JP2015080759A - Separation method of lignin component and cellulose component, and production method of thermoplastic lignin composite and saccharification raw material - Google Patents

Separation method of lignin component and cellulose component, and production method of thermoplastic lignin composite and saccharification raw material Download PDF

Info

Publication number
JP2015080759A
JP2015080759A JP2013219925A JP2013219925A JP2015080759A JP 2015080759 A JP2015080759 A JP 2015080759A JP 2013219925 A JP2013219925 A JP 2013219925A JP 2013219925 A JP2013219925 A JP 2013219925A JP 2015080759 A JP2015080759 A JP 2015080759A
Authority
JP
Japan
Prior art keywords
lignin
component
solid
cellulose
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013219925A
Other languages
Japanese (ja)
Inventor
興哲 松永
Kotetsu Matsunaga
興哲 松永
一樹 金澤
Kazuki Kanazawa
一樹 金澤
都世 矢野
Toyo Yano
都世 矢野
阪井 敦
Atsushi Sakai
敦 阪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2013219925A priority Critical patent/JP2015080759A/en
Publication of JP2015080759A publication Critical patent/JP2015080759A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To extract and separate a lignin component from a lignocellulose-based biomass at a high yield in a more simple process, to provide a method for efficiently producing a saccharification raw material including cellulose as a main component, and to provide a method for efficiently producing a thermoplastic lignin composite by effectively utilizing a lignin component.SOLUTION: A lignocellulose-based biomass is treated by heating-extraction, and solid-liquid separation in one step by using a mixed solvent of water and alkylene glycol, for separating it into a liquid component including lignin and a solid component including cellulose. The liquid component can be used for producing a thermoplastic lignin composite by condensation, and the solid component is used as a saccharification raw material.

Description

本発明は、リグノセルロース系バイオマスの高度変換と有効利用の技術に関するものである。   The present invention relates to a technology for advanced conversion and effective utilization of lignocellulosic biomass.

この数十年来、我が国のエネルギー製品や工業品、民需品などは主に石炭、石油、天然ガスなど輸入の化石資源に依存してきたが、地球温暖化の問題、原発事故の教訓及び我が国のエネルギー安全保障の観点から、国のエネルギー政策は再生可能なエネルギーへの依存度を段階的に高める方向へと舵を切っている。再生可能なエネルギーとしては、太陽エネルギー、風力、水力のほかに、我が国には豊富なバイオマス資源があり、2002年12月にバイオマス・ニッポン総合戦略が閣議決定されて以来、森林資源やイネ科植物などの未利用リグノセルロース系バイオマスを有効利用してバイオマス燃料やバイオマテリアルを製造する研究が精力的に行なわれている。   In recent decades, Japan's energy products, industrial products, and civilian products have relied mainly on imported fossil resources such as coal, oil, and natural gas. However, global warming issues, lessons learned from nuclear accidents, and Japan's energy From a security perspective, the country's energy policy is steered toward a gradual increase in dependence on renewable energy. In addition to solar energy, wind power, and hydropower, Japan has abundant biomass resources. Since December 2002, when the Cabinet decided on a comprehensive strategy for biomass and Japan, forest resources and grasses Research is underway to produce biomass fuels and biomaterials by effectively utilizing unused lignocellulosic biomass.

未利用リグノセルロース系バイオマスの有効利用において、多糖類繊維質成分(セルロース、ヘミセルロース)に着目した糖化及びバイオエタノールへの変換技術の開発が盛んに行なわれているが、濃硫酸法による糖化と濃アルカリ法による前処理は環境負荷が大きいため殆ど行なわれていない。その改良法として例えば希硫酸による前処理法(特許文献1、特許文献2)、機械的な微細化処理と酸、アルカリ、過酸化水素、亜塩素酸等の薬品との色々な組み合わせによる脱リグニン前処理法(特許文献3、特許文献4、特許文献5)、アンモニアや次亜塩素酸ナトリウムなどによる脱リグニン前処理法(特許文献6)などが開示されているが、これらの方法は酸、アルカリや化学薬品類を使用しているため、環境負荷が大きく、設備腐食や廃液処理を含む処理工程が煩雑である問題がある。また、加圧熱水と機械的な微細化処理の組み合わせによる前処理法(特許文献7)も開示されているが、エネルギー消費量が大きい問題がある。これらの処理法は、共通してリグニンの分離効果が低く、目的の糖化効率も実用化のレベルには達していない。リグニンの分離効果の改善によりリグノセルロースの糖化効率とバイオエタノールへの変換効率を向上させる目的で、近年、イオン液体と超音波照射の組み合わせによる新しい前処理法(特許文献8)が開示され、リグニンの分離効果と糖化率の向上はみられたが、イオン液体自身の毒性や目的物との分離の煩雑さなども指摘されており、量産設備面での課題もある。   In the effective use of unused lignocellulosic biomass, saccharification focusing on polysaccharide fiber components (cellulose, hemicellulose) and development of conversion technology to bioethanol have been actively conducted. The pretreatment by the alkali method is hardly performed because of the large environmental load. As an improved method, for example, a pretreatment method using dilute sulfuric acid (Patent Document 1, Patent Document 2), delignification by various combinations of mechanical refinement treatment and chemicals such as acid, alkali, hydrogen peroxide, chlorous acid, etc. A pretreatment method (Patent Document 3, Patent Document 4, Patent Document 5), a delignification pretreatment method using ammonia, sodium hypochlorite, or the like (Patent Document 6) is disclosed. Since alkalis and chemicals are used, there is a problem that the environmental load is large and the processing steps including equipment corrosion and waste liquid treatment are complicated. Moreover, although the pre-processing method (patent document 7) by the combination of pressurized hot water and a mechanical refinement | miniaturization process is also disclosed, there exists a problem that energy consumption is large. These treatment methods have a low lignin separation effect in common, and the target saccharification efficiency has not reached the level of practical use. In order to improve the saccharification efficiency of lignocellulose and the conversion efficiency to bioethanol by improving the separation effect of lignin, a new pretreatment method (Patent Document 8) using a combination of ionic liquid and ultrasonic irradiation has recently been disclosed. Although the separation effect and the saccharification rate were improved, the toxicity of the ionic liquid itself and the complexity of separation from the target product have been pointed out, and there are also problems in mass production facilities.

一方、リグノセルロース系バイオマスは、通常約20〜35%程度のリグニンを含んでいるが、リグニン自身は糖化されにくい成分であり、リグノセルロースの細胞組織内でこの糖化されにくい成分がセルロース等糖化対象物の繊維表面を包むことにより、繊維質の糖化を阻害し、処理後大量の残渣が発生する。残渣量は通常バイオマス原料に対して約50%前後にも達するが、現在のところ産廃として処分され、資源の無駄となっている。最近、その解決策として木質系バイオマスをエチレングリコールなどの有機溶媒で抽出した後、この抽出処理物を固液分離して、リグニンを含む液体成分とセルロースを含む固体成分とにする方法(特許文献9)が開示され、リグニン分離効率アップによる固体成分から糖への転化率の向上、糖化残渣の低減、リグニンの有効利用などの特長が示されている。しかしながら、この方法では、(1)前記抽出物は冷却後固液分離を行なうため、高温では抽出液に溶解されたリグニンの一部が冷却後固体成分のほうに再析出され、リグニン分離率が期待するほど高くなく、再加熱又は大量の洗浄用溶媒を必要とする、(2)リグニン分離率を高めるためには抽出温度を高くする必要があるが、温度が高くなるとセルロースの分解が進み、主目的物である糖化原料(セルロースなど多糖類)の収率が低くなる、(3)セルロースなど多糖類へのダメージを小さくし、その収率を高めるにはできるだけ低温のほうが望ましいが、低温域ではリグニンの低分子化が進行しにくいため、分離回収後のリグニンの軟化点が高くなり、熱可塑性が不十分である、などの問題点がある。   On the other hand, lignocellulosic biomass usually contains about 20 to 35% lignin, but lignin itself is a component that is not easily saccharified, and this component that is not easily saccharified in the cell tissue of lignocellulose is subject to saccharification such as cellulose. By wrapping the fiber surface of the object, saccharification of the fiber is inhibited, and a large amount of residue is generated after the treatment. The amount of residue usually reaches about 50% of the biomass raw material, but at present it is disposed of as industrial waste and is a waste of resources. Recently, as a solution, a woody biomass is extracted with an organic solvent such as ethylene glycol, and then the extracted product is solid-liquid separated into a liquid component containing lignin and a solid component containing cellulose (patent document) 9) is disclosed, and features such as improvement of the conversion rate from solid components to sugar by increasing the efficiency of lignin separation, reduction of saccharification residue, and effective use of lignin are shown. However, in this method, (1) since the extract undergoes solid-liquid separation after cooling, at a high temperature, a part of the lignin dissolved in the extract is reprecipitated toward the solid component after cooling, and the lignin separation rate is increased. It is not as high as expected and requires reheating or a large amount of washing solvent. (2) In order to increase the lignin separation rate, it is necessary to increase the extraction temperature. The yield of saccharification raw materials (polysaccharides such as cellulose), which is the main target, is low. (3) To reduce damage to polysaccharides such as cellulose and increase the yield, it is desirable to use as low a temperature as possible. However, since the molecular weight of lignin does not easily proceed, there is a problem that the softening point of lignin after separation and recovery is high and the thermoplasticity is insufficient.

また、上述のようなリグノセルロースの糖化原料(セルロースを主成分とする固体成分)としての前処理とは逆の発想で、リグノセルロースを環状カーボネート類やアルコール類(エチレングリコール、ポリエチレングリコールなど二価アルコールを含む)を溶媒とし、濃硫酸を触媒として可溶媒分解を行ない、水溶性成分(糖化物)からはレブリン酸(収率:対原料約10〜19質量%程度)を、不溶分からは樹脂原料(収率:対原料約23〜53質量%程度)を製造する方法(特許文献10)や、リグノセルロースをポリエチレングリコール、エチレングリコールなどを溶媒とし、濃硫酸を触媒として可溶媒分解を行ない、反応生成物を、ジオキサン溶媒希釈→ろ過→ろ液の水分除去→合成反応→水洗(水中滴下による水溶性物質の溶解)→ろ過→不溶分の回収・乾燥→溶融紡糸などを経て炭素繊維や活性炭素繊維を製造する方法(特許文献11)が開示されている。しかしながら、これらの方法は、セルロースなど多糖類の有効変換効率が低く、樹脂原料に可溶媒分解溶媒としてのエチレングリコール、ポリエチレングリコール類が多量に残ると考えられ、また無機酸の使用や処理の煩雑さなどをも考慮すると、コストを含め課題が多いと考えられる。   In addition, the idea is the opposite of the pretreatment as a saccharification raw material of lignocellulose (solid component containing cellulose as a main component) as described above, and lignocellulose is converted to cyclic carbonates and alcohols (ethylene glycol, polyethylene glycol, etc.). Solvent decomposition using alcohol as a solvent and concentrated sulfuric acid as a catalyst, levulinic acid (yield: about 10 to 19% by mass of raw material) from water-soluble component (saccharified product), resin from insoluble component A method (Patent Document 10) for producing a raw material (yield: about 23 to 53% by mass of the raw material), lignocellulose using polyethylene glycol, ethylene glycol or the like as a solvent, and concentrated sulfuric acid as a catalyst for solvent-soluble decomposition, Diluting the reaction product with dioxane solvent → Filtration → Removing water from the filtrate → Synthesis reaction → Washing with water (dissolving water-soluble substances by dropping in water) → method of producing a carbon fiber or activated carbon fiber (Patent Document 11) discloses filtered → collection and drying of the insoluble matter → through such melt spinning. However, these methods have low effective conversion efficiency of polysaccharides such as cellulose, and it is considered that a large amount of ethylene glycol and polyethylene glycol as solvent-soluble decomposition solvents remain in the resin raw material, and the use and treatment of inorganic acids are complicated. Considering these factors, there are many issues including cost.

特開2007−202517号公報JP 2007-202517 A 特開2007−202518号公報JP 2007-202518 A 特開2006−149343号公報JP 2006-149343 A 特開2008−043328号公報JP 2008-043328 A 特開2011−041493号公報JP 2011-041493 A 特開2011−101608号公報JP 2011-101608 A 特開2006−136263号公報JP 2006-136263 A 特開2012−86154号公報JP 2012-86154 A 特開2013−192519号公報JP2013-192519A 特開2004−83482号公報JP 2004-83482 A 特開2013−147768号公報JP 2013-147768 A

本発明の課題は、より簡便なプロセスでリグノセルロース系バイオマスからリグニン成分を高収率で抽出、分離し、かつセルロースを主成分とする糖化原料、並びにリグニン成分の有効利用による熱可塑性リグニン複合物を効率よく製造できる方法を提供することにある。   An object of the present invention is to extract and separate a lignin component from lignocellulosic biomass in a high yield by a simpler process, and to provide a saccharified raw material mainly composed of cellulose, and a thermoplastic lignin composite by effective utilization of the lignin component. It is providing the method which can manufacture efficiently.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、リグノセルロース系バイオマスを水とアルキレングリコール類の混合溶媒を用いて150℃以上200℃未満の比較的に低い温度領域で抽出と固液分離の一段処理を効率よく行ない、まずリグノセルロースを液体成分(リグニンと部分的に加水分解されたヘミセルロースを含む可溶分)と固体成分(セルロースとヘミセルロースを主成分とする不溶分)とに分離した。次いで得られた液体成分からは熱可塑性に優れたリグニン複合物を、また固体成分からはよく前処理された、つまりセルロース結晶化度が低下し、よく脱リグニンされた糖化原料を製造できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have determined that lignocellulosic biomass is mixed at a relatively low temperature range of 150 ° C. or higher and lower than 200 ° C. using a mixed solvent of water and alkylene glycols. Extraction and solid-liquid separation are efficiently performed in a single stage. First, lignocellulose is divided into a liquid component (soluble component containing lignin and partially hydrolyzed hemicellulose) and a solid component (insoluble component consisting mainly of cellulose and hemicellulose). ) And separated. Next, it was found that a lignin composite excellent in thermoplasticity can be produced from the obtained liquid component, and a saccharified raw material that is well pretreated from the solid component, that is, a cellulose crystallization degree is lowered and well delignified can be produced. The present invention has been completed.

すなわち、本発明は、リグノセルロース系バイオマスを、水とアルキレングリコール類の混合溶媒で加熱抽出と固液分離を一段で処理し、リグニンを含む液体成分とセルロースを含む固体成分とに分離することを特徴とするリグニン成分とセルロース成分の分離方法に関わる。前記アルキレングリコール類溶媒としては、エチレングリコールが好ましい。前記加熱抽出と固液分離の処理温度は望ましくは150℃以上200℃未満である。   That is, the present invention treats lignocellulosic biomass into a liquid component containing lignin and a solid component containing cellulose by treating heating extraction and solid-liquid separation in a single stage with a mixed solvent of water and alkylene glycols. It is related to the separation method of the characteristic lignin component and the cellulose component. As the alkylene glycol solvent, ethylene glycol is preferable. The processing temperature for the heat extraction and solid-liquid separation is desirably 150 ° C. or higher and lower than 200 ° C.

前記リグニンを含む液体成分を蒸留することにより水とアルキレングリコール類の混合溶媒を回収し、再びリグノセルロース系バイオマスの加熱抽出と固液分離の一段処理に用いることができる。前記リグニン成分とセルロース成分の分離方法で得られたリグニンを含む液体成分から水とアルキレングリコール類の混合溶媒を蒸留により除去して熱可塑性リグニン複合物を製造することができる。同時に、前記リグニン成分とセルロース成分の分離方法で得られた固体成分を加熱抽出と固液分離システムから取り出し糖化原料とすることができる。   By distilling the liquid component containing the lignin, a mixed solvent of water and alkylene glycols can be recovered and used again in the one-stage treatment of lignocellulosic biomass by heating and solid-liquid separation. A thermoplastic lignin composite can be produced by removing a mixed solvent of water and alkylene glycols from the liquid component containing lignin obtained by the method for separating the lignin component and the cellulose component by distillation. At the same time, the solid component obtained by the method for separating the lignin component and the cellulose component can be taken out from the heat extraction and solid-liquid separation system and used as a saccharification raw material.

本発明によれば、リグノセルロース系バイオマスを水とアルキレングリコール類の混合溶媒を用いて比較的に低温域で可溶性リグニン成分の抽出と不溶性セルロース成分との固液分離を一段処理で効率よく行ない、液体成分(可溶性リグニン成分など)については濃縮により高収率、高付加価値の熱可塑性リグニン複合物に変換する一方で、固体成分(不溶性セルロース成分など)については水による適度な加水分解とアルキレングリコール類による脱リグニン効果およびこれらの相互促進作用によってセルロースの基本構造を維持しつつその結晶化度を下げることができ、バイオマス燃料や機能性バイオマスマテリアルなどの製造に必要な糖化原料を極めて合理的に且つ低コストで製造できる。   According to the present invention, the lignocellulosic biomass is efficiently extracted in a single-stage process from the extraction of the soluble lignin component and the solid-liquid separation from the insoluble cellulose component at a relatively low temperature using a mixed solvent of water and alkylene glycols. Liquid components (such as soluble lignin components) are converted to high yield, high added value thermoplastic lignin composites by concentration, while solid components (such as insoluble cellulose components) are moderately hydrolyzed with water and alkylene glycol. The delignification effect of these species and their mutual promotion action can reduce the crystallinity of the cellulose while maintaining the basic structure of cellulose, and the saccharification raw materials necessary for the production of biomass fuels, functional biomass materials, etc. are extremely rational. And it can be manufactured at low cost.

本発明のリグニン成分とセルロース成分の分離方法並びに熱可塑性リグニン複合物と糖化原料の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the separation method of a lignin component and a cellulose component of this invention, and a thermoplastic lignin composite_body | complex and a saccharification raw material. 加熱抽出と固液分離一段処理装置の回分式一例を示す概略図である。It is the schematic which shows a batch type example of a heating extraction and a solid-liquid separation one-stage processing apparatus.

以下、図示例を参照しつつ、本発明をより詳細に説明する。
図1は本発明のプロセスの一例を示す概略図である。本図示例のプロセスは、大きく区分すると、原料前処理部分、固体成分処理部分、液体成分処理部分、溶媒調製部分から構成されている。原料前処理部分は、粉砕工程と、粉砕された原料を水とアルキレングリコール混合溶媒を用いて加熱抽出と固液分離を一段で処理する工程とを含む。
Hereinafter, the present invention will be described in more detail with reference to illustrated examples.
FIG. 1 is a schematic diagram showing an example of the process of the present invention. The process of the illustrated example is roughly divided into a raw material pretreatment portion, a solid component treatment portion, a liquid component treatment portion, and a solvent preparation portion. The raw material pretreatment part includes a pulverization step and a step of processing the pulverized raw material in one stage by heat extraction and solid-liquid separation using a mixed solvent of water and an alkylene glycol.

ここで、加熱抽出と固液分離一段処理工程は、本発明者らが提案しているリグノセルロース系バイオマスの高度変換プロセスの核心部分で、バイオマス原料をセルロース成分(混合溶媒に不溶の固体成分)とリグニン成分(混合溶媒に可溶の液体成分)とに分離する。この際、ヘミセルロースは、部分加水分解により一部の可溶性成分は液体成分のほうに流れ、残りはセルロースと共に固体成分のほうに残留する。セルロース成分(残留ヘミセルロースを含む)(以下、残留ヘミセルロースを含むセルロース成分であっても、「セルロース成分」と省略して記載する。)は固体成分処理部分の回収・調製工程を経て糖化原料となり、リグニン成分(部分加水分解ヘミセルロースを含む)(以下、部分加水分解ヘミセルロースを含むリグニン成分であっても、「リグニン成分」と省略して記載する。)は液体成分処理部分の濃縮・調製工程を経て水とアルキレングリコール混合溶媒の留去及び濃縮物の反応制御により熱可塑性リグニン複合物となる。なお、液体成分処理部分で留去した溶媒は回収して溶媒調製部分の配合・リサイクル工程で濃度調整し、再利用する。   Here, the heat extraction and the solid-liquid separation one-stage treatment process are the core part of the advanced conversion process of lignocellulosic biomass proposed by the present inventors, and the biomass raw material is a cellulose component (a solid component insoluble in a mixed solvent). And lignin component (liquid component soluble in the mixed solvent). At this time, in the hemicellulose, part of the soluble component flows toward the liquid component due to partial hydrolysis, and the rest remains in the solid component together with the cellulose. Cellulose component (including residual hemicellulose) (hereinafter, even cellulose component including residual hemicellulose is abbreviated as “cellulose component”) is used as a saccharification raw material through the recovery / preparation step of the solid component treated portion, The lignin component (including partially hydrolyzed hemicellulose) (hereinafter, even the lignin component including partially hydrolyzed hemicellulose is abbreviated as “lignin component”) is subjected to the concentration / preparation step of the liquid component processing portion. A thermoplastic lignin composite is obtained by distilling off the water and alkylene glycol mixed solvent and controlling the reaction of the concentrate. In addition, the solvent distilled off in the liquid component treatment part is recovered, and the concentration is adjusted in the blending / recycling process of the solvent preparation part and reused.

この方法によれば、粉砕はミリメートル(mm)オーダーのオガクズ程度の粗粉砕レベルでよく、マイクロメートル(μm)オーダーの微細化処理しても良いが、その必要はなく、且つ加熱抽出と固液分離が一体化された装置により一段で処理できるので、プロセスが大幅に短縮化できる。   According to this method, pulverization may be performed at a coarse pulverization level on the order of millimeter (mm) sawdust, and may be refined on the order of micrometers (μm), but this is not necessary, and heating extraction and solid-liquid Since the process can be performed in a single stage by an apparatus with integrated separation, the process can be greatly shortened.

また、水とアルキレングリコールの混合溶媒で加熱抽出と固液分離を一段で処理すると、加熱時における水によるヘミセルロースとリグニンの部分加水分解とエチレングリコールによるリグニンの溶解の組み合わせにより、リグニン成分の抽出・分離効率が著しく向上する。その結果、セルロースとセルロース間を強固に結合していたリグニンとヘミセルロースが適度に分解、溶出され、セルロース結晶の間に無数の空隙が生じると共に、熱的、化学的、物理的な総合作用も相まって、もともと高度に結晶化されて硬直であった繊維質(セルロース結晶)が柔らかく解繊・膨潤される。これを糖化原料とした場合、糖化酵素がセルロースとセルロースの間に入りやすくなり、糖化酵素とセルロースとの有効接触表面積が著しく増大するので、非常に優れた糖化原料として単糖(グルコース、キシロース等)の製造、さらにはバイオエタノールなど液体バイオ燃料や糖化学を駆使した各種機能性バイオマテリアルの製造に提供することができる。   In addition, when heat extraction and solid-liquid separation are processed in a single step with a mixed solvent of water and alkylene glycol, extraction / extraction of lignin components is achieved by a combination of partial hydrolysis of hemicellulose and lignin with water and dissolution of lignin with ethylene glycol during heating. Separation efficiency is significantly improved. As a result, lignin and hemicellulose, which were tightly bonded between cellulose and cellulose, are appropriately decomposed and eluted, resulting in innumerable voids between cellulose crystals, combined with thermal, chemical, and physical combined action. The fiber (cellulose crystal) that was originally highly crystallized and rigid is softly defibrated and swollen. When this is used as a saccharification raw material, the saccharifying enzyme easily enters between the cellulose and the cellulose, and the effective contact surface area between the saccharifying enzyme and the cellulose is remarkably increased. Therefore, a monosaccharide (glucose, xylose, etc.) ) As well as various functional biomaterials that make full use of liquid biofuels such as bioethanol and sugar chemistry.

一方、リグニンは通常巨大な網目構造を有する高分子で、そのままの状態で抽出・分離するのは極めて難しく、たとえ抽出・分離したとしても軟化温度が高すぎる、或いは軟化温度付近ですぐ架橋反応が起こって難溶不融の状態になってしまうので、例えばそのまま高分子材料(熱可塑性樹脂原料、バイオマスプラスチック、炭素繊維など)にしようとすると成形加工が非常に難しい。従って、リグニンの付加価値を高めるためには適宜分解して低分子化し、さらに低分子化されたものを人工的に再合成して線状の熱可塑性高分子にすることが望ましい。この低分子化には硫酸など触媒を使用しない場合、エチレングリコール類による加溶媒分解よりも水の加水分解のほうがより低温で可能である。これに対してリグニンに対する溶解力の面からいうとエチレングリコール類のほうが水より優れている。つまり、水単独による加水分解(水熱処理)とエチレングリコール類による抽出処理にはいずれも一長一短がある。本発明による水とエチレングリコール類の混合溶媒法はこれらのそれぞれの長所を生かして、より温和な条件と低コストでより優れた性能のリグニンを提供できる。   On the other hand, lignin is usually a polymer with a huge network structure, and it is extremely difficult to extract and separate as it is, and even if extracted and separated, the softening temperature is too high, or the crosslinking reaction occurs immediately near the softening temperature. Since this occurs and becomes insoluble and infusible, for example, if it is intended to use a polymer material (thermoplastic resin raw material, biomass plastic, carbon fiber, etc.) as it is, molding is very difficult. Therefore, in order to increase the added value of lignin, it is desirable to appropriately decompose and lower the molecular weight, and to artificially re-synthesize the lower molecular weight to form a linear thermoplastic polymer. When a catalyst such as sulfuric acid is not used for lowering the molecular weight, hydrolysis of water is possible at a lower temperature than solvolysis with ethylene glycols. On the other hand, ethylene glycols are superior to water in terms of the ability to dissolve lignin. That is, both hydrolysis (hydrothermal treatment) with water alone and extraction treatment with ethylene glycol have advantages and disadvantages. The mixed solvent method of water and ethylene glycol according to the present invention can provide a lignin having better performance under milder conditions and lower costs by taking advantage of each of these advantages.

本図示例における4つの部分の各工程の詳細は以下の通りである。
(1)原料前処理部分
本発明はリグノセルロース―系バイオマスからのリグニンの高度分離技術並びに熱可塑性リグニン複合物と糖化原料を製造する技術に関するものであるが、主成分であるセルロース成分から酵素糖化などを経てグルコース、キシロースなど単糖類に変換するというプロセスの流れを念頭に、従来の糖化プロセスの場合と同様に「前処理」という同じ表現にした。以下に、前処理の二つの工程について説明する。
Details of each process of the four parts in the illustrated example are as follows.
(1) Raw material pretreatment part The present invention relates to a technology for highly separating lignin from lignocellulose-based biomass and a technology for producing a thermoplastic lignin composite and a saccharified raw material. In the same way as in the case of the conventional saccharification process, the same expression “pretreatment” was used with the process flow of converting to monosaccharides such as glucose and xylose through the process. Below, two processes of pre-processing are demonstrated.

(1−1)粉砕工程
バイオマス原料としては、セルロース、ヘミセルロースとリグニンを含む固形原料である限り特に限定されず、植物由来の原料であればいずれも使用可能である。例えば、針葉樹と広葉樹とを網羅した間伐材、林地残材、製材残材、建築廃材、剪定枝葉などの木質系バイオマスがその資源量及び有効利用の観点から望ましい。なお、稲わら、麦わら、トウモロコシやスーパーソルガムの茎、バガス、竹、笹などのイネ科植物も使用可能である。また、エネルギー資源として東南アジア等に豊富な資源を有するオイルパーム由来バイオマス(油採取時に定期的に排出される空果房や約25年周期の植え替えで伐採される幹など)も好適である。
(1-1) Grinding step The biomass raw material is not particularly limited as long as it is a solid raw material containing cellulose, hemicellulose and lignin, and any plant-derived raw material can be used. For example, woody biomass such as thinned wood covering conifers and broad-leaved trees, forest land residual materials, lumber residual materials, construction waste materials, pruned branches and leaves is desirable from the viewpoint of the amount of resources and effective utilization. Rice plants such as rice straw, wheat straw, corn and super sorghum stalks, bagasse, bamboo and straw can also be used. Oil palm-derived biomass (such as empty fruit bunches that are regularly discharged when oil is collected and trunks that are cut by replanting in a cycle of about 25 years) having abundant resources in Southeast Asia and the like as energy resources is also suitable.

粉砕手段は特に限定されず、カッターミル、振動ミル、ハンマーミルなど慣用の粗粉砕機械を用いて行なうことができ、乾式及び湿式のいずれでもよい。有機溶媒法やイオン液体法によるリグニンの抽出分離の際には原料の乾燥が必要であるが、本発明による抽出溶媒は水とアルキレングリコールの混合液なので、その水分量を考慮した配合比にすればよく、わざわざ乾燥する必要はない。粉砕処理物はできれば篩を通して好ましい粒度以下にしたほうがよい。好ましい粒度は、例えば、2mmの篩下である。つまり、通常のオガクズのサイズで十分で、粒度の下限値は特に設けなくてもよい。従来の糖化前処理における粉砕では、例えば、木質原料を20μm以下、好ましくは5μm以下にまで粉砕しておく必要があったが、本発明による方法では、微粉砕は必要せず、粉砕に要するエネルギー及びコストを大幅に低減することができる。   The pulverizing means is not particularly limited, and can be performed using a conventional coarse pulverizing machine such as a cutter mill, a vibration mill, a hammer mill, and may be either dry or wet. Although the raw material must be dried when extracting and separating lignin by the organic solvent method or ionic liquid method, the extraction solvent according to the present invention is a mixture of water and alkylene glycol, so the mixing ratio should be adjusted in consideration of the amount of water. It doesn't have to be dry. If possible, the pulverized product should have a particle size equal to or smaller than the preferred particle size through a sieve. A preferred particle size is, for example, a 2 mm sieve. That is, the normal sawdust size is sufficient, and the lower limit of the particle size is not particularly required. In the pulverization in the conventional saccharification pretreatment, for example, the wood raw material has to be pulverized to 20 μm or less, preferably 5 μm or less, but the method according to the present invention does not require fine pulverization, and energy required for pulverization. In addition, the cost can be greatly reduced.

(1−2)加熱抽出と固液分離一段処理工程
本発明における「加熱抽出と固液分離一段処理」とは、加熱抽出処理と固液分離処理を別々に行なうものではなく、同一装置にてこの二つの処理を同時に行なうことを意味する。すなわち、前記装置内に投入された被処理物に水とアルキレングリコールの混合溶媒を流通させると、リグニンなど可溶性成分は混合溶媒に溶けてフィルターを経由して系外に排出され、次の濃縮・調製工程に移送される。前記のように混合溶媒は連続的に加熱温度の条件で系外に取り出せるので、加熱抽出処理と固液分離を別々にする方法に比べて、溶解したリグニン成分が再固化することなく、リグニン成分を効率よく分離することができる。
(1-2) Heat extraction and solid-liquid separation one-stage process The "heat extraction and solid-liquid separation one-stage process" in the present invention does not separately perform the heat extraction process and the solid-liquid separation process. It means that these two processes are performed simultaneously. That is, when a mixed solvent of water and alkylene glycol is circulated through the object to be processed put into the apparatus, soluble components such as lignin are dissolved in the mixed solvent and discharged out of the system through the filter, and the next concentration / It is transferred to the preparation process. As described above, since the mixed solvent can be continuously taken out of the system under heating temperature conditions, the dissolved lignin component does not re-solidify as compared with the method in which the heating extraction process and the solid-liquid separation are separately performed, Can be separated efficiently.

一方、セルロースなど不溶性固体成分はフィルターを通ることができないので、所定温度と液比(混合溶媒とバイオマス原料との質量比)で所定時間抽出された後、液体成分とは別の排出口から系外に排出され、液体成分と分離される。原料の投入及び固体成分の排出は回分式で行なってもよく、連続式で行なってもよい。この抽出と固液分離一体化装置には勿論加熱手段が必要であり、その加熱方式は特に限定されないが、外部加熱の場合、被抽出物の層内温度を均一にするために予め加熱された混合溶媒を流通させたほうが望ましい。   On the other hand, insoluble solid components such as cellulose cannot pass through the filter, and after extraction for a predetermined time at a predetermined temperature and liquid ratio (mass ratio of mixed solvent and biomass raw material), the system is discharged from a discharge port separate from the liquid component. It is discharged outside and separated from the liquid component. The input of the raw material and the discharge of the solid component may be performed batchwise or continuously. Of course, this extraction and solid-liquid separation integrated apparatus requires a heating means, and the heating method is not particularly limited, but in the case of external heating, it is preheated in order to make the in-layer temperature of the extractable material uniform. It is desirable to distribute a mixed solvent.

上記混合溶媒中のアルキレングリコール類は、例えば、エチレングリコール、プロピレングリコール、テトラメチレングリコールなどのC2-4モノアルキレングリコールの他、その縮合物も含まれる。好ましいアルキレングリコールは、C2-4モノアルキレングリコール、特にエチレングリコールである。 The alkylene glycols in the mixed solvent include, for example, C 2-4 monoalkylene glycols such as ethylene glycol, propylene glycol, and tetramethylene glycol, and condensates thereof. Preferred alkylene glycols are C 2-4 monoalkylene glycols, especially ethylene glycol.

上記混合溶媒中の水とアルキレングリコール類の質量比(水/アルキレングリコール類)は、例えば、5/95〜95/5である。
上記混合溶媒使用量は、液比(混合溶媒/バイオマス原料、質量比)として、例えば、2/1〜20/1である。
The mass ratio of water and alkylene glycols (water / alkylene glycols) in the mixed solvent is, for example, 5/95 to 95/5.
The amount of the mixed solvent used is, for example, 2/1 to 20/1 as a liquid ratio (mixed solvent / biomass raw material, mass ratio).

上記加熱抽出と固液分離の処理温度は、固体成分中のセルロース成分の収量と、液体成分中のリグニン成分の収量の分配が適正になる範囲で設定でき、例えば、温度は150℃以上200℃未満の範囲で設定できる。処理温度が低すぎると、リグニン成分の抽出量が少なくなり、前述の部分加水分解効果も期待できなくなる。一方、処理温度が高すぎると、セルロース成分の分解までも進み、固体成分の収量が低減するので、糖化原料の製造効率が低下する。150℃以上200℃未満の温度範囲であれば丁度リグニン成分の抽出と部分加水分解の両方の効果もよく、これらの成分を混合溶媒に十分溶解された状態で固体成分と分離することができる。また、この温度範囲であればセルロースの分解と変質も防ぐことができ、比較的に温和な前処理条件下で良質な糖化原料を高収率で製造することができる。   The processing temperature for the above heat extraction and solid-liquid separation can be set within a range in which the distribution of the yield of the cellulose component in the solid component and the yield of the lignin component in the liquid component is appropriate. For example, the temperature is 150 ° C. or more and 200 ° C. It can be set within the range below. If the treatment temperature is too low, the extraction amount of the lignin component is reduced, and the above-mentioned partial hydrolysis effect cannot be expected. On the other hand, when the treatment temperature is too high, the cellulose component is decomposed and the yield of the solid component is reduced, so that the production efficiency of the saccharification raw material is lowered. If the temperature is in the range of 150 ° C. or more and less than 200 ° C., the effects of both extraction of the lignin component and partial hydrolysis are also good, and these components can be separated from the solid component in a state sufficiently dissolved in the mixed solvent. Moreover, decomposition and alteration of cellulose can be prevented within this temperature range, and a high-quality saccharification raw material can be produced in a high yield under relatively mild pretreatment conditions.

処理時間は、処理温度により異なるが、例えば5〜120分程度である。通常、処理温度が低い場合は比較的に長期間処理し、処理温度が高い場合は比較的に短期間処理する。   Although processing time changes with processing temperature, it is about 5 to 120 minutes, for example. Usually, when the processing temperature is low, the processing is performed for a relatively long period of time, and when the processing temperature is high, the processing is performed for a relatively short period of time.

(2)固体成分処理部分(回収・調製工程)
上記加熱抽出と固液分離一段処理工程で抽出後に残った固体成分は、回分式又は連続式で系外に排出することができる。前者の場合は、例えば150〜200℃における水蒸気圧(約5〜15大気圧)を利用して、液体成分をフィルター経由でガス状や霧状の形で一気に系外に排出した後、残留液体量が少なくなった固体成分を系から取り出すことができる。また後者の場合は、例えばスクリュー圧縮法等により液体成分を絞り出しながら固体成分を連続的に系から取り出すことができる。
(2) Solid component processing part (recovery / preparation process)
The solid component remaining after the extraction in the heating extraction and solid-liquid separation one-stage processing step can be discharged out of the system in a batch system or a continuous system. In the former case, for example, using a water vapor pressure (about 5 to 15 atmospheric pressure) at 150 to 200 ° C., the liquid component is discharged out of the system at once in a gaseous or mist form via a filter, and then the residual liquid The reduced amount of solid component can be removed from the system. In the latter case, for example, the solid component can be continuously removed from the system while the liquid component is squeezed out by a screw compression method or the like.

回収した固体成分は、糖化原料としてそのまま糖化工程(図示例には示されていない)に送ってもよい。なお、必要に応じて固体成分中の残留溶媒(アルキレングリコール)を水洗処理により除去してから糖化工程に送ってもよい。   The recovered solid component may be sent directly to a saccharification step (not shown in the illustrated example) as a saccharification raw material. In addition, you may send to the saccharification process, after removing the residual solvent (alkylene glycol) in a solid component by a water-washing process as needed.

また、加熱抽出と固液分離一段処理工程から回収した固体成分は、一旦固体成分の回収タンクに集めて、セルロースの状態(例えば結晶化度の変化等)や液体成分由来の残留成分をチェック、または水による濃度調整を経て、スラリー状に調整して糖化工程に送ってもよい。   In addition, the solid components recovered from the heat extraction and solid-liquid separation one-stage processing steps are once collected in a solid component recovery tank to check the cellulose state (for example, change in crystallinity, etc.) and residual components derived from liquid components, Or after adjusting the concentration with water, it may be adjusted to a slurry and sent to the saccharification step.

上述のように得られた糖化原料は、従来の糖化工程では厄介物であったリグニンを効率よく分離でき、セルロース成分の高収率に加え、セルロース結晶化度を大幅に低くすることができるので、良質な糖化原料として色々な用途に有効利用できる。まず、酵素糖化により単糖類(グルコース、キシロースなど)を高効率・低コストで得ることができる。この単糖類からは、発酵などを経てバイオエタノール、バイオブタノール、エチルターシャリーブチルエーテルのようなバイオ燃料又はガソリン添加剤を製造することができる。また、糖の化学変換を経て、プラスチック、ポリマー原料、化成品(基礎化学品、医薬品、農薬、香料、食品添加剤など)等をも製造することができる。   The saccharification raw material obtained as described above can efficiently separate lignin, which is a troublesome product in the conventional saccharification process, and can greatly reduce the cellulose crystallinity in addition to the high yield of cellulose components. It can be effectively used for various purposes as a high-quality saccharification raw material. First, monosaccharides (glucose, xylose, etc.) can be obtained with high efficiency and low cost by enzymatic saccharification. From this monosaccharide, biofuels such as bioethanol, biobutanol, and ethyl tertiary butyl ether or gasoline additives can be produced through fermentation and the like. In addition, plastics, polymer raw materials, chemical products (basic chemicals, pharmaceuticals, agricultural chemicals, fragrances, food additives, etc.) can be produced through chemical conversion of sugar.

(3)液体成分処理部分(濃縮・調製工程)
上記加熱抽出と固液分離一段処理後に分離・回収された液体成分は、リグニンを主成分として若干のヘミセルロースの加水分解物も含んでいる。この溶液から抽出に使用した溶媒を留去することで、リグニン及びその他有用成分を濃縮できる。
(3) Liquid component processing part (concentration / preparation process)
The liquid component separated and recovered after the heat extraction and the solid-liquid separation one-step treatment contains lignin as a main component and some hemicellulose hydrolyzate. By distilling off the solvent used for extraction from this solution, lignin and other useful components can be concentrated.

濃縮条件は特に限定されないが、減圧蒸留のほうが常圧蒸留に比べてより効率的である。また、減圧蒸留は突沸防止のために低温から高温へと段階的に行なったほうがよいが、その後半の濃縮温度は、例えば、130〜220℃程度である。温度が高すぎると、溶媒留去によって得られたリグニン、リグニン誘導体及びヘミセルロース誘導体同士の架橋反応が進行し、更には脱水素・環化に続く炭化をも招く恐れがあるので、良質な熱可塑性リグニン複合物を得ることができない。一方、温度が低すぎると、抽出処理に用いた溶媒が残留し、目的物である熱可塑性リグニン複合物の性能に影響を与える恐れがある。   The concentration conditions are not particularly limited, but vacuum distillation is more efficient than atmospheric distillation. Further, it is better to carry out the vacuum distillation stepwise from low temperature to high temperature to prevent bumping, but the concentration temperature in the latter half is, for example, about 130 to 220 ° C. If the temperature is too high, crosslinking reaction between lignin, lignin derivative and hemicellulose derivative obtained by evaporation of the solvent proceeds, and there is a risk of carbonization following dehydrogenation and cyclization. A lignin complex cannot be obtained. On the other hand, if the temperature is too low, the solvent used in the extraction treatment remains, which may affect the performance of the target thermoplastic lignin composite.

また、本工程では溶媒留去のみならず、リグニン、リグニン誘導体や部分的に加水分解されたヘミセルロース誘導体同士による高分子化(樹脂化)反応も同時に起こるので、適宜な分子構造と分子量分布が取れるように反応をコントロールする必要がある。この樹脂化反応の温度や時間などは目的製品の物性要求に応じてコントロールすることができる。例えば、炭素繊維などを目的製品とした場合には、例えば220〜280℃の温度でさらにピッチ化を行なうことで可能である。樹脂化反応もピッチ化反応もいずれも低分子成分の除去が必要であるが、そのためには減圧下での反応のほうが望ましく、本発明における液体成分の濃縮工程と熱可塑性リグニン複合物への調製処理工程の一体化は非常に合理的である。   In this process, not only solvent distillation but also polymerization (resinization) reaction between lignin, lignin derivatives and partially hydrolyzed hemicellulose derivatives occur simultaneously, so that appropriate molecular structure and molecular weight distribution can be obtained. It is necessary to control the reaction. The temperature and time of the resinification reaction can be controlled according to the physical property requirements of the target product. For example, when carbon fiber or the like is used as a target product, it can be obtained by further pitching at a temperature of 220 to 280 ° C., for example. In both the resination reaction and the pitching reaction, it is necessary to remove low molecular components. For this purpose, the reaction under reduced pressure is more desirable, and the liquid component concentration step in the present invention and preparation into a thermoplastic lignin composite are performed. The integration of processing steps is very reasonable.

従来法によるリグニン、例えば硫酸糖化法リグニン、苛性ソーダ等によるクラフトリグニン、水熱処理により得られたリグニンなどは基本的には加水分解により得られたもので、活性酸素官能基を多く含んでいるため、不安定で、加熱するとすぐ架橋し、難溶不融の状態になってしまう。これに対して、本発明における水とアルキレングリコール混合溶液抽出により得られたリグニンは熱可塑性を有する。厳密に言えば、このリグニンの中には溶媒抽出過程で生成したリグニン分解物やヘミセルロースの部分加水分解物等も含まれているので、これらの複合により得られ、且つ150〜250℃の範囲内で軟化点を有すると共に、一定時間熱安定性を維持できるものを、本発明では「熱可塑性リグニン複合物」と定義する。   Conventional lignin, for example, saccharification lignin, kraft lignin by caustic soda, etc., lignin obtained by hydrothermal treatment, etc. are basically obtained by hydrolysis, and contain a lot of active oxygen functional groups. It is unstable and crosslinks as soon as it is heated, resulting in a hardly soluble and infusible state. On the other hand, the lignin obtained by water and alkylene glycol mixed solution extraction in this invention has thermoplasticity. Strictly speaking, since this lignin includes lignin degradation products and hemicellulose partial hydrolysis products produced in the solvent extraction process, these lignins are obtained by combining these and are within the range of 150 to 250 ° C. Those having a softening point and capable of maintaining thermal stability for a certain period of time are defined as “thermoplastic lignin composites” in the present invention.

リグニンはベンゼン環に炭素3個がついたフェニルプロパン型の炭素骨格からなり、これが多数互いに側鎖と側鎖、ベンゼン環と側鎖の間で結合した三次元網目構造を形成した、巨大な生体高分子である。分子量は5万以上とも言われているが、溶媒抽出温度が高くなるにつれてリグニン分子の低分子化が進み、軟化点が低下する傾向を示す。有機溶媒(例えばエチレングリコールやフェノール等)のみで二百数十℃以上の高温加溶媒分解により得られたリグニンは低分子化が進んで熱可塑性は示すものの、温度の上昇に伴ってセルロースの分解が激しくなる。従って、炭素繊維などの原料となるピッチは製造可能であるが、主成分であるセルロースの有効利用に大きな課題がある。一方、この有機溶媒抽出法により200℃付近で処理して得られたリグニンは十分に低分子化できず、軟化点が高い(約200℃)上に、完全軟化ではなく半溶融半固体の状態で、軟化点以上に加熱しても溶融しない成分が混ざっているので、均一性に欠けている問題がある。これに対して、本発明の水とアルキレングリコール混合溶媒による抽出法では150℃以上200℃未満の比較的に温和な条件下で、水による適宜な加水分解とエチレングリコール類による溶解力及びこれらの複合効果により、得られたリグニン複合物は優れた熱可塑性を有する。   Lignin consists of a phenylpropane-type carbon skeleton with three carbons in the benzene ring, and this is a huge living body that has a three-dimensional network structure in which many are connected to each other by side chains and side chains. It is a polymer. Although it is said that the molecular weight is 50,000 or more, as the solvent extraction temperature is increased, the lignin molecules are becoming lower in molecular weight and the softening point tends to be lowered. Lignin obtained by high-temperature solvolysis at more than two hundreds of tens of degrees Celsius using only organic solvents (eg ethylene glycol and phenol) is low molecular weight and shows thermoplasticity. However, cellulose decomposes with increasing temperature. Becomes intense. Therefore, although pitch as a raw material such as carbon fiber can be manufactured, there is a big problem in effective utilization of cellulose as a main component. On the other hand, lignin obtained by processing at around 200 ° C. by this organic solvent extraction method cannot sufficiently reduce the molecular weight, has a high softening point (about 200 ° C.), and is not completely softened but in a semi-molten semi-solid state. In addition, there is a problem of lack of uniformity because components that do not melt even when heated above the softening point are mixed. On the other hand, in the extraction method using water and an alkylene glycol mixed solvent according to the present invention, under a relatively mild condition of 150 ° C. or more and less than 200 ° C., appropriate hydrolysis with water and dissolving power with ethylene glycols and these Due to the composite effect, the resulting lignin composite has excellent thermoplasticity.

また、この液体成分濃縮・調製処理工程では、目的とした熱可塑性リグニン複合物の要求に応じて、石油・石炭系の樹脂やピッチ類を添加してもよい。例えば、石油系ピッチや石炭系ピッチと熱可塑性リグニン複合物を混合すれば、炭素繊維の不融化処理効率を上げることができ、またプラスチックや合成樹脂に添加した場合にはリグニンの構造特性を生かして材料に色々な新しい機能を付与することも可能である。   In this liquid component concentration / preparation process, petroleum / coal resins and pitches may be added according to the requirements of the desired thermoplastic lignin composite. For example, if petroleum pitch or coal pitch is mixed with a thermoplastic lignin composite, the infusibilization efficiency of carbon fibers can be increased, and when added to plastics or synthetic resins, the structural characteristics of lignin are utilized. It is also possible to add various new functions to the material.

また、石油・石炭系の樹脂やピッチ類にバイオマス系の熱可塑性リグニン複合物を添加することで、材料中の化石原料の比率を少なくして、温暖化ガス排出抑制に貢献することができる。   Further, by adding a biomass-based thermoplastic lignin composite to petroleum / coal-based resins and pitches, the ratio of fossil raw materials in the material can be reduced, thereby contributing to the suppression of greenhouse gas emissions.

この様にして得られた熱可塑性複合物はバイオマテリアル前駆体となる。バイオマテリアル前駆体は、それ自身、ピッチ(バイオマス系ピッチ)、樹脂(リグニン系樹脂)、バインダーとして使用でき、また種々のバイオマテリアル(炭素材料、成形材料)にも利用できる。例えば直接炭化、又は塑性成形後炭化、又は熱分解、賦活処理等により、C/Cコンポジッド用骨材、カーボンシート、カーボンフィルム、カーボン微粒子、活性炭、などの炭素材料として使用できる。また紡糸、不融化、炭化処理すれば、炭素繊維、カーボンナノファイバーとして使用できる。また、他の植物由来樹脂(例えば、ポリ乳酸など)又は天然繊維(例えば、竹繊維など植物繊維)と組み合わせることで、グリーンコンポジットにすることができる。更に、他の熱可塑性樹脂(例えば、ポリエチレン、ポリ塩化ビニル、ポリスチレン等石油由来熱可塑性樹脂)と組み合わせることによって、バイオマスプラスチックにすることができる。   The thermoplastic composite thus obtained becomes a biomaterial precursor. The biomaterial precursor itself can be used as a pitch (biomass-based pitch), a resin (lignin-based resin) and a binder, and can also be used for various biomaterials (carbon materials and molding materials). For example, it can be used as a carbon material such as aggregate for C / C composite, carbon sheet, carbon film, carbon fine particle, activated carbon, etc. by direct carbonization, carbonization after plastic molding, thermal decomposition, activation treatment or the like. Further, if it is spun, infusibilized or carbonized, it can be used as carbon fiber or carbon nanofiber. Moreover, it can be set as a green composite by combining with other plant origin resin (for example, polylactic acid etc.) or natural fiber (for example, plant fibers, such as bamboo fiber). Furthermore, biomass plastics can be obtained by combining with other thermoplastic resins (for example, petroleum-derived thermoplastic resins such as polyethylene, polyvinyl chloride, and polystyrene).

(4)溶媒調製部分(配合・リサイクル工程)
図示例の工程では、上記濃縮によって留去された溶媒を再利用するようにしている。該留去物には、抽出に使用した混合溶媒(水とアルキレングリコール)の他、バイオマス原料由来の加水分解生成物である酢酸など副生物も少量含まれる。これらは沸点の差を利用してそれぞれ分離・回収した後、有機溶媒成分(アルキレングリコール)は溶媒調製部分(配合・リサイクル工程)に戻して、抽出用混合溶媒の配合又は濃度調整を経てリサイクルすることができる。酢酸類も適当な用途(例えば、園芸用、農業用)に再利用できる。このように溶媒を回収・再利用するようにすれば、本工程はゼロエミッションに近づくことができる。
(4) Solvent preparation part (formulation / recycling process)
In the illustrated process, the solvent distilled off by the concentration is reused. In addition to the mixed solvent (water and alkylene glycol) used for extraction, the distillate contains a small amount of by-products such as acetic acid which is a hydrolysis product derived from the biomass raw material. These are separated and recovered using the difference in boiling point, and then the organic solvent component (alkylene glycol) is returned to the solvent preparation part (formulation / recycling step) and recycled through the mixing or concentration adjustment of the extraction solvent mixture. be able to. Acetic acids can also be reused for appropriate applications (eg, horticulture, agriculture). If the solvent is recovered and reused in this way, this step can approach zero emission.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

なお、下記実施例および比較例において、実験に用いたバイオマス原料は以下の実験方法1により調製したものを使用し、抽出・固液分離処理装置による抽出と分離及び評価は実験方法2によって、また液体成分の濃縮処理及びその評価は実験方法3によって行なった。   In the following examples and comparative examples, the biomass raw material used in the experiment was prepared by the following experimental method 1, and the extraction, separation and evaluation by the extraction / solid-liquid separation processing apparatus were performed by the experimental method 2, The liquid component concentration treatment and its evaluation were carried out by Experimental Method 3.

〔実験方法1〕
(原料の調製方法と分析)
バイオマス原料としては、国産杉(樹皮、枝を含む)のオガクズを2mm篩下に分級したものを用いた。原料の水分含量は105℃で一夜乾燥して求め、リグニン含量はクラソン法により求めた。その結果、原料の水分含量は12.4重量%で、リグニン含量は32.4重量%(乾燥基準)であった。
[Experiment Method 1]
(Raw material preparation method and analysis)
As a biomass raw material, domestic cedar (including bark and branches) sawdust was classified under a 2 mm sieve. The moisture content of the raw material was obtained by drying overnight at 105 ° C., and the lignin content was obtained by the Krason method. As a result, the water content of the raw material was 12.4% by weight and the lignin content was 32.4% by weight (dry basis).

〔実験方法2〕
(抽出・分離装置及び実験方法)
加熱抽出・固液分離一段処理装置(回分式一例)の概略を図2に示す。この装置を用いた詳細な実験方法は次の通りである。
(a)所定配合比(重量比)に調製した水とエチレングリコールの混合溶媒を溶媒貯めに注入した。
(b)縦200メッシュ×横1400メッシュ(線径:縦0.07mm×横0.04mm)のステンレスフィルターが装着された内容積40mlのステンレス製円筒型抽出器にほぼ同容積(圧縮せず)になるように実験方法1により調製した木粉原料を充填した。
(c)定量ポンプにより水とエチレングリコール混合溶液を円筒型抽出器に注入し、系内が混合溶媒で満たされた後、背圧弁で系内圧力を2MPa以内に制御しながら所定温度、所定流量で所定液比になるまで抽出し、抽出液は冷却トラップに回収した。
(d)抽出器出口の後部の背圧弁を開いて、系内の水蒸気圧で液体成分を系外に排出し、冷却トラップに回収した。
(e)円筒型抽出器を急冷し、器内の固体成分を回収した。
(f)上記により回収した固体成分は、ブフナーロートを用いて合計100mlの水で洗浄後、105℃で一夜乾燥し、重量法により次式を用いて収率を求めた。
固体成分収率(wt%)=固体成分乾燥重量/原料乾燥重量×100 (式1)
[Experiment Method 2]
(Extraction / separation device and experimental method)
FIG. 2 shows an outline of a heating extraction / solid-liquid separation one-stage treatment apparatus (an example of a batch type). The detailed experimental method using this apparatus is as follows.
(A) A mixed solvent of water and ethylene glycol prepared at a predetermined blending ratio (weight ratio) was poured into a solvent reservoir.
(B) Almost the same volume (not compressed) in a stainless steel cylindrical extractor with an internal volume of 40 ml equipped with a stainless steel filter of 200 mesh length x 1400 mesh width (wire diameter: 0.07 mm length x 0.04 mm width). The wood powder raw material prepared by the experimental method 1 was filled.
(C) After a water and ethylene glycol mixed solution is injected into the cylindrical extractor by a metering pump and the system is filled with the mixed solvent, the system pressure is controlled to within 2 MPa with a back pressure valve, and a predetermined temperature and a predetermined flow rate are controlled. The mixture was extracted until a predetermined liquid ratio was obtained, and the extract was collected in a cooling trap.
(D) The back pressure valve at the rear of the extractor outlet was opened, the liquid component was discharged out of the system with the water vapor pressure in the system, and collected in a cooling trap.
(E) The cylindrical extractor was quenched and the solid components in the container were recovered.
(F) The solid component recovered by the above was washed with a total of 100 ml of water using a Buchner funnel, dried at 105 ° C. overnight, and the yield was determined by the following formula using a gravimetric method.
Solid component yield (wt%) = solid component dry weight / raw material dry weight × 100 (Formula 1)

また、固体成分について、糖化原料の酵素糖化の難易度を示す一つのファクターとして、FT−IRスペクトル分析により主成分であるセルロースの結晶化度を求めた。セルロース結晶化度はFT−IRスペクトルの1437cm−1の吸収ピーク面積(A1437)と899cm−1の吸収ピーク面積(A899)との相対値を用いて求めたが、その計算式は次の通りである。
セルロース結晶化度=A1437/A899 (式2)
Moreover, the crystallinity degree of the cellulose which is a main component was calculated | required by FT-IR spectrum analysis as one factor which shows the difficulty of the enzyme saccharification of a saccharification raw material about a solid component. Cellulose crystallinity was determined using the relative value of the absorption peak area (A 1437 ) at 1437 cm −1 and the absorption peak area (A 899 ) at 899 cm −1 in the FT-IR spectrum. Street.
Cellulose crystallinity = A 1437 / A 899 (Formula 2)

リグニンの分析は、クラソン法(文献:「リグニン化学研究法」、21〜22ページ、ユニ出版、平成6年発行)により行ない、次式により抽出・固液分離におけるリグニン分離率を求めた。
リグニン分離率(wt%)=(原料中のリグニン重量−固体成分中のリグニン重量)/原料中のリグニン重量×100 (式3)
The lignin was analyzed by the Krason method (reference: “Lignin Chemical Research Method”, pages 21-22, Uni Publishing, published in 1994), and the lignin separation rate in the extraction / solid-liquid separation was determined by the following formula.
Lignin separation rate (wt%) = (lignin weight in raw material−lignin weight in solid component) / lignin weight in raw material × 100 (formula 3)

〔実験方法3〕
(液体成分の濃縮及び収率、熱可塑性評価)
(g)前記(c)および(d)により冷却トラップ内に回収した液体成分と(f)により回収した洗浄液とを合わせる。
[Experiment Method 3]
(Concentration and yield of liquid components, evaluation of thermoplasticity)
(G) The liquid component recovered in the cooling trap by (c) and (d) is combined with the cleaning liquid recovered by (f).

(h)上記(g)で得られた液体成分全量をエバポレーターにより減圧条件下にて突沸しないように段階的に昇温し、所定温度で所定時間蒸留した。なお、蒸留の最後の段階では被濃縮物が入っているナスフラスコの開口部付近に繊維質吸着剤充填層を設け、蒸発された高沸点溶媒(エチレングリコール、沸点197℃)が凝集して逆戻りしないように工夫した。蒸留により溶媒を除去して得られた濃縮物は、次式を用いて収率を求めた。
濃縮物収率(wt%)=濃縮物重量/原料乾燥重量×100 (式4)
(H) The total amount of the liquid component obtained in (g) above was raised stepwise by an evaporator under reduced pressure conditions so as not to bump and distilled at a predetermined temperature for a predetermined time. In the final stage of distillation, a fibrous adsorbent packed layer is provided near the opening of the eggplant flask containing the concentrate, and the evaporated high boiling point solvent (ethylene glycol, boiling point 197 ° C.) aggregates and returns. I devised not to. The concentrate obtained by removing the solvent by distillation was determined for yield using the following formula.
Concentrate yield (wt%) = concentrate weight / raw material dry weight × 100 (Formula 4)

(i)濃縮時に留去された水およびエチレングリコール以外の留出分(低沸点揮発成分)は、次式を用いて収率を求めた。
留出物収率(wt%)=100−(固体成分収率+濃縮物収率) (式5)
(I) The distillate other than water and ethylene glycol distilled off during concentration (low-boiling volatile components) was determined for yield using the following formula.
Distillate yield (wt%) = 100− (solid component yield + concentrate yield) (Formula 5)

(j)軟化点および熱安定性の測定(熱可塑性の評価)
軟化点:厚み約1mm×5mm角の濃縮物を、ホットステージ上に乗せ、その中心部をφ1mmの金属棒により1kgの負荷をかけながら、毎分5℃の昇温速度で加熱した際に、金属棒が垂直方向に0.5mm以上変位した時の温度を軟化点(軟化温度)とした。
熱安定性:前記蒸留で得られた濃縮物の軟化点[T]と、それを窒素雰囲気下180℃-2時間熱処理した後の軟化点[T]を測り、次式により求めたΔTをもって熱安定性の評価指標とした。
ΔT(℃)=T− T (式6)
なお、ΔT<5℃時に◎、ΔT=5〜10℃時に○、ΔT=10〜20℃時に△、ΔT>20℃時に×で判定した。
(J) Measurement of softening point and thermal stability (evaluation of thermoplasticity)
Softening point: When a concentrate having a thickness of about 1 mm × 5 mm square is placed on a hot stage and heated at a heating rate of 5 ° C./min while applying a 1 kg load to the center with a φ1 mm metal rod, The temperature when the metal rod was displaced 0.5 mm or more in the vertical direction was defined as the softening point (softening temperature).
Thermal stability: ΔT obtained from the following equation by measuring the softening point [T 1 ] of the concentrate obtained by the distillation and the softening point [T 2 ] after heat-treating it at 180 ° C. for 2 hours in a nitrogen atmosphere. Was used as an evaluation index of thermal stability.
ΔT (° C.) = T 2 −T 1 (Formula 6)
Note that, when ΔT <5 ° C., ◎, ΔT = ◯ when 5 to 10 ° C., ΔT = Δ when 10 to 20 ° C., and Δ when ΔT> 20 ° C.

〔実施例1〕
前記実験方法1により得られた原料を6.00g(乾燥重量基準に換算)秤量して、水とエチレングリコール混合溶媒の配合比90/10(質量%/質量%)、混合溶媒(水+エチレングリコール)と原料との比率(液比)10/1、抽出温度195℃、定量ポンプ流量1ml/分、処理時間1時間の条件下、実験方法2に示す方法に従って、加熱抽出と固液分離を一段で処理し、まず、固体成分の収率を求めた。次いで、液体成分については実験方法3に示す方法に従って、180℃で30分間減圧蒸留し、濃縮物および留出物(低沸点揮発物)の収率をそれぞれ求めた。
[Example 1]
6.00 g (converted to dry weight basis) of the raw material obtained by the experimental method 1 was weighed, and the mixing ratio of water and ethylene glycol mixed solvent was 90/10 (mass% / mass%), mixed solvent (water + ethylene Glycol) and raw material ratio (liquid ratio) 10/1, extraction temperature 195 ° C., metering pump flow rate 1 ml / min, treatment time 1 hour according to the method shown in Experimental Method 2 First, the yield of solid components was determined. Next, the liquid component was distilled under reduced pressure at 180 ° C. for 30 minutes according to the method shown in Experimental Method 3, and the yields of the concentrate and the distillate (low boiling point volatiles) were determined.

〔実施例2〕
混合溶媒(水+エチレングリコール)と原料との比率(液比)を20/1に、処理時間を2時間にそれぞれ変更した以外は、実施例1と同様である。
[Example 2]
The same as Example 1, except that the ratio (liquid ratio) of the mixed solvent (water + ethylene glycol) and the raw material was changed to 20/1 and the treatment time was changed to 2 hours.

〔実施例3〕
抽出溶媒中の水とエチレングリコール混合溶媒の配合比を10/90(質量%/質量%)に、減圧蒸留条件を210℃−15分にそれぞれ変更した以外は、実施例2と同様である。
Example 3
Example 2 is the same as Example 2 except that the mixing ratio of water and the ethylene glycol mixed solvent in the extraction solvent is changed to 10/90 (mass% / mass%) and the vacuum distillation condition is changed to 210 ° C.-15 minutes.

〔比較例1〕
抽出溶媒にエチレングリコールは使用せず、水(100質量%)のみ使用した以外は実施例2と同様である。
[Comparative Example 1]
Example 2 is the same as Example 2 except that ethylene glycol is not used as the extraction solvent and only water (100% by mass) is used.

〔比較例2〕
実験方法1で調整した出発原料の105℃乾燥品6gとエチレングリコール60gとを、内容積100mlのオートクレーブに投入した後、200℃で1時間処理した。それを室温まで冷却後、ろ紙により固液分離した。ろ紙上の残渣をさらにエチレングリコール60g、水100gを用いて順次洗浄後、固体成分は105℃で一夜乾燥し、前記(式1)を用いて固体成分の収率を求めた。また、液体成分については実施例1と同様に減圧蒸留を行ない、(式3)、(式4)、(式5)によりそれぞれリグニン分離率、濃縮物収率および留出物(低沸点揮発物)収率を求めた。
[Comparative Example 2]
6 g of the starting material dried at 105 ° C. prepared in Experimental Method 1 and 60 g of ethylene glycol were put into an autoclave having an internal volume of 100 ml and then treated at 200 ° C. for 1 hour. After cooling it to room temperature, solid-liquid separation was performed with filter paper. The residue on the filter paper was further washed sequentially with 60 g of ethylene glycol and 100 g of water, and then the solid component was dried overnight at 105 ° C., and the yield of the solid component was determined using the above (Formula 1). In addition, the liquid component was distilled under reduced pressure in the same manner as in Example 1. According to (Formula 3), (Formula 4), and (Formula 5), the lignin separation rate, the concentrate yield, and the distillate (low-boiling volatiles). ) The yield was determined.

上記実施例1〜3および比較例1と2の処理条件の一覧表を表1に、またその実験結果を表2にまとめた。   Table 1 shows a list of the processing conditions of Examples 1 to 3 and Comparative Examples 1 and 2, and Table 2 shows the experimental results.

Figure 2015080759
Figure 2015080759

Figure 2015080759
Figure 2015080759

まず、これらの実験で得られた固体成分、濃縮物、留出物収率を調べてみると、水とエチレングリコールの配合比を90/10にした場合(実施例1および2)、リグニン成分(濃縮物)の収率が出発原料に対して約4分の1前後となっており、低分子化された留出分の収率と合わせてみると、比較的に高い加水分解効果が見られた。抽出時間を実施例2の2時間から実施例1の1時間に短縮すると、留出分の発生量が減り濃縮物(リグニン成分)の収率並びに固体成分(セルロース成分)の収率が増加した。これはリグニン成分の抽出は短時間(低液比)で可能であり、処理時間(処理時間=混合溶媒量/流量、但し、混合溶媒量=原料重量×液比(つまり一定流量下での液比)。)をさらに減らせる可能性を示している。これに対し水のみの場合(比較例1)では、留出分の収率が更に増え16.9wt%となるものの、濃縮物(リグニン成分)の収率は逆にかなり低くなっている。このような結果から、水とエチレングリコールの混合溶媒の場合(実施例1および2)、水のみの場合に比べてリグニン成分の分離効果が顕著に向上することが明らかになった。   First, the solid components, concentrates, and distillate yields obtained in these experiments were examined. When the mixing ratio of water and ethylene glycol was 90/10 (Examples 1 and 2), the lignin component The yield of (concentrate) is about one-fourth that of the starting material, and when combined with the yield of the distillate having a low molecular weight, a relatively high hydrolysis effect is seen. It was. When the extraction time was shortened from 2 hours in Example 2 to 1 hour in Example 1, the amount of distillate was reduced and the yield of the concentrate (lignin component) and the solid component (cellulose component) increased. . The lignin component can be extracted in a short time (low liquid ratio), and the processing time (processing time = mixed solvent amount / flow rate, where mixed solvent amount = raw material weight × liquid ratio (that is, liquid at a constant flow rate). The ratio))) may be further reduced. On the other hand, in the case of only water (Comparative Example 1), the yield of the distillate is further increased to 16.9 wt%, but the yield of the concentrate (lignin component) is rather low. From these results, it was revealed that the separation effect of the lignin component was remarkably improved in the case of the mixed solvent of water and ethylene glycol (Examples 1 and 2) as compared with the case of water alone.

一方、エチレングリコール単独の場合(比較例2)と水+エチレングリコール混合溶媒の場合(実施例1〜3)を比較すると、後者のリグニン成分(濃縮物)収率は前者に比べて著しく増加している。さらに、前者と後者のリグニン分離率もそれぞれ22.1wt%と72.1wt%で、後者のリグニン分離率が前者に比べて3倍以上も高いことも明らかとなった。このような結果から、エチレングリコール単独の場合に比べて、水とエチレングリコールの混合溶媒の場合リグニン成分の収率及びリグニン分離率が共に著しく向上することが確認された。   On the other hand, when the case of ethylene glycol alone (Comparative Example 2) and the case of water + ethylene glycol mixed solvent (Examples 1 to 3) are compared, the yield of the latter lignin component (concentrate) is remarkably increased compared to the former. ing. Furthermore, the former and latter lignin separation rates were 22.1 wt% and 72.1 wt%, respectively, and it was also revealed that the latter lignin separation rates were more than three times higher than the former. From these results, it was confirmed that both the yield of lignin component and the lignin separation rate were remarkably improved in the case of a mixed solvent of water and ethylene glycol as compared with the case of ethylene glycol alone.

なお、固体成分について糖化原料としての糖化反応の難易度を示す指標の一つとしてセルロース結晶化度を比較したところ、実施例2と3ではいずれも比較例1に比べて相対的に低い値を示し、酵素糖化反応が容易に進行できることを示唆している。   In addition, when the cellulose crystallization degree was compared as one of the indexes indicating the difficulty of the saccharification reaction as a saccharification raw material for the solid component, both of the examples 2 and 3 had relatively low values as compared with the comparative example 1. This suggests that the enzymatic saccharification reaction can proceed easily.

また、リグニン成分濃縮物の濃縮直後の軟化点および窒素雰囲気下180℃で2時間保持した後の軟化点の変化により、熱可塑性および熱安定性を比較した結果、比較例1(水のみでの処理)では、軟化点が濃縮直後の180℃から、窒素中180℃−2時間保持後には210℃以上に急上昇した。なお、比較例2(エチレングリコールのみでの200℃処理)では、濃縮直後の軟化点が約200℃で、窒素中180℃−2時間保持後約210℃と熱安定性は比較的によいが、濃縮直後と窒素中180℃−2時間保持後のいずれの場合も半溶融状態、つまりそれぞれの軟化点で溶融しないものも肉眼で観察され、リグニン成分の低分子化が不十分であることがわかった。これに対し、実施例1〜3(水とエチレングリコールの混合溶液処理)では、優れた熱可塑性並びに熱安定性を示した。   In addition, as a result of comparing the thermoplasticity and the thermal stability by the softening point immediately after concentration of the lignin component concentrate and the change of the softening point after being held at 180 ° C. for 2 hours in a nitrogen atmosphere, Comparative Example 1 (with only water) In the treatment), the softening point rapidly increased from 180 ° C. immediately after concentration to 210 ° C. or higher after being held in nitrogen at 180 ° C. for 2 hours. In Comparative Example 2 (treatment at 200 ° C. with only ethylene glycol), the softening point immediately after concentration is about 200 ° C., and heat stability is relatively good at about 210 ° C. after holding in nitrogen for 180 ° C. for 2 hours. In both cases immediately after concentration and after being held at 180 ° C. for 2 hours in nitrogen, a semi-molten state, that is, one that does not melt at the respective softening point is observed with the naked eye, and the lignin component may not have a low molecular weight. all right. On the other hand, Examples 1-3 (mixed solution treatment of water and ethylene glycol) showed excellent thermoplasticity and thermal stability.

本発明によるリグノセルロース系バイオマスの高度変換と有効利用技術の確立により、化石原料代替エネルギーやバイオマテリアル分野において、新規資源循環システムの構築及び産業の活性化に資することができる。
まず、前者の代替エネルギー分野では、本発明の高効率リグニン分離技術を活用して、リグノセルロース系バイオマスから簡便な方法で良質な糖化原料を得、さらに糖化・発酵を経て、バイオエタノールなど液体バイオ燃料又はガソリン添加剤を低コストで効率よく製造する方法を提供することができる。
次に、後者のバイオマテリアル分野では、熱可塑性リグニンからは炭素繊維、活性炭素繊維、カーボンナノファイバー、バイオマスプラスチック等の高付加価値材料の製造が可能であり、糖化原料からは化学変換によりプラスチック、ポリマー原料、化成品(基礎化学品、医薬品、農薬、香料、食品添加剤など)等の新規機能性材料の製造が可能であるので、新規産業または既存産業におけるいろいろな新しいニーズに応えることができる。
The advanced conversion of lignocellulosic biomass and establishment of effective utilization technology according to the present invention can contribute to the construction of a new resource recycling system and the activation of industries in the fields of fossil raw material alternative energy and biomaterials.
First, in the former alternative energy field, by utilizing the high-efficiency lignin separation technology of the present invention, a high-quality saccharification raw material is obtained from lignocellulosic biomass by a simple method, and after saccharification / fermentation, A method for efficiently producing a fuel or gasoline additive at low cost can be provided.
Next, in the latter biomaterial field, high-value-added materials such as carbon fibers, activated carbon fibers, carbon nanofibers, and biomass plastics can be produced from thermoplastic lignin. New functional materials such as polymer raw materials and chemical products (basic chemicals, pharmaceuticals, agricultural chemicals, fragrances, food additives, etc.) can be manufactured, which can meet various new needs in new or existing industries. .

Claims (6)

リグノセルロース系バイオマスを、水とアルキレングリコール類の混合溶媒で加熱抽出と固液分離を一段で処理し、リグニンを含む液体成分とセルロースを含む固体成分とに分離することを特徴とするリグニン成分とセルロース成分の分離方法。 A lignocellulosic biomass is processed by heating extraction and solid-liquid separation in a single stage with a mixed solvent of water and an alkylene glycol, and separated into a liquid component containing lignin and a solid component containing cellulose; Separation method of cellulose component. 前記アルキレングリコールが、エチレングリコールであることを特徴とする請求項1に記載のリグニン成分とセルロース成分の分離方法。 The method for separating a lignin component and a cellulose component according to claim 1, wherein the alkylene glycol is ethylene glycol. 前記加熱抽出と固液分離の処理温度が150℃以上200℃未満であることを特徴とする請求項1又は2に記載のリグニン成分とセルロース成分の分離方法。 The method for separating a lignin component and a cellulose component according to claim 1 or 2, wherein a treatment temperature of the heat extraction and solid-liquid separation is 150 ° C or higher and lower than 200 ° C. 前記リグニンを含む液体成分を蒸留することにより水とアルキレングリコール類の混合溶媒を回収し、再びリグノセルロース系バイオマスの加熱抽出と固液分離の一段処理に用いることを特徴とする請求項1〜3のいずれかに記載のリグニン成分とセルロース成分の分離方法。 The mixed component of water and alkylene glycols is recovered by distilling the liquid component containing lignin, and is used again for heating extraction of lignocellulosic biomass and solid-liquid separation in one stage. The separation method of the lignin component and cellulose component in any one of. 前記リグニン成分とセルロース成分の分離方法で得られたリグニンを含む液体成分から水とアルキレングリコール類の混合溶媒を蒸留により除去して熱可塑性リグニン複合物を製造することを特徴とする熱可塑性リグニン複合物の製造方法。 A thermoplastic lignin composite is produced by removing a mixed solvent of water and alkylene glycols from a liquid component containing lignin obtained by the method for separating a lignin component and a cellulose component by distillation to produce a thermoplastic lignin composite. Manufacturing method. 前記リグニン成分とセルロース成分の分離方法で得られた固体成分を加熱抽出と固液分離システムから取り出し糖化原料とすることを特徴とする糖化原料の製造方法。 A method for producing a saccharification raw material, wherein the solid component obtained by the method for separating the lignin component and the cellulose component is taken out from the heat extraction and solid-liquid separation system and used as a saccharification raw material.
JP2013219925A 2013-10-23 2013-10-23 Separation method of lignin component and cellulose component, and production method of thermoplastic lignin composite and saccharification raw material Pending JP2015080759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013219925A JP2015080759A (en) 2013-10-23 2013-10-23 Separation method of lignin component and cellulose component, and production method of thermoplastic lignin composite and saccharification raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219925A JP2015080759A (en) 2013-10-23 2013-10-23 Separation method of lignin component and cellulose component, and production method of thermoplastic lignin composite and saccharification raw material

Publications (1)

Publication Number Publication Date
JP2015080759A true JP2015080759A (en) 2015-04-27

Family

ID=53011667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219925A Pending JP2015080759A (en) 2013-10-23 2013-10-23 Separation method of lignin component and cellulose component, and production method of thermoplastic lignin composite and saccharification raw material

Country Status (1)

Country Link
JP (1) JP2015080759A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199924A1 (en) * 2015-06-11 2016-12-15 出光興産株式会社 Method for producing cellulose-containing solid material and method for producing glucose
JP2019085500A (en) * 2017-11-08 2019-06-06 アースリサイクル株式会社 Separation method of cellulose

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199924A1 (en) * 2015-06-11 2016-12-15 出光興産株式会社 Method for producing cellulose-containing solid material and method for producing glucose
JP2017000093A (en) * 2015-06-11 2017-01-05 出光興産株式会社 Method for manufacturing cellulose containing solid and method for manufacturing glucose
US10450698B2 (en) 2015-06-11 2019-10-22 Idemitsu Kosan Co., Ltd. Method for producing cellulose-containing solid material and method for producing glucose
JP2019085500A (en) * 2017-11-08 2019-06-06 アースリサイクル株式会社 Separation method of cellulose
JP7104507B2 (en) 2017-11-08 2022-07-21 アースリサイクル株式会社 Cellulose separation method

Similar Documents

Publication Publication Date Title
Su et al. Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: Characterization of its major components
US9434961B2 (en) Continuous process for the production of ethanol from lignocellulosic biomass
CN114481656B (en) Method and system for producing pulp, energy and biological derivatives from plant-based and renewable materials
US9150936B2 (en) Conditioning of biomass for improved C5/C6 sugar release prior to fermentation
CN100436663C (en) Preparing method of straw type fibre spinning solution
Trinh et al. Optimization of ionic liquid pretreatment of mixed softwood by response surface methodology and reutilization of ionic liquid from hydrolysate
WO2008106895A1 (en) Process for refining and producing cellulose, lignin and xylose from biomass material
Li et al. Organosolv fractionation of lignocelluloses for fuels, chemicals and materials: A biorefinery processing perspective
CN112796134A (en) Method for pretreating wood fibers in bio-based polar aprotic solvent system
CN104164801A (en) Method for separating and recycling cellulose, semicellulose and lignin in lignocellulosic biomass at one time
CN104947244A (en) Method for extracting and preparing lignin composite nano fibers in situ
Shen et al. Deacetylation processing of waste cigarette butts for high-titer bioethanol production toward a clean recycling process
Mahmood et al. Comparative effect of ionic liquids pretreatment on thermogravimetric kinetics of crude oil palm biomass for possible sustainable exploitation
JP6445832B2 (en) Biopitch manufacturing method
CN102321993B (en) Pretreatment method for biomass fiber material
JP2018040083A (en) Method for producing lignocellulose nanofiber
Ren et al. Innovative conversion of pretreated Buxus sinica into high-performance biocomposites for potential use as furniture material
WO2017015467A1 (en) High purity cellulose compositions and production methods
JP2015080759A (en) Separation method of lignin component and cellulose component, and production method of thermoplastic lignin composite and saccharification raw material
CN101463571A (en) Pretreatment method for ultra-high pressure blasting wood fiber material
CN107805398A (en) Stalk fibrous composite and preparation method thereof
CN103266148A (en) Preprocessing method capable of effectively improving efficiency of generating fermentable sugar by bamboo cellulose enzyme hydrolysis
Toma et al. Comparison between lignin extraction by alkaline and ultrasound-assisted alkaline treatment from oil palm empty fruit bunch
CN104292194A (en) Method for grading biomass, preparing furfural and preparing levulinic acid through rapid temperature changing technology
Zhang et al. Crystal and thermal response of cellulose isolation from bamboo by two different chemical treatments