JP2015077584A - Desalination plant - Google Patents

Desalination plant Download PDF

Info

Publication number
JP2015077584A
JP2015077584A JP2013225947A JP2013225947A JP2015077584A JP 2015077584 A JP2015077584 A JP 2015077584A JP 2013225947 A JP2013225947 A JP 2013225947A JP 2013225947 A JP2013225947 A JP 2013225947A JP 2015077584 A JP2015077584 A JP 2015077584A
Authority
JP
Japan
Prior art keywords
raw water
heat transfer
evaporator
transfer tube
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013225947A
Other languages
Japanese (ja)
Inventor
雅仁 山野目
Masahito Yamanome
雅仁 山野目
将仁 村上
Masahito Murakami
将仁 村上
恭平 齋藤
Kyohei Saito
恭平 齋藤
真 窪田
Makoto Kubota
真 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYUUGAI KOGYO KK
MIRAI CO Ltd
Original Assignee
CHIYUUGAI KOGYO KK
MIRAI CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYUUGAI KOGYO KK, MIRAI CO Ltd filed Critical CHIYUUGAI KOGYO KK
Priority to JP2013225947A priority Critical patent/JP2015077584A/en
Publication of JP2015077584A publication Critical patent/JP2015077584A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a desalination plant that does not require a large amount of energy, and has a simplified mechanism and improved maintenance side.SOLUTION: The desalination plant is comprised of: a heat source; an evaporator having a container housing a heat transfer tube and spraying means; raw water supply means; control means; draining means; a gas-liquid separator; a condensing part; and a fresh water recovery part. Raw water supplied by the raw water supply means is sprayed by the spraying means to the heat transfer tube in which a heat medium supplied with energy from the heat source flows. The control means sets in the spraying means a time for drying the heat transfer tube and controls the spraying means so that the raw water is sprayed intermittently or periodically. The raw water having come in contact with the heat transfer tube evaporates, and the steam passes through the gas-liquid separator, condenses in the condensing part, and is recovered as fresh water in the fresh water recovery part. Raw water remaining unevaporated in the evaporator is drained by the draining means.

Description

本発明は蒸発法による淡水化装置に関する。  The present invention relates to a desalination apparatus using an evaporation method.

蒸発法は原水を加熱、蒸発させ、水蒸気を凝縮して淡水を得る方法であり、特許文献1に示されるような淡水化装置が開示されている。しかしながら、貯留された多量の原水を蒸発あるいは原水を沸点まで昇温するため、多大なエネルギーを必要とする。また、複数本かつ密接に設置された原水と接する伝熱管は機構が複雑になる。さらに、伝熱管にスケール等の汚れが付着した場合、除去が困難になる等メンテナンス面に問題がある。  The evaporation method is a method in which raw water is heated and evaporated to condense water vapor to obtain fresh water, and a desalination apparatus as disclosed in Patent Document 1 is disclosed. However, a large amount of energy is required to evaporate a large amount of stored raw water or raise the temperature of the raw water to the boiling point. In addition, the mechanism of the heat transfer tubes that come into contact with a plurality of and closely installed raw water is complicated. Furthermore, when dirt such as a scale adheres to the heat transfer tube, there is a problem in terms of maintenance such that it becomes difficult to remove.

特開2007−330926号公報JP 2007-330926 A

本発明は、多大なエネルギーを必要とせず、機構が簡略化され、メンテナンス面が容易な淡水化装置の提供を目的とする。  An object of this invention is to provide the desalination apparatus which does not require a lot of energy, a mechanism is simplified, and a maintenance surface is easy.

請求項1に記載の淡水化装置は、(A)熱源と、(B)蒸発器用容器と前記蒸発器用容器内に設置され、前記蒸発器用容器の内壁面と離間しつつ前記内壁面に沿って複数回周回しながら垂直方向に伸長して配置されるとともに、前記熱源よりエネルギーを受けて高温化された熱媒が流れる伝熱管と原水を前記伝熱管に噴霧する噴霧手段とを有する蒸発器と、(C)前記原水を前記噴霧手段に供給する原水供給手段と、(D)前記噴霧手段が前記伝熱管に対して乾燥する時間を設けて、間欠的または周期的に噴霧させる制御手段と、(E)前記蒸発器内の未蒸発原水を排水する排水手段と、(F)前記蒸発器で発生した水蒸気と前記未蒸発原水を分離する気液分離器と、(G)前記気液分離器を通過した前記水蒸気を凝縮させる凝縮部と、(H)前記凝縮部で凝縮した淡水を回収する淡水回収部と、を有することを特徴とする。  The desalination apparatus according to claim 1 is installed in (A) a heat source, (B) an evaporator container, and the evaporator container, and is separated from the inner wall surface of the evaporator container along the inner wall surface. An evaporator having a heat transfer pipe that flows in a vertical direction while being circulated a plurality of times, and that flows a heat medium heated by receiving energy from the heat source, and a spraying means that sprays raw water onto the heat transfer pipe; (C) Raw water supply means for supplying the raw water to the spray means; (D) Control means for spraying intermittently or periodically by providing a time for the spray means to dry the heat transfer tubes; (E) Drainage means for draining unevaporated raw water in the evaporator, (F) a gas-liquid separator for separating the water vapor generated in the evaporator and the unevaporated raw water, and (G) the gas-liquid separator A condensing part for condensing the water vapor that has passed through And having a freshwater collecting unit for collecting the condensed fresh water in the condensing section.

請求項2に記載の淡水化装置は、上述した請求項1の淡水化装置の特徴に加えて、前記制御手段は前記噴霧手段を前記伝熱管に対して回転させることを特徴とする。  The desalination apparatus according to claim 2 is characterized in that, in addition to the characteristics of the desalination apparatus according to claim 1, the control means rotates the spray means with respect to the heat transfer tube.

請求項3に記載の淡水化装置は、上述した請求項1の淡水化装置の特徴に加えて、前記排水手段は前記未蒸発原水の少なくとも一部を前記原水供給手段に送水する送水手段を有してもよい。  According to a third aspect of the present invention, in addition to the characteristics of the first desalination apparatus of the first aspect, the drainage means has water supply means for supplying at least a part of the unevaporated raw water to the raw water supply means. May be.

請求項4に記載の淡水化装置は、上述した請求項1の淡水化装置の特徴に加えて、前記凝縮部はエゼクタとポンプと前記淡水回収部を有することを特徴とする。  The desalination apparatus according to claim 4 is characterized in that, in addition to the characteristics of the desalination apparatus according to claim 1, the condensing unit includes an ejector, a pump, and the fresh water recovery unit.

請求項1に記載の淡水化装置によれば、伝熱管を蒸発器用容器内壁面と離間させることにより、伝熱管のエネルギーが蒸発器用容器に伝播しなくなるため、放熱による熱損失を抑制できる。また、蒸発器容器内壁面を伝って下降する未蒸発原水は伝熱管と熱交換せずに下降するため、熱移動を避けることができる。さらに、未蒸発原水の熱移動が少なくなるため、エネルギー効率の低下を抑制できる。  According to the desalination apparatus of the first aspect, by separating the heat transfer tube from the inner wall surface of the evaporator container, energy of the heat transfer tube does not propagate to the evaporator container, so that heat loss due to heat radiation can be suppressed. Moreover, since the un-evaporated raw water that descends along the inner wall surface of the evaporator container descends without exchanging heat with the heat transfer tubes, heat transfer can be avoided. Furthermore, since the heat transfer of non-evaporated raw water is reduced, a decrease in energy efficiency can be suppressed.

また、伝熱管に対して乾燥する時間を設けて、間欠的または周期的に原水を噴霧することにより、局所的に伝熱管と原水の熱交換効率が上昇するため、エネルギーの多くを蒸発潜熱として利用することが可能である。効率良くエネルギーを蒸発に利用できるため、太陽熱や低温排熱等のエネルギー密度の低い熱源に対して特に有効である。  In addition, by providing the drying time for the heat transfer tubes and spraying the raw water intermittently or periodically, the heat exchange efficiency of the heat transfer tubes and the raw water increases locally, so much of the energy is converted into latent heat of evaporation. It is possible to use. Since energy can be efficiently used for evaporation, it is particularly effective for heat sources with low energy density such as solar heat and low-temperature exhaust heat.

さらに、伝熱管は蒸発器用容器内壁面に沿って複数回周回しながら垂直方向に伸長することにより、伝熱管が噴霧される原水に対して面状に設置されるため、構造を簡略化でき、メンテナンスが容易になる。  Furthermore, the heat transfer tube is installed in a plane with respect to the raw water to be sprayed by extending in the vertical direction while circling a plurality of times along the inner wall surface of the evaporator container, so that the structure can be simplified. Maintenance becomes easy.

請求項2に記載の淡水化装置によれば、制御手段は噴霧手段を伝熱管に対して回転させることにより、上述した請求項1の効果に加え、所定の方向でしか原水を噴霧できない噴霧手段であっても伝熱管の全周に亘って周期的に噴霧させることが可能になり、噴霧手段の構造を簡略化できる。  According to the desalination apparatus according to claim 2, in addition to the effect of claim 1 described above, the spraying means that can spray the raw water only in a predetermined direction by rotating the spraying means with respect to the heat transfer tube. Even so, it is possible to spray periodically over the entire circumference of the heat transfer tube, and the structure of the spraying means can be simplified.

また、制御手段は噴霧手段を伝熱管に対して回転させ、伝熱管の一部に噴霧する場合は、乾燥した伝熱管に原水を連続的に噴霧できるため、高いエネルギー効率を維持しながら原水を蒸発させることができる。  Also, when the spraying means rotates the spraying means relative to the heat transfer tube and sprays on a part of the heat transfer tube, the raw water can be sprayed continuously on the dried heat transfer tube, so that the raw water is kept while maintaining high energy efficiency. Can be evaporated.

請求項3に記載の淡水化装置によれば、排水手段は未蒸発原水を原水供給手段に送水するための送水手段を有することにより、上述した請求項1の効果に加え、未蒸発原水を複数回蒸発させることができ、排水の濃度制御が可能になる。  According to the desalination apparatus of the third aspect, the drainage means has the water supply means for sending the non-evaporated raw water to the raw water supply means. It can be evaporated once and the concentration of waste water can be controlled.

請求項4に記載の淡水化装置によれば、凝縮部はエゼクタとポンプと淡水回収部を有することにより、上述した請求項1の効果に加え、減圧と水蒸気の吸引を同時に行い、エゼクタ通過後の圧力差によって水蒸気を凝縮できる。  According to the desalination apparatus of claim 4, the condensing part has an ejector, a pump, and a fresh water recovery part, so that in addition to the effect of claim 1 described above, the condensing part simultaneously performs decompression and suction of water vapor, and after passing through the ejector. Water vapor can be condensed by the pressure difference.

本発明の実施形態1に係る淡水化装置を示す構成図である。It is a block diagram which shows the desalination apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る淡水化装置の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the desalination apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る淡水化装置の蒸発器を鉛直上から見た構成図である。It is the block diagram which looked at the evaporator of the desalination apparatus which concerns on Embodiment 1 of this invention from the perpendicular | vertical upper direction. 本発明の実施形態1に係る淡水化装置の蒸発器における動作を鉛直上から見た説明図である。It is explanatory drawing which looked at the operation | movement in the evaporator of the desalination apparatus which concerns on Embodiment 1 of this invention from the top. 本発明の実施形態2に係る淡水化装置を示す構成図である。It is a block diagram which shows the desalination apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る淡水化装置の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the desalination apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る淡水化装置の蒸発器を鉛直上から見た構成図である。It is the block diagram which looked at the evaporator of the desalination apparatus which concerns on Embodiment 2 of this invention from the perpendicular | vertical upper direction. 本発明の実施形態2に係る淡水化装置の蒸発器における動作を鉛直上から見た説明図である。It is explanatory drawing which looked at the operation | movement in the evaporator of the desalination apparatus which concerns on Embodiment 2 of this invention from the top. 本発明の実施形態3に係る淡水化装置を示す構成図である。It is a block diagram which shows the desalination apparatus which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係る淡水化装置の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the desalination apparatus which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る淡水化装置を示す構成図である。It is a block diagram which shows the desalination apparatus which concerns on Embodiment 4 of this invention. 本発明の実施形態4に係る淡水化装置の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the desalination apparatus which concerns on Embodiment 4 of this invention.

以下、本発明の実施形態を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の実施形態1を図1、図2、図3および図4に基づいて説明する。図1は本発明の実施形態1に係る淡水化装置1を示す構成図である。図2は本発明の実施形態1に係る淡水化装置1の動作を示す説明図である。図3は本発明の実施形態1に係る淡水化装置1の蒸発器3を鉛直上から見た構成図である。図4は本発明の実施形態1に係る淡水化装置1の蒸発器3における動作を鉛直上から見た説明図である。  A first embodiment of the present invention will be described with reference to FIG. 1, FIG. 2, FIG. 3, and FIG. FIG. 1 is a configuration diagram showing a desalination apparatus 1 according to Embodiment 1 of the present invention. FIG. 2 is an explanatory view showing the operation of the desalination apparatus 1 according to Embodiment 1 of the present invention. FIG. 3 is a configuration diagram of the evaporator 3 of the desalination apparatus 1 according to Embodiment 1 of the present invention as viewed from above. FIG. 4 is an explanatory view of the operation of the evaporator 3 of the desalination apparatus 1 according to Embodiment 1 of the present invention as viewed from above.

本発明の実施形態1の淡水化装置1は、熱源2と、蒸発器3と、制御手段8と、原水供給手段9と、排水手段10と、気液分離器11と、凝縮部12と、淡水回収部13から構成される。  A desalination apparatus 1 according to Embodiment 1 of the present invention includes a heat source 2, an evaporator 3, a control unit 8, a raw water supply unit 9, a drainage unit 10, a gas-liquid separator 11, a condensing unit 12, The fresh water collection unit 13 is configured.

蒸発器3は、伝熱管5と噴霧手段6を内蔵する円筒形の蒸発器用容器4から構成される。伝熱管5は単管であり、蒸発器用容器4の内壁面と離間しつつ蒸発器用容器4の内壁面に沿って複数回周回しながら垂直方向に伸長して設置されている。伝熱管5には金属等の熱伝導率が高い材質を用いることが望ましい。噴霧手段6は、一例として一流体スプレーノズル群7が鉛直上からみて蒸発器用容器4の中心に設置している。一流体スプレーノズル群7はそれぞれの噴霧角度が90°の一流体スプレーノズル7a、一流体スプレーノズル7b、一流体スプレーノズル7c、一流体スプレーノズル7dが鉛直上から見てそれぞれ90°の角度で設置されている。  The evaporator 3 is composed of a cylindrical evaporator container 4 in which a heat transfer tube 5 and a spray means 6 are built. The heat transfer tube 5 is a single tube, and is installed to extend in the vertical direction while rotating around the inner wall surface of the evaporator container 4 while making a plurality of turns while being separated from the inner wall surface of the evaporator container 4. It is desirable to use a material having high thermal conductivity such as metal for the heat transfer tube 5. As an example, the spray means 6 has a one-fluid spray nozzle group 7 installed at the center of the evaporator container 4 as viewed from above. The one-fluid spray nozzle group 7 has a spray angle of 90 °, and each of the one-fluid spray nozzle 7a, the one-fluid spray nozzle 7b, the one-fluid spray nozzle 7c, and the one-fluid spray nozzle 7d has an angle of 90 ° when viewed from above. is set up.

一流体スプレーノズル群7、制御手段8、原水供給手段9は接続されている。蒸発器3内の未蒸発原水24を排出する排水手段10が蒸発器3の外部に存在する。また、蒸発器3、凝縮部12、淡水回収部13は接続されている。凝縮部12には図示しないフィン型熱交換器が内蔵されている。  The one-fluid spray nozzle group 7, the control means 8, and the raw water supply means 9 are connected. The drainage means 10 for discharging the unevaporated raw water 24 in the evaporator 3 exists outside the evaporator 3. Moreover, the evaporator 3, the condensation part 12, and the fresh water collection | recovery part 13 are connected. The condensing unit 12 includes a fin heat exchanger (not shown).

まず、原水22は原水供給手段9によって一流体スプレーノズル群7に送水され、制御手段8によって一流体スプレーノズル7aのみで原水22を伝熱管5に噴霧させる。その後、制御手段8は一流体スプレーノズル7bのみが原水22を噴霧するように制御する。同様に一流体スプレーノズル7c、一流体スプレーノズル7dの順に伝熱管5に原水22を噴霧させる。一流体スプレーノズル7aの噴霧面に対応する伝熱管5の部面は、一流体スプレーノズル7b、一流体スプレーノズル7cおよび一流体スプレーノズル7dが噴霧している間に乾燥する。再度一流体スプレーノズル7aを乾燥した伝熱管5に噴霧する。以上のことを繰り返すことにより、乾燥した伝熱管5と原水22を周期的に接触させる。伝熱管5には熱源2のエネルギーを受けた熱媒21が流れており、熱媒21は伝熱管5を介して原水22と熱交換後排出される。伝熱管5と接触した原水22は蒸発し水蒸気23が発生する。  First, the raw water 22 is fed to the one-fluid spray nozzle group 7 by the raw water supply means 9, and the raw water 22 is sprayed onto the heat transfer tube 5 by the control means 8 using only the one-fluid spray nozzle 7 a. Thereafter, the control means 8 controls so that only the one-fluid spray nozzle 7b sprays the raw water 22. Similarly, the raw water 22 is sprayed onto the heat transfer tube 5 in the order of the one-fluid spray nozzle 7c and the one-fluid spray nozzle 7d. The surface of the heat transfer tube 5 corresponding to the spray surface of the one-fluid spray nozzle 7a is dried while the one-fluid spray nozzle 7b, the one-fluid spray nozzle 7c and the one-fluid spray nozzle 7d are spraying. The one-fluid spray nozzle 7a is again sprayed onto the dried heat transfer tube 5. By repeating the above, the dried heat transfer tube 5 and the raw water 22 are periodically contacted. A heat medium 21 that receives the energy of the heat source 2 flows through the heat transfer tube 5, and the heat medium 21 is discharged through the heat transfer tube 5 after exchanging heat with the raw water 22. The raw water 22 in contact with the heat transfer tube 5 evaporates to generate water vapor 23.

蒸発器3で発生した水蒸気23は気液分離器11を通過して水蒸気23を含む気体のみが凝縮部12へ到達する。凝縮部12に到達した水蒸気23は凝縮し淡水26となり淡水回収部13で回収される。回収した淡水26は貯留されるか、図示しない取水手段によって淡水回収部13から取水される。また蒸発器3内で蒸発しなかった原水22は未蒸発原水24となり排水手段10によって排水25として排出される。  The water vapor 23 generated in the evaporator 3 passes through the gas-liquid separator 11 and only the gas containing the water vapor 23 reaches the condensing unit 12. The water vapor 23 that has reached the condensing unit 12 is condensed to become fresh water 26, which is collected by the fresh water collecting unit 13. The collected fresh water 26 is stored or taken from the fresh water collection unit 13 by a water intake means (not shown). The raw water 22 that has not evaporated in the evaporator 3 becomes non-evaporated raw water 24 and is discharged as drainage 25 by the drainage means 10.

制御手段8は、熱源2のエネルギー量を増加させた場合、一流体スプレーノズル群7の噴霧周期と原水22の噴霧流量から1つ以上を上昇させ、熱源2のエネルギー量を減少させた場合、一流体スプレーノズル群7の噴霧周期と原水22の噴霧流量から1つ以上を減少させる。  When the control unit 8 increases the energy amount of the heat source 2, when the energy amount of the heat source 2 is decreased by increasing one or more from the spray cycle of the one-fluid spray nozzle group 7 and the spray flow rate of the raw water 22, One or more are reduced from the spray cycle of the one-fluid spray nozzle group 7 and the spray flow rate of the raw water 22.

伝熱管5は蒸発器用容器4の内壁面と離間して設置されているため、蒸発器用容器4への熱移動を避けることができ、熱移動による熱損失を抑制できる。また、蒸発器用容器4の内壁面を伝って下降する未蒸発原水24は、伝熱管5と接触せずに下降するため、未蒸発原水24に対する熱移動を避けることができる。  Since the heat transfer tube 5 is disposed away from the inner wall surface of the evaporator container 4, heat transfer to the evaporator container 4 can be avoided, and heat loss due to heat transfer can be suppressed. Moreover, since the non-evaporated raw water 24 that descends along the inner wall surface of the evaporator container 4 falls without contacting the heat transfer pipe 5, it is possible to avoid heat transfer to the non-evaporated raw water 24.

さらに、伝熱管5は円筒形の蒸発器用容器4に沿って複数回周回させることにより、一流体スプレーノズル群7から噴霧される原水22に対して面状に設置されるため、必要な伝熱面積を確保したうえで構造を簡略化できる。伝熱管5が一流体スプレーノズル群7から噴霧される原水22に対して面状に設置されることで、伝熱管5の周辺にメンテナンスを行う空間が確保できる。伝熱管5が簡略化された構造で、かつメンテナンスを行う空間を確保しているため、スケール除去や交換等のメンテナンスを容易にできる。  Furthermore, since the heat transfer tube 5 is installed in a plane with respect to the raw water 22 sprayed from the one-fluid spray nozzle group 7 by rotating around the cylindrical evaporator container 4 a plurality of times, the necessary heat transfer is performed. The structure can be simplified after securing the area. By installing the heat transfer tube 5 in a planar shape with respect to the raw water 22 sprayed from the one-fluid spray nozzle group 7, a space for maintenance can be secured around the heat transfer tube 5. Since the heat transfer tube 5 has a simplified structure and a space for maintenance is secured, maintenance such as scale removal and replacement can be facilitated.

伝熱管5は一流体スプレーノズル群7による高圧洗浄が可能であり、伝熱管5へのスケールの付着を抑制できる。  The heat transfer tube 5 can be washed at a high pressure by the one-fluid spray nozzle group 7, and scale adhesion to the heat transfer tube 5 can be suppressed.

伝熱管5に対し周期的に原水22を噴霧することにより、原水22は乾燥した伝熱管5に接触するため、局所的に伝熱管5との熱交換効率が上昇する。これにより、エネルギーの多くを蒸発潜熱として利用することが可能である。効果的にエネルギーを蒸発に利用できるため、太陽熱や低温排熱等のエネルギー密度の低い熱源2に対して特に有効である。  By periodically spraying the raw water 22 on the heat transfer tube 5, the raw water 22 comes into contact with the dried heat transfer tube 5, so that the heat exchange efficiency with the heat transfer tube 5 locally increases. Thereby, much of the energy can be used as latent heat of vaporization. Since energy can be effectively used for evaporation, it is particularly effective for the heat source 2 having a low energy density such as solar heat and low-temperature exhaust heat.

効果的にエネルギーを蒸発に利用できることに加え、未蒸発原水24に対する熱移動を抑制できるため、供給される原水22の蒸発割合が少なくとも高いエネルギー効率を維持できる。原水22の蒸発割合が少なく、未蒸発原水24の濃度上昇を抑えて排出することにより、海水淡水化装置において濃縮水の処理を不要とすることができる。  In addition to being able to effectively use energy for evaporation, heat transfer to the non-evaporated raw water 24 can be suppressed, so that at least a high evaporation efficiency of the supplied raw water 22 can be maintained. Since the evaporation rate of the raw water 22 is small and the concentration of the non-evaporated raw water 24 is suppressed and discharged, the treatment of the concentrated water can be made unnecessary in the seawater desalination apparatus.

一流体スプレーノズル群7は、伝熱管5の全周に噴霧可能となるよう一流体スプレーノズルを複数設置すれば、一流体スプレーノズルの噴霧角度によらず同様の効果を得ることが可能である。さらに、噴霧手段6は一流体スプレーノズルのほか、二流体スプレーノズル、遠心アトマイザー、静電アトマイザー、超音波アトマイザー、音響アトマイザーが利用できる。二流体スプレーノズルを使用する場合、凝縮部12に排気手段を設置し、導入される気体を排出する。遠心アトマイザー等で伝熱管5の全周を同時に噴霧させる場合、制御手段8は伝熱管5が乾燥する時間を設けて間欠的に原水22を噴霧させる。  If the one-fluid spray nozzle group 7 is provided with a plurality of one-fluid spray nozzles so that spraying is possible on the entire circumference of the heat transfer tube 5, the same effect can be obtained regardless of the spray angle of the one-fluid spray nozzle. . Further, as the spraying means 6, in addition to the one-fluid spray nozzle, a two-fluid spray nozzle, a centrifugal atomizer, an electrostatic atomizer, an ultrasonic atomizer, and an acoustic atomizer can be used. When using a two-fluid spray nozzle, an exhaust means is installed in the condensing part 12 and the introduced gas is discharged. When spraying the entire circumference of the heat transfer tube 5 simultaneously with a centrifugal atomizer or the like, the control means 8 provides time for the heat transfer tube 5 to dry and sprays the raw water 22 intermittently.

凝縮部12の内部には、フィン型熱交換器のほか、管形熱交換器、プレート型熱交換器が使用できる。  In addition to the fin-type heat exchanger, a tube-type heat exchanger and a plate-type heat exchanger can be used inside the condensing unit 12.

また、蒸発器用容器4通過後の伝熱管5と熱源2の間に熱媒21を循環させる図示しない配管を設置し、熱媒21を熱源2と循環させてもよい。さらに、蒸発器3と凝縮部12を図示しないダクトで連結し凝縮部12で凝縮しなかった水蒸気23を蒸発器3と循環させてもよい。  Further, a pipe (not shown) for circulating the heat medium 21 between the heat transfer tube 5 and the heat source 2 after passing through the evaporator container 4 may be installed, and the heat medium 21 may be circulated with the heat source 2. Further, the evaporator 3 and the condenser 12 may be connected by a duct (not shown), and the water vapor 23 that has not been condensed in the condenser 12 may be circulated with the evaporator 3.

次に、本発明の実施形態2を図5、図6、図7および図8に基づいて説明する。
図5は本発明の実施形態2に係る淡水化装置1を示す構成図である。図6は本発明の実施形態2に係る淡水化装置1の動作を示す説明図である。図7は本発明の実施形態2に係る淡水化装置1の蒸発器3を鉛直上から見た構成図である。図8は本発明の実施形態2に係る淡水化装置1の蒸発器3における動作を鉛直上から見た説明図である。実施形態1と同一部分は同一番号を付し、詳細な説明は省略する。噴霧手段14は噴霧角度が60°の一流体スプレーノズル15を使用し、制御手段16は一流体スプレーノズル15を伝熱管5に対し一流体スプレーノズル回転方向27に回転させる構成となっている。
Next, a second embodiment of the present invention will be described with reference to FIGS. 5, 6, 7 and 8. FIG.
FIG. 5 is a configuration diagram showing a desalination apparatus 1 according to Embodiment 2 of the present invention. FIG. 6 is an explanatory view showing the operation of the desalination apparatus 1 according to Embodiment 2 of the present invention. FIG. 7 is a configuration diagram of the evaporator 3 of the desalination apparatus 1 according to Embodiment 2 of the present invention as viewed from above. FIG. 8 is an explanatory view of the operation of the evaporator 3 of the desalination apparatus 1 according to Embodiment 2 of the present invention as viewed from above. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The spraying means 14 uses a one-fluid spray nozzle 15 having a spray angle of 60 °, and the control means 16 is configured to rotate the one-fluid spray nozzle 15 in the one-fluid spray nozzle rotating direction 27 with respect to the heat transfer tube 5.

原水22は原水タンク9に貯留され、原水供給手段9によって一流体スプレーノズル15に送水される。制御手段16は一流体スプレーノズル15を伝熱管5の噴霧面が乾燥する時間を設けて一流体スプレーノズル回転方向27に回転させる。一流体スプレーノズル15が回転することにより伝熱管5の一部と原水22が周期的に接触する。伝熱管5には熱源2のエネルギーを受けた熱媒21が流れており、熱媒21は伝熱管5を介して原水22と熱交換後排出される。伝熱管5と接触した原水22は蒸発し水蒸気23が発生する。  The raw water 22 is stored in the raw water tank 9 and fed to the one-fluid spray nozzle 15 by the raw water supply means 9. The control means 16 rotates the one-fluid spray nozzle 15 in the one-fluid spray nozzle rotation direction 27 by providing time for the spray surface of the heat transfer tube 5 to dry. As the one-fluid spray nozzle 15 rotates, a part of the heat transfer tube 5 and the raw water 22 periodically contact each other. A heat medium 21 that receives the energy of the heat source 2 flows through the heat transfer tube 5, and the heat medium 21 is discharged through the heat transfer tube 5 after exchanging heat with the raw water 22. The raw water 22 in contact with the heat transfer tube 5 evaporates to generate water vapor 23.

蒸発器3で発生した水蒸気23は実施形態1と同様の手段によって凝縮し淡水26となり、未蒸発原水24は実施形態1と同様の手段によって蒸発器3から排出される。  The water vapor 23 generated in the evaporator 3 is condensed by the same means as in the first embodiment to become fresh water 26, and the unevaporated raw water 24 is discharged from the evaporator 3 by the same means as in the first embodiment.

制御手段16は、熱源2のエネルギー量を増加させた場合、一流体スプレーノズル15の回転速度と原水22の噴霧流量から1つ以上を上昇させ、熱源2のエネルギー量を減少させた場合、一流体スプレーノズル15の回転速度と原水22の噴霧流量から1つ以上を減少させる。  When the energy amount of the heat source 2 is increased, the control means 16 increases one or more from the rotational speed of the one-fluid spray nozzle 15 and the spray flow rate of the raw water 22, and decreases the energy amount of the heat source 2. One or more is reduced from the rotational speed of the fluid spray nozzle 15 and the spray flow rate of the raw water 22.

一流体スプレーノズル15を回転させて伝熱管5に対し原水22を周期的に噴霧することで、噴霧手段14は実施形態1の噴霧手段6と比較して構造を簡略化できる。噴霧手段14を簡略化することにより淡水化装置1のコストダウンが見込める。さらに、原水22は乾燥した伝熱管5に連続的に接触するため、伝熱管5は常に高い熱交換効率で原水22と接触する。これにより、高いエネルギー効率を維持しながら原水22を蒸発させることが可能となる。  By rotating the one-fluid spray nozzle 15 and periodically spraying the raw water 22 onto the heat transfer tube 5, the structure of the spraying means 14 can be simplified as compared with the spraying means 6 of the first embodiment. The cost reduction of the desalination apparatus 1 can be anticipated by simplifying the spraying means 14. Furthermore, since the raw water 22 is continuously in contact with the dried heat transfer tube 5, the heat transfer tube 5 is always in contact with the raw water 22 with high heat exchange efficiency. Thereby, it becomes possible to evaporate the raw water 22 while maintaining high energy efficiency.

一例として、貯留した500mLの水を600Wの熱源で蒸発させた場合においては熱源のエネルギーの27%を蒸発に利用したのに対し、熱源のエネルギー量を2.2kW、原水の噴霧流量を8L/h、噴霧手段の回転速度を1rpmで本発明の実施形態2に係る蒸発方法を行った場合、蒸発量は3L/hとなり、熱源の84%のエネルギーを蒸発に利用できた。このことから、乾燥した伝熱管5に原水22を噴霧することにより効果的にエネルギーを蒸発に利用していることがわかる。  As an example, when 500 mL of stored water was evaporated with a 600 W heat source, 27% of the energy of the heat source was used for evaporation, whereas the energy amount of the heat source was 2.2 kW, and the spray flow rate of raw water was 8 L / h, When the evaporation method according to Embodiment 2 of the present invention was performed at a rotation speed of the spraying means of 1 rpm, the evaporation amount was 3 L / h, and 84% of the energy of the heat source could be used for evaporation. From this, it is understood that energy is effectively utilized for evaporation by spraying the raw water 22 onto the dried heat transfer tube 5.

一流体スプレーノズル15の噴霧角度は、伝熱管5が原水22を蒸発させる伝熱面積を確保できる角度であれば60°でなくてよい。さらに、噴霧手段14は、伝熱管5の一部に対し原水22を噴霧する手段であれば一流体スプレーノズルでなくともよい。  The spray angle of the one-fluid spray nozzle 15 may not be 60 ° as long as the heat transfer tube 5 can secure a heat transfer area for evaporating the raw water 22. Furthermore, the spraying means 14 may not be a one-fluid spray nozzle as long as it is a means for spraying the raw water 22 onto a part of the heat transfer tube 5.

次に、本発明の実施形態3を図9および図10に基づいて説明する。図9は本発明の実施形態3に係る淡水化装置1を示す構成図である。図10は本発明の実施形態3に係る淡水化装置1の動作を示す説明図である。実施形態1および実施形態2と同一部分は同一番号を付し、詳細な説明は省略する。原水供給手段9と排水手段10を連結した送水手段17を設置している。  Next, Embodiment 3 of the present invention will be described with reference to FIGS. FIG. 9 is a configuration diagram showing a desalination apparatus 1 according to Embodiment 3 of the present invention. FIG. 10 is an explanatory view showing the operation of the desalination apparatus 1 according to Embodiment 3 of the present invention. The same parts as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted. The water supply means 17 which connected the raw | natural water supply means 9 and the drainage means 10 is installed.

原水22は実施形態2と同様の手段によって蒸発し、水蒸気23は実施形態2と同様の手段によって淡水26となる。未蒸発原水24の一部は排水手段10から送水手段17を通過して原水供給手段9によって一流体スプレーノズル15に送水される。送水手段17を通過しない未蒸発原水24は排水25となり排出される。  The raw water 22 evaporates by the same means as in the second embodiment, and the water vapor 23 becomes fresh water 26 by the same means as in the second embodiment. Part of the unevaporated raw water 24 passes through the water supply means 17 from the drainage means 10 and is supplied to the one-fluid spray nozzle 15 by the raw water supply means 9. Unevaporated raw water 24 that does not pass through the water supply means 17 is discharged as drainage 25.

未蒸発原水24の一部を原水22と混合して循環する場合には、次式において排水濃度を近似することができる。

Figure 2015077584
ここで、C(t)は時間tにおける排水濃度(g/mL)、Cは原水濃度(g/mL)、Minは原水流量(L/min)、Mexは排水流量(L/min)、Vは装置内液量(L)、tは装置駆動時間(min)を示す。(1)式を用いて排水濃度を算出することにより、排水25の濃度を制御して排出できる。When a part of the unevaporated raw water 24 is mixed with the raw water 22 and circulated, the concentration of waste water can be approximated by the following equation.
Figure 2015077584
Here, C (t) is the waste water concentration (g / mL) at time t, C 0 is the raw water concentration (g / mL), Min is the raw water flow rate (L / min), Mex is the waste water flow rate (L / min), V represents the amount of liquid in the apparatus (L), and t represents the apparatus driving time (min). By calculating the wastewater concentration using the equation (1), the concentration of the wastewater 25 can be controlled and discharged.

また、未蒸発原水24のすべてを原水供給手段9に送水することで、さらに高濃度に濃縮することが可能となる。これにより、汚水処理や排水処理で高濃度の濃縮水とする場合や海水から塩分を抽出する場合に応用可能になる。  Further, by sending all of the unevaporated raw water 24 to the raw water supply means 9, it becomes possible to concentrate it to a higher concentration. Thereby, it becomes possible to apply it to the case where high-concentration concentrated water is obtained by sewage treatment or wastewater treatment, or when salt is extracted from seawater.

次に、本発明の実施形態4を図11および図12に基づいて説明する。図11は本発明の実施形態4に係る淡水化装置1を示す構成図である。図12は本発明の実施形態4に係る淡水化装置1の動作を示す説明図である。実施形態1、実施形態2および実施形態3と同一部分は同一番号を付し、詳細な説明は省略する。凝縮部12の代わりにエゼクタ18およびエゼクタ18を作動させるための循環ポンプ19が設置され、循環水28が貯留された淡水回収部13に接続している。  Next, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 11: is a block diagram which shows the desalination apparatus 1 which concerns on Embodiment 4 of this invention. FIG. 12 is an explanatory diagram showing the operation of the desalination apparatus 1 according to Embodiment 4 of the present invention. The same parts as those of the first embodiment, the second embodiment, and the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. Instead of the condensing unit 12, an ejector 18 and a circulation pump 19 for operating the ejector 18 are installed and connected to the fresh water collecting unit 13 in which the circulating water 28 is stored.

原水22は実施形態2および実施形態3と同様の手段によって蒸発し、未蒸発原水24は実施形態3と同様に循環または排水25となり排出される。循環ポンプ19は淡水回収部13内の循環水28をエゼクタ18と淡水回収部13の間で循環させる。蒸発器3で発生した水蒸気23は気液分離器11を通過し、エゼクタ18に吸引される。エゼクタ18に吸引された水蒸気23はエゼクタ18通過後の圧力差により凝縮する。さらに、循環水28の温度が水蒸気23の温度より低い場合、循環水28で冷却され凝縮する。凝縮した水蒸気23は循環水28と混合し、淡水26となる。淡水26は淡水回収部13に貯留されるか、図示しない取水手段により淡水回収部から取水される。その後、淡水回収部13に貯留された淡水26の一部は循環水28となり、循環ポンプ19でエゼクタに送水される。エゼクタ18、循環ポンプ19、循環水28および淡水回収部13により水蒸気23の吸引および凝縮、淡水26の回収のほか、淡水化装置1内の真空発生と真空度の維持がなされる。  The raw water 22 is evaporated by the same means as in the second and third embodiments, and the unevaporated raw water 24 is circulated or drained 25 and discharged as in the third embodiment. The circulation pump 19 circulates the circulating water 28 in the fresh water recovery unit 13 between the ejector 18 and the fresh water recovery unit 13. The water vapor 23 generated in the evaporator 3 passes through the gas-liquid separator 11 and is sucked into the ejector 18. The water vapor 23 sucked into the ejector 18 is condensed by the pressure difference after passing through the ejector 18. Further, when the temperature of the circulating water 28 is lower than the temperature of the water vapor 23, the circulating water 28 cools and condenses. The condensed water vapor 23 is mixed with the circulating water 28 to become fresh water 26. The fresh water 26 is stored in the fresh water recovery unit 13 or is taken from the fresh water recovery unit by a water intake means (not shown). Thereafter, a part of the fresh water 26 stored in the fresh water recovery unit 13 becomes the circulating water 28 and is sent to the ejector by the circulation pump 19. The ejector 18, the circulation pump 19, the circulating water 28 and the fresh water recovery unit 13 suck and condense the water vapor 23, recover the fresh water 26, and generate a vacuum in the desalination apparatus 1 and maintain the degree of vacuum.

エゼクタ18、循環ポンプ19、循環水28および淡水回収部13で真空発生、水蒸気の吸引、凝縮および淡水回収を同時に行うことができる。また、蒸発器3で発生した水蒸気23はエゼクタ18で吸引されるため、蒸発器3内に蒸気溜まりが起こらない。これにより、蒸気溜まりによるエネルギー効率の低下を抑制できる。  The ejector 18, the circulation pump 19, the circulating water 28 and the fresh water recovery unit 13 can simultaneously perform vacuum generation, water vapor suction, condensation and fresh water recovery. Further, since the water vapor 23 generated in the evaporator 3 is sucked by the ejector 18, no vapor accumulation occurs in the evaporator 3. Thereby, the fall of the energy efficiency by a vapor | steam accumulation can be suppressed.

また、循環水28は原水22と図示しない熱交換器を用いて冷却することで、エゼクタ18の吸気能力減少による真空度の低下を抑制することができる。  Further, the circulating water 28 is cooled by using the raw water 22 and a heat exchanger (not shown), so that it is possible to suppress a decrease in the degree of vacuum due to a decrease in the intake capacity of the ejector 18.

循環水28は得られた淡水26の使用目的を阻害しない組成であればよく、循環水28の希釈量および原水22の組成によっては原水22を選択することも可能である。  The circulating water 28 only needs to have a composition that does not hinder the intended use of the obtained fresh water 26, and the raw water 22 can be selected depending on the dilution amount of the circulating water 28 and the composition of the raw water 22.

1 淡水化装置
2 熱源
3 蒸発器
4 蒸発器容器
5 伝熱管
6 噴霧手段
7 一流体スプレーノズル群
7a〜7d 一流体スプレーノズル
8 制御手段
9 原水供給手段
10 排水手段
11 気液分離器
12 凝縮部
13 淡水回収部
14 噴霧手段
15 一流体スプレーノズル
16 制御手段
17 送水手段
18 エゼクタ
19 循環ポンプ
21 熱媒
22 原水
23 水蒸気
24 未蒸発原水
25 排水
26 淡水
27 噴霧手段回転方向
28 循環水
DESCRIPTION OF SYMBOLS 1 Desalination apparatus 2 Heat source 3 Evaporator 4 Evaporator container 5 Heat transfer tube 6 Spray means 7 One-fluid spray nozzle group 7a-7d One-fluid spray nozzle 8 Control means 9 Raw water supply means 10 Drain means 11 Gas-liquid separator 12 Condensing part 13 Fresh water recovery unit 14 Spraying means 15 One-fluid spray nozzle 16 Control means 17 Water supply means 18 Ejector 19 Circulating pump 21 Heat medium 22 Raw water 23 Steam 24 Unvaporized raw water 25 Drainage 26 Fresh water 27 Spraying means rotation direction 28 Circulating water

Claims (4)

熱源と、
蒸発器用容器と、前記蒸発器用容器内に設置され、前記蒸発器用容器の内壁面と離間しつつ前記内壁面に沿って複数回周回しながら垂直方向に伸長して配置されるとともに、前記熱源よりエネルギーを受けて高温化された熱媒が流れる伝熱管と、原水を前記伝熱管に噴霧する噴霧手段と、を有する蒸発器と、
前記原水を前記噴霧手段に供給する原水供給手段と、
前記噴霧手段が前記伝熱管に対して乾燥する時間を設けて、間欠的または周期的に噴霧させる制御手段と、
前記蒸発器内の未蒸発原水を排水する排水手段と、
前記蒸発器で発生した水蒸気と前記未蒸発原水を分離する気液分離器と、
前記気液分離器を通過した前記水蒸気を凝縮させる凝縮部と、
前記凝縮部で凝縮した淡水を回収する淡水回収部と、
を有することを特徴とした淡水化装置。
A heat source,
An evaporator container and an evaporator container are disposed in the evaporator container, and are arranged to extend in the vertical direction while rotating around the inner wall surface while being spaced apart from the inner wall surface of the evaporator container. An evaporator having a heat transfer pipe through which a heat medium heated to receive energy flows, and spraying means for spraying raw water onto the heat transfer pipe;
Raw water supply means for supplying the raw water to the spray means;
Control means for spraying intermittently or periodically by providing a time for the spraying means to dry the heat transfer tube;
Drainage means for draining unevaporated raw water in the evaporator;
A gas-liquid separator that separates the water vapor generated in the evaporator and the unevaporated raw water;
A condensing part for condensing the water vapor that has passed through the gas-liquid separator;
A fresh water recovery unit for recovering fresh water condensed in the condensing unit;
The desalination apparatus characterized by having.
前記制御手段は前記噴霧手段を前記伝熱管に対して回転させることを特徴とした請求項1に記載の淡水化装置。  The desalination apparatus according to claim 1, wherein the control means rotates the spray means with respect to the heat transfer tube. 前記排水手段は前記未蒸発原水の少なくとも一部を前記原水供給手段に送水する送水手段を有することを特徴とした請求項1または2のいずれかに記載の淡水化装置。  3. The desalination apparatus according to claim 1, wherein the drainage unit includes a water supply unit configured to supply at least a part of the unevaporated raw water to the raw water supply unit. 前記凝縮部はエゼクタとポンプと前記淡水回収部を有することを特徴とした請求項1乃至3のいずれかに記載の淡水化装置。  The desalination apparatus according to any one of claims 1 to 3, wherein the condensing unit includes an ejector, a pump, and the fresh water recovery unit.
JP2013225947A 2013-10-15 2013-10-15 Desalination plant Pending JP2015077584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013225947A JP2015077584A (en) 2013-10-15 2013-10-15 Desalination plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013225947A JP2015077584A (en) 2013-10-15 2013-10-15 Desalination plant

Publications (1)

Publication Number Publication Date
JP2015077584A true JP2015077584A (en) 2015-04-23

Family

ID=53009525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013225947A Pending JP2015077584A (en) 2013-10-15 2013-10-15 Desalination plant

Country Status (1)

Country Link
JP (1) JP2015077584A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108101135A (en) * 2018-03-06 2018-06-01 晋江纳创新环境技术有限公司 Solar energy is atomized desalination plant
WO2018151308A1 (en) * 2017-02-20 2018-08-23 大日本印刷株式会社 Gasifying device for sterilization agent and method for cleaning gasifying device for sterilization agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151308A1 (en) * 2017-02-20 2018-08-23 大日本印刷株式会社 Gasifying device for sterilization agent and method for cleaning gasifying device for sterilization agent
JPWO2018151308A1 (en) * 2017-02-20 2019-11-07 大日本印刷株式会社 Disinfectant gasifier and cleaning method for disinfectant gasifier
US11305029B2 (en) 2017-02-20 2022-04-19 Dai Nippon Printing Co., Ltd. Gasifier for sterilizer and cleaning method of gasifier for sterilizer
US11806437B2 (en) 2017-02-20 2023-11-07 Dai Nippon Printing, Ltd. Gasifier for sterilizer and cleaning method of gasifier for sterilizer
US11872323B2 (en) 2017-02-20 2024-01-16 Dai Nippon Printing Co., Ltd. Gasifier for sterilizer and cleaning method of gasifier for sterilizer
CN108101135A (en) * 2018-03-06 2018-06-01 晋江纳创新环境技术有限公司 Solar energy is atomized desalination plant
CN108101135B (en) * 2018-03-06 2023-10-31 晋江纳创新环境技术有限公司 Solar atomization sea water desalting device

Similar Documents

Publication Publication Date Title
KR102424159B1 (en) Systems including a condensing apparatus such as a bubble column condenser
JP5818393B2 (en) Bubble column vapor mixture condenser
JP6397300B2 (en) Concentration system
KR101262811B1 (en) MVR(Mechanical Vapor Re-Compressor System) Using Evaporator For Waste WATER
WO2006138516A2 (en) Air heated diffusion driven water purification system
EP2716341A1 (en) Device and method for liquid treatment by mechanical vapor recompression
CN205773844U (en) A kind of high-salt wastewater triple effect evaporation crystallization apparatus without cooling down water
CN102259941B (en) Vertical tube seawater spewing and boiling evaporator
US9540250B2 (en) Cooling tower water reclamation system and method
CN102557168A (en) Heat-pipe low-temperature multi-effect sea water desalinating system and process flow
CN105217702A (en) A kind of desulfurization wastewater treatment system
US20140291137A1 (en) Contoured humidification-dehumidification desalination system
KR20110003761A (en) Evaporative desalination apparatus of sea water using heatpipe
JP2012091108A (en) Vacuum distillation apparatus using solar heat
CN107324426A (en) A kind of residual heat from boiler fume coupling evaporation concentrates desulfurization wastewater system
JP2008229424A (en) Vacuum distillation apparatus
JP4250775B1 (en) Seawater desalination equipment using air circulation
JP2015077584A (en) Desalination plant
JP6227905B2 (en) Emulsion waste oil regeneration processing apparatus and method
JP6725502B2 (en) Vacuum distillation equipment
CN104129804B (en) A kind of integral type evaporation and crystallization system and technique
JP2014018736A (en) Fresh water generator
WO2001072638A1 (en) Desalination device
JP4206949B2 (en) Cleaning method for water-soluble waste liquid treatment equipment
CN109292860A (en) Falling film evaporation couples absorption refrigeration high-salt sewage processing equipment and high-salt sewage processing method