JP2015079727A - Negative electrode material for lithium ion secondary batteries, method for manufacturing negative electrode material for lithium ion secondary batteries, resin composition for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary batteries, method for manufacturing negative electrode material for lithium ion secondary batteries, resin composition for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery Download PDF

Info

Publication number
JP2015079727A
JP2015079727A JP2013266510A JP2013266510A JP2015079727A JP 2015079727 A JP2015079727 A JP 2015079727A JP 2013266510 A JP2013266510 A JP 2013266510A JP 2013266510 A JP2013266510 A JP 2013266510A JP 2015079727 A JP2015079727 A JP 2015079727A
Authority
JP
Japan
Prior art keywords
negative electrode
ion secondary
lithium ion
electrode material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013266510A
Other languages
Japanese (ja)
Inventor
和代 重田
Kazuyo Shigeta
和代 重田
山下 哲夫
Tetsuo Yamashita
哲夫 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013266510A priority Critical patent/JP2015079727A/en
Publication of JP2015079727A publication Critical patent/JP2015079727A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material for lithium ion secondary batteries having a large charge/discharge capacity, exhibiting a good capacity-keeping rate when charge and discharge are repeated, and having a superior initial efficiency.SOLUTION: A negative electrode material for lithium ion secondary batteries comprises complex particles which includes silicon particles, and a matrix including a lithium titanate compound. The proportion of the weight of the silicon particles to that of the lithium titanate compound is 5:95 to 60:40. Using the negative electrode material for lithium ion secondary batteries, a lithium ion secondary battery which achieves a superior charge/discharge capacity, a superior capacity-keeping rate, and a superior initial efficiency can be obtained.

Description

本発明は、リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極材料の製造方法、リチウムイオン二次電池負極用樹脂組成物、リチウムイオン二次電池用負極、および、リチウムイオン二次電池に関するものである。   The present invention relates to a negative electrode material for a lithium ion secondary battery, a method for producing a negative electrode material for a lithium ion secondary battery, a resin composition for a negative electrode of a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary It relates to batteries.

近年、ノート型パーソナルコンピューターや小型携帯端末の爆発的な普及に伴って、充電可能な小型、軽量、高容量、高エネルギー密度、高信頼性を有する二次電池への要求が強まっている。また自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発も盛んに行われている。特に、電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。   In recent years, with the explosive spread of notebook personal computers and small portable terminals, there has been an increasing demand for rechargeable secondary batteries having a small size, light weight, high capacity, high energy density, and high reliability. In the automobile industry, there are high expectations for reducing carbon dioxide emissions by introducing electric vehicles (EVs) and hybrid electric vehicles (HEVs), and the development of secondary batteries for motor drives that hold the key to their practical application. It is actively done. In particular, lithium ion secondary batteries having the highest theoretical energy among the batteries are attracting attention, and are currently being developed rapidly.

リチウムイオン二次電池は一般に、結着樹脂を用いてリチウムを含む複合酸化物などの正極活物質をアルミなどの集電体に塗布した正極と、結着樹脂を用いてリチウムイオン吸蔵放出可能な負極活物質を銅などの集電体に塗布した負極とが、セパレーター、電解質層を介して接続され、密封された構成を有している。   Generally, a lithium ion secondary battery is capable of absorbing and releasing lithium ions using a positive electrode obtained by applying a positive electrode active material such as a composite oxide containing lithium to a current collector such as aluminum using a binder resin, and a binder resin. A negative electrode obtained by applying a negative electrode active material to a current collector such as copper is connected via a separator and an electrolyte layer and sealed.

負極活物質としては、従来から広く利用されてきた黒鉛材料に加え、リチウムイオンと合金を形成するケイ素、スズ、アルミニウム等の金属、ならびにそれらの酸化物等を用いることが検討されている。特に、ケイ素を含む負極活物質については、単位質量あたりの理論容量が大きく、大幅なエネルギー密度向上が期待されることから、ケイ素、ケイ素酸化物とも盛んに検討されている。   As the negative electrode active material, it has been studied to use metals such as silicon, tin, and aluminum that form an alloy with lithium ions, oxides thereof, and the like in addition to graphite materials that have been widely used. In particular, a negative electrode active material containing silicon has a large theoretical capacity per unit mass and is expected to significantly improve energy density. Therefore, both silicon and silicon oxide are actively studied.

一方で、ケイ素を含む負極活物質は、リチウムイオンの吸蔵に伴う体積膨張が大きく、リチウムイオン吸脱着を繰り返した際の電極の膨張・収縮に伴って電極導電性が低下する、すなわち、容量維持率が悪化するという課題が知られており、その解決が強く要望されている。   On the other hand, the negative electrode active material containing silicon has a large volume expansion accompanying the occlusion of lithium ions, and the electrode conductivity decreases as the electrode expands and contracts when lithium ion adsorption / desorption is repeated, that is, maintains the capacity. The problem that the rate is getting worse is known, and there is a strong demand for a solution.

当該課題の解決への取り組みとしては、例えば、酸化珪素SiOx(1≦x<1.6)粉末表面を化学蒸着処理により導電性被膜で覆った酸化珪素粉末を活物質とすることが提案されている(特許文献1)。この方法は、粉末表面に化学蒸着処理で導電性皮膜を形成することで電極導電性を確保することができるが、膨張・収縮することで活物質内部が崩壊することによる導電性低下を改善できないことや、初回充電容量に対し、初回放電容量が大きく低下すること、すなわち、初期効率が低下することが課題として残されていた。   As an approach to solving the problem, for example, it has been proposed to use silicon oxide powder in which the surface of silicon oxide SiOx (1 ≦ x <1.6) powder is covered with a conductive film by chemical vapor deposition as an active material. (Patent Document 1). This method can secure the electrode conductivity by forming a conductive film on the powder surface by chemical vapor deposition, but it cannot improve the decrease in conductivity due to the collapse of the active material due to expansion / contraction. In addition, the initial discharge capacity is greatly reduced with respect to the initial charge capacity, that is, the initial efficiency is left as a problem.

そして、このような課題に対しては、珪素粉末を活物質として用い、活物質の表面の一部または全面を初期効率および容量維持率が高いチタン酸リチウムで被覆することで、充電時の電解液の分解を起きにくくし、負極の界面抵抗上昇を抑制したり(特許文献2、3)、充放電の活物質の体積膨張・収縮を抑制したり(特許文献3)することが検討されている。   For such a problem, silicon powder is used as an active material, and a part or the whole surface of the active material is covered with lithium titanate having a high initial efficiency and capacity retention rate. It has been studied to make it difficult for the liquid to decompose, to suppress the increase in the interface resistance of the negative electrode (Patent Documents 2 and 3), or to suppress the volume expansion / contraction of the charge / discharge active material (Patent Document 3). Yes.

特開2004−63433号公報Japanese Patent Laid-Open No. 2004-63433 特開2006−100244号公報JP 2006-1000024 A 特開2008−16446号公報JP 2008-16446 A

特許文献2の負極材料においては、活物質表面上にチタン酸リチウムを薄く被覆するのみであり、また特許文献3の負極材料においては、負極の蓄電容量を下げないため、珪素に対するチタン酸リチウムの含有量は3/7以下に限定されている。そのため、これらの負極材料は活物質の充放電時の体積膨張・収縮の課題を完全に改善するには至っていない。   In the negative electrode material of Patent Document 2, only the lithium titanate is thinly coated on the surface of the active material, and in the negative electrode material of Patent Document 3, the storage capacity of the negative electrode is not lowered. The content is limited to 3/7 or less. Therefore, these negative electrode materials have not completely improved the problem of volume expansion / contraction during charging / discharging of the active material.

本発明は、このような負極材料の体積膨張・収縮を抑制し、充放電容量が大きく、充放電を繰り返した時の容量維持率が良好で、さらに初期効率に優れたリチウムイオン二次電池用負極材料を提供することを課題とする。   The present invention suppresses the volume expansion / contraction of the negative electrode material, has a large charge / discharge capacity, a good capacity retention ratio when repeated charge / discharge, and a lithium ion secondary battery excellent in initial efficiency. It is an object to provide a negative electrode material.

本発明は、珪素粒子と、チタン酸リチウム化合物を含むマトリックスとを有し、前記珪素粒子と前記チタン酸リチウム化合物との重量比が5:95〜60:40の複合体粒子であるリチウムイオン二次電池用負極材料である。   The present invention provides a lithium ion two-particle composite particle having silicon particles and a matrix containing a lithium titanate compound, wherein the weight ratio of the silicon particles to the lithium titanate compound is 5:95 to 60:40. It is a negative electrode material for secondary batteries.

本発明はまた、珪素粒子とチタン酸リチウム前駆体とを湿式造粒により複合化する工程を有する、珪素粒子とチタン酸リチウム化合物の複合体粒子からなるリチウムイオン二次電池用負極材料の製造方法である。   The present invention also includes a method for producing a negative electrode material for a lithium ion secondary battery comprising composite particles of silicon particles and a lithium titanate compound, comprising a step of combining silicon particles and a lithium titanate precursor by wet granulation. It is.

本発明により、充放電容量が大きく、充放電繰り返し時における容量維持率が良好で、さらに初期効率に優れたリチウムイオン二次電池用負極材料を提供することができる。   According to the present invention, it is possible to provide a negative electrode material for a lithium ion secondary battery that has a large charge / discharge capacity, a good capacity retention rate during repeated charge / discharge, and an excellent initial efficiency.

<リチウムイオン二次電池用負極材料>
本発明のリチウムイオン二次電池用負極材料(以下、単に「本発明の負極材料」という場合がある。)は、珪素粒子と、チタン酸リチウム化合物を含むマトリックスとを有し、前記珪素粒子と前記チタン酸リチウム化合物との重量比が5:95〜60:40の複合体粒子である。
<Anode material for lithium ion secondary battery>
The negative electrode material for a lithium ion secondary battery of the present invention (hereinafter sometimes simply referred to as “the negative electrode material of the present invention”) has silicon particles and a matrix containing a lithium titanate compound, The composite particles have a weight ratio with the lithium titanate compound of 5:95 to 60:40.

〔珪素粒子〕
珪素粒子とは、本質的に珪素のみからなる粒子であるが、珪素以外に、少量の添加物あるいは不純物を含んでいてもよい。添加物としては、窒素、リン、砒素、ホウ素、アルミニウム、あるいは、ガリウムから選ばれるドーピング剤などが挙げられる。
[Silicon particles]
Silicon particles are particles consisting essentially of silicon, but may contain a small amount of additives or impurities in addition to silicon. Examples of the additive include a doping agent selected from nitrogen, phosphorus, arsenic, boron, aluminum, or gallium.

珪素粒子の平均粒子径は、200nm未満であることが好ましい。平均粒子径が200nm以上になると、充放電サイクルに伴う珪素粒子の微粉化や、局所的な体積変化の絶対量が大きくなることによる集電体との結着性低下などにより、容量維持率が悪化する恐れがある。ここで、本発明において、「平均粒子径」は数平均粒子径を意味する。なお、実際には粒子径には分布が存在するが、500nm以上の粒子が5質量%以内であることが好ましく、400nm以上の粒子が5質量%以内であることがより好ましい。   The average particle size of the silicon particles is preferably less than 200 nm. When the average particle diameter is 200 nm or more, the capacity retention ratio is reduced due to the pulverization of silicon particles accompanying the charge / discharge cycle and the decrease in the binding property with the current collector due to the increase in the absolute amount of local volume change. There is a risk of getting worse. Here, in the present invention, “average particle diameter” means a number average particle diameter. In actuality, there is a distribution in the particle diameter, but particles of 500 nm or more are preferably within 5% by mass, and particles of 400 nm or more are more preferably within 5% by mass.

珪素粒子の粒子径は、画像解析式粒度分布測定ソフトを用いて、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの電子顕微鏡写真のデータから、粒子の投影面積円相当径(球状粒子でない場合は長辺と短辺の平均値)として測定することができる。また、数平均粒子径および粒度分布は、0.5〜10μmのSEM画像内に含まれる粒子を認識し、粒子の投影面積円相当径として個々の粒子径を評価し、得られた粒子径のデータより算出することができる。このような画像解析式粒度分布測定ソフトの例としては、株式会社マウンテック製、「Mac−VIEW」、旭化成エンジニアリング株式会社製、「A像くん」(登録商標)などがあげられる。 The particle diameter of the silicon particle is calculated from the data of an electron micrograph such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) using an image analysis type particle size distribution measurement software. When it is not a spherical particle, it can be measured as the average value of the long side and the short side. The number average particle size and particle size distribution are recognized as particles contained in an SEM image of 0.5 to 10 μm 2 , and the particle size obtained by evaluating the individual particle size as the projected area circle equivalent diameter of the particle. It can be calculated from the data. Examples of such image analysis type particle size distribution measurement software include “Mac-VIEW” manufactured by Mountec Co., Ltd., “A Image-kun” (registered trademark) manufactured by Asahi Kasei Engineering Co., Ltd., and the like.

珪素粒子を得る方法は特に限定されず、化学還元法、プラズマジェット法、レーザーアブレーション法、火炎法、直流アークプラズマ法、高周波熱プラズマ法、レーザー熱分解法などを用いることができる。これらの方法の中でも、高周波熱プラズマ法がより好ましい。高周波熱プラズマ法とは、数MHzの高周波をアルゴンガスに照射し、アルゴンの熱プラズマを発生させ、その中にミクロンサイズの珪素粉末を供給することにより、アルゴンプラズマ炎中で珪素粉末が溶融・蒸発し、冷却して珪素粒子を製造する方法であり、ナノサイズの珪素粒子を得ることができる方法である。   A method for obtaining silicon particles is not particularly limited, and a chemical reduction method, a plasma jet method, a laser ablation method, a flame method, a direct current arc plasma method, a high-frequency thermal plasma method, a laser pyrolysis method, or the like can be used. Among these methods, the high frequency thermal plasma method is more preferable. In the high-frequency thermal plasma method, argon gas is irradiated with a high frequency of several MHz to generate thermal plasma of argon, and micron-sized silicon powder is supplied into it to melt the silicon powder in an argon plasma flame. This is a method of producing silicon particles by evaporation and cooling, and is a method capable of obtaining nano-sized silicon particles.

珪素粒子は、徐酸化処理されていてもよく、さらに表面の珪素酸化物を還元し、酸化被膜のない珪素粒子にすることが好ましい。徐酸化処理では、例えば、酸素濃度0.01〜1体積%の窒素ガス雰囲気下で、50〜150℃、5〜120分、珪素粒子を酸化させる。より好ましくは、酸素濃度を段階的に上げながら徐酸化処理を行う。還元条件としては、水素0〜50体積%の窒素ガス雰囲気下、500〜1000℃の高温下が好ましい。   The silicon particles may be subjected to gradual oxidation treatment, and it is preferable to further reduce the silicon oxide on the surface to form silicon particles having no oxide film. In the gradual oxidation treatment, for example, silicon particles are oxidized at 50 to 150 ° C. for 5 to 120 minutes in a nitrogen gas atmosphere having an oxygen concentration of 0.01 to 1% by volume. More preferably, the gradual oxidation treatment is performed while increasing the oxygen concentration stepwise. As reducing conditions, a nitrogen gas atmosphere of 0 to 50% by volume of hydrogen and a high temperature of 500 to 1000 ° C. are preferable.

また、珪素粒子の表面は、炭素からなる被覆層(以下、単に「炭素被覆層」という場合がある。)で被覆されていることが好ましい。珪素粒子の表面が炭素被覆層で被覆されていると、珪素粒子表面の自然酸化が防止され、初期効率の低下を抑制することができる。特に容量維持率を向上させるために100nm以下の粒子径まで珪素粒子を微粒子化した場合には、表面積が大きくなることから、表面珪素酸化物の影響がより顕著になるため、炭素被覆層を形成することが特に好ましい。さらに、チタン酸リチウム前駆体と珪素粒子を混合して、珪素粒子とチタン酸リチウム化合物を含むマトリックスを有する複合体粒子を作製する際、珪素粒子が炭素被覆層で被覆されていることにより、チタン酸リチウムの生成を確実にし、副反応物の生成を抑制することができる。副反応物とは、たとえば、チタンと珪素の複合酸化物、チタン、リチウム、および、珪素を含む複合酸化物、あるいは、チタンの酸化物が挙げられる。炭素被覆層には、上記効果を妨げない範囲で炭素以外の元素が含まれていても良い。   The surface of the silicon particles is preferably covered with a coating layer made of carbon (hereinafter sometimes simply referred to as “carbon coating layer”). When the surface of the silicon particle is covered with the carbon coating layer, the natural oxidation of the surface of the silicon particle is prevented, and a decrease in initial efficiency can be suppressed. In particular, when silicon particles are micronized to a particle diameter of 100 nm or less in order to improve the capacity retention rate, the surface area becomes large, so the influence of surface silicon oxide becomes more prominent, so a carbon coating layer is formed. It is particularly preferable to do this. Furthermore, when producing composite particles having a matrix containing silicon particles and a lithium titanate compound by mixing a lithium titanate precursor and silicon particles, the silicon particles are coated with a carbon coating layer, so that titanium The production of lithium acid can be ensured and the production of by-products can be suppressed. Examples of the side reaction product include a composite oxide of titanium and silicon, a composite oxide containing titanium, lithium, and silicon, or an oxide of titanium. The carbon coating layer may contain elements other than carbon as long as the above effects are not hindered.

炭素被覆層の厚みは、被覆の容易性の観点から1nm以上であることが好ましく、2nm以上であることがより好ましい。また、厚すぎると、充放電時のリチウムイオンの拡散を阻害する恐れや、珪素粒子の割合が減少することにより負極材料の容量が低下する恐れがあることから、20nm以下であることが好ましく、10nm以下であることがより好ましい。珪素粒子表面を被覆する被覆層の厚みは、透過型電子顕微鏡(TEM)を用いて測定することができる。   The thickness of the carbon coating layer is preferably 1 nm or more, and more preferably 2 nm or more, from the viewpoint of easy coating. Further, if it is too thick, the capacity of the negative electrode material may decrease due to the risk of inhibiting the diffusion of lithium ions during charging and discharging, and the proportion of silicon particles may decrease, so that it is preferably 20 nm or less, More preferably, it is 10 nm or less. The thickness of the coating layer covering the surface of the silicon particles can be measured using a transmission electron microscope (TEM).

珪素粒子の表面を炭素被覆層で被覆する方法は、特に限定されず、真空蒸着、イオンプレーティング、スパッタリング、熱CVD、プラズマCVD、光CVDなどを用いることができる。   The method for coating the surface of the silicon particles with the carbon coating layer is not particularly limited, and vacuum deposition, ion plating, sputtering, thermal CVD, plasma CVD, photo CVD, or the like can be used.

珪素粒子には実質的に珪素酸化物が含まれていないことが好ましい。また、炭素被覆層を有する場合にも、炭素被覆層内部の珪素酸化物の量が多いとリチウムイオンを吸蔵した際に初期効率の低下を引き起こす恐れがあることから、炭素被覆層内部に実質的に珪素酸化物が含まれていないことが好ましい。ここで、「実質的に珪素酸化物が含まれていない」とは、珪素酸化物の存在による初期効率への影響が実質的に小さければよく、具体的には、負極材料のX線光電子分析(ESCA)において、100eV近傍の珪素のピーク面積(炭素被覆層を有する場合には、珪素および珪素−炭素のピーク面積の和)に対し、103eV近傍の珪素酸化物のピーク面積が25%未満であることをいう。このピーク面積の比率は20%以下であることがより好ましく、10%以下であることがさらに好ましく、0%である(珪素酸化物のピークが検出されない)ことが最も好ましい。   It is preferable that the silicon particles are substantially free of silicon oxide. In addition, even when a carbon coating layer is provided, if the amount of silicon oxide inside the carbon coating layer is large, there is a possibility that initial efficiency may be reduced when lithium ions are occluded. Is preferably free of silicon oxide. Here, “substantially free of silicon oxide” means that the influence on the initial efficiency due to the presence of silicon oxide is substantially small. Specifically, X-ray photoelectron analysis of the negative electrode material In (ESCA), the peak area of silicon oxide near 103 eV is less than 25% with respect to the peak area of silicon near 100 eV (the sum of the peak areas of silicon and silicon-carbon when a carbon coating layer is provided). Say something. The ratio of the peak area is more preferably 20% or less, further preferably 10% or less, and most preferably 0% (a silicon oxide peak is not detected).

炭素被覆層内部に珪素酸化物を含まない珪素粒子を得る方法は特に限定されず、被覆層を形成する前の処理として、自然酸化された表面をもつ珪素粒子を水素還元により還元し、その後にCVD等により被覆層を形成してもよく、また真空中、もしくは不活性雰囲気中で作製した珪素粒子に、酸化雰囲気に晒すことなく被覆層を形成しても良い。   The method for obtaining silicon particles containing no silicon oxide in the carbon coating layer is not particularly limited. As a treatment before forming the coating layer, silicon particles having a naturally oxidized surface are reduced by hydrogen reduction, and thereafter The coating layer may be formed by CVD or the like, or the coating layer may be formed on silicon particles produced in a vacuum or in an inert atmosphere without being exposed to an oxidizing atmosphere.

また、炭素被覆層を有する珪素粒子においては、炭化珪素の含有量が少ないことが好ましい。炭化珪素は、大気中で自然酸化され、酸化珪素同様に初期効率に影響を及ぼす。炭化珪素の含有量が少ない、というのは、電池特性における初期効率への影響が実質的に小さければよいが、特に、X線光電子分析(ESCA)において、99.6eV近傍の珪素のピーク面積に対し、100.9eV近傍の炭化珪素のピーク面積が100%よりも小さいことが好ましく、70%以下であることがより好ましく、30%以下であることがさらに好ましく、0%である(炭化珪素のピークが検出されない)ことが最も好ましい。   Further, the silicon particles having a carbon coating layer preferably have a low silicon carbide content. Silicon carbide is naturally oxidized in the atmosphere and affects the initial efficiency like silicon oxide. The low silicon carbide content is sufficient if the effect on the initial efficiency in the battery characteristics is substantially small. In particular, in the X-ray photoelectron analysis (ESCA), the peak area of silicon near 99.6 eV. On the other hand, the peak area of silicon carbide near 100.9 eV is preferably smaller than 100%, more preferably 70% or less, further preferably 30% or less, and 0% (of silicon carbide). Most preferably, no peak is detected.

〔複合体粒子(負極材料)〕
本発明のリチウムイオン二次電池用負極材料は、珪素粒子に加え、チタン酸リチウム化合物を含むマトリックスを有する複合体粒子である。珪素粒子とチタン酸リチウム化合物の複合化により、負極の体積膨張・収縮が緩和され、容量維持率を向上させることができる。また、複合化によって負極材料の粒子径を大きくすることができ、結着樹脂の混合割合を減らすことができるとともに、結着樹脂や溶剤と混合してペースト化する際の分散性や、集電体に塗工する際の塗布性を向上させることができる。
[Composite particles (negative electrode material)]
The negative electrode material for a lithium ion secondary battery of the present invention is a composite particle having a matrix containing a lithium titanate compound in addition to silicon particles. By combining the silicon particles and the lithium titanate compound, the volume expansion / contraction of the negative electrode is relaxed, and the capacity retention rate can be improved. In addition, the composite can increase the particle size of the negative electrode material, reduce the mixing ratio of the binder resin, dispersibility when mixing with the binder resin and solvent, The applicability at the time of applying to the body can be improved.

チタン酸リチウム化合物は、前記効果が発現する材料であれば特に限定されないが、スピネル型、ラムステライド型、逆スピネル型のうち、高い容量維持率が得られることからスピネル型のLiTi12が好ましい。 The lithium titanate compound is not particularly limited as long as it is a material that exhibits the above-mentioned effects. Among spinel type, ramsteride type, and reverse spinel type, a high capacity retention ratio can be obtained, so that a spinel type Li 4 Ti 5 O is obtained. 12 is preferred.

珪素粒子とチタン酸リチウム化合物を含むマトリックスとを有する複合体粒子は、一例として、珪素粒子とチタン酸リチウム前駆体溶液とを湿式造粒により複合化する工程を有する製造方法により得られる。湿式造粒とは、チタン酸リチウム前駆体を含む液を珪素粒子に添加して粒子を形成する方法であり、具体的には、珪素粒子とチタン酸リチウム前駆体とを含む混合液をスプレードライや噴霧熱分解等の噴霧造粒により造粒する方法や、珪素粒子の流動体へチタン酸リチウム前駆体溶液を噴霧した後に乾燥させる方法が挙げられる。   As an example, composite particles having silicon particles and a matrix containing a lithium titanate compound can be obtained by a production method including a step of combining silicon particles and a lithium titanate precursor solution by wet granulation. Wet granulation is a method in which a liquid containing a lithium titanate precursor is added to silicon particles to form particles. Specifically, a liquid mixture containing silicon particles and a lithium titanate precursor is spray-dried. Or a method of granulating by spray granulation such as spray pyrolysis, or a method of spraying a lithium titanate precursor solution on a fluid of silicon particles and then drying.

チタン酸リチウム前駆体溶液は、チタン源とリチウム源とを混合し、溶媒に溶解したものである。チタン源は、オルトチタン酸テトラエチル、オルトチタン酸テトライソプロピル、オルトチタン酸テトラブチル、二酸化チタン、などの中から選ばれ、リチウム源は、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウムなどの中から選ばれる。チタン源とリチウム源以外に、添加剤を添加しても良い。添加剤としては、シュウ酸、コハク酸、乳酸、リンゴ酸、マレイン酸、マロン酸、クエン酸、酒石酸、アスコルビン酸などの中から選ばれる有機酸、または、ポリビニルアルコールなどのビニル樹脂、フェノール樹脂、ゼラチン、ショ糖、乳糖、果糖などの中から選ばれる炭素源となる化合物が挙げられる。チタン源およびリチウム源を水やエタノールにそれぞれ溶解し、必要に応じて添加剤を添加し、50〜100℃にて10〜200分間撹拌して、チタン酸リチウム前駆体溶液を得ることができる。珪素粒子とチタン酸リチウム前駆体とを含む混合液は、チタン酸リチウム前駆体溶液に更に珪素粒子が分散したものである。この混合液には、チタン酸リチウム化合物などの添加物が更に含まれていてもよい。混合液中のリチウムとチタンの原子数比は、4:5〜5:5であることが好ましく、4.3:5〜4.9:5であることがより好ましい。   The lithium titanate precursor solution is a solution in which a titanium source and a lithium source are mixed and dissolved in a solvent. The titanium source is selected from tetraethyl orthotitanate, tetraisopropyl orthotitanate, tetrabutyl orthotitanate, titanium dioxide, etc., and the lithium source is selected from lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, etc. To be elected. In addition to the titanium source and the lithium source, additives may be added. As additives, organic acids selected from oxalic acid, succinic acid, lactic acid, malic acid, maleic acid, malonic acid, citric acid, tartaric acid, ascorbic acid, etc., or vinyl resins such as polyvinyl alcohol, phenol resins, Examples thereof include compounds serving as a carbon source selected from gelatin, sucrose, lactose, fructose and the like. A titanium source and a lithium source are respectively dissolved in water and ethanol, an additive is added as necessary, and the mixture is stirred at 50 to 100 ° C. for 10 to 200 minutes to obtain a lithium titanate precursor solution. The mixed liquid containing silicon particles and a lithium titanate precursor is obtained by further dispersing silicon particles in a lithium titanate precursor solution. This mixed solution may further contain an additive such as a lithium titanate compound. The atomic ratio of lithium and titanium in the mixed solution is preferably 4: 5 to 5: 5, and more preferably 4.3: 5 to 4.9: 5.

そして、珪素粒子とチタン酸リチウム前駆体とを湿式造粒により複合化した粒子を焼成することにより、チタン酸リチウム前駆体から有機成分が除かれてチタン酸リチウム化合物に変化し、本発明の複合体粒子が得られる。焼成条件はチタン酸リチウム前駆体溶液の溶媒の種類やその量に応じて適宜設定され得るが、400℃〜900℃で1〜12時間焼成することが好ましい。   And by baking the particle | grain which compounded the silicon particle and the lithium titanate precursor by wet granulation, an organic component was removed from the lithium titanate precursor, and it changed into the lithium titanate compound, The composite of this invention Body particles are obtained. The firing conditions can be appropriately set according to the type and amount of the solvent of the lithium titanate precursor solution, but it is preferable to fire at 400 ° C. to 900 ° C. for 1 to 12 hours.

本発明の複合体粒子において、珪素粒子とチタン酸リチウム化合物との重量比は5:95〜60:40である。珪素粒子がこれ以上多いと、充放電時の珪素粒子の体積膨張・収縮が大きくなり、チタン酸リチウムによる複合体粒子の体積膨張・収縮を抑制する効果が小さくなり、集電体との結着性低下などにより、容量維持率が悪化する傾向がある。また、珪素粒子がこれ以上少ないと、珪素粒子による負極容量の向上効果が小さくなる傾向がある。珪素粒子とチタン酸リチウム化合物との重量比は8:92〜55:45であることが好ましく、10:90〜50:50であることがより好ましい。   In the composite particles of the present invention, the weight ratio of the silicon particles to the lithium titanate compound is 5:95 to 60:40. When there are more silicon particles than this, the volume expansion / contraction of the silicon particles during charge / discharge increases, and the effect of suppressing the volume expansion / contraction of the composite particles due to lithium titanate decreases, resulting in binding to the current collector. There is a tendency for the capacity maintenance rate to deteriorate due to a decrease in performance. Moreover, when there are few silicon particles more, there exists a tendency for the improvement effect of the negative electrode capacity | capacitance by a silicon particle to become small. The weight ratio of the silicon particles to the lithium titanate compound is preferably 8:92 to 55:45, and more preferably 10:90 to 50:50.

また、複合体粒子の平均粒子径(数平均粒子径)は、20μm以下であることが好ましい。リチウムイオン電池の負極においては、集電体上への塗布膜厚が40μm以下にまで薄くなる可能性があるが、複合粒子の平均粒子径が20μmよりも大きいと、塗工時にスジ、掠れなどにより塗布均一性が低下する恐れや、充放電サイクルに伴う複合粒子の体積変化量が大きくなることによって集電体との結着性が低下する恐れなどが生じる場合がある。複合体粒子の数平均粒子径は、前記珪素粒子の数平均粒子径と同様の方法により測定することができる。   The average particle diameter (number average particle diameter) of the composite particles is preferably 20 μm or less. In the negative electrode of a lithium ion battery, the coating film thickness on the current collector may be as thin as 40 μm or less. However, if the average particle diameter of the composite particles is larger than 20 μm, streaks, curling, etc. may occur during coating. There is a possibility that the coating uniformity may decrease due to the above, or that the binding property with the current collector may decrease due to an increase in the volume change amount of the composite particles accompanying the charge / discharge cycle. The number average particle diameter of the composite particles can be measured by the same method as the number average particle diameter of the silicon particles.

複合体粒子は、珪素粒子を複数含むことが好ましい。一つの複合体粒子に複数の珪素粒子を含まれることで、チタン酸リチウム化合物に対する珪素粒子の重量比率が高くなり、容量向上効果が強まって充放電時の珪素粒子の体積膨張・収縮を緩和しやすくなる。複数の珪素粒子が含まれる場合、珪素粒子はマトリックス中に均一に分散していることが好ましい。   The composite particles preferably include a plurality of silicon particles. By including a plurality of silicon particles in one composite particle, the weight ratio of the silicon particles to the lithium titanate compound is increased, and the capacity enhancement effect is strengthened to reduce the volume expansion / contraction of the silicon particles during charge / discharge. It becomes easy. When a plurality of silicon particles are included, the silicon particles are preferably uniformly dispersed in the matrix.

また、複合体粒子をさらに炭素被覆してなる負極材料も、本発明の好ましい態様の一つである。炭素被覆は、焼成された複合体粒子に化学気相蒸着(CVD)することや、上記の炭素源、または、ピッチコートやタールなどの他の炭素源へ浸漬した後に再焼成することによって行うことができる。CVDとしては、熱CVD、プラズマエンハンストCVD(PE−CVD)、触媒CVDなどが用いられ、例えば100〜2,000Paの減圧下または大気圧下にて、メタンガス、エチレンガス、アセチレンガス、窒素または水素の単独ガスや混合ガスを供給しながら、100〜1100℃、1〜20時間で反応させることで炭素被覆が形成される。炭素被覆により、高電流でも容量低下が少なく、レート特性が高い負極材料を得ることができる。   Further, a negative electrode material obtained by further coating the composite particles with carbon is also a preferred embodiment of the present invention. Carbon coating is performed by chemical vapor deposition (CVD) on the fired composite particles, or by re-firing after immersion in the above carbon source or other carbon sources such as pitch coat or tar. Can do. As CVD, thermal CVD, plasma enhanced CVD (PE-CVD), catalytic CVD or the like is used. For example, methane gas, ethylene gas, acetylene gas, nitrogen or hydrogen under reduced pressure of 100 to 2,000 Pa or atmospheric pressure. A carbon coating is formed by reacting at 100 to 1100 ° C. for 1 to 20 hours while supplying a single gas or a mixed gas. With the carbon coating, it is possible to obtain a negative electrode material with little capacity reduction and high rate characteristics even at a high current.

<リチウムイオン二次電池用負極およびリチウムイオン二次電池>
本発明の負極材料を、結着樹脂、溶剤、さらには必要に応じて導電助剤と混合し、リチウムイオン二次電池負極用樹脂組成物を作製し、集電体に塗布・乾燥することでリチウムイオン電池用負極を作製することができる。
<Anode for lithium ion secondary battery and lithium ion secondary battery>
The negative electrode material of the present invention is mixed with a binder resin, a solvent, and further a conductive additive as necessary to prepare a resin composition for a negative electrode of a lithium ion secondary battery, and applied to a current collector and dried. A negative electrode for a lithium ion battery can be produced.

リチウムイオン二次電池負極用樹脂組成物は、結着樹脂を溶剤と混合し、適当な粘度に調整した後に、本発明の負極材料、必要により導電助剤、界面活性剤などの添加剤を加え、よく混錬することで得ることができる。混錬は、自公転ミキサーを用いたり、ビーズミル、ボールミルなどのメディア分散を行ったり、三本ロールなどを用いて、均一に分散させるのが好ましい。   The resin composition for a negative electrode of a lithium ion secondary battery is prepared by mixing a binder resin with a solvent and adjusting the viscosity to an appropriate viscosity, and then adding additives such as a negative electrode material of the present invention and, if necessary, a conductive additive and a surfactant. It can be obtained by kneading well. For kneading, it is preferable to uniformly disperse using a self-revolving mixer, performing media dispersion such as a bead mill or a ball mill, or using a three roll.

結着樹脂としては、特に限定されず、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVdF)、ポリエチレン、ポリプロピレン等の熱可塑性樹脂、スチレンブタジエンゴム(SBR)、ニトリルブタジエンゴム、フッ素ゴム等のゴム弾性を有するポリマー、カルボキシメチルセルロース等の多糖類、ポリイミド前駆体および/またはポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、アクリル樹脂、ポリアクリロニトリル等を1種または2種以上の混合物として用いることができる。中でも、ポリイミド前駆体および/またはポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂を用いることで、集電体との結着性をあげ、容量維持率を向上させることができるため、好ましい。中でもポリイミド前駆体、ポリアミド樹脂、および/またはポリイミド樹脂が特に好ましい。   The binder resin is not particularly limited, and has a rubber elasticity such as thermoplastic resin such as polytetrafluoroethylene, polyvinylidene fluoride (PVdF), polyethylene, and polypropylene, styrene butadiene rubber (SBR), nitrile butadiene rubber, and fluorine rubber. Polymers such as carboxymethyl cellulose, polyimide precursors and / or polyimide resins, polyamideimide resins, polyamide resins, acrylic resins, polyacrylonitrile, and the like can be used as one or a mixture of two or more. Among these, the use of a polyimide precursor and / or a polyimide resin, a polyamideimide resin, or a polyamide resin is preferable because it can improve the binding property with the current collector and improve the capacity retention rate. Among these, a polyimide precursor, a polyamide resin, and / or a polyimide resin are particularly preferable.

ポリイミド前駆体とは、加熱処理や化学処理によりポリイミドに変換できる樹脂を指し、例えば、ポリアミド酸、ポリアミド酸エステルなどが挙げられる。ポリアミド酸は、テトラカルボン酸二無水物とジアミンとを重合させることにより得られ、ポリアミド酸エステルは、ジカルボン酸ジエステルとジアミンとを重合させることにより、またはポリアミド酸のカルボキシル基にエステル化試薬を反応させることにより得られる。また、本発明におけるポリイミドとは、負極材料と混合する時点ですでにイミド化が完結している構造のものを指す。   The polyimide precursor refers to a resin that can be converted to polyimide by heat treatment or chemical treatment, and examples thereof include polyamic acid and polyamic acid ester. Polyamic acid is obtained by polymerizing tetracarboxylic dianhydride and diamine, and polyamic acid ester is obtained by polymerizing dicarboxylic acid diester and diamine, or reacting an esterification reagent with the carboxyl group of polyamic acid. Is obtained. Moreover, the polyimide in this invention points out the thing of the structure where imidation has already completed at the time of mixing with negative electrode material.

結着樹脂としてポリイミド前駆体を用いる場合、塗布後、100〜500℃で1分間〜24時間熱処理し、ポリイミド前駆体をポリイミドに変換することで、信頼性のある負極を得ることができる。熱処理条件は、好ましくは200〜450℃で30分間〜20時間である。また、熱処理は、水分の混入を抑えるために、窒素ガスなどの不活性ガス中または真空中で行うことが好ましい。   When a polyimide precursor is used as the binder resin, a reliable negative electrode can be obtained by applying a heat treatment at 100 to 500 ° C. for 1 minute to 24 hours after application to convert the polyimide precursor to polyimide. The heat treatment conditions are preferably 200 to 450 ° C. for 30 minutes to 20 hours. Further, the heat treatment is preferably performed in an inert gas such as nitrogen gas or in a vacuum in order to suppress the mixing of moisture.

溶剤としては、特に限定されず、N−メチルピロリドン、γ−ブチロラクトン、プロピレングリコールジメチルエーテル、エチルラクテート、シクロヘキサノン、テトラヒドロフランなどを挙げることができる。また、結着樹脂溶液の塗布性を向上させる目的で、プロピレングリコールモノメチルエーテルアセテート、各種アルコール類、メチルエチルケトン、メチルイソブチルケトンなどの溶剤を、好ましくは全溶剤中1〜30重量%含有することもできる。   The solvent is not particularly limited, and examples thereof include N-methylpyrrolidone, γ-butyrolactone, propylene glycol dimethyl ether, ethyl lactate, cyclohexanone, and tetrahydrofuran. Further, for the purpose of improving the coating property of the binder resin solution, a solvent such as propylene glycol monomethyl ether acetate, various alcohols, methyl ethyl ketone, methyl isobutyl ketone and the like can be preferably contained in an amount of 1 to 30% by weight in the total solvent. .

導電助剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば、特に限定されず、ファーネスブラック、ケッチェンブラック、アセチレンブラック等のカーボンブラック類、天然黒鉛(鱗片状黒鉛等)、人造黒鉛、グラフェン等のグラファイト類、炭素繊維及び金属繊維等の導電性繊維類、銅、ニッケル、アルミニウム及び銀等の金属粉末類等の導電性材料を用いることができる。   The conductive assistant is not particularly limited as long as it is an electron conductive material that does not adversely affect battery performance. Carbon blacks such as furnace black, ketjen black, and acetylene black, natural graphite (such as flake graphite), Conductive materials such as graphite such as artificial graphite and graphene, conductive fibers such as carbon fiber and metal fiber, and metal powders such as copper, nickel, aluminum and silver can be used.

リチウムイオン二次電池用負極は、リチウムイオン二次電池負極用樹脂組成物を集電体に結着して作製される。集電体としては、アルミ箔、ニッケル箔、チタン箔、銅箔、ステンレス鋼箔などの金属箔を用いることができるが、銅箔、アルミ箔が最も一般的に用いられる。本発明のリチウムイオン二次電池用負極は、例えば、リチウムイオン二次電池負極用樹脂組成物をこのような金属箔上に1〜500μmの厚みで塗布することにより作製することができる。塗布方法としては、スピンコート、ロールコート、スリットダイコート、スプレーコート、ディップコート、スクリーン印刷などの手法を用いることができる。塗布は通常、両面ともに行われるため、まず片面を塗布して、溶媒を50−400℃の温度で1分〜20時間、空気中、窒素やアルゴンなどの不活性ガス雰囲気中または真空中で処理した後に、逆の面に塗布して乾燥させるのが一般的であるが、両面を同時にロールコートやスリットダイコートなどの手法で塗布することもできる。塗布後の集電体は、60〜100℃、1〜120分間熱風により乾燥させ、使用する結着樹脂に応じて、100〜500℃、1分〜24時間の高温乾燥をさらに行うことが好ましい。このような集電体を乾燥後、ロールプレス機によりプレスする等の処理を行うことにより、リチウムイオン二次電池用負極を製造することができる。   The negative electrode for a lithium ion secondary battery is produced by binding a resin composition for a negative electrode of a lithium ion secondary battery to a current collector. As the current collector, metal foils such as aluminum foil, nickel foil, titanium foil, copper foil, and stainless steel foil can be used, but copper foil and aluminum foil are most commonly used. The negative electrode for a lithium ion secondary battery of the present invention can be produced, for example, by applying a resin composition for a negative electrode of a lithium ion secondary battery on such a metal foil to a thickness of 1 to 500 μm. As a coating method, methods such as spin coating, roll coating, slit die coating, spray coating, dip coating, and screen printing can be used. Since application is usually performed on both sides, first one side is applied, and the solvent is treated at a temperature of 50 to 400 ° C. for 1 minute to 20 hours in air, in an inert gas atmosphere such as nitrogen or argon, or in vacuum. After that, it is generally applied to the opposite surface and dried, but both surfaces can be simultaneously applied by a technique such as roll coating or slit die coating. The current collector after application is preferably dried by hot air at 60 to 100 ° C. for 1 to 120 minutes, and further subjected to high temperature drying at 100 to 500 ° C. for 1 minute to 24 hours depending on the binder resin to be used. . A negative electrode for a lithium ion secondary battery can be manufactured by performing a treatment such as pressing with a roll press after drying such a current collector.

リチウム二次電池は、塗布部を打ち抜いた負極、セパレーター、正極、および、電解液をセル内に挿入して、作製することができる。正極としては、リチウム箔、コバルト酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、リン酸マンガンリチウム、ニッケル−コバルト−マンガン3元系、または、硫黄などの正極活物質を含むもの等を用いることができる。   The lithium secondary battery can be manufactured by inserting a negative electrode, a separator, a positive electrode, and an electrolyte solution, each of which has a coated portion punched out, into the cell. As the positive electrode, lithium foil, lithium cobaltate, lithium manganate, lithium iron phosphate, lithium manganese phosphate, nickel-cobalt-manganese ternary system, or a material containing a positive electrode active material such as sulfur may be used. it can.

本発明をさらに詳細に説明するために実施例を以下に挙げるが、本発明はこれらの実施例によって制限されるものではない。   Examples are given below to describe the present invention in more detail, but the present invention is not limited by these examples.

実施例1
[珪素粒子の作製]
高周波熱プラズマ法により合成され、徐酸化処理した珪素粒子の、表面の珪素酸化物を、水素40体積%の窒素雰囲気、還元温度700℃の条件で還元し、酸化被膜のない珪素粒子を得た。引き続き、メタン:窒素=1:1を原料ガスとして、処理温度1000℃の条件で、珪素粒子の表面を熱分解炭素で被覆した。このようにして得られた負極材料を走査型電子顕微鏡で観察し、得られた画像を画像解析式粒度分布測定ソフトウェア(株式会社マウンテック製、Mac−VIEW)を用いて、平均粒子径を算出した。また、透過型電子顕微鏡により、珪素粒子の表面に形成された被覆層の厚みを測定した。結果として、平均粒子径が70nmの珪素粒子の表面が5nmの炭素からなる被覆層で被覆された珪素粒子を得た。
Example 1
[Production of silicon particles]
The silicon oxide on the surface of the silicon particles synthesized by the high-frequency thermal plasma method and subjected to the gradual oxidation treatment was reduced under conditions of a nitrogen atmosphere of 40% by volume of hydrogen and a reduction temperature of 700 ° C. to obtain silicon particles without an oxide film. . Subsequently, the surface of the silicon particles was coated with pyrolytic carbon under the conditions of a processing temperature of 1000 ° C. using methane: nitrogen = 1: 1 as a source gas. The negative electrode material thus obtained was observed with a scanning electron microscope, and the average particle size was calculated using the image analysis type particle size distribution measurement software (manufactured by Mountec Co., Ltd., Mac-VIEW). . Moreover, the thickness of the coating layer formed on the surface of the silicon particles was measured with a transmission electron microscope. As a result, silicon particles were obtained in which the surface of silicon particles having an average particle diameter of 70 nm was coated with a coating layer made of 5 nm carbon.

[珪素粒子のX線光電子分析(ESCA)]
得られた珪素粒子のX線光電子分析を行い、珪素および珪素炭化物のピーク面積の和に対する珪素酸化物のピーク面積の比を求めたところ、9%であった。また、珪素のピーク面積に対する炭化珪素のピーク面積は60%であった。
[X-ray photoelectron analysis (ESCA) of silicon particles]
The obtained silicon particles were subjected to X-ray photoelectron analysis, and the ratio of the peak area of silicon oxide to the sum of the peak areas of silicon and silicon carbide was determined to be 9%. Moreover, the peak area of silicon carbide was 60% with respect to the peak area of silicon.

[負極材料の作製]
炭酸リチウム8g(0.115モル)とシュウ酸無水物45g(0.5モル)を水500gに溶かし、オルトチタン酸テトライソプロピル71g(0.25モル)をエタノール5mLに溶かし、これらの溶液を混合し、80℃にて3時間撹拌した。珪素粒子2.56g(LiTi120.05モル。珪素粒子とチタン酸リチウム化合物の重量比が、10:90になる量)を添加し、1時間超音波照射した。得られた分散液を風量0.7dm/分、スプレー圧0.1MPa、出口温度155℃、入口温約80℃にてスプレードライを行った。その後、窒素雰囲気下、750℃で焼成し、粉砕処理後に分級し、平均粒子径5μmの負極材料を得た。
[Production of negative electrode material]
8 g (0.115 mol) of lithium carbonate and 45 g (0.5 mol) of oxalic anhydride are dissolved in 500 g of water, 71 g (0.25 mol) of tetraisopropyl orthotitanate is dissolved in 5 mL of ethanol, and these solutions are mixed. And stirred at 80 ° C. for 3 hours. 2.56 g of silicon particles (Li 4 Ti 5 O 12 0.05 mol. The amount in which the weight ratio of the silicon particles to the lithium titanate compound is 10:90) was added, and ultrasonic irradiation was performed for 1 hour. The obtained dispersion was spray-dried at an air volume of 0.7 dm 3 / min, a spray pressure of 0.1 MPa, an outlet temperature of 155 ° C., and an inlet temperature of about 80 ° C. Then, it baked at 750 degreeC in nitrogen atmosphere, and classified after the grinding | pulverization process, and obtained negative electrode material with an average particle diameter of 5 micrometers.

[ポリイミド前駆体溶液の合成]
窒素雰囲気下、4つ口フラスコに4,4’−ジアミノジフェニルエーテルを10.01g(0.05モル)、パラフェニレンジアミンを5.4g(0.05モル)、N−メチルピロリドン(NMP)を120g加え、室温にてこれらのジアミンを溶解させた。ついで、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を28.69g(0.975モル)、NMPを12.3g加えて60℃で6時間攪拌した。6時間後室温まで冷却し、NMPを添加して最終的に固形分濃度18%のポリイミド前駆体溶液を得た。
[Synthesis of polyimide precursor solution]
In a four-necked flask under nitrogen atmosphere, 10.01 g (0.05 mol) of 4,4′-diaminodiphenyl ether, 5.4 g (0.05 mol) of paraphenylenediamine, and 120 g of N-methylpyrrolidone (NMP) In addition, these diamines were dissolved at room temperature. Next, 28.69 g (0.975 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 12.3 g of NMP were added and stirred at 60 ° C. for 6 hours. Six hours later, the mixture was cooled to room temperature, and NMP was added to finally obtain a polyimide precursor solution having a solid concentration of 18%.

[負極の作製]
負極材料80重量部と、固形分濃度18%のポリイミド前駆体溶液83重量部と、導電助剤としてアセチレンブラック5重量部を、適量のNMPに溶解させ攪拌した後、スラリー状のペーストを得た。得られたペーストを、電解銅箔上にドクターブレードを用いて塗布し、80℃で30分間乾燥させた。さらに、200℃、1時間の真空乾燥を行い、ロールプレス機によりプレスして電極とした。さらに、この電極の塗布部を直径16mmの円形に打ち抜き、負極を作製した。
[Production of negative electrode]
80 parts by weight of the negative electrode material, 83 parts by weight of a polyimide precursor solution having a solid content concentration of 18%, and 5 parts by weight of acetylene black as a conductive assistant were dissolved in an appropriate amount of NMP and stirred to obtain a slurry-like paste. . The obtained paste was applied onto an electrolytic copper foil using a doctor blade and dried at 80 ° C. for 30 minutes. Furthermore, it vacuum-dried at 200 degreeC for 1 hour, and it pressed with the roll press machine, and was set as the electrode. Furthermore, the coated portion of this electrode was punched into a circle having a diameter of 16 mm to produce a negative electrode.

[コイン型リチウム二次電池の作製]
前記負極、対極として金属リチウムを用い、電解液としては、エチレンカーボネート:ジメチルカーボネート=3:7(体積比率)の混合溶媒に1MのLiPF、溶媒に対して3質量%のビニレンカーボネートを加えた電解液を用いた。また、セパレーターは、直径17mmに切り出したセルガード#2400(セルガード社製)を用い、コイン電池を作製した。
[Production of coin-type lithium secondary battery]
Lithium metal was used as the negative electrode and the counter electrode, and as an electrolyte, 1M LiPF 6 was added to a mixed solvent of ethylene carbonate: dimethyl carbonate = 3: 7 (volume ratio), and 3% by weight of vinylene carbonate was added to the solvent. An electrolytic solution was used. In addition, as a separator, Cell Guard # 2400 (manufactured by Cell Guard) cut out to a diameter of 17 mm was used to produce a coin battery.

[電極特性の評価]
0.1Cに相当する電流で、対極(リチウム極)に対し5mVまで充電し、その後、5mV一定で0.05Cに相当する電流になるまで充電した。放電はリチウム極に対して0.1Cに相当する電流で2.5Vまで行った。充電に要した時間と電流量、または、放電に要した時間と電流量から、それぞれ初回充電容量、または、初回放電容量を測定した。このようにして、得られた初回充電容量と初回放電容量より初期効率を以下の式により求めた。
初期効率(%)={(初回放電容量(mAh/g)/初回充電容量(mAh/g)}×100
また、初回の充放電後、1Cに相当する電流で同様に充放電測定を100回行い、1回目の放電容量に対する100回目の放電容量の比率を、容量維持率(%)として算出した。
[Evaluation of electrode characteristics]
The battery was charged to 5 mV with respect to the counter electrode (lithium electrode) at a current corresponding to 0.1 C, and then charged to a current corresponding to 0.05 C at a constant 5 mV. Discharge was performed up to 2.5 V with a current corresponding to 0.1 C with respect to the lithium electrode. The initial charge capacity or initial discharge capacity was measured from the time and current amount required for charging or the time and current amount required for discharging, respectively. Thus, initial efficiency was calculated | required by the following formula | equation from the obtained initial charge capacity and initial discharge capacity.
Initial efficiency (%) = {(initial discharge capacity (mAh / g) / initial charge capacity (mAh / g)} × 100
In addition, after the first charge / discharge, the charge / discharge measurement was similarly performed 100 times with a current corresponding to 1 C, and the ratio of the 100th discharge capacity to the first discharge capacity was calculated as a capacity retention rate (%).

実施例2
負極材料の作製の際、珪素粒子の添加量を9.86g(LiTi120.05モル。珪素粒子とチタン酸リチウム化合物の重量比が、30:70になる量)とした以外は、実施例1と同様にして負極材料を作製し、電極特性を評価した。
Example 2
When the negative electrode material was produced, the amount of silicon particles added was 9.86 g (Li 4 Ti 5 O 12 0.05 mol. The amount by which the weight ratio of the silicon particles to the lithium titanate compound was 30:70) Produced a negative electrode material in the same manner as in Example 1, and evaluated the electrode characteristics.

実施例3
負極材料の作製の際、珪素粒子の添加量を23g(LiTi120.05モル。珪素粒子とチタン酸リチウム化合物の重量比が、50:50になる量)とした以外は、実施例1と同様にして負極材料を作製し、電極特性を評価した。
Example 3
Except that the amount of silicon particles added was 23 g (Li 4 Ti 5 O 12 0.05 mol. The amount by which the weight ratio of the silicon particles to the lithium titanate compound was 50:50) during the production of the negative electrode material, A negative electrode material was produced in the same manner as in Example 1, and the electrode characteristics were evaluated.

実施例4
珪素粒子の作製の際、還元時間を制御し、X線光電子分析における珪素および珪素炭化物のピーク面積の和に対する珪素酸化物のピーク面積が、20%になるようにした珪素粒子を用いた以外は、実施例2と同様にして負極材料を作製し、電極特性を評価した。
Example 4
Except for the use of silicon particles in which the reduction time was controlled during the production of silicon particles, and the peak area of silicon oxide relative to the sum of the peak areas of silicon and silicon carbide in X-ray photoelectron analysis was 20%. A negative electrode material was produced in the same manner as in Example 2, and the electrode characteristics were evaluated.

実施例5
珪素粒子を作製の際、還元時間を制御し、X線光電子分析における珪素および珪素炭化物のピーク面積の和に対する珪素酸化物のピーク面積が、30%になるようにした珪素粒子を用いた以外は、実施例2と同様にして負極材料を作製し、電極特性を評価した。
Example 5
When producing silicon particles, the reduction time was controlled, and silicon particles were used so that the peak area of silicon oxide relative to the sum of the peak areas of silicon and silicon carbide in X-ray photoelectron analysis was 30%. A negative electrode material was produced in the same manner as in Example 2, and the electrode characteristics were evaluated.

実施例6
珪素粒子を作製の際、還元時間を制御し、X線光電子分析における珪素および珪素炭化物のピーク面積の和に対する珪素酸化物のピーク面積が、40%になるようにした珪素粒子を用いた以外は、実施例2と同様にして負極材料を作製し、電極特性を評価した。
Example 6
When producing silicon particles, the reduction time was controlled, and silicon particles were used such that the peak area of silicon oxide relative to the sum of the peak areas of silicon and silicon carbide in X-ray photoelectron analysis was 40%. A negative electrode material was produced in the same manner as in Example 2, and the electrode characteristics were evaluated.

実施例7
珪素からなる核粒子の作製の際、還元も熱分解炭素被覆もせず、徐酸化処理した珪素粒子をそのまま使用した以外は、実施例2と同様にして負極材料を作製し、電極特性を評価した。
Example 7
A negative electrode material was prepared in the same manner as in Example 2 except that silicon particles subjected to gradual oxidation treatment were used as they were without reduction or pyrolytic carbon coating in the preparation of silicon core particles, and the electrode characteristics were evaluated. .

実施例8
熱プラズマの流量を制御し、珪素粒子の平均粒子径が250nmになるようにした以外は、実施例2と同様にして負極材料を作製し、電極特性を評価した。
Example 8
A negative electrode material was produced in the same manner as in Example 2 except that the flow rate of the thermal plasma was controlled so that the average particle diameter of the silicon particles was 250 nm, and the electrode characteristics were evaluated.

実施例9
負極材料の作製の際、スプレードライでなく、噴霧熱分解で珪素粒子とチタン酸リチウム化合物の分散液を乾燥した以外は、実施例2と同様にして負極材料を作製し、電極特性を評価した。噴霧熱分解においては、2MHzの超音波振動子を用いて、分散液を霧状し、400℃の空気で乾燥した。
Example 9
A negative electrode material was produced in the same manner as in Example 2 except that the dispersion of silicon particles and lithium titanate compound was dried by spray pyrolysis instead of spray drying when producing the negative electrode material, and the electrode characteristics were evaluated. . In spray pyrolysis, the dispersion was atomized using a 2 MHz ultrasonic vibrator and dried with 400 ° C. air.

比較例1
負極材料の作製の際、珪素粒子の添加量を53.7g(LiTi120.05モルに対して、7/3(重量比))とした以外は、実施例1と同様にして負極材料を作製し、電極特性を評価した。
Comparative Example 1
The same procedure as in Example 1 was performed except that the amount of silicon particles added was 53.7 g (7/3 (weight ratio) with respect to 0.05 mol of Li 4 Ti 5 O 12 ) during the production of the negative electrode material. A negative electrode material was prepared and the electrode characteristics were evaluated.

比較例2
負極材料の作製の際、珪素粒子を添加しなかった以外は、実施例2と同様にして負極材料を作製し、電極特性を評価した。
Comparative Example 2
A negative electrode material was produced in the same manner as in Example 2 except that silicon particles were not added during the production of the negative electrode material, and the electrode characteristics were evaluated.

各実施例、比較例の負極材料の構成および電池特性評価の結果を表1に示す。   Table 1 shows the structures of the negative electrode materials of the examples and comparative examples and the results of battery characteristics evaluation.

Figure 2015079727
Figure 2015079727

実施例10
負極材料の作製の際、シュウ酸無水物の代わりに、コハク酸を83g(0.7モル)添加した以外は、実施例9と同様にして負極材料を作製し、電極特性を評価した。
Example 10
A negative electrode material was produced in the same manner as in Example 9 except that 83 g (0.7 mol) of succinic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例11
負極材料の作製の際、シュウ酸無水物の代わりに、クエン酸を192g(1モル)添加した以外は、実施例9と同様にして負極材料を作製し、電極特性を評価した。
Example 11
A negative electrode material was produced in the same manner as in Example 9 except that 192 g (1 mol) of citric acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例12
負極材料の作製の際、シュウ酸無水物の代わりに、リンゴ酸を94g(0.7モル)添加した以外は、実施例9と同様にして負極材料を作製し、電極特性を評価した。
Example 12
A negative electrode material was produced in the same manner as in Example 9 except that 94 g (0.7 mol) of malic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例13
負極材料の作製の際、炭酸リチウムの代わりに、水酸化リチウム一水和物を9.66g(0.23モル)添加した以外は、実施例9と同様にして負極材料を作製し、電極特性を評価した。
Example 13
A negative electrode material was produced in the same manner as in Example 9 except that 9.66 g (0.23 mol) of lithium hydroxide monohydrate was added instead of lithium carbonate when producing the negative electrode material. Evaluated.

実施例14
負極材料の作製の際、シュウ酸無水物の代わりに、コハク酸を83g(0.7モル)添加した以外は、実施例13と同様にして負極材料を作製し、電極特性を評価した。
Example 14
A negative electrode material was produced in the same manner as in Example 13 except that 83 g (0.7 mol) of succinic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例15
負極材料の作製の際、シュウ酸無水物の代わりに、クエン酸を192g(1モル)添加した以外は、実施例13と同様にして負極材料を作製し、電極特性を評価した。
Example 15
A negative electrode material was produced in the same manner as in Example 13 except that 192 g (1 mol) of citric acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例16
負極材料の作製の際、シュウ酸無水物の代わりに、リンゴ酸を94g(0.7モル)添加した以外は、実施例13と同様にして負極材料を作製し、電極特性を評価した。
Example 16
A negative electrode material was produced in the same manner as in Example 13 except that 94 g (0.7 mol) of malic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例17
負極材料の作製の際、炭酸リチウムの代わりに、硝酸リチウムを15.9g(0.23モル)添加した以外は、実施例9と同様にして負極材料を作製し、電極特性を評価した。
Example 17
A negative electrode material was produced in the same manner as in Example 9 except that 15.9 g (0.23 mol) of lithium nitrate was added instead of lithium carbonate when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例18
負極材料の作製の際、シュウ酸無水物の代わりに、コハク酸を83g(0.7モル)添加した以外は、実施例17と同様にして負極材料を作製し、電極特性を評価した。
Example 18
A negative electrode material was produced in the same manner as in Example 17 except that 83 g (0.7 mol) of succinic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例19
負極材料の作製の際、シュウ酸無水物の代わりに、クエン酸を192g(1モル)添加した以外は、実施例17と同様にして負極材料を作製し、電極特性を評価した。
Example 19
A negative electrode material was produced in the same manner as in Example 17 except that 192 g (1 mol) of citric acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例20
負極材料の作製の際、シュウ酸無水物の代わりに、リンゴ酸を94g(0.7モル)添加した以外は、実施例17と同様にして負極材料を作製し、電極特性を評価した。
Example 20
A negative electrode material was produced in the same manner as in Example 17 except that 94 g (0.7 mol) of malic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例21
負極材料の作製の際、オルトチタン酸テトライソプロピルの代わりに、二酸化チタンを20g(0.25モル)添加した以外は、実施例9と同様にして負極材料を作製し、電極特性を評価した。
Example 21
A negative electrode material was produced in the same manner as in Example 9 except that 20 g (0.25 mol) of titanium dioxide was added in place of tetraisopropyl orthotitanate when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例22
負極材料の作製の際、シュウ酸無水物の代わりに、コハク酸を83g(0.7モル)添加した以外は、実施例21と同様にして負極材料を作製し、電極特性を評価した。
Example 22
A negative electrode material was produced in the same manner as in Example 21 except that 83 g (0.7 mol) of succinic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例23
負極材料の作製の際、シュウ酸無水物の代わりに、クエン酸を192g(1モル)添加した以外は、実施例21と同様にして負極材料を作製し、電極特性を評価した。
Example 23
A negative electrode material was produced in the same manner as in Example 21 except that 192 g (1 mol) of citric acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例24
負極材料の作製の際、シュウ酸無水物の代わりに、リンゴ酸を94g(0.7モル)添加した以外は、実施例21と同様にして負極材料を作製し、電極特性を評価した。
Example 24
A negative electrode material was produced in the same manner as in Example 21 except that 94 g (0.7 mol) of malic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例25
負極材料の作製の際、炭酸リチウムの代わりに、水酸化リチウム一水和物を9.66g(0.23モル)添加した以外は、実施例21と同様にして負極材料を作製し、電極特性を評価した。
Example 25
A negative electrode material was produced in the same manner as in Example 21 except that 9.66 g (0.23 mol) of lithium hydroxide monohydrate was added instead of lithium carbonate when producing the negative electrode material. Evaluated.

実施例26
負極材料の作製の際、シュウ酸無水物の代わりに、コハク酸を83g(0.7モル)添加した以外は、実施例25と同様にして負極材料を作製し、電極特性を評価した。
Example 26
A negative electrode material was produced in the same manner as in Example 25 except that 83 g (0.7 mol) of succinic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例27
負極材料の作製の際、シュウ酸無水物の代わりに、クエン酸を192g(1モル)添加した以外は、実施例25と同様にして負極材料を作製し、電極特性を評価した。
Example 27
A negative electrode material was produced in the same manner as in Example 25 except that 192 g (1 mol) of citric acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例28
負極材料の作製の際、シュウ酸無水物の代わりに、リンゴ酸を94g(0.7モル)添加した以外は、実施例25と同様にして負極材料を作製し、電極特性を評価した。
Example 28
A negative electrode material was produced in the same manner as in Example 25, except that 94 g (0.7 mol) of malic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例29
負極材料の作製の際、炭酸リチウムの代わりに、硝酸リチウムを15.9g(0.23モル)添加した以外は、実施例21と同様にして負極材料を作製し、電極特性を評価した。
Example 29
A negative electrode material was produced in the same manner as in Example 21 except that 15.9 g (0.23 mol) of lithium nitrate was added instead of lithium carbonate when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例30
負極材料の作製の際、シュウ酸無水物の代わりに、コハク酸を83g(0.7モル)添加した以外は、実施例29と同様にして負極材料を作製し、電極特性を評価した。
Example 30
A negative electrode material was produced in the same manner as in Example 29 except that 83 g (0.7 mol) of succinic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例31
負極材料の作製の際、シュウ酸無水物の代わりに、クエン酸を192g(1モル)添加した以外は、実施例29と同様にして負極材料を作製し、電極特性を評価した。
Example 31
A negative electrode material was produced in the same manner as in Example 29 except that 192 g (1 mol) of citric acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例32
負極材料の作製の際、シュウ酸無水物の代わりに、リンゴ酸を94g(0.7モル)添加した以外は、実施例29と同様にして負極材料を作製し、電極特性を評価した。
Example 32
A negative electrode material was produced in the same manner as in Example 29 except that 94 g (0.7 mol) of malic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例33
負極材料の作製の際、炭酸リチウムの代わりに、酢酸リチウムを15.2g(0.23モル)添加した以外は、実施例21と同様にして負極材料を作製し、電極特性を評価した。
Example 33
A negative electrode material was produced in the same manner as in Example 21 except that 15.2 g (0.23 mol) of lithium acetate was added instead of lithium carbonate when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例34
負極材料の作製の際、シュウ酸無水物の代わりに、コハク酸を83g(0.7モル)添加した以外は、実施例33と同様にして負極材料を作製し、電極特性を評価した。
Example 34
A negative electrode material was produced in the same manner as in Example 33 except that 83 g (0.7 mol) of succinic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例35
負極材料の作製の際、シュウ酸無水物の代わりに、クエン酸を192g(1モル)添加した以外は、実施例33と同様にして負極材料を作製し、電極特性を評価した。
Example 35
A negative electrode material was produced in the same manner as in Example 33 except that 192 g (1 mol) of citric acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例36
負極材料の作製の際、シュウ酸無水物の代わりに、リンゴ酸を94g(0.7モル)添加した以外は、実施例33と同様にして負極材料を作製し、電極特性を評価した。
Example 36
A negative electrode material was produced in the same manner as in Example 33, except that 94 g (0.7 mol) of malic acid was added instead of oxalic anhydride when producing the negative electrode material, and the electrode characteristics were evaluated.

実施例9〜36の負極材料のチタン源、リチウム源および添加剤の構成ならびに電池特性評価の結果を表2に示す。   Table 2 shows the structures of the titanium source, lithium source, and additive of the negative electrode materials of Examples 9 to 36 and the results of battery characteristic evaluation.

Figure 2015079727
Figure 2015079727

実施例37
負極材料の作製の際、焼成、分級した後、PE−CVDで100Pa、600℃にてアセチレンとアルゴンの混合ガスを2時間供給して、炭素被覆した以外は、実施例9と同様にして負極材料を作製し、電極特性を評価した。
Example 37
In the production of the negative electrode material, after firing and classification, the negative electrode was prepared in the same manner as in Example 9 except that PE-CVD was used to supply a mixed gas of acetylene and argon at 100 Pa and 600 ° C. for 2 hours to coat the carbon. Materials were prepared and electrode properties were evaluated.

実施例38
負極材料の作製の際、焼成、分級した後、ピッチコートを行い、700℃、窒素雰囲気下で焼成して、炭素被覆した以外は、実施例9と同様にして負極材料を作製し、電極特性を評価した。
Example 38
In the production of the negative electrode material, the negative electrode material was produced in the same manner as in Example 9 except that after firing and classification, pitch coating was performed, firing was performed at 700 ° C. in a nitrogen atmosphere, and carbon coating was performed. Evaluated.

実施例9、実施例37および実施例38の負極材料において複合体粒子に施された炭素被覆の構成および電池特性評価の結果を表3に示す。   Table 3 shows the structure of the carbon coating applied to the composite particles in the negative electrode materials of Example 9, Example 37, and Example 38, and the results of battery characteristic evaluation.

Figure 2015079727
Figure 2015079727

次に、結着樹脂として、ポリアミドイミド(PAI)を用いた場合の例を、以下に記す。   Next, an example in which polyamideimide (PAI) is used as the binder resin will be described below.

[ポリアミドイミドの合成]
窒素雰囲気下、2Lの4つ口フラスコにメタフェニレンジアミンを30.24g(0.28モル)、4,4’−ジアミノジフェニルエーテルを84.1g(0.42モル)、N、N−ジメチルアセトアミド(DMAc)を610g加え、室温にてこれらのジアミンを溶解させた。ついで、重合反応液の温度が30℃を超えない様に無水トリメリット酸クロリドを147.4g(0.70モル)を徐々に添加し、添加終了後、重合液を30℃に温調し1.0時間攪拌し反応させ、重合溶液を得た。得られた重合溶液をIW水1.7リットル中に入れ、濾過分別してポリアミド酸の粉末を得た。得られたポリアミド酸の粉末を、真空度30torrの真空乾燥機中、150℃で5時間、次いで200℃で2時間、次いで240℃で4時間乾燥し、ポリアミドイミド樹脂の粉末を得た。
[Synthesis of Polyamideimide]
Under a nitrogen atmosphere, 30.24 g (0.28 mol) of metaphenylenediamine, 84.1 g (0.42 mol) of 4,4′-diaminodiphenyl ether, N, N-dimethylacetamide ( 610 g of DMAc) was added and these diamines were dissolved at room temperature. Next, 147.4 g (0.70 mol) of trimellitic anhydride chloride was gradually added so that the temperature of the polymerization reaction solution did not exceed 30 ° C. After the addition was completed, the polymerization solution was adjusted to 30 ° C. The reaction was stirred for 0 hours to obtain a polymerization solution. The obtained polymerization solution was put in 1.7 liters of IW water and filtered to obtain a polyamic acid powder. The obtained polyamic acid powder was dried in a vacuum dryer with a degree of vacuum of 30 torr at 150 ° C. for 5 hours, then at 200 ° C. for 2 hours, and then at 240 ° C. for 4 hours to obtain a polyamideimide resin powder.

乾燥後の粉体15gにNMPを85g加えて溶解させた後、溶液を1μmメンブレンフィルターにて濾過し、最終的に固形分濃度15%のポリアミドイミド溶液を得た。   After adding 85 g of NMP to 15 g of the dried powder and dissolving it, the solution was filtered through a 1 μm membrane filter to finally obtain a polyamideimide solution having a solid content concentration of 15%.

[負極の作製]
得られた複合負極材料80重量部と、固形分濃度15%のポリアミドイミド前駆体溶液100重量部と、導電助剤としてアセチレンブラック5重量部を、適量のNMPに溶解させ攪拌した後、スラリー状のペーストを得た。得られたペーストを、電解銅箔上にドクターブレードを用いて塗布し、80℃で30分間乾燥させ、ロールプレス機によりプレスして電極とした。さらに、この電極の塗布部を直径16mmの円形に打ち抜き、200℃、1時間の真空乾燥を行い、負極を作製した。
[Production of negative electrode]
80 parts by weight of the obtained composite negative electrode material, 100 parts by weight of a polyamideimide precursor solution having a solid content concentration of 15%, and 5 parts by weight of acetylene black as a conductive assistant were dissolved in an appropriate amount of NMP and stirred, A paste of was obtained. The obtained paste was applied onto an electrolytic copper foil using a doctor blade, dried at 80 ° C. for 30 minutes, and pressed with a roll press to obtain an electrode. Furthermore, the coated part of this electrode was punched out into a circle with a diameter of 16 mm and vacuum-dried at 200 ° C. for 1 hour to produce a negative electrode.

実施例39〜47、比較例3、4
ペースト作製時にポリイミド前駆体溶液をポリアミドイミド溶液に変更した以外は、実施例1〜9、比較例1、2と同様にして、それぞれの電極特性を評価した。得られた初回充電容量、初回放電容量、初期効率、および、容量維持率を表1に併せて示す。
Examples 39 to 47, Comparative Examples 3 and 4
Each electrode characteristic was evaluated like Example 1-9 and Comparative Examples 1 and 2 except having changed the polyimide precursor solution into the polyamide-imide solution at the time of paste preparation. The obtained initial charge capacity, initial discharge capacity, initial efficiency, and capacity retention rate are also shown in Table 1.

Claims (15)

珪素粒子と、チタン酸リチウム化合物を含むマトリックスとを有し、前記珪素粒子と前記チタン酸リチウム化合物との重量比が5:95〜60:40の複合体粒子であるリチウムイオン二次電池用負極材料。 A negative electrode for a lithium ion secondary battery, which is a composite particle having silicon particles and a matrix containing a lithium titanate compound, wherein the weight ratio of the silicon particles to the lithium titanate compound is 5:95 to 60:40 material. 前記複合体粒子が有する前記珪素粒子は、X線光電子分析により測定される100eV近傍の珪素のピーク面積に対し、103eV近傍の珪素酸化物のピーク面積が25%未満である、請求項1に記載のリチウムイオン二次電池用負極材料。 The silicon particles included in the composite particles have a silicon oxide peak area in the vicinity of 103 eV of less than 25% relative to a silicon peak area in the vicinity of 100 eV measured by X-ray photoelectron analysis. Negative electrode material for lithium ion secondary battery. 前記複合体粒子が有する前記珪素粒子の表面が、炭素からなる層で被覆されている、請求項1または2に記載のリチウムイオン二次電池用負極材料。 3. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the surface of the silicon particles of the composite particles is coated with a layer made of carbon. 前記複合体粒子が有する前記珪素粒子は、X線光電子分析により測定される100eV近傍の珪素および珪素−炭素のピーク面積の和に対し、103eV近傍の珪素酸化物のピーク面積が25%未満である、請求項3に記載のリチウムイオン二次電池用負極材料。 The silicon particles of the composite particles have a silicon oxide peak area near 103 eV of less than 25% relative to the sum of silicon and silicon-carbon peak areas near 100 eV measured by X-ray photoelectron analysis. The negative electrode material for lithium ion secondary batteries according to claim 3. 前記複合体粒子が有する前記珪素粒子の平均粒子径が200nm未満である、請求項1〜4のいずれかに記載のリチウムイオン二次電池用負極材料。 The negative electrode material for lithium ion secondary batteries according to any one of claims 1 to 4, wherein an average particle diameter of the silicon particles of the composite particles is less than 200 nm. 前記複合体粒子は、前記珪素粒子を複数含むものである、請求項1〜5のいずれかに記載のリチウムイオン二次電池用負極材料。 The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the composite particle includes a plurality of the silicon particles. 前記マトリックスに含まれる前記チタン酸リチウム化合物がLiTi12である複合体粒子である、請求項1〜6のいずれかに記載のリチウムイオン二次電池用負極材料。 The lithium titanate compound is a composite particle is Li 4 Ti 5 O 12, a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 6 included in the matrix. 請求項1〜7のいずれかに記載の複合体粒子をさらに炭素被覆してなる、リチウムイオン二次電池用負極材料。 The negative electrode material for lithium ion secondary batteries formed by carbon-coating the composite particle in any one of Claims 1-7. 珪素粒子とチタン酸リチウム前駆体とを湿式造粒により複合化する工程を有する、珪素粒子とチタン酸リチウム化合物の複合体粒子からなるリチウムイオン二次電池用負極材料の製造方法。 A method for producing a negative electrode material for a lithium ion secondary battery comprising composite particles of silicon particles and a lithium titanate compound, comprising a step of combining silicon particles and a lithium titanate precursor by wet granulation. 前記湿式造粒は、前記珪素粒子と前記チタン酸リチウム前駆体とを含む混合液の噴霧造粒により行われる、請求項9に記載のリチウムイオン二次電池用負極材料の製造方法。 The method for producing a negative electrode material for a lithium ion secondary battery according to claim 9, wherein the wet granulation is performed by spray granulation of a mixed solution containing the silicon particles and the lithium titanate precursor. 前記湿式造粒は、前記珪素粒子へのチタン酸リチウム前駆体溶液の噴霧により行われる、請求項9に記載のリチウムイオン二次電池用負極材料の製造方法。 The method for producing a negative electrode material for a lithium ion secondary battery according to claim 9, wherein the wet granulation is performed by spraying a lithium titanate precursor solution onto the silicon particles. 請求項1〜8のいずれかに記載のリチウムイオン二次電池用負極材料、結着樹脂、および、溶剤を含有するリチウムイオン二次電池負極用樹脂組成物。 The negative electrode material for lithium ion secondary batteries in any one of Claims 1-8, binder resin, and the resin composition for lithium ion secondary battery negative electrodes containing a solvent. 前記結着樹脂が、ポリイミド樹脂、ポリイミド前駆体、ポリアミド樹脂、または、ポリアミドイミド樹脂である、請求項12に記載のリチウムイオン二次電池負極用樹脂組成物。 The resin composition for a lithium ion secondary battery negative electrode according to claim 12, wherein the binder resin is a polyimide resin, a polyimide precursor, a polyamide resin, or a polyamideimide resin. 請求項12または13に記載のリチウムイオン二次電池負極用樹脂組成物を集電体に結着してなるリチウムイオン二次電池用負極。 The negative electrode for lithium ion secondary batteries formed by binding the resin composition for lithium ion secondary battery negative electrodes of Claim 12 or 13 to a collector. 請求項14に記載のリチウムイオン二次電池用負極を用いたリチウムイオン二次電池。 The lithium ion secondary battery using the negative electrode for lithium ion secondary batteries of Claim 14.
JP2013266510A 2013-09-10 2013-12-25 Negative electrode material for lithium ion secondary batteries, method for manufacturing negative electrode material for lithium ion secondary batteries, resin composition for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery Pending JP2015079727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013266510A JP2015079727A (en) 2013-09-10 2013-12-25 Negative electrode material for lithium ion secondary batteries, method for manufacturing negative electrode material for lithium ion secondary batteries, resin composition for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013186963 2013-09-10
JP2013186963 2013-09-10
JP2013266510A JP2015079727A (en) 2013-09-10 2013-12-25 Negative electrode material for lithium ion secondary batteries, method for manufacturing negative electrode material for lithium ion secondary batteries, resin composition for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2015079727A true JP2015079727A (en) 2015-04-23

Family

ID=53010980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013266510A Pending JP2015079727A (en) 2013-09-10 2013-12-25 Negative electrode material for lithium ion secondary batteries, method for manufacturing negative electrode material for lithium ion secondary batteries, resin composition for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2015079727A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125784A1 (en) * 2014-02-19 2015-08-27 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and method for producing said negative electrode active material
JP2017120710A (en) * 2015-12-28 2017-07-06 エルジー・ケム・リミテッド Negative electrode material for secondary batteries, and nonaqueous electrolyte secondary battery using the same
WO2018088248A1 (en) * 2016-11-11 2018-05-17 昭和電工株式会社 Negative electrode material and lithium-ion battery
JP2018160432A (en) * 2017-03-24 2018-10-11 太平洋セメント株式会社 Negative electrode active material composite for lithium ion secondary battery and method of manufacturing the same
KR20210118316A (en) * 2020-03-20 2021-09-30 우석대학교 산학협력단 Anode material with graphene-antimony-silicon coreshell of secondary battery and the method thereof
KR20210118317A (en) * 2020-03-20 2021-09-30 우석대학교 산학협력단 Anode material with graphene-antimony-silicon of secondary battery and the method thereof
CN113692656A (en) * 2019-05-31 2021-11-23 株式会社Lg新能源 Negative electrode and secondary battery including the same
CN114655951A (en) * 2022-04-17 2022-06-24 晖阳(贵州)新能源材料有限公司 Preparation method of lithium ion battery negative electrode material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125784A1 (en) * 2014-02-19 2015-08-27 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and method for producing said negative electrode active material
JP2017120710A (en) * 2015-12-28 2017-07-06 エルジー・ケム・リミテッド Negative electrode material for secondary batteries, and nonaqueous electrolyte secondary battery using the same
WO2018088248A1 (en) * 2016-11-11 2018-05-17 昭和電工株式会社 Negative electrode material and lithium-ion battery
JP2018160432A (en) * 2017-03-24 2018-10-11 太平洋セメント株式会社 Negative electrode active material composite for lithium ion secondary battery and method of manufacturing the same
CN113692656A (en) * 2019-05-31 2021-11-23 株式会社Lg新能源 Negative electrode and secondary battery including the same
KR20210118316A (en) * 2020-03-20 2021-09-30 우석대학교 산학협력단 Anode material with graphene-antimony-silicon coreshell of secondary battery and the method thereof
KR20210118317A (en) * 2020-03-20 2021-09-30 우석대학교 산학협력단 Anode material with graphene-antimony-silicon of secondary battery and the method thereof
KR102405605B1 (en) 2020-03-20 2022-06-03 우석대학교 산학협력단 Anode material with graphene-antimony-silicon of secondary battery and the method thereof
KR102405615B1 (en) 2020-03-20 2022-06-03 우석대학교 산학협력단 Anode material with graphene-antimony-silicon coreshell of secondary battery and the method thereof
CN114655951A (en) * 2022-04-17 2022-06-24 晖阳(贵州)新能源材料有限公司 Preparation method of lithium ion battery negative electrode material
CN114655951B (en) * 2022-04-17 2022-09-02 晖阳(贵州)新能源材料有限公司 Preparation method of lithium ion battery cathode material

Similar Documents

Publication Publication Date Title
JP5475934B1 (en) Negative electrode material for lithium ion secondary battery, composite negative electrode material for lithium ion secondary battery, resin composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2015079727A (en) Negative electrode material for lithium ion secondary batteries, method for manufacturing negative electrode material for lithium ion secondary batteries, resin composition for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP5326567B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery equipped with the same, and method for producing the same
JP5888418B2 (en) Negative electrode active material, method for producing negative electrode active material, negative electrode and secondary battery
JP6354895B2 (en) Electrode material, method for producing the electrode material, electrode, and lithium ion battery
US11398626B2 (en) Method of producing metal compound particle group, metal compound particle group, and electricity storage device electrode containing metal compound particle group
CN113363483A (en) Olivine-structure positive electrode material, preparation method and application thereof, and lithium ion battery
CN109560259A (en) Positive electrode material, preparation method thereof and battery
JP5334506B2 (en) Method for producing composition for positive electrode of non-aqueous electrolyte secondary battery
JP5881468B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2012094405A (en) Active material for nonaqueous electrolyte secondary battery, positive electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack
JP6332539B1 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP6332540B1 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP2017069177A (en) Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery and lithium ion secondary battery
JP2019067596A (en) Method for manufacturing electrode material for lithium ion secondary battery
JP6528886B1 (en) Electrode material and method of manufacturing the same
CN116387496B (en) Secondary battery positive electrode material, secondary battery positive electrode plate and secondary battery
JP2016194015A (en) Carbon black having core-shell structure, production method of the black, and electrode mixture, electrode, and power storage device obtained by using the black
WO2023026898A1 (en) Method for producing positive electrode composition and method for producing positive electrode
JP6065133B1 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
CN114267834A (en) Modified lithium cobaltate and preparation method and application thereof
JP2012094345A (en) Method for manufacturing electrode plate for nonaqueous electrolyte secondary battery
JP2011210539A (en) Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery
JP2012094342A (en) Method for manufacturing electrode plate for nonaqueous electrolyte secondary battery
JP2012094329A (en) Method for manufacturing nonaqueous electrolyte secondary battery