な三層積層不織布の製造方法に関するものである。   The present invention relates to a method for producing a three-layer laminated nonwoven fabric in which one side can function as a heat seal layer, and a method for producing a three-layer laminated nonwoven fabric suitable for obtaining a bag-like material by storing powders such as a deodorizer and a desiccant. It is about.

従来より、袋状物を得るのに、片面がヒートシール層として機能しうる積層不織布が用いられている。たとえば、四角形の積層不織布を中央から二つ折りして、ヒートシール層同士を重ね合わせ、その二方周縁をヒートシールして得られた袋の口から粉末を収納し、その後、袋の口をヒートシールして、粉末を密封した袋状物を得ることが行われている。また、四角形の積層不織布を二枚準備し、ヒートシール層同士が当接するように重ね合わせると共に粉末を挟持させ、その四方周縁をヒートシールして、粉末を密封した袋状物を得ることが行われている。   Conventionally, laminated nonwoven fabrics that can function as a heat seal layer have been used to obtain a bag-like product. For example, a rectangular laminated nonwoven fabric is folded in half from the center, the heat seal layers are overlapped, the powder is stored from the mouth of the bag obtained by heat-sealing the two peripheral edges, and then the mouth of the bag is heated. It has been practiced to obtain a bag-like product sealed with powder. Also, two sheets of rectangular laminated nonwoven fabric are prepared, stacked so that the heat seal layers come into contact with each other, and the powder is sandwiched, and the four-side periphery is heat-sealed to obtain a bag-like product in which the powder is sealed. It has been broken.

このような積層不織布として、長繊維不織布層、極細繊維不織布層及び複合長繊維不織布層の順で積層された三層積層不織布が提案されている(特許文献1の請求項1)。この三層積層不織布は、複合長繊維不織布層をヒートシール層とするものであり、極細繊維不織布層が袋状物に収納した粉末が外部に飛散しないようにするためのフィルター層となっているものである。しかしながら、この三層積層不織布は極細繊維不織布層によって、長繊維不織布層及び複合長繊維不織布層を接合するもので(特許文献1の段落0026)、極細繊維不織布層が溶融しフィルム状となるものである(特許文献1の段落0042)。かかる三層積層不織布は、極細繊維不織布層がフィルム化されるので、通気性が低下するということがあった。このため、脱臭剤や乾燥剤等の粉末を収納した袋状物として使用する場合、脱臭性能や乾燥性能が低下するということがあった。また、フィルム化された箇所に亀裂が入ると、袋状物に収納した粉末(特に微粉末)が外部に飛散する恐れがあった。   As such a laminated nonwoven fabric, a three-layer laminated nonwoven fabric in which a long fiber nonwoven fabric layer, an ultrafine fiber nonwoven fabric layer, and a composite long fiber nonwoven fabric layer are laminated in this order has been proposed (Claim 1 of Patent Document 1). This three-layer laminated nonwoven fabric has a composite long fiber nonwoven fabric layer as a heat seal layer, and the ultrafine fiber nonwoven fabric layer is a filter layer for preventing powder stored in a bag-like material from being scattered outside. Is. However, this three-layer laminated nonwoven fabric is obtained by joining the long fiber nonwoven fabric layer and the composite long fiber nonwoven fabric layer with the ultrafine fiber nonwoven fabric layer (paragraph 0026 of Patent Document 1), and the ultrafine fiber nonwoven fabric layer is melted to form a film. (Paragraph 0042 of Patent Document 1). In such a three-layer laminated nonwoven fabric, since the ultrafine fiber nonwoven fabric layer is formed into a film, the air permeability may be lowered. For this reason, when using as a bag-like thing which stored powders, such as a deodorizer and a desiccant, deodorizing performance and drying performance might fall. In addition, when a crack is formed in the filmed portion, there is a possibility that powder (particularly fine powder) stored in the bag-like material may be scattered outside.

また、特許文献1に記載された三層積層不織布は、長繊維不織布層、極細繊維不織布層及び複合長繊維不織布層を部分的熱圧着(エンボスロールと平滑ロールとを用いて行う熱圧着)で一体化するもので、長繊維不織布層表面が凹凸状態となっており、印刷適性に劣るということがあった。   The three-layer laminated nonwoven fabric described in Patent Document 1 is a partial thermocompression bonding (thermocompression performed using an embossing roll and a smooth roll) of a long fiber nonwoven fabric layer, an ultrafine fiber nonwoven fabric layer, and a composite long fiber nonwoven fabric layer. It was integrated, and the surface of the long-fiber nonwoven fabric layer was uneven, which was inferior in printability.

再公表WO2007/086429号公報(特許請求の範囲)Republished WO2007 / 086429 (Claims)

本発明者は、特許文献1記載と同様の三層積層不織布でありながら、特定の素材からなる芯鞘型複合長繊維と特定の素材からなる極細繊維を用いて、極細繊維不織布層をフィルム化させることなく一体化でき、通気性の低下や粉末の外部飛散を防止しうる三層積層不織布に関する発明を提案した(特願2012−91623)。本発明は当該発明の改良に関するものであり、より表面が平滑で印刷適性の良好な三層積層不織布の製造方法を提供するものである。   The present inventor made a film of an ultrafine fiber nonwoven fabric layer using a core-sheath type composite long fiber made of a specific material and an ultrafine fiber made of a specific material while being a three-layer laminated nonwoven fabric similar to that described in Patent Document 1. An invention relating to a three-layer laminated non-woven fabric that can be integrated without causing deterioration of air permeability and powder external scattering has been proposed (Japanese Patent Application No. 2012-91623). The present invention relates to an improvement of the invention, and provides a method for producing a three-layer laminated nonwoven fabric having a smoother surface and better printability.

すなわち、本発明は、鞘成分が高密度ポリエチレンよりなり、芯成分が前記高密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第一芯鞘型複合長繊維の集積体からなり、前記高密度ポリエチレンの溶融固化によって前記第一芯鞘型複合長繊維相互間が結合されてなる第一長繊維不織布と、前記高密度ポリエチレンの融点よりも高い融点を持つポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維の集積体からなる極細繊維不織布とを積層した後に、前記第一長繊維不織布側から加熱し前記高密度ポリエチレンのみを再度溶融固化させて、前記第一長繊維不織布及び前記極細繊維不織布を貼合して二層積層体を得る工程、鞘成分が前記高密度ポリエチレンの融点よりも低い融点を持つ線状低密度ポリエチレンよりなり、芯成分が前記線状低密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第二芯鞘型複合長繊維の集積体からなり、前記線状低密度ポリエチレンの溶融固化によって前記第二芯鞘型複合長繊維相互間が結合されてなる第二長繊維不織布を、前記二層積層体の極細繊維不織布面に積層した後に、前記第二長繊維不織布側から加熱し前記線状低密度ポリエチレンを再度溶融固化させて、前記第一長繊維不織布、前記極細繊維不織布及び前記第二長繊維不織布を貼合して三層積層体を得る工程、及び前記三層積層体の前記第一長繊維不織布側に平滑ロールを当接すると共に、前記三層積層体を厚み方向に加圧して、前記第一長繊維不織布面を平滑にする工程を具備することを特徴とする三層積層不織布の製造方法に関するものである。なお、本発明における融点とは、パーキンエルマー社製の示差走査熱量計DSC−7型を用い、昇温速度20℃/分で測定したものである。   That is, the present invention comprises a first core-sheath-type composite continuous fiber assembly in which the sheath component is made of high-density polyethylene and the core component is made of polyester having a melting point higher than that of the high-density polyethylene. A first long fiber nonwoven fabric in which the first core-sheath type composite long fibers are bonded to each other by melt-solidification of polyethylene, and an ultrafine fiber made of polypropylene or polybutylene terephthalate having a melting point higher than that of the high-density polyethylene. After laminating the superfine fiber nonwoven fabric made of an aggregate, the first long fiber nonwoven fabric and the ultrafine fiber nonwoven fabric are bonded by heating from the first long fiber nonwoven fabric side to melt and solidify only the high-density polyethylene again. Step of obtaining a two-layer laminate, a linear low-density polyethylene whose sheath component has a melting point lower than that of the high-density polyethylene. The core component is an assembly of second core-sheath type composite continuous fibers made of polyester having a melting point higher than that of the linear low density polyethylene, and the second core is obtained by melting and solidifying the linear low density polyethylene. After laminating the second long fiber nonwoven fabric in which the sheath type composite long fibers are bonded to each other on the surface of the ultrafine fiber nonwoven fabric of the two-layer laminate, the linear low density polyethylene is heated from the second long fiber nonwoven fabric side. Is melted and solidified again, and the first long fiber nonwoven fabric, the ultrafine fiber nonwoven fabric and the second long fiber nonwoven fabric are bonded together to obtain a three-layer laminate, and the first long fiber of the three-layer laminate. A method for producing a three-layer laminated nonwoven fabric comprising the steps of bringing a smooth roll into contact with the nonwoven fabric side and pressurizing the three-layer laminate in the thickness direction to smooth the first long-fiber nonwoven fabric surface. Also about It is. In addition, melting | fusing point in this invention is measured with the temperature increase rate of 20 degree-C / min using the differential scanning calorimeter DSC-7 type | mold by Perkin-Elmer.

[第一長繊維不織布について]
第一長繊維不織布は、本発明に係る製造方法で得られた三層積層不織布を用いて袋状物を得たとき、袋状物の外層となるものである。一方、第二長繊維不織布は袋状物の内層、すなわちヒートシール層となるものである。第一長繊維不織布は、鞘成分が高密度ポリエチレンよりなり、芯成分が高密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第一芯鞘型複合長繊維の集積体からなる。そして、鞘成分である高密度ポリエチレンの溶融固化によって第一芯鞘型複合長繊維相互間が結合されてなるものである。高密度ポリエチレンの融点は120℃〜140℃であるのが好ましい。高密度ポリエチレンの融点が120℃未満になると、第二長繊維不織布の鞘成分である線状低密度ポリエチレンとの融点差が小さくなり、第一長繊維不織布面からヒートシールバー等の熱源を当接して、ヒートシールのために線状低密度ポリエチレンを溶融させる際に、高密度ポリエチレンも軟化又は溶融しやすくなり、熱源に高密度ポリエチレンが付着しやすくなる。また、高密度ポリエチレンの融点が140℃を超えると、三層積層不織布を製造する際に、極細繊維の軟化又は溶融を防止しながら、高密度ポリエチレンを再度溶融固化させて、第一長繊維不織布及び極細繊維を貼合しにくくなる。
[About the first long-fiber nonwoven fabric]
The first long-fiber nonwoven fabric is an outer layer of the bag-like product when the bag-like product is obtained using the three-layer laminated nonwoven fabric obtained by the production method according to the present invention. On the other hand, the second long-fiber non-woven fabric serves as an inner layer of a bag-like product, that is, a heat seal layer. The first long-fiber non-woven fabric is composed of an aggregate of first core-sheath composite long fibers made of polyester having a sheath component made of high-density polyethylene and a core component having a melting point higher than that of the high-density polyethylene. The first core-sheath type composite continuous fibers are bonded together by melting and solidifying high-density polyethylene as a sheath component. The melting point of the high density polyethylene is preferably 120 ° C to 140 ° C. When the melting point of the high-density polyethylene is less than 120 ° C, the difference in melting point from the linear low-density polyethylene that is the sheath component of the second long fiber nonwoven fabric is reduced, and a heat source such as a heat seal bar is applied from the first long fiber nonwoven fabric surface. When the linear low density polyethylene is melted for heat sealing, the high density polyethylene is also easily softened or melted, and the high density polyethylene is easily attached to the heat source. When the melting point of the high-density polyethylene exceeds 140 ° C., the first long-fiber nonwoven fabric is obtained by melting and solidifying the high-density polyethylene again while preventing the softening or melting of the ultrafine fibers when producing the three-layer laminated nonwoven fabric. And it becomes difficult to paste ultrafine fiber.

芯成分であるポリエステルの融点は、250℃〜260℃であるのが好ましい。この程度の融点であると、高密度ポリエチレンとの融点差が大きく、高密度ポリエチレンが溶融固化する際に、ポリエステルが軟化或いは溶融したり、又は劣化することなく、当初の繊維形態を維持する。これにより、第一長繊維不織布のフィルム化を防止しうるので好ましい。   The melting point of the polyester as the core component is preferably 250 ° C to 260 ° C. When the melting point is about this level, the difference in melting point from the high-density polyethylene is large, and when the high-density polyethylene is melted and solidified, the original fiber form is maintained without softening, melting, or deterioration of the polyester. This is preferable because the first long fiber nonwoven fabric can be prevented from being formed into a film.

第一芯鞘型複合長繊維の芯成分と鞘成分の重量比は任意であるが、芯成分:鞘成分=0.25〜4:1であるのが好ましく、特に芯成分:鞘成分=0.4〜2.5:1であるのがより好ましく、芯成分:鞘成分=1:1であるのが最も好ましい。鞘成分の重量比がこの範囲を超えて少なくなると、第一芯鞘型複合長繊維相互間の結合が不十分となったり、又は第一長繊維不織布と極細繊維との貼合が不十分となる傾向が生じる。また、鞘成分の重量比がこの範囲を超えて多くなると、第一長繊維不織布がフィルム化する恐れが生じる。   The weight ratio of the core component to the sheath component of the first core-sheath composite long fiber is arbitrary, but it is preferable that the core component: sheath component = 0.25-4: 1, and particularly the core component: sheath component = 0. 4 to 2.5: 1 is more preferable, and core component: sheath component = 1: 1 is most preferable. When the weight ratio of the sheath component decreases beyond this range, the bonding between the first core-sheath composite long fibers becomes insufficient, or the bonding between the first long fiber nonwoven fabric and the ultrafine fibers is insufficient. Tend to occur. Moreover, when the weight ratio of a sheath component exceeds this range, there exists a possibility that a 1st long fiber nonwoven fabric may form a film.

第一芯鞘型複合長繊維の繊維径は任意であるが、引張強度等の物性面から、1〜7dtexであるのが好ましい。繊維径が1dtex未満であると、第一長繊維不織布の引張強度が低下する傾向が生じる。また、繊維径が7dtexを超えると、第一芯鞘型複合長繊維相互間の間隙が大きくなり、第一長繊維不織布表面(極細繊維不織布に当接する側と反対の面)を平滑化しにくくなる傾向が生じる。   The fiber diameter of the first core-sheath composite long fiber is arbitrary, but is preferably 1 to 7 dtex from the viewpoint of physical properties such as tensile strength. If the fiber diameter is less than 1 dtex, the tensile strength of the first long fiber nonwoven fabric tends to decrease. Moreover, when the fiber diameter exceeds 7 dtex, the gap between the first core-sheath composite long fibers becomes large, and it becomes difficult to smooth the surface of the first long fiber nonwoven fabric (the surface opposite to the side in contact with the ultrafine fiber nonwoven fabric). A trend arises.

第一長繊維不織布の目付は任意であるが、一般的に10〜50g/m2であるのが好ましい。第一長繊維不織布の目付が10g/m2未満になると、極細繊維不織布を隠蔽し保護する効果が低下する傾向が生じる。また、第一長繊維不織布の目付が50g/m2を超えると、過剰品質であり、得られる袋状物の重量が重くなる傾向が生じる。 The basis weight of the first long-fiber non-woven fabric is arbitrary, but is generally preferably 10 to 50 g / m 2 . When the basis weight of the first long fiber nonwoven fabric is less than 10 g / m 2 , the effect of concealing and protecting the ultrafine fiber nonwoven fabric tends to be reduced. On the other hand, when the basis weight of the first long-fiber nonwoven fabric exceeds 50 g / m 2 , the quality is excessive and the resulting bag-like product tends to be heavy.

[極細繊維不織布について]
極細繊維不織布は、第一長繊維不織布と第二長繊維不織布の間に挟持されているものであり、袋状物内に収納した粉末(特に微粉末)を外部へ飛散させないようにするためのフィルター層として機能するものである。すなわち、極細繊維不織布は極細繊維の集積体で構成されており、極細繊維相互間の間隙は微細になっており、微粉末が透過して外部に飛散するのを防止する。極細繊維の繊維径は、0.1〜10μmであるのが好ましく、特に0.5〜6μmであるのが好ましい。極細繊維の繊維径を0.1μm未満とするのは、製造上、困難である。また、極細繊維の繊維径が10μmを超えると、極細繊維相互間の間隙が大きくなって、袋状物内に収納される微粉末が外部に飛散する傾向が生じる。
[About ultra-fine fiber nonwoven fabric]
The ultra-fine fiber nonwoven fabric is sandwiched between the first long-fiber nonwoven fabric and the second long-fiber nonwoven fabric, and prevents the powder (particularly fine powder) contained in the bag from being scattered outside. It functions as a filter layer. That is, the ultrafine fiber nonwoven fabric is composed of an aggregate of ultrafine fibers, and the gaps between the ultrafine fibers are fine, preventing the fine powder from being transmitted and scattered outside. The fiber diameter of the ultrafine fiber is preferably 0.1 to 10 μm, and particularly preferably 0.5 to 6 μm. It is difficult in production to make the fiber diameter of the ultrafine fiber less than 0.1 μm. On the other hand, when the fiber diameter of the ultrafine fibers exceeds 10 μm, the gap between the ultrafine fibers becomes large, and the fine powder stored in the bag-like material tends to be scattered outside.

極細繊維はポリプロピレン又はポリブチレンテレフタレートよりなる。ポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維の融点は、第一長繊維不織布を構成している第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの融点よりも高くなっている。したがって、高密度ポリエチレンが再度溶融固化して、第一長繊維不織布と極細繊維不織布とが貼合される際に、ポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維は、軟化又は溶融せずに、当初の極細繊維形態を維持している。よって、極細繊維の集積体が持つフィルター機能を十分に発揮するのである。ポリプロピレンよりなる極細繊維の融点は、第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの融点よりも約10℃〜50℃高く、150℃〜170℃であるのが好ましい。また、ポリブチレンテレフタレートよりなる極細繊維の融点は、当該高密度ポリエチレンの融点よりも約80℃〜120℃高く、220℃〜240℃であるのが好ましい。   The ultrafine fibers are made of polypropylene or polybutylene terephthalate. The melting point of the ultrafine fiber made of polypropylene or polybutylene terephthalate is higher than the melting point of the high density polyethylene which is the sheath component of the first core-sheath type composite long fiber constituting the first long fiber nonwoven fabric. Therefore, when the high-density polyethylene is melted and solidified again, and the first long fiber nonwoven fabric and the ultrafine fiber nonwoven fabric are bonded, the ultrafine fibers made of polypropylene or polybutylene terephthalate are not softened or melted, Maintains ultra-fine fiber form. Therefore, the filter function of the ultrafine fiber aggregate is sufficiently exhibited. The melting point of the ultrafine fiber made of polypropylene is preferably about 10 to 50 ° C. and 150 to 170 ° C. higher than the melting point of the high-density polyethylene which is the sheath component of the first core-sheath composite long fiber. Further, the melting point of the ultrafine fiber made of polybutylene terephthalate is preferably about 80 to 120 ° C. and 220 to 240 ° C. higher than the melting point of the high-density polyethylene.

極細繊維不織布の目付は、5〜100g/m2であるのが好ましく、特に7〜50g/m2であるのが好ましい。極細繊維不織布の目付が5g/m2未満であると、極細繊維相互間で形成された微細な間隙が少なくなり、フィルター機能が低下する傾向が生じる。さらに、ヒートシール時において、第二長繊維不織布を構成している第二芯鞘型複合長繊維の鞘成分である線状低密度ポリエチレンが、極細繊維不織布を透過して、第一長繊維不織布の表面(極細繊維不織布に当接する面と反対側の面)に滲み出す恐れがある。また、極細繊維不織布の目付が100g/m2を超えると、極細繊維不織布自体が層剥離する傾向が生じ、得られる三層積層不織布が層剥離しやすくなる恐れが生じる。 Basis weight of the microfibrous non-woven fabric is preferably from 5 to 100 g / m 2, it is preferred particularly 7~50g / m 2. When the basis weight of the ultrafine fiber nonwoven fabric is less than 5 g / m 2 , fine gaps formed between the ultrafine fibers are reduced, and the filter function tends to be lowered. Furthermore, at the time of heat sealing, the linear low density polyethylene, which is the sheath component of the second core-sheath type composite long fiber constituting the second long fiber nonwoven fabric, permeates the ultrafine fiber nonwoven fabric, and the first long fiber nonwoven fabric May ooze out on the surface (the surface opposite to the surface in contact with the ultrafine fiber nonwoven fabric). If the basis weight of the ultrafine fiber nonwoven fabric exceeds 100 g / m 2 , the ultrafine fiber nonwoven fabric itself tends to delaminate, and the resulting three-layer laminated nonwoven fabric tends to delaminate.

[第二長繊維不織布について]
第二長繊維不織布は、本発明に係る製造方法で得られた三層積層不織布を用いて袋状物を得るとき、ヒートシール層として機能するものである。第二長繊維不織布は、鞘成分が高密度ポリエチレンの融点よりも低い融点を持つ線状低密度ポリエチレンよりなり、芯成分が線状低密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第二芯鞘型複合長繊維の集積体からなる。そして、第二芯鞘型複合長繊維相互間が、線状低密度ポリエチレンの溶融固化によって結合されてなる。さらに、第二芯鞘型複合長繊維の鞘成分である線状低密度ポリエチレンは、ヒートシール時に溶融して接着成分となるものである。すなわち、第二芯鞘型複合長繊維の鞘成分は、三層積層不織布の第一長繊維不織布面に熱源を当接してヒートシールする際に、溶融するものである。したがって、第一長繊維不織布を構成している第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンよりも、融点の低い線状低密度ポリエチレンを採用するのである。たとえば、第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンと同等の融点を持つものを、第二芯鞘型複合長繊維の鞘成分とすると、ヒートシール時に後者を溶融させようとすると、前者の高密度ポリエチレンも溶融してしまい、第一長繊維不織布面に当接する熱源に高密度ポリエチレンが付着し、ヒートシールを続行することができない。
[About the second long fiber nonwoven fabric]
The second long fiber nonwoven fabric functions as a heat seal layer when a bag-like material is obtained using the three-layer laminated nonwoven fabric obtained by the production method according to the present invention. The second long-fiber nonwoven fabric is made of a linear low-density polyethylene having a melting point lower than that of the high-density polyethylene and a core component made of polyester having a melting point higher than that of the linear low-density polyethylene. It consists of an aggregate of core-sheath type composite long fibers. The second core-sheath type composite continuous fibers are bonded together by melt-solidifying linear low density polyethylene. Furthermore, the linear low density polyethylene which is a sheath component of the second core-sheath type composite continuous fiber melts at the time of heat sealing and becomes an adhesive component. That is, the sheath component of the second core-sheath type composite continuous fiber melts when a heat source is brought into contact with the first long fiber nonwoven fabric surface of the three-layer laminated nonwoven fabric and heat sealed. Therefore, linear low-density polyethylene having a lower melting point than that of high-density polyethylene that is the sheath component of the first core-sheath composite long fiber constituting the first long-fiber nonwoven fabric is employed. For example, if a sheath component of the second core-sheath type composite long fiber is a sheath component of the second core-sheath type composite long fiber that has the same melting point as the high-density polyethylene that is the sheath component of the first core-sheath type composite long fiber, the latter will be melted during heat sealing. Then, the former high-density polyethylene is also melted, and the high-density polyethylene adheres to the heat source in contact with the first long fiber nonwoven fabric surface, and heat sealing cannot be continued.

線状低密度ポリエチレンの融点は75℃〜110℃であるのが好ましい。線状低密度ポリエチレンの融点が75℃未満になると、第二芯鞘型複合長繊維にべたつき感が生じ、取り扱いにくくなる傾向が生じる。また、線状低密度ポリエチレンの融点が110℃を超えると、第一長繊維不織布を構成する第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンとの融点差が小さくなり、ヒートシール時に高密度ポリエチレンが溶融して、熱源に付着する恐れがある。第二芯鞘型複合長繊維の芯成分であるポリエステルの融点は、線状低密度ポリエチレンの融点よりも高く、250℃〜260℃であるのが好ましい。この程度の融点であると、線状低密度ポリエチレンとの融点差が大きく、ヒートシール時に線状低密度ポリエチレンが溶融しても、ポリエステルが軟化或いは溶融したり、又は劣化することなく、当初の繊維形態を維持する。これにより、ヒートシール箇所に芯成分が繊維形態で残存しており、ヒートシール箇所の引裂強力の低下を防止しうる。   The melting point of the linear low density polyethylene is preferably 75 ° C to 110 ° C. When the melting point of the linear low density polyethylene is less than 75 ° C., the second core-sheath type composite continuous fiber has a sticky feeling and tends to be difficult to handle. Further, when the melting point of the linear low density polyethylene exceeds 110 ° C., the melting point difference from the high density polyethylene which is the sheath component of the first core-sheath type composite continuous fiber constituting the first long fiber nonwoven fabric becomes small, and heat sealing Sometimes high density polyethylene melts and may adhere to the heat source. The melting point of the polyester that is the core component of the second core-sheath type composite continuous fiber is higher than the melting point of the linear low density polyethylene, and is preferably 250 ° C. to 260 ° C. If the melting point is such a degree, the melting point difference from the linear low density polyethylene is large, and even if the linear low density polyethylene melts at the time of heat sealing, the polyester does not soften or melt or deteriorate, Maintain fiber morphology. Thereby, the core component remains in a fiber form at the heat seal portion, and a reduction in tear strength at the heat seal portion can be prevented.

線状低密度ポリエチレンは、メタロセン重合触媒によって重合されたものを用いるのが好ましい。この理由は、線状低密度ポリエチレンの分子量分布が狭くなるからである。具体的には、Q値(重量平均分子量/数平均分子量)が3.5以下であるのが好ましい。Q値が3.5を超えて、分子量分布が広くなり、低分子量のものが多量に混入していると、第二芯鞘型複合長繊維にべたつき感が生じ、取り扱いにくくなる傾向が生じる。また、高分子量のものが多量に混入していると、ヒートシール時に溶融しにくくなり、接着力が低下する傾向が生じる。さらに、線状低密度ポリエチレンは、高密度ポリエチレンに比べて柔軟性があり、ヒートシール時において、所望の形態に馴染みやすい点でも、好ましいものである。   As the linear low density polyethylene, it is preferable to use a polymer polymerized by a metallocene polymerization catalyst. This is because the molecular weight distribution of linear low density polyethylene is narrowed. Specifically, the Q value (weight average molecular weight / number average molecular weight) is preferably 3.5 or less. If the Q value exceeds 3.5, the molecular weight distribution becomes wide, and a low molecular weight fiber is mixed in a large amount, the second core-sheath composite long fiber has a sticky feeling and tends to be difficult to handle. Moreover, when a high molecular weight thing is mixed in a large amount, it will become difficult to fuse | melt at the time of heat sealing, and the tendency for adhesive force to fall will arise. Furthermore, linear low density polyethylene is preferable in that it is more flexible than high density polyethylene and is easily adapted to a desired form during heat sealing.

線状低密度ポリエチレンのメルトフローレート(JIS K 6922に記載の方法に準拠し、温度190℃で荷重21.18Nで測定した。)は、10〜30g/10分であるのが好ましい。メルトフローレートが30g/10分を超えると、線状低密度ポリエチレンの流動性が高くなり、芯成分から分離する傾向が生じる。なお、メルトフローレートを10g/10分未満とすると、第二芯鞘型複合長繊維が製造しにくくなる傾向が生じる。   The melt flow rate of linear low density polyethylene (based on the method described in JIS K 6922, measured at a temperature of 190 ° C. and a load of 21.18 N) is preferably 10 to 30 g / 10 minutes. When the melt flow rate exceeds 30 g / 10 min, the flowability of the linear low-density polyethylene becomes high and tends to separate from the core component. If the melt flow rate is less than 10 g / 10 minutes, the second core-sheath composite long fiber tends to be difficult to manufacture.

第二芯鞘型複合長繊維の芯成分と鞘成分の重量比は任意であるが、芯成分:鞘成分=0.25〜4:1であるのが好ましく、特に芯成分:鞘成分=0.6〜2.5:1であるのがより好ましく、芯成分:鞘成分=1:1であるのが最も好ましい。鞘成分の重量比がこの範囲を超えて少なくなると、ヒートシール時における接着力が低下する傾向が生じる。また、鞘成分の重量比がこの範囲を超えて多くなると、ヒートシール後に第二長繊維不織布がフィルム化する恐れが生じる。   The weight ratio of the core component to the sheath component of the second core-sheath type composite continuous fiber is arbitrary, but it is preferable that the core component: sheath component = 0.25-4: 1, particularly the core component: sheath component = 0. More preferably, it is 6 to 2.5: 1, and most preferably the core component: sheath component = 1: 1. If the weight ratio of the sheath component is less than this range, the adhesive strength during heat sealing tends to decrease. Moreover, when the weight ratio of a sheath component exceeds this range, there exists a possibility that a 2nd long fiber nonwoven fabric may form a film after heat sealing.

第二芯鞘型複合長繊維の繊維径は任意であるが、1〜7dtexであるのが好ましい。繊維径が1dtex未満であると、第二芯鞘型複合長繊維の鞘成分の絶対量が少なくなり、ヒートシール時における接着力が低下する傾向が生じる。また、繊維径が7dtexを超えると、第二長繊維不織布の表面(極細繊維不織布に当接する面の反対側の面)に凹凸が生じやすくなり、ヒートシール時における接着力が低下する傾向が生じる。   The fiber diameter of the second core-sheath type composite continuous fiber is arbitrary, but is preferably 1 to 7 dtex. When the fiber diameter is less than 1 dtex, the absolute amount of the sheath component of the second core-sheath composite long fiber is reduced, and the adhesive force during heat sealing tends to be reduced. In addition, when the fiber diameter exceeds 7 dtex, irregularities are likely to occur on the surface of the second long fiber nonwoven fabric (the surface opposite to the surface in contact with the ultrafine fiber nonwoven fabric), and the adhesive force during heat sealing tends to decrease. .

第二長繊維不織布の目付は、10〜70g/m2であるのが好ましい。第二長繊維不織布の目付が10g/m2未満になると、第二芯鞘型複合長繊維の鞘成分の絶対量が少なくなり、ヒートシール時における接着力が低下する傾向が生じる。また、第二長繊維不織布の目付が70g/m2を超えると、過剰品質であり、得られる袋状物の重量が重くなる傾向が生じる。 The basis weight of the second long fiber nonwoven fabric is preferably 10 to 70 g / m 2 . When the basis weight of the second long-fiber nonwoven fabric is less than 10 g / m 2 , the absolute amount of the sheath component of the second core-sheath composite long fiber decreases, and the adhesive force during heat sealing tends to decrease. On the other hand, when the basis weight of the second long-fiber nonwoven fabric exceeds 70 g / m 2 , it is excessive quality, and the resulting bag-like product tends to be heavy.

[第一長繊維不織布と極細繊維不織布との貼合工程]
まず、第一長繊維不織布と極細繊維不織布を積層する。そして、第一長繊維不織布側から加熱し、必要であれば加圧する。加熱及び加圧は、高密度ポリエチレンのみが再度溶融する条件で行われる。一般的に、高密度ポリエチレンの融点近傍の温度に加熱される。この加熱及び加圧で、高密度ポリエチレンが再度溶融し固化することによって、第一長繊維不織布と極細繊維不織布とが貼合される。一方、第一芯鞘型複合長繊維の芯成分であるポリエステル及び極細繊維不織布を構成するポリプロピレン又はポリブチレンテレフタレートは溶融せずに、当初の繊維形態を維持したままとなっている。以上のようにして、二層積層体が得られる。
[Bonding process of 1st long fiber nonwoven fabric and extra fine fiber nonwoven fabric]
First, the first long fiber nonwoven fabric and the ultrafine fiber nonwoven fabric are laminated. And it heats from the 1st long fiber nonwoven fabric side, and pressurizes if necessary. Heating and pressurization are performed under conditions where only the high-density polyethylene is melted again. Generally, it is heated to a temperature near the melting point of the high-density polyethylene. By this heating and pressurization, the high-density polyethylene is again melted and solidified, whereby the first long fiber nonwoven fabric and the ultrafine fiber nonwoven fabric are bonded. On the other hand, the polyester which is the core component of the first core-sheath composite long fiber and the polypropylene or polybutylene terephthalate constituting the ultrafine fiber nonwoven fabric are not melted, and the original fiber form is maintained. As described above, a two-layer laminate is obtained.

[二層積層体と第二長繊維不織布との貼合工程]
二層積層体の極細繊維不織布面に、第二長繊維不織布を積層する。そして、第二長繊維不織布側から加熱し、必要であれば加圧する。加熱及び加圧は、線状低密度ポリエチレンが再度溶融する条件で行われる。一般的に、線状低密度ポリエチレンの融点近傍の温度で、かつ高密度ポリエチレンの融点未満の温度に加熱される。この工程での加熱及び加圧によって、線状低密度ポリエチレンが再度溶融し固化することによって、第二長繊維不織布と極細繊維不織布及び第一長繊維不織布とが貼合され、三層積層体が得られる。
[Bonding process of two-layer laminate and second long fiber nonwoven fabric]
A second long fiber nonwoven fabric is laminated on the surface of the ultrafine fiber nonwoven fabric of the two-layer laminate. And it heats from the 2nd long-fiber nonwoven fabric side, and pressurizes if necessary. Heating and pressurization are performed under conditions where the linear low density polyethylene is melted again. Generally, it is heated to a temperature in the vicinity of the melting point of linear low density polyethylene and to a temperature below the melting point of high density polyethylene. By heating and pressurizing in this step, the linear low density polyethylene is again melted and solidified, whereby the second long fiber nonwoven fabric, the ultrafine fiber nonwoven fabric and the first long fiber nonwoven fabric are bonded, and the three-layer laminate is formed. can get.

[三層積層体中の第一長繊維不織布の平滑化工程]
以上のようにして得られた三層積層体の第一長繊維不織布側に平滑ロールを当接すると共に、三層積層体を厚み方向に加圧する。具体的には、金属製平滑ロールとゴムロールやコットンロール等の弾性平滑ロールとの間に、三層積層体を通すことによって達成される。この際、第一長繊維不織布面に金属製平滑ロールが当接するようにしてロール間を通す。金属製平滑ロールの表面温度は、三層積層体中における最も低い融点を持つ第二芯鞘型複合長繊維の鞘成分である線状低密度ポリエチレンの融点よりも低い温度に設定されている。具体的には、常温であってもよく、また40〜80℃程度に加熱されていてもよい。金属製平滑ロールの表面温度を線状低密度ポリエチレンの融点よりも高い融点にすると、線状低密度ポリエチレンが再々溶融して、第二長繊維不織布がフィルム化しやすくなり、三層積層不織布の引き裂き強度が低下する恐れがある。
[Step of smoothing the first long-fiber nonwoven fabric in the three-layer laminate]
A smooth roll is brought into contact with the first long-fiber nonwoven fabric side of the three-layer laminate obtained as described above, and the three-layer laminate is pressurized in the thickness direction. Specifically, it is achieved by passing a three-layer laminate between a metal smooth roll and an elastic smooth roll such as a rubber roll or a cotton roll. Under the present circumstances, it passes between rolls so that a metal smooth roll may contact the 1st long fiber nonwoven fabric surface. The surface temperature of the metal smooth roll is set to a temperature lower than the melting point of the linear low density polyethylene which is the sheath component of the second core-sheath type composite continuous fiber having the lowest melting point in the three-layer laminate. Specifically, it may be normal temperature or may be heated to about 40 to 80 ° C. If the surface temperature of the metal smooth roll is set to a melting point higher than that of the linear low density polyethylene, the linear low density polyethylene is melted again, and the second long fiber nonwoven fabric is easily formed into a film, and the three-layer laminated nonwoven fabric is torn. Strength may be reduced.

本発明に係る方法で得られた三層積層不織布は、第一長繊維不織布、極細繊維不織布及び第二長繊維不織布の順で積層されてなるものであり、第二長繊維不織布がヒートシール層として機能するものである。したがって、第二長繊維不織布面同士を重ね合わせて、周縁をヒートシールして接着すると袋状物となる。また、この袋状物の中に炭や活性炭等の吸湿性粉末や脱臭性粉末を収納しておけば、各種食品等と共に包装することによって、吸湿材や脱臭材となる。特に、極細繊維不織布が各長繊維不織布間に挟持されているため、吸湿性微粉末や脱臭性微粉末を収納しても、これが外部に飛散しにくく、好ましいものである。また、極細繊維不織布がフィルム化していないので、0.3cc/cm2・秒以上の通気度(JIS L 1096 通気性A法 フラジール形法)があり、吸湿性能や脱臭性能が低下しない。さらに、第一長繊維不織布面が平滑化されており、15秒以上のベック平滑度(JIS P 8119)を有しているので、印刷適性に優れている。 The three-layer laminated nonwoven fabric obtained by the method according to the present invention is formed by laminating the first long fiber nonwoven fabric, the ultrafine fiber nonwoven fabric and the second long fiber nonwoven fabric in this order, and the second long fiber nonwoven fabric is a heat seal layer. It functions as. Therefore, when the second long fiber nonwoven fabric surfaces are overlapped and the periphery is heat-sealed and bonded, a bag-like product is obtained. Moreover, if hygroscopic powder and deodorizing powders, such as charcoal and activated carbon, are accommodated in this bag-shaped material, it will become a hygroscopic material and a deodorizing material by packaging with various foods. In particular, since the ultrafine fiber nonwoven fabric is sandwiched between the long fiber nonwoven fabrics, even if hygroscopic fine powder or deodorized fine powder is stored, it is difficult to scatter outside, which is preferable. Further, since the ultrafine fiber nonwoven fabric is not formed into a film, it has an air permeability of 0.3 cc / cm 2 · sec or more (JIS L 1096 air permeability A method, fragile type method), and does not deteriorate moisture absorption performance and deodorization performance. Furthermore, since the first long fiber nonwoven fabric surface is smooth and has a Beck smoothness (JIS P 8119) of 15 seconds or more, it is excellent in printability.

本発明に係る製造方法で得られた三層積層不織布は、第一長繊維不織布、極細繊維不織布及び第二長繊維不織布の順で積層されてなるものであり、いずれの不織布もフィルム化していないものである。したがって、通気性の低下が少なく、かかる三層積層不織布を用い、脱臭剤や乾燥剤等の粉末を収納して袋状物とした場合、脱臭性能や乾燥性能が低下しにくいという効果を奏する。また、第一長繊維不織布及び第二長繊維不織布中の芯成分は当初の繊維形態を維持しており、極細繊維不織布中の極細繊維も当初の繊維形態を維持している。したがって、折り曲げ等によって亀裂が入りにくく、袋状物に収納した粉末(特に微粉末)が外部に飛散しにくいという効果を奏する。さらに、本発明に係る製造方法で得られた三層積層不織布は、第一長繊維不織布の表面(極細繊維不織布と当接している面の反対側の面)が平滑化されているので、この表面に対する印刷適性が良好であるという効果を奏する。   The three-layer laminated nonwoven fabric obtained by the production method according to the present invention is formed by laminating the first long fiber nonwoven fabric, the ultrafine fiber nonwoven fabric and the second long fiber nonwoven fabric in this order, and none of the nonwoven fabrics is formed into a film. Is. Therefore, there is little decrease in air permeability, and when such a three-layer laminated nonwoven fabric is used to store a powder such as a deodorizing agent or a desiccant into a bag-like product, there is an effect that the deodorizing performance and the drying performance are hardly lowered. Moreover, the core component in the 1st long fiber nonwoven fabric and the 2nd long fiber nonwoven fabric maintains the original fiber form, and the ultrafine fiber in the ultrafine fiber nonwoven fabric also maintains the original fiber form. Therefore, there is an effect that it is difficult to crack by bending or the like, and the powder (particularly fine powder) stored in the bag-like material is difficult to be scattered outside. Further, the three-layer laminated nonwoven fabric obtained by the production method according to the present invention has a smooth surface on the surface of the first long fiber nonwoven fabric (the surface opposite to the surface in contact with the ultrafine fiber nonwoven fabric). There is an effect that printability to the surface is good.

実施例1
[第一長繊維不織布の準備]
融点256℃のポリエステルと融点134℃の高密度ポリエチレンを、複合溶融紡糸装置に導入し、ポリエステルを芯成分とし高密度ポリエチレンを鞘成分とする第一芯鞘型複合長繊維を溶融紡糸すると共に、コンベア上に集積して長繊維ウェブを得た。この長繊維ウェブを、加熱凹凸ロールと平滑ロールとで構成されたエンボス装置に導入し、鞘成分である高密度ポリエチレンのみを溶融固化して、第一芯鞘型複合長繊維相互間が結合されてなる第一長繊維不織布を得た。なお、第一芯鞘型複合長繊維の繊維径は3.3dtexであり、芯成分と鞘成分の重量比は1:1であった。また、第一長繊維不織布の目付は20g/m2であった。
Example 1
[Preparation of the first long-fiber nonwoven fabric]
A polyester having a melting point of 256 ° C. and a high-density polyethylene having a melting point of 134 ° C. are introduced into a composite melt spinning apparatus, and the first core-sheath type composite continuous fiber having polyester as a core component and high-density polyethylene as a sheath component is melt-spun. Accumulated on a conveyor to obtain a long fiber web. This long fiber web is introduced into an embossing device composed of a heated concavo-convex roll and a smooth roll, and only the high-density polyethylene, which is a sheath component, is melted and solidified to bond the first core-sheath composite long fibers. The first long fiber nonwoven fabric was obtained. In addition, the fiber diameter of the 1st core-sheath type | mold composite continuous fiber was 3.3 dtex, and the weight ratio of a core component and a sheath component was 1: 1. The basis weight of the first long fiber nonwoven fabric was 20 g / m 2 .

[極細繊維不織布の準備]
融点163℃のポリプロピレンをメルトブローダイに導入し、ダイ中から加熱空気を吹き付けて極細繊維を形成し、コンベア上に集積して極細繊維不織布を得た。極細繊維の繊維径は3μmであり、極細繊維不織布の目付は20g/m2であった。
[Preparation of ultra-fine fiber nonwoven fabric]
Polypropylene having a melting point of 163 ° C. was introduced into a melt blow die and heated air was blown from the die to form ultra fine fibers, which were accumulated on a conveyor to obtain an ultra fine fiber nonwoven fabric. The fiber diameter of the ultrafine fiber was 3 μm, and the basis weight of the ultrafine fiber nonwoven fabric was 20 g / m 2 .

[第二長繊維不織布の準備]
融点256℃のポリエステルと、融点102℃でメルトフローレート15g/10分の線状低密度ポリエチレンを、複合溶融紡糸装置に導入し、ポリエステルを芯成分とし線状低密度ポリエチレンを鞘成分とする第二芯鞘型複合長繊維を溶融紡糸すると共に、コンベア上に集積して長繊維ウェブを得た。この長繊維ウェブを、加熱凹凸ロールと平滑ロールとで構成されたエンボス装置に導入し、鞘成分である線状低密度ポリエチレンのみを溶融固化して、第二芯鞘型複合長繊維相互間が結合されてなる第二長繊維不織布を得た。なお、第二芯鞘型複合長繊維の繊維径は3.3dtexであり、芯成分と鞘成分の重量比は1:1であった。また、第二長繊維不織布の目付は30g/m2であった。
[Preparation of second long fiber nonwoven fabric]
A polyester having a melting point of 256 ° C. and a linear low density polyethylene having a melting point of 102 ° C. and a melt flow rate of 15 g / 10 min are introduced into a composite melt spinning apparatus. The polyester is the core component and the linear low density polyethylene is the sheath component. The two-core sheath type composite continuous fiber was melt-spun and accumulated on a conveyor to obtain a continuous fiber web. This long fiber web is introduced into an embossing device composed of a heated concavo-convex roll and a smooth roll, and only the linear low density polyethylene which is a sheath component is melted and solidified, and the second core-sheath type composite long fibers are between each other. A second long-fiber non-woven fabric bonded was obtained. In addition, the fiber diameter of the 2nd core-sheath type | mold composite continuous fiber was 3.3 dtex, and the weight ratio of a core component and a sheath component was 1: 1. The basis weight of the second long fiber nonwoven fabric was 30 g / m 2 .

第一長繊維不織布と極細繊維不織布を積層し、第一長繊維不織布が金属製加熱平滑ロールに当接するようにして、金属製加熱平滑ロールと弾性非加熱平滑ロールよりなる一対の加圧ロール間に通した。この際、金属製加熱平滑ロールの表面温度は140℃に設定した。これにより、第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンを再度溶融固化させて、第一長繊維不織布と極細繊維不織布が貼合された二層積層体を得た。   Between a pair of pressure rolls consisting of a metal heated smooth roll and an elastic non-heated smooth roll, wherein the first long fiber nonwoven fabric and the ultrafine fiber nonwoven fabric are laminated so that the first long fiber nonwoven fabric contacts the metal heated smooth roll. Passed through. Under the present circumstances, the surface temperature of the metal heating smooth roll was set to 140 degreeC. Thereby, the high-density polyethylene which is the sheath component of the first core-sheath type composite long fiber was melted and solidified again to obtain a two-layer laminate in which the first long fiber nonwoven fabric and the ultrafine fiber nonwoven fabric were bonded.

この二層積層体の極細繊維不織布面に、第二長繊維不織布を積層した後、第二長繊維不織布が金属製加熱平滑ロールの周面に当接するようにし、当該周面の約1/2に沿わせて搬送した。この際、金属製加熱平滑ロールの表面温度は130℃に設定した。そして、第二長繊維不織布が、金属製加熱平滑ロールの周面から離れる直前に、当該金属製加熱平滑ロールと弾性非加熱平滑ロールの間に導入し、加圧した。これにより、第二長繊維不織布中の鞘成分である線状低密度ポリエチレンを再度溶融固化させて、第二長繊維不織布と極細繊維不織布と第一長繊維不織布とが貼合された三層積層体を得た。   After laminating the second long fiber nonwoven fabric on the surface of the ultrafine fiber nonwoven fabric of the two-layer laminate, the second long fiber nonwoven fabric is brought into contact with the peripheral surface of the metal heating smooth roll, and about 1/2 of the peripheral surface. It was conveyed along. Under the present circumstances, the surface temperature of the metal heating smooth roll was set to 130 degreeC. And just before the 2nd long fiber nonwoven fabric left | separated from the surrounding surface of a metal heating smooth roll, it introduce | transduced and pressed between the said metal heating smooth roll and the elastic non-heating smooth roll. Thereby, the linear low density polyethylene that is a sheath component in the second long fiber nonwoven fabric is melted and solidified again, and the second long fiber nonwoven fabric, the ultrafine fiber nonwoven fabric, and the first long fiber nonwoven fabric are bonded together. Got the body.

この三層積層体の第一長繊維不織布が、金属製平滑ロールに当接するようにして、金属製平滑ロール及びコットンロールよりなる一対の加圧ロール間に通した。この際、金属製平滑ロールの表面温度は60℃に設定した。また、ロール間の線圧は200kgf/cmとした。これにより、第一長繊維不織布表面が平滑化された三層積層不織布を得た。得られた三層積層不織布は、目付が70g/m2、厚みが0.11mm、通気度が0.8cc/cm2・秒、第一長繊維不織布面のベック平滑度が50秒であった。 The first long fiber nonwoven fabric of this three-layer laminate was passed between a pair of pressure rolls consisting of a metal smooth roll and a cotton roll so as to contact the metal smooth roll. At this time, the surface temperature of the metal smooth roll was set to 60 ° C. The linear pressure between the rolls was 200 kgf / cm. Thereby, the three-layer laminated nonwoven fabric in which the surface of the first long fiber nonwoven fabric was smoothed was obtained. The obtained three-layer laminated nonwoven fabric had a basis weight of 70 g / m 2 , a thickness of 0.11 mm, an air permeability of 0.8 cc / cm 2 · sec, and a Beck smoothness of the first long fiber nonwoven fabric surface of 50 seconds. .

Claims (4)

鞘成分が高密度ポリエチレンよりなり、芯成分が前記高密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第一芯鞘型複合長繊維の集積体からなり、前記高密度ポリエチレンの溶融固化によって前記第一芯鞘型複合長繊維相互間が結合されてなる第一長繊維不織布と、前記高密度ポリエチレンの融点よりも高い融点を持つポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維の集積体からなる極細繊維不織布とを積層した後に、前記第一長繊維不織布側から加熱し前記高密度ポリエチレンのみを再度溶融固化させて、前記第一長繊維不織布及び前記極細繊維不織布を貼合して二層積層体を得る工程、
鞘成分が前記高密度ポリエチレンの融点よりも低い融点を持つ線状低密度ポリエチレンよりなり、芯成分が前記線状低密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第二芯鞘型複合長繊維の集積体からなり、前記線状低密度ポリエチレンの溶融固化によって前記第二芯鞘型複合長繊維相互間が結合されてなる第二長繊維不織布を、前記二層積層体の極細繊維不織布面に積層した後に、前記第二長繊維不織布側から加熱し前記線状低密度ポリエチレンを再度溶融固化させて、前記第一長繊維不織布、前記極細繊維不織布及び前記第二長繊維不織布を貼合して三層積層体を得る工程、及び
前記三層積層体の前記第一長繊維不織布側に、前記線状低密度ポリエチレンの融点よりも低い表面温度を持つ平滑ロールを当接すると共に、前記三層積層体を厚み方向に加圧して、前記第一長繊維不織布面を平滑にする工程
を具備することを特徴とする三層積層不織布の製造方法。
The sheath component is made of high-density polyethylene, and the core component is an aggregate of first core-sheath composite long fibers made of polyester having a melting point higher than the melting point of the high-density polyethylene. 1st long fiber nonwoven fabric in which the first core-sheath type composite long fibers are bonded to each other, and an ultrafine fiber comprising an assembly of ultrafine fibers made of polypropylene or polybutylene terephthalate having a melting point higher than that of the high density polyethylene. After laminating the non-woven fabric, the first long-fiber non-woven fabric is heated from the side to melt and solidify only the high-density polyethylene, and the first long-fiber non-woven fabric and the ultrafine fiber non-woven fabric are bonded together to form a two-layer laminate. Obtaining step,
The second core-sheath type composite length, in which the sheath component is made of linear low density polyethylene having a melting point lower than that of the high density polyethylene, and the core component is made of polyester having a melting point higher than that of the linear low density polyethylene. A second long-fiber nonwoven fabric comprising a collection of fibers and having the second core-sheath-type composite long fibers bonded together by melt-solidification of the linear low-density polyethylene, the ultrafine fiber nonwoven fabric surface of the two-layer laminate After being laminated, the second long fiber nonwoven fabric is heated from the side to melt and solidify the linear low density polyethylene again, and the first long fiber nonwoven fabric, the ultrafine fiber nonwoven fabric and the second long fiber nonwoven fabric are bonded together. And a step of obtaining a three-layer laminate, and contacting a smooth roll having a surface temperature lower than the melting point of the linear low-density polyethylene with the first long-fiber nonwoven fabric side of the three-layer laminate. And a step of pressurizing the three-layer laminate in the thickness direction to smooth the surface of the first long-fiber nonwoven fabric.
第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの融点は120℃〜140℃であり、芯成分であるポリエステルの融点は250℃〜260℃であり、
極細繊維を構成するポリプロピレンの融点は150℃〜170℃であり、又は極細繊維を構成するポリブチレンテレフタレートの融点は220℃〜240℃であり、
第二芯鞘型複合長繊維の鞘成分である線状低密度ポリエチレンの融点は75℃〜110℃であり、芯成分であるポリエステルの融点は250℃〜260℃である請求項1記載の三層積層不織布の製造方法。
The melting point of the high-density polyethylene that is the sheath component of the first core-sheath composite long fiber is 120 ° C to 140 ° C, and the melting point of the polyester that is the core component is 250 ° C to 260 ° C.
The melting point of polypropylene constituting the ultrafine fiber is 150 ° C to 170 ° C, or the melting point of polybutylene terephthalate constituting the ultrafine fiber is 220 ° C to 240 ° C.
The melting point of linear low density polyethylene which is a sheath component of the second core-sheath type composite continuous fiber is 75 ° C to 110 ° C, and the melting point of polyester which is a core component is 250 ° C to 260 ° C. A method for producing a layered nonwoven fabric.
線状低密度ポリエチレンは、メタロセン系重合触媒によって重合されたものである請求項1記載の三層積層不織布の製造方法。   The method for producing a three-layer laminated nonwoven fabric according to claim 1, wherein the linear low density polyethylene is polymerized by a metallocene polymerization catalyst. 平滑ロールが線状低密度ポリエチレンの融点よりも低い温度に加熱されている請求項1記載の三層積層不織布の製造方法。   The method for producing a three-layer laminated nonwoven fabric according to claim 1, wherein the smooth roll is heated to a temperature lower than the melting point of the linear low density polyethylene.
JP2013219629A 2013-10-22 2013-10-22 Method for producing three-layer laminated nonwoven fabric Active JP6195776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013219629A JP6195776B2 (en) 2013-10-22 2013-10-22 Method for producing three-layer laminated nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219629A JP6195776B2 (en) 2013-10-22 2013-10-22 Method for producing three-layer laminated nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2015080899A true JP2015080899A (en) 2015-04-27
JP6195776B2 JP6195776B2 (en) 2017-09-13

Family

ID=53011773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219629A Active JP6195776B2 (en) 2013-10-22 2013-10-22 Method for producing three-layer laminated nonwoven fabric

Country Status (1)

Country Link
JP (1) JP6195776B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106192402A (en) * 2016-07-08 2016-12-07 陈小初 Antibacterial and mouldproof polyester-nylon composite superfine fibre with ultrafiltration antibacterial film and production method
CN106192069A (en) * 2016-07-08 2016-12-07 陈小初 Fire-retardant polyester-nylon composite superfine fibre with ultrafiltration antibacterial film and production method
CN108752680A (en) * 2018-04-04 2018-11-06 徐雄剑 A kind of high resiliency HDPE resin and preparation method thereof
JP2018192764A (en) * 2017-05-22 2018-12-06 ユニチカ株式会社 Laminate structure
WO2019220633A1 (en) * 2018-05-18 2019-11-21 株式会社アシックス Midsole and shoe

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222317U (en) * 1988-07-29 1990-02-14
JPH04113843A (en) * 1990-09-04 1992-04-15 Oji Paper Co Ltd Coated sheet excellent in adaptability for printing tear resistance
JPH09143853A (en) * 1995-11-21 1997-06-03 Chisso Corp Laminated nonwoven fabric and its production
JPH09209254A (en) * 1995-11-20 1997-08-12 Chisso Corp Laminated nonwoven fabric and its production
JP2000355866A (en) * 1999-04-13 2000-12-26 Chisso Corp Nonwoven fabric made of conjugated filament yarn and absorptive article using the same
JP2002086605A (en) * 2000-09-20 2002-03-26 Asahi Kasei Corp Heat adhesive composite sheet
JP2004009510A (en) * 2002-06-06 2004-01-15 Nippon Petrochemicals Co Ltd Air permeable packaging material having heat sealability and package
JP2007197028A (en) * 2006-01-25 2007-08-09 Asahi Kasei Fibers Corp Bag
WO2012111724A1 (en) * 2011-02-15 2012-08-23 三井化学株式会社 Nonwoven laminate
JP2013221217A (en) * 2012-04-13 2013-10-28 Unitika Ltd Laminated nonwoven fabric
JP2014118641A (en) * 2012-12-13 2014-06-30 Unitika Ltd Laminated nonwoven fabric

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222317U (en) * 1988-07-29 1990-02-14
JPH04113843A (en) * 1990-09-04 1992-04-15 Oji Paper Co Ltd Coated sheet excellent in adaptability for printing tear resistance
JPH09209254A (en) * 1995-11-20 1997-08-12 Chisso Corp Laminated nonwoven fabric and its production
JPH09143853A (en) * 1995-11-21 1997-06-03 Chisso Corp Laminated nonwoven fabric and its production
JP2000355866A (en) * 1999-04-13 2000-12-26 Chisso Corp Nonwoven fabric made of conjugated filament yarn and absorptive article using the same
JP2002086605A (en) * 2000-09-20 2002-03-26 Asahi Kasei Corp Heat adhesive composite sheet
JP2004009510A (en) * 2002-06-06 2004-01-15 Nippon Petrochemicals Co Ltd Air permeable packaging material having heat sealability and package
JP2007197028A (en) * 2006-01-25 2007-08-09 Asahi Kasei Fibers Corp Bag
WO2012111724A1 (en) * 2011-02-15 2012-08-23 三井化学株式会社 Nonwoven laminate
JP2013221217A (en) * 2012-04-13 2013-10-28 Unitika Ltd Laminated nonwoven fabric
JP2014118641A (en) * 2012-12-13 2014-06-30 Unitika Ltd Laminated nonwoven fabric

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106192402A (en) * 2016-07-08 2016-12-07 陈小初 Antibacterial and mouldproof polyester-nylon composite superfine fibre with ultrafiltration antibacterial film and production method
CN106192069A (en) * 2016-07-08 2016-12-07 陈小初 Fire-retardant polyester-nylon composite superfine fibre with ultrafiltration antibacterial film and production method
JP2018192764A (en) * 2017-05-22 2018-12-06 ユニチカ株式会社 Laminate structure
CN108752680A (en) * 2018-04-04 2018-11-06 徐雄剑 A kind of high resiliency HDPE resin and preparation method thereof
WO2019220633A1 (en) * 2018-05-18 2019-11-21 株式会社アシックス Midsole and shoe
CN112165880A (en) * 2018-05-18 2021-01-01 株式会社爱世克私 Midsole and shoe
JPWO2019220633A1 (en) * 2018-05-18 2021-02-18 株式会社アシックス Midsole and shoes
EP3795022A4 (en) * 2018-05-18 2021-05-26 ASICS Corporation Midsole and shoe
US20210214536A1 (en) * 2018-05-18 2021-07-15 Asics Corporation Midsole and shoe

Also Published As

Publication number Publication date
JP6195776B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6195776B2 (en) Method for producing three-layer laminated nonwoven fabric
JP6560095B2 (en) Laminated nonwoven fabric and method for producing the same
JP2813156B2 (en) Perforated nonwoven fabric and method for producing the same
JP2015530494A5 (en)
FR2529235A1 (en) IMPERMEABLE AND ABSORBENT DAM ETOFFER COMPRISING FIBERS AND FIBROUS NAPPES AND METHOD FOR MANUFACTURING THE SAME
TW548190B (en) Composite material
JP5888812B2 (en) Laminated nonwoven fabric
JP2004503688A (en) Spunbonded heat sealing material
JP6114022B2 (en) Laminated nonwoven fabric
WO2015151168A1 (en) Air filter material
JP2004154760A (en) Nonwoven fabric for filter and extraction pack
JP4748838B2 (en) Thermal adhesive composite sheet
EP2983632A1 (en) Absorbing airlaid product
JPH0767907A (en) Exothermic heat retaining bag
JP2018192764A (en) Laminate structure
JP5030427B2 (en) Bag
JP2009167570A (en) Reinforced ground fabric for expansion molding of urethane
KR101902522B1 (en) Hybrid nonwovens composed of polypropylene long-fiber nonwoven layer and polyethylene long-fiber nonwoven layer and method for producing the same
JP2006291421A (en) Nonwoven fabric for bag for recovering feather
JP5068938B2 (en) Breathable laminated sheet
JP6812298B2 (en) Non-woven wiper and its manufacturing method
JP2933667B2 (en) Composite sheet for filling and packaging
JP4426072B2 (en) Laminated body for filling and packaging and bag-like material comprising the same
JP2001315239A (en) Nonwoven fabric for heat sealing and method of manufacturing the same
JP2022508994A (en) Elastic diaper element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170816

R150 Certificate of patent or registration of utility model

Ref document number: 6195776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150