JP2015075294A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2015075294A
JP2015075294A JP2013212440A JP2013212440A JP2015075294A JP 2015075294 A JP2015075294 A JP 2015075294A JP 2013212440 A JP2013212440 A JP 2013212440A JP 2013212440 A JP2013212440 A JP 2013212440A JP 2015075294 A JP2015075294 A JP 2015075294A
Authority
JP
Japan
Prior art keywords
compressor
rotation speed
air conditioner
temperature
discharge temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013212440A
Other languages
Japanese (ja)
Other versions
JP6266942B2 (en
Inventor
高藤 亮一
Ryoichi Takato
亮一 高藤
智大 加藤
Tomohiro Kato
智大 加藤
上田 和弘
Kazuhiro Ueda
和弘 上田
貴郎 京野
Takao Kyono
貴郎 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013212440A priority Critical patent/JP6266942B2/en
Priority to CN201410359803.6A priority patent/CN104567155B/en
Publication of JP2015075294A publication Critical patent/JP2015075294A/en
Application granted granted Critical
Publication of JP6266942B2 publication Critical patent/JP6266942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/077Compressor control units, e.g. terminal boxes, mounted on the compressor casing wall containing for example starter, protection switches or connector contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which has high reliability from a high load and flow rate to a low load and flow rate with low electricity consumption.SOLUTION: An air conditioner comprises: a refrigeration cycle having a compressor, an indoor heat exchanger, an expansion mechanism and an outdoor heat exchanger; and first control means which makes a variation width of a discharge temperature of the compressor, which varies according to a rotation speed of the compressor, with respect to a variation in the rotation speed of the compressor when the same is lower than a predetermined rotation speed wider than the variation width of the discharge temperature of the compressor with respect to the variation in the rotation speed of the compressor when the same is larger than the predetermined rotation speed. A cooling medium made of a R32 simplex or a mixed cooling medium with a weight percentage of R32 exceeding 50% is used in the air conditioner.

Description

本発明は、空気調和機に関する。   The present invention relates to an air conditioner.

空気調和機には、圧縮機と、膨張機構として膨張弁が設けられている。圧縮機の吐出温度は、膨張弁の開度を調整することで、予め定められた目標温度となるように制御される。空気調和機の運転効率がピークとなる圧縮機の吐出温度は、圧縮機の回転数にとって異なる。   The air conditioner is provided with a compressor and an expansion valve as an expansion mechanism. The discharge temperature of the compressor is controlled to be a predetermined target temperature by adjusting the opening of the expansion valve. The discharge temperature of the compressor at which the operating efficiency of the air conditioner reaches a peak differs depending on the rotation speed of the compressor.

特許文献1には、圧縮機の各周波数帯に対する最適弁開度、最適吐出温度を制御部に予め記憶させておき、圧縮機の周波数が変化すれば、変化後の周波数に対応した最適弁開度を制御部で選択し、選択値に応じた弁開度指令信号を制御部から出力して弁駆動部を介して電子制御式膨張弁の開度を目標値と一致するように制御する空気調和機が記載されている。   In Patent Document 1, the optimum valve opening degree and the optimum discharge temperature for each frequency band of the compressor are stored in advance in the control unit, and if the compressor frequency changes, the optimum valve opening corresponding to the changed frequency is opened. The degree of air is selected by the control unit, and a valve opening command signal corresponding to the selected value is output from the control unit, and the opening of the electronically controlled expansion valve is controlled to match the target value via the valve drive unit A harmonic machine is described.

特開2005−69683号公報JP 2005-69683 A

特許文献1に記載の空気調和機は、圧縮機の回転数(周波数)に対して吐出温度目標値は傾きが1つであり、圧縮機の回転数が高速域であるか低速域であるかに係らず、回転数の違いによる吐出温度の変化の感度は同じである。   In the air conditioner described in Patent Document 1, whether the discharge temperature target value has one slope with respect to the rotation speed (frequency) of the compressor, and whether the rotation speed of the compressor is in a high speed range or a low speed range Regardless, the sensitivity of the change in the discharge temperature due to the difference in the rotational speed is the same.

図2に示すように、圧縮機の各回転数における最適な吐出温度、すなわち最も効率よく運転できる理想的な吐出温度目標値(以下「理想Td」という。)と、圧縮機の吐出温度の目標値(以下「目標Td」という。)との差Taは低速域から高速域にわたって小さい。そのため、R410Aを冷媒として採用した場合、回転数の違いによる吐出温度の変化の感度は同じであっても、圧縮機の回転数を理想Tdに近い値にすることができる。   As shown in FIG. 2, the optimum discharge temperature at each rotational speed of the compressor, that is, the ideal discharge temperature target value (hereinafter referred to as “ideal Td”) that can be operated most efficiently, and the compressor discharge temperature target. The difference Ta from the value (hereinafter referred to as “target Td”) is small from the low speed range to the high speed range. Therefore, when R410A is adopted as the refrigerant, the rotational speed of the compressor can be made close to the ideal Td even if the sensitivity of the change in the discharge temperature due to the difference in the rotational speed is the same.

しかしながら、図2に示すように、R32を冷媒として採用した場合、R410Aに比べて、理想Tdと目標Tdとの差Tbが大きくなる。そのため、回転数の違いによる吐出温度の変化の感度は同じである場合、圧縮機の回転数を理想Tdに近い値にすることができない領域が存在する。   However, as shown in FIG. 2, when R32 is adopted as the refrigerant, the difference Tb between the ideal Td and the target Td is larger than that of R410A. Therefore, when the sensitivity of the change in the discharge temperature due to the difference in the rotational speed is the same, there is a region where the rotational speed of the compressor cannot be a value close to the ideal Td.

つまり、R32を冷媒として採用する場合、R410Aに比べて、理想Tdと目標Tdとの差が大きくなり、R410Aを使用している装置について、冷媒をR32に入れ換えただけでは、性能が低下し、又、制御不安定を引き起こすおそれがある。   That is, when R32 is adopted as the refrigerant, the difference between the ideal Td and the target Td is larger than that of R410A, and the performance of the apparatus using R410A is reduced by simply replacing the refrigerant with R32. In addition, control instability may occur.

本発明は、制御不安定を回避しつつ、省エネルギーを実現できる空気調和機を提供することを目的とする。   An object of this invention is to provide the air conditioner which can implement | achieve energy saving, avoiding control instability.

本発明の空気調和機は、圧縮機、室内熱交換器、膨張機構及び室外熱交換器を有する冷凍サイクルと、圧縮機の回転数に応じて圧縮機の吐出温度が変化し、圧縮機の回転数が所定の回転数より小さい場合における圧縮機の回転数の変化に対する圧縮機の吐出温度の変化幅を、圧縮機の回転数が所定の回転数より大きい場合における圧縮機の回転数の変化に対する圧縮機の吐出温度の変化幅より大きくする第1制御手段とを備え、R32単体又はR32が50重量%を越える混合冷媒が用いられる。   The air conditioner of the present invention includes a refrigeration cycle having a compressor, an indoor heat exchanger, an expansion mechanism, and an outdoor heat exchanger, and the discharge temperature of the compressor changes according to the rotation speed of the compressor, and the rotation of the compressor The range of change in the discharge temperature of the compressor with respect to the change in the rotation speed of the compressor when the number is smaller than the predetermined rotation speed, and the change in the rotation speed of the compressor when the rotation speed of the compressor is greater than the predetermined rotation speed. First control means for making the discharge temperature larger than the change temperature of the discharge temperature of the compressor, and R32 alone or a mixed refrigerant in which R32 exceeds 50% by weight is used.

本発明によれば、制御不安定を回避しつつ、省エネルギーを実現できる空気調和機を提供ことができる。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioner which can implement | achieve energy saving can be provided, avoiding control instability.

第1実施形態に係る空気調和機の冷媒回路構成図である。It is a refrigerant circuit block diagram of the air conditioner which concerns on 1st Embodiment. 圧縮機の回転数に対する理想Tdと目標Tdを示すグラフである。It is a graph which shows ideal Td and target Td with respect to the rotation speed of a compressor. 第1実施形態に係る圧縮機の回転数に対する理想Tdと目標Tdを示すグラフである。It is a graph which shows ideal Td and target Td with respect to the rotation speed of the compressor which concerns on 1st Embodiment. 第2実施形態に係る圧縮機の回転数に対する理想Tdと目標Tdを示すグラフである。It is a graph which shows ideal Td and target Td with respect to the rotation speed of the compressor which concerns on 2nd Embodiment. 他の実施形態に係る圧縮機の回転数に対する理想Tdと目標Tdを示すグラフである。It is a graph which shows ideal Td and target Td with respect to the rotation speed of the compressor which concerns on other embodiment. 他の実施形態に係る圧縮機の回転数に対する理想Tdと目標Tdを示すグラフである。It is a graph which shows ideal Td and target Td with respect to the rotation speed of the compressor which concerns on other embodiment.

以下、本発明の実施形態について添付図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
(第1実施形態)
第1実施形態の空気調和機1の構成、機能および動作に関する概要について、説明する。図1は、第1実施形態の空気調和機1を構成する各構成要素とそれらの接続関係を表す基本構成図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
(First embodiment)
The outline | summary regarding a structure, a function, and operation | movement of the air conditioner 1 of 1st Embodiment is demonstrated. FIG. 1 is a basic configuration diagram showing each component constituting the air conditioner 1 of the first embodiment and their connection relationship.

空気調和機1は、圧縮機2、流路切換弁(例えば四方弁)3、室外熱交換器4、膨張弁5、室内熱交換器6、サクションタンク7を環状に接続した回路10で構成される。また、空気調和機1を制御するため、制御部50とサーミスタなどの温度検出手段51を備えている。   The air conditioner 1 includes a circuit 10 in which a compressor 2, a flow path switching valve (for example, a four-way valve) 3, an outdoor heat exchanger 4, an expansion valve 5, an indoor heat exchanger 6, and a suction tank 7 are connected in an annular shape. The Moreover, in order to control the air conditioner 1, the temperature detection means 51, such as the control part 50 and a thermistor, is provided.

温度検出手段51は圧縮機2の吐出温度を検知するため、圧縮機2の上部に設置されている。なお、温度検出手段51を圧縮機2の吐出配管に設置してもよい。   The temperature detection means 51 is installed in the upper part of the compressor 2 in order to detect the discharge temperature of the compressor 2. The temperature detection means 51 may be installed in the discharge pipe of the compressor 2.

空気調和機1の各機器の動作について図1を用いて説明する。空気調和機1の運転モードが「冷房」である場合、四方弁3を切り替えることで、冷媒は図2の実線矢印の方向へ流れる。圧縮機2から吐出された冷媒は、四方弁3の実線で示した流路を介して、室外熱交換器4に供給される。そして、室外熱交換器4から排出された冷媒は、膨張弁5で減圧膨張し、室内熱交換器6に供給される。つづいて、室内熱交換器6から排出された冷媒は、四方弁3の実線で示した流路を介して、サクションタンク7及び圧縮機2に戻る。   The operation of each device of the air conditioner 1 will be described with reference to FIG. When the operation mode of the air conditioner 1 is “cooling”, the refrigerant flows in the direction of the solid arrow in FIG. 2 by switching the four-way valve 3. The refrigerant discharged from the compressor 2 is supplied to the outdoor heat exchanger 4 through the flow path indicated by the solid line of the four-way valve 3. The refrigerant discharged from the outdoor heat exchanger 4 is decompressed and expanded by the expansion valve 5 and supplied to the indoor heat exchanger 6. Subsequently, the refrigerant discharged from the indoor heat exchanger 6 returns to the suction tank 7 and the compressor 2 through the flow path indicated by the solid line of the four-way valve 3.

また、空気調和機1の運転モードが「暖房」である場合、四方弁3を切り替えることで、冷媒は図2の破線矢印の方向へ流れる。圧縮機2から吐出された冷媒は、四方弁3の破線で示した流路を介して、室内熱交換器6に供給される。そして、室外熱交換器6から排出された冷媒は、膨張弁5で減圧膨張し、室外熱交換器4に供給される。室外熱交換器4から排出された冷媒は、四方弁3の破線で示した流路を介して、サクションタンク7及び圧縮機2に戻る。   Moreover, when the operation mode of the air conditioner 1 is “heating”, the refrigerant flows in the direction of the broken line arrow in FIG. 2 by switching the four-way valve 3. The refrigerant discharged from the compressor 2 is supplied to the indoor heat exchanger 6 through the flow path indicated by the broken line of the four-way valve 3. The refrigerant discharged from the outdoor heat exchanger 6 is decompressed and expanded by the expansion valve 5 and supplied to the outdoor heat exchanger 4. The refrigerant discharged from the outdoor heat exchanger 4 returns to the suction tank 7 and the compressor 2 through the flow path indicated by the broken line of the four-way valve 3.

例えば、室外熱交換器4及び室内熱交換器6はフィンチューブ形式で構成し、フィン側で空気をプロペラファンや貫流ファンなどで通流し、管側に冷媒を通流することで熱の授受が行われる。   For example, the outdoor heat exchanger 4 and the indoor heat exchanger 6 are configured in a fin tube type, and heat is transferred by passing air through a propeller fan or a cross-flow fan on the fin side and flowing a refrigerant through the pipe side. Done.

制御部50は、温度検出手段51から吐出温度の情報を取得する他、四方弁3の切換や膨張弁5の弁開度、圧縮機2の回転数、室外熱交換器4及び室内熱交換器6、室内温度及び室外温度を図示していない温度検出手段によって取得し、室外熱交換器4と室内熱交換器6の空気側の交換熱量を制御する。   The control unit 50 acquires the discharge temperature information from the temperature detecting means 51, and also switches the four-way valve 3, the valve opening of the expansion valve 5, the rotational speed of the compressor 2, the outdoor heat exchanger 4 and the indoor heat exchanger. 6. The indoor temperature and the outdoor temperature are acquired by temperature detection means (not shown), and the exchange heat amount on the air side of the outdoor heat exchanger 4 and the indoor heat exchanger 6 is controlled.

温度検出手段51の温度精度は、概ねサイクルに影響を与えない精度とする。例えば、上限+1℃、下限−1℃とする。この範囲内において温度検出手段51で検出される温度は同じ値となる。   The temperature accuracy of the temperature detection means 51 is set to an accuracy that does not substantially affect the cycle. For example, the upper limit is + 1 ° C and the lower limit is -1 ° C. Within this range, the temperature detected by the temperature detecting means 51 has the same value.

膨張弁5の開度は、後述のように圧縮機2の回転数から算出される目標Tdと、温度検出手段51より検出される吐出温度との温度差に応じて定められる開度差で制御ステップ毎に制御される。   The opening degree of the expansion valve 5 is controlled by an opening degree difference determined according to the temperature difference between the target Td calculated from the rotation speed of the compressor 2 and the discharge temperature detected by the temperature detecting means 51 as described later. It is controlled for each step.

サクションタンク7は運転開始時など冷媒が液のまま圧縮機2で圧縮され信頼性が損なわれることを防ぐため設けられている。   The suction tank 7 is provided in order to prevent the refrigerant from being compressed by the compressor 2 in the liquid state at the start of operation and the like from being impaired.

圧縮機2は容積型の圧縮機であり、本実施形態では回転数が可変である圧縮機とする。   The compressor 2 is a positive displacement compressor, and in the present embodiment, the compressor has a variable rotation speed.

図2は、圧縮機の回転数に対する理想Tdと目標Tdを示すグラフである。横軸を圧縮機2の回転数M、縦軸を圧縮機2の吐出温度Tとしたときにおける圧縮機2の吐出温度の変化を示す。R410Aを冷媒として用いた場合における理想Tdと目標Td、及び、R32を冷媒として用いた場合における理想Tdと目標Tdを示している。   FIG. 2 is a graph showing ideal Td and target Td with respect to the rotational speed of the compressor. The change of the discharge temperature of the compressor 2 when the horizontal axis is the rotational speed M of the compressor 2 and the vertical axis is the discharge temperature T of the compressor 2 is shown. The ideal Td and target Td when R410A is used as a refrigerant, and the ideal Td and target Td when R32 is used as a refrigerant are shown.

圧縮機2の吐出温度は、吸込み冷媒の温度圧力、吸込み冷媒の過熱度若しくは乾き度、圧縮機による圧力比および圧縮機2からの放熱量(熱損失)に依存し、圧縮機2が高速で回転して冷媒循環量が増えるほど、圧縮機2の吐出温度は上昇する。ただし、吐出温度の変化率は、低速側と高速側で運転圧力比が異なり、また、圧縮機2の効率によって、変化率が変化する。   The discharge temperature of the compressor 2 depends on the temperature and pressure of the suction refrigerant, the degree of superheat or dryness of the suction refrigerant, the pressure ratio of the compressor, and the amount of heat released from the compressor 2 (heat loss). The discharge temperature of the compressor 2 increases as the refrigerant circulation amount increases. However, the change rate of the discharge temperature is different in the operating pressure ratio between the low speed side and the high speed side, and the change rate changes depending on the efficiency of the compressor 2.

圧縮機2の吐出温度が理想Tdより低い場合、冷凍サイクルは湿り気味のサイクルとなる。湿り気味のサイクルの場合、圧縮機2内に冷媒液が混入し、見かけの密度が増加して圧縮機2の仕事が増えるため、理想Tdで運転するより効率は低くなる。そのため、効率の低下を防ぐためには、吐出温度の目標値が過熱ぎみのサイクルを採用する必要がある。そのため、目標Tdを直線で構成する場合、R410A目標TdをR410A理想Tdに比べて高温側に設定する必要がある。R410Aを冷媒として採用する場合、図2に示すようにR410A目標TdをR410A理想Tdに接するように設定される。   When the discharge temperature of the compressor 2 is lower than the ideal Td, the refrigeration cycle is a moist cycle. In the case of a wet cycle, the refrigerant liquid is mixed in the compressor 2, the apparent density is increased, and the work of the compressor 2 is increased. Therefore, the efficiency is lower than the operation at the ideal Td. Therefore, in order to prevent a decrease in efficiency, it is necessary to employ a cycle in which the target value of the discharge temperature is overheated. Therefore, when the target Td is configured with a straight line, it is necessary to set the R410A target Td on the higher temperature side than the R410A ideal Td. When R410A is adopted as the refrigerant, the R410A target Td is set to be in contact with the R410A ideal Td as shown in FIG.

R32目標TdはR32理想Tdに接するように設定した場合、図2に示すように、高回転領域において、R32の理想Tdと目標Tdとの差Taが、R410Aの理想Tdと目標Tdとの差Tbよりも大きくなる。このように、R410Aを冷媒として採用した場合、圧縮機2の効率の変化が吐出温度の変化率に与える影響が軽微であったが、R32を冷媒として採用した場合、その影響が顕著に現れる結果となった。   When the R32 target Td is set so as to be in contact with the R32 ideal Td, as shown in FIG. 2, the difference Ta between the ideal Td of the R32 and the target Td is the difference between the ideal Td of the R410A and the target Td as shown in FIG. It becomes larger than Tb. As described above, when R410A is employed as the refrigerant, the effect of the change in the efficiency of the compressor 2 on the change rate of the discharge temperature is slight. However, when R32 is employed as the refrigerant, the effect appears prominently. It became.

さらに、図2に示すように、R32は、冷媒物性上、R410Aに比べて、高回転領域において理想Tdが15℃程度上昇する。   Further, as shown in FIG. 2, R32 has an ideal Td that rises by about 15 ° C. in the high rotation region compared to R410A due to the physical properties of the refrigerant.

すなわち、R32は、R410Aに比べて理想Tdが高く、且つ、目標Tdと理想Tdとの差Tbも大きいため、圧縮機2の吐出温度が高くなりやすい。吐出温度があまりに高温になると、圧縮機2の材料や冷凍機油が劣化し、圧縮機2のモータに用いられる永久磁石の減磁力が低下するという課題がある。   That is, R32 has a higher ideal Td than R410A and a large difference Tb between the target Td and the ideal Td, and therefore the discharge temperature of the compressor 2 tends to be high. If the discharge temperature becomes too high, the material of the compressor 2 and the refrigerating machine oil deteriorate, and there is a problem that the demagnetizing force of the permanent magnet used for the motor of the compressor 2 is lowered.

次に、このような課題を解決するための本実施形態の具体的な制御方法について説明する。図3は、第1実施形態に係る圧縮機の回転数に対する理想Tdと目標Tdを示すグラフである。   Next, a specific control method of this embodiment for solving such a problem will be described. FIG. 3 is a graph showing an ideal Td and a target Td with respect to the rotation speed of the compressor according to the first embodiment.

圧縮機2が起動した後、「冷房」「暖房」それぞれの運転モードに応じた圧縮機2の目標Tdを算出し、目標Tdに基づいた制御を行う。目標Tdは以下の式(1)により算出される。
目標Td(℃)=傾きA×圧縮機回転数M(min-1)+切片C・・・式(1)
After the compressor 2 is started, a target Td of the compressor 2 corresponding to each operation mode of “cooling” and “heating” is calculated, and control based on the target Td is performed. The target Td is calculated by the following equation (1).
Target Td (° C.) = Slope A × Compressor rotational speed M (min −1 ) + intercept C Equation (1)

傾きAと切片Cは最適な冷凍サイクルが成立するように予め実験などで定められる値で、空気調和機の能力や熱交換器の構成によって異なる値である。なお、図1の実線も式(1)に基づいて圧縮機2の回転数Mに対する目標Tdをとったグラフである。   The slope A and the intercept C are values determined in advance by experiments or the like so that an optimum refrigeration cycle is established, and are different values depending on the performance of the air conditioner and the configuration of the heat exchanger. The solid line in FIG. 1 is also a graph in which the target Td with respect to the rotational speed M of the compressor 2 is taken based on the equation (1).

図2において、図中、R32を冷媒として採用した場合における理想Tdを破線、目標Tdを実線で示している。本実施形態では、式(1)に基づいて圧縮機2の回転数Mに対する目標Tdをとっているが、傾きAは、圧縮機2が低速域の傾きA_L、高速域の傾きA_hの2つの値が設定されており、回転数M_cを変曲点として、2つの値を切り替えている。切片Cについても、圧縮機2が低速域の切片C_L、高速域の切片C_hの2つの値が設定されており、回転数M_cを変曲点として、2つの値を切り替えている。   In FIG. 2, the ideal Td when R32 is employed as the refrigerant is indicated by a broken line and the target Td is indicated by a solid line. In the present embodiment, the target Td with respect to the rotational speed M of the compressor 2 is taken based on the formula (1), but the slope A has two slopes A_L and a slope A_h in the high speed range. A value is set, and the two values are switched with the rotation speed M_c as the inflection point. Also for the intercept C, the compressor 2 is set with two values of the intercept C_L in the low speed region and the intercept C_h in the high speed region, and the two values are switched with the rotational speed M_c as the inflection point.

本実施形態では、図3に示すように、低速域の傾きA_L及び高速域の傾きA_hは、回転数Mが高回転になるほど、目標Tdが高温になる方向に傾いている。また、回転数M_cにおいて、低速域の傾きA_L、低速域の切片C_Lに基づいて式(1)で算出される目標Tdと、高速域の傾きA_h、高速域の切片C_hに基づいて式(1)で算出される目標Tdは一致するようにしている。なお、目標Tdを多少異なった値になるように設定してもよい。   In the present embodiment, as shown in FIG. 3, the low-speed region inclination A_L and the high-speed region inclination A_h are inclined in a direction in which the target Td becomes higher as the rotation speed M becomes higher. In addition, at the rotational speed M_c, the target Td calculated by the equation (1) based on the low speed region slope A_L and the low speed region intercept C_L, the high speed region gradient A_h, and the high speed region intercept C_h based on the equation (1). The target Td calculated in (1) is made to coincide. Note that the target Td may be set to a slightly different value.

本実施形態では、予備実験から、高速域の傾きA_hは0.01、低速域の傾きA_Lは高速域の傾きA_hの約2倍である0.02、高速域の切片C_hを50、低速域の切片C_Lを40としている。   In the present embodiment, from the preliminary experiment, the slope A_h in the high speed range is 0.01, the slope A_L in the low speed range is 0.02 that is about twice the slope A_h in the high speed range, the intercept C_h in the high speed range is 50, and the low speed range The intercept C_L is 40.

例えば、圧縮機2の回転数Mが高速域である2000min-1であるとき、目標吐出温度T_tは70℃と算出される。また、圧縮機2の回転数Mが600min-1であるとき、目標吐出温度T_tは52℃と算出される。 For example, when the rotation speed M of the compressor 2 is 2000 min −1 , which is a high speed region, the target discharge temperature T_t is calculated as 70 ° C. Further, when the rotational speed M of the compressor 2 is 600 min −1 , the target discharge temperature T_t is calculated as 52 ° C.

本実施形態の空気調和機は、R32単体又はR32が50重量%を越える混合冷媒が用いられ、圧縮機2、室内熱交換器6、膨張機構5及び室外熱交換器4を有する冷凍サイクルと、圧縮機2の回転数に応じて圧縮機2の吐出温度が変化し、圧縮機2の回転数が所定の回転数(回転数M_c)より小さい場合における圧縮機2の回転数の変化に対する圧縮機2の吐出温度の変化幅(低速域の傾きA_L)は、圧縮機2の回転数が所定の回転数(回転数M_c)より大きい場合における圧縮機2の回転数の変化に対する圧縮機2の吐出温度の変化幅(高速域の傾きA_h)より大きくなるように制御する第1制御手段を備える。このように、低速域の傾きA_Lを高速域の傾きA_hよりも大きくすることで、広い回転数域で理想的な吐出温度に近い運転が可能となり、空気調和機の効率低下を防ぎつつ、圧縮機2の吐出温度が理想Tdから高くなるのを防ぐことができる。   In the air conditioner of the present embodiment, R32 alone or a mixed refrigerant in which R32 exceeds 50% by weight is used, and a refrigeration cycle having a compressor 2, an indoor heat exchanger 6, an expansion mechanism 5, and an outdoor heat exchanger 4, The compressor with respect to the change in the rotation speed of the compressor 2 when the discharge temperature of the compressor 2 changes according to the rotation speed of the compressor 2 and the rotation speed of the compressor 2 is smaller than the predetermined rotation speed (rotation speed M_c). The discharge temperature change width 2 (low-speed slope A_L) is the discharge of the compressor 2 with respect to the change in the rotation speed of the compressor 2 when the rotation speed of the compressor 2 is greater than the predetermined rotation speed (rotation speed M_c). First control means is provided for performing control so as to be larger than the temperature change width (high-speed range inclination A_h). Thus, by making the slope A_L in the low speed range larger than the slope A_h in the high speed range, it is possible to operate near the ideal discharge temperature in a wide rotational speed range, and while reducing the efficiency of the air conditioner, compression It is possible to prevent the discharge temperature of the machine 2 from becoming higher than the ideal Td.

次に、低速域における目標Tdと理想Tdとの関係をより詳細に説明する。一般的に、圧縮機2の回転数が低い低速域ほど、膨張弁1開度あたりの流量変化が大きく、特に吸込み側の冷媒が二相域からガス域へ変化する範囲で吐出温度変化が大きくなる。このとき、膨張弁1の開度あたりの吐出温度変化が1℃を超えてしまうと、膨張弁を1開度開閉するたびに1℃以上吐出温度が変化し、サイクルが不安定となる。それでも、R410Aを冷媒として採用した場合、多少のサイクルが不安定になっても、運転を継続できる範囲内に許容できていた。   Next, the relationship between the target Td and the ideal Td in the low speed range will be described in more detail. In general, the lower the rotation speed of the compressor 2, the larger the change in flow rate per opening of the expansion valve, and the larger the change in discharge temperature, especially in the range where the suction side refrigerant changes from the two-phase region to the gas region. Become. At this time, if the change in the discharge temperature per opening of the expansion valve 1 exceeds 1 ° C., the discharge temperature changes by 1 ° C. or more every time the expansion valve is opened and closed by one opening, and the cycle becomes unstable. Nevertheless, when R410A was adopted as the refrigerant, even if some cycles became unstable, it was allowed within a range where operation could be continued.

一方、R32はR410Aに対して断熱指数が大きいため、圧縮工程で温度上昇が大きく、単位流量当たりの交換熱量が大きい。すなわち、R32を冷媒として採用した場合、膨張弁5の1開度あたりの吐出温度の変化が大きくなり、熱交換器容量に対して流量が少なくなる低速域では、膨張弁5による吐出温度の制御性が悪化する。   On the other hand, since R32 has a larger adiabatic index than R410A, the temperature rise is large in the compression process, and the exchange heat per unit flow rate is large. That is, when R32 is adopted as the refrigerant, the change in the discharge temperature per opening of the expansion valve 5 becomes large, and the discharge temperature is controlled by the expansion valve 5 in the low speed region where the flow rate is small with respect to the heat exchanger capacity. Sex worsens.

そこで、本実施形態の空気調和機は、圧縮機2の回転数が所定の回転数(回転数M_c)より小さいとき、圧縮機2が二相状態の冷媒を吸入して圧縮する。すなわち、低速域において目標Tdを理想Td以下にしている。このような本実施形態によれば、熱交換器容量に対して流量が少なく、膨張弁1開度あたりの吐出温度変化が大きい低速域において、適正値よりも高く設定してしまうことによる制御不安定を回避することができる。なお、所定の回転数は、回転数M_cと必ずしも一致する必要はなく、制御性が悪化する領域を任意で設定することができる。   Therefore, in the air conditioner of the present embodiment, when the rotational speed of the compressor 2 is smaller than a predetermined rotational speed (the rotational speed M_c), the compressor 2 sucks and compresses the refrigerant in the two-phase state. That is, the target Td is made equal to or less than the ideal Td in the low speed range. According to the present embodiment as described above, in the low speed region where the flow rate is small with respect to the heat exchanger capacity and the discharge temperature change per one opening of the expansion valve is large, control failure due to setting higher than the appropriate value. Stability can be avoided. Note that the predetermined number of rotations does not necessarily match the number of rotations M_c, and an area where controllability is deteriorated can be arbitrarily set.

一般的に定格能力の半分より小さい能力では、循環量が少ないため、膨張弁5の特性から制御性が悪化することが多い。特に、R32のようにR410Aに対して単位流量当たりの交換熱量が大きい冷媒を用いた場合、低能力時の冷媒循環量が少ないため、過熱度が取れる吐出温度の最適点よりも低く設定することが望ましい。   In general, when the capacity is less than half of the rated capacity, the amount of circulation is small, and the controllability often deteriorates due to the characteristics of the expansion valve 5. In particular, when a refrigerant having a large exchange heat amount per unit flow rate relative to R410A is used, such as R32, the refrigerant circulation amount at the time of low capacity is small, and therefore, it should be set lower than the optimum point of discharge temperature at which superheat can be obtained. Is desirable.

例えば、冷房の定格能力が4kWの空気調和機で、冷房運転時、4kWの能力を出力する圧縮機2の回転数が2000min-1である場合、変曲点である回転数M_cを1000min-1とすることが望ましい。 For example, in the case of an air conditioner with a rated capacity of 4 kW for cooling and the speed of the compressor 2 that outputs a capacity of 4 kW during cooling operation is 2000 min −1 , the rotational speed M_c that is the inflection point is 1000 min −1. Is desirable.

暖房運転時においても冷房運転と同様に各パラメータを定めることにより、同様な制御が可能となる。   Even during the heating operation, the same control can be performed by determining each parameter as in the cooling operation.

次に、高速域における目標Tdと理想Tdとの関係をより詳細に説明する。低速域と異なり、高速域では膨張弁1開度あたりの流量変化が小さいため、膨張弁5による吐出温度の制御性は低速域に比べて向上する。一方、高速域では圧縮比が大きくなり、空気調和機の性能や能力が低下しやすい。そこで、本実施形態の空気調和機は、圧縮機2の回転数が所定の回転数(回転数M_c)より大きいとき、圧縮機2がガス状態の冷媒を吸入して圧縮する。すなわち、高速域において目標Tdを理想Td以上にしている。   Next, the relationship between the target Td and the ideal Td in the high speed range will be described in more detail. Unlike the low speed region, the flow rate change per opening of the expansion valve is small in the high speed region, so that the controllability of the discharge temperature by the expansion valve 5 is improved compared to the low speed region. On the other hand, the compression ratio becomes large at high speeds, and the performance and capacity of the air conditioner tend to decrease. Therefore, in the air conditioner of the present embodiment, when the rotational speed of the compressor 2 is greater than a predetermined rotational speed (the rotational speed M_c), the compressor 2 sucks and compresses the gaseous refrigerant. That is, the target Td is set to be equal to or higher than the ideal Td in the high speed range.

上述した傾きAを複数設定する場合、それぞれの傾きに応じた膨張弁5の開度を設定するなど制御が極めて複雑になる。ところで、圧縮機2は回転数Mによって効率が変化し、最も効率が高くなる回転数をピークとして、ピークから離れるほど、圧縮機2の効率が低下する。すなわち、ピークを境にして、目標Tdに2つの傾きAを設定することで、目標Tdを理想Tdに近づけることができる。すなわち、本実施形態では、目標Tdを2つの傾きの直線によって構成し、制御が複雑になるのを抑えつつ、目標Tdを理想Tdに近づけることができる。なお、所定の回転数は、回転数M_cと必ずしも一致する必要はなく、空気調和機の性能や能力が低下しやすい領域を任意で設定することができる。   When a plurality of the above-described inclinations A are set, the control becomes extremely complicated, such as setting the opening degree of the expansion valve 5 according to each inclination. By the way, the efficiency of the compressor 2 varies depending on the rotational speed M, and the efficiency of the compressor 2 decreases as the distance from the peak reaches the rotational speed at which the efficiency is highest. That is, the target Td can be brought close to the ideal Td by setting two gradients A to the target Td with the peak as a boundary. In other words, in the present embodiment, the target Td can be configured by two straight lines, and the target Td can be brought close to the ideal Td while suppressing the control from becoming complicated. The predetermined number of rotations does not necessarily need to coincide with the number of rotations M_c, and an area where the performance and capacity of the air conditioner are likely to decrease can be arbitrarily set.

本実施形態では、標準的な負荷での運転に絞って説明したが、室外気温が変化した際などは、前述で算出した目標Tdに補正温度を加えることで、同様な制御が可能となる。
(第2実施形態)
本実施形態において第1実施形態と同様の構成要素についての説明は省略する。図4は、第2実施形態に係る圧縮機の回転数に対する理想Tdと目標Tdを示すグラフである。目標Tdを理想Tdに近づけたとしても、回転数Mによっては、理想Td自体が圧縮機2の材料や冷凍機油が劣化し、圧縮機2のモータに用いられる永久磁石の減磁力が低下する温度に達する可能性がある。
In the present embodiment, the description has been focused on the operation with a standard load. However, when the outdoor air temperature changes, the same control can be performed by adding the correction temperature to the target Td calculated above.
(Second Embodiment)
In the present embodiment, description of the same components as those in the first embodiment is omitted. FIG. 4 is a graph showing an ideal Td and a target Td with respect to the rotation speed of the compressor according to the second embodiment. Even if the target Td is brought close to the ideal Td, depending on the rotational speed M, the ideal Td itself deteriorates the material of the compressor 2 and the refrigerating machine oil, and the temperature at which the demagnetizing force of the permanent magnet used for the motor of the compressor 2 decreases. There is a possibility of reaching.

一般的に、空気調和機には、圧縮機2の吐出温度に上限値を設けて、その上限値に達したら、運転を停止する保護回路が設けられているが、R32を冷媒として採用した場合、空気調和機を設置した環境によっては、上限値に達して運転停止を繰り返すおそれがある。   In general, an air conditioner is provided with a protective circuit that sets an upper limit value for the discharge temperature of the compressor 2 and stops operation when the upper limit value is reached. Depending on the environment in which the air conditioner is installed, the upper limit may be reached and the operation may be repeatedly stopped.

そこで、本実施形態の空気調和機は、圧縮機2の吐出温度を検出する温度検出手段51と、温度検出手段51の温度が所定の温度(上限値)以下になるように膨張機構5の開度を制御する第3制御手段とを備え、圧縮機2のモータは、リラクタンストルクによって駆動するように構成される。すなわち、本実施形態では、目標Tdに上限値を設定しており、目標Tdが上限値を超えた場合は、圧縮機2の回転数から算出される目標Tdの代わりに、上限値に置き換えて、上限値と温度検出手段51より検出される吐出温度との温度差に応じて定められる開度差で制御ステップ毎に膨張弁5の開度を制御するので、圧縮機2の信頼性を維持しつつ、運転を継続することができる。   Therefore, in the air conditioner of the present embodiment, the temperature detection means 51 that detects the discharge temperature of the compressor 2 and the expansion mechanism 5 are opened so that the temperature of the temperature detection means 51 becomes a predetermined temperature (upper limit value) or less. Third control means for controlling the degree, and the motor of the compressor 2 is configured to be driven by reluctance torque. That is, in this embodiment, an upper limit value is set for the target Td, and when the target Td exceeds the upper limit value, it is replaced with the upper limit value instead of the target Td calculated from the rotation speed of the compressor 2. Since the opening degree of the expansion valve 5 is controlled at each control step with the opening degree difference determined according to the temperature difference between the upper limit value and the discharge temperature detected by the temperature detecting means 51, the reliability of the compressor 2 is maintained. However, driving can be continued.

しかし、目標Tを上限値に置き換えると、理想Tdから離れて効率が低下する。そこで、本実施形態の空気調和機は、圧縮機2のモータは、リラクタンストルクによって駆動するように構成している。マグネットトルクは温度の上昇に伴って低下するのに対して、リラクタンストルクは温度上昇に関係せず一定値を保つ。従って、本実施形態によれば、上限値に達する領域におけるモータトルクを高出力に保つことができる。   However, if the target T is replaced with the upper limit value, the efficiency is lowered away from the ideal Td. Therefore, the air conditioner of the present embodiment is configured such that the motor of the compressor 2 is driven by reluctance torque. The magnet torque decreases as the temperature increases, whereas the reluctance torque maintains a constant value regardless of the temperature increase. Therefore, according to the present embodiment, the motor torque in the region reaching the upper limit value can be maintained at a high output.

図5及び図6は、他の実施形態に係る圧縮機の回転数に対する理想Tdと目標Tdを示すグラフである。第1実施形態及び第2実施形態では変曲点がひとつの場合について説明したが、図5に示すように、より効率を優先するために複数の変曲点を設けてもよい。   5 and 6 are graphs showing the ideal Td and the target Td with respect to the rotation speed of the compressor according to another embodiment. Although the first embodiment and the second embodiment have described the case where there is one inflection point, as shown in FIG. 5, a plurality of inflection points may be provided in order to prioritize the efficiency.

また、第1実施形態及び第2実施形態では、傾きAは、圧縮機2が低速域の傾きA_L、高速域の傾きA_hの2つの値が設定されている場合について説明したが、複数の傾きを設定する場合、それぞれの傾きに応じた膨張弁5の開度を設定するなど制御が極めて複雑になる。   In the first embodiment and the second embodiment, the inclination A has been described for the case where the compressor 2 has two values of the inclination A_L in the low speed region and the inclination A_h in the high speed region. Is set, the control becomes extremely complicated by setting the opening degree of the expansion valve 5 in accordance with each inclination.

そこで、図6に示すように、傾きAは1つとし、切片Cについて、圧縮機2が低速域の切片C_L、高速域の切片C_hの2つの値が設定し、回転数M_cを変曲点として2つの値を切り替えてもよい。すなわち、他の実施形態の空気調和機は、R32単体又はR32が50重量%を越える混合冷媒が用いられ、圧縮機2、室内熱交換器6、膨張機構5及び室外熱交換器4を有する冷凍サイクルと、圧縮機2の吐出温度が基準温度(切片C_h又は切片C_L)を基準にして圧縮機2の回転数に応じて変化し、圧縮機2の回転数が所定の回転数(回転数M_c)より小さい場合における基準温度(切片C_L)は、圧縮機2の回転数が所定の回転数(回転数M_c)より大きい場合における基準温度(切片C_h)よりも小さくなるように制御する第2制御手段を備える。なお、切片Cを3つ以上設定してもよい。   Therefore, as shown in FIG. 6, the slope A is set to one, and for the intercept C, the compressor 2 sets two values of the intercept C_L of the low speed region and the intercept C_h of the high speed region, and the rotational speed M_c is set to the inflection point. As an alternative, two values may be switched. That is, the air conditioner according to another embodiment uses R32 alone or a mixed refrigerant in which R32 exceeds 50% by weight, and includes a compressor 2, an indoor heat exchanger 6, an expansion mechanism 5, and an outdoor heat exchanger 4. The cycle and the discharge temperature of the compressor 2 change according to the rotational speed of the compressor 2 with reference to the reference temperature (intercept C_h or intercept C_L), and the rotational speed of the compressor 2 is a predetermined rotational speed (revolution M_c). ) Is a second control for controlling the reference temperature (intercept C_L) to be lower than the reference temperature (intercept C_h) when the rotation speed of the compressor 2 is greater than a predetermined rotation speed (rotation speed M_c). Means. Three or more intercepts C may be set.

以上、本発明に係る空気調和機について各実施形態により説明したが、本発明の実施態様はこれらの記載に限定されるものではなく、種々の変更などを行うことができる。   As mentioned above, although each embodiment demonstrated the air conditioner which concerns on this invention, the embodiment of this invention is not limited to these description, A various change etc. can be performed.

冷媒としてR32を用いる場合について説明したが、これに限らない。例えば、冷媒として、R32を50重量%以上含む混合冷媒や、吐出温度対策が必要となる他の冷媒を用いてもよい。   Although the case where R32 is used as the refrigerant has been described, the present invention is not limited to this. For example, as the refrigerant, a mixed refrigerant containing 50% by weight or more of R32 or other refrigerants that require measures against discharge temperature may be used.

1…空気調和機、2…圧縮機、3…流路切換弁、4…室外熱交換器、5…膨張弁、6…室内熱交換器、7…サクションタンク、50…制御部、51…温度検出手段 DESCRIPTION OF SYMBOLS 1 ... Air conditioner, 2 ... Compressor, 3 ... Flow path switching valve, 4 ... Outdoor heat exchanger, 5 ... Expansion valve, 6 ... Indoor heat exchanger, 7 ... Suction tank, 50 ... Control part, 51 ... Temperature Detection means

Claims (5)

圧縮機、室内熱交換器、膨張機構及び室外熱交換器を有する冷凍サイクルと、
前記圧縮機の回転数に応じて前記圧縮機の吐出温度が変化し、前記圧縮機の回転数が所定の回転数より小さい場合における前記圧縮機の回転数の変化に対する前記圧縮機の吐出温度の変化幅を、前記圧縮機の回転数が前記所定の回転数より大きい場合における前記圧縮機の回転数の変化に対する前記圧縮機の吐出温度の変化幅より大きくする第1制御手段とを備え、
R32単体又はR32が50重量%を越える混合冷媒が用いられる空気調和機。
A refrigeration cycle having a compressor, an indoor heat exchanger, an expansion mechanism and an outdoor heat exchanger;
The discharge temperature of the compressor changes according to the rotation speed of the compressor, and the discharge temperature of the compressor with respect to the change in the rotation speed of the compressor when the rotation speed of the compressor is smaller than a predetermined rotation speed. First control means for making a change width larger than a change width of a discharge temperature of the compressor with respect to a change in the rotation speed of the compressor when the rotation speed of the compressor is larger than the predetermined rotation speed;
An air conditioner in which R32 alone or a mixed refrigerant in which R32 exceeds 50% by weight is used.
圧縮機、室内熱交換器、膨張機構及び室外熱交換器を有する冷凍サイクルと、
前記圧縮機の吐出温度が基準温度を基準にして前記圧縮機の回転数に応じて変化し、
前記圧縮機の回転数が所定の回転数より小さい場合における前記基準温度を、前記圧縮機の回転数が所定の回転数より大きい場合における前記基準温度よりも小さくする第2制御手段とを備え、
R32単体又はR32が50重量%を越える混合冷媒が用いられる空気調和機。
A refrigeration cycle having a compressor, an indoor heat exchanger, an expansion mechanism and an outdoor heat exchanger;
The discharge temperature of the compressor changes according to the rotation speed of the compressor with reference to a reference temperature,
A second control means for reducing the reference temperature when the rotation speed of the compressor is smaller than a predetermined rotation speed to be lower than the reference temperature when the rotation speed of the compressor is larger than a predetermined rotation speed;
An air conditioner in which R32 alone or a mixed refrigerant in which R32 exceeds 50% by weight is used.
前記圧縮機の吐出温度を検出する温度検出手段と、
前記温度検出手段の温度が所定の温度以下になるように前記膨張機構の開度を制御する第3制御手段とを備え、
前記圧縮機のモータは、リラクタンストルクによって駆動することを特徴とする請求項1又は2に記載の空気調和機。
Temperature detecting means for detecting the discharge temperature of the compressor;
Third control means for controlling the opening of the expansion mechanism so that the temperature of the temperature detection means is equal to or lower than a predetermined temperature,
The air conditioner according to claim 1 or 2, wherein the motor of the compressor is driven by reluctance torque.
前記圧縮機の回転数が所定の回転数より小さいとき、前記圧縮機が二相状態の冷媒を吸入して圧縮することを特徴とする請求項1乃至3のいずれかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 3, wherein when the rotation speed of the compressor is smaller than a predetermined rotation speed, the compressor sucks and compresses the refrigerant in a two-phase state. 前記圧縮機の回転数が所定の回転数より大きいとき、前記圧縮機がガス状態の冷媒を吸入して圧縮することを特徴とする請求項1乃至3のいずれかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 3, wherein when the rotation speed of the compressor is greater than a predetermined rotation speed, the compressor sucks and compresses the gaseous refrigerant.
JP2013212440A 2013-10-10 2013-10-10 Air conditioner Active JP6266942B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013212440A JP6266942B2 (en) 2013-10-10 2013-10-10 Air conditioner
CN201410359803.6A CN104567155B (en) 2013-10-10 2014-07-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013212440A JP6266942B2 (en) 2013-10-10 2013-10-10 Air conditioner

Publications (2)

Publication Number Publication Date
JP2015075294A true JP2015075294A (en) 2015-04-20
JP6266942B2 JP6266942B2 (en) 2018-01-24

Family

ID=53000280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013212440A Active JP6266942B2 (en) 2013-10-10 2013-10-10 Air conditioner

Country Status (2)

Country Link
JP (1) JP6266942B2 (en)
CN (1) CN104567155B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223739A (en) * 2015-06-03 2016-12-28 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device
CN108518806A (en) * 2018-05-21 2018-09-11 广东美的暖通设备有限公司 Progress control method, device, compressor, air conditioner and readable storage medium storing program for executing
CN114279056A (en) * 2021-12-29 2022-04-05 青岛海信日立空调***有限公司 Machine room air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7221650B2 (en) * 2018-10-31 2023-02-14 サンデン株式会社 Vehicle air conditioner

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170653A (en) * 1983-03-17 1984-09-26 株式会社東芝 Air conditioner
JPH08128763A (en) * 1994-10-31 1996-05-21 Daikin Ind Ltd Operation controller for air conditioner
JPH11108468A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Air conditioner
JP2001174075A (en) * 1999-12-14 2001-06-29 Daikin Ind Ltd Refrigerating device
JP2001194015A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2001304700A (en) * 2000-04-21 2001-10-31 Hitachi Ltd Air conditioner
JP2005069683A (en) * 2004-12-07 2005-03-17 Mitsubishi Electric Corp Air conditioner
JP2006078087A (en) * 2004-09-09 2006-03-23 Daikin Ind Ltd Refrigeration unit
JP2011122756A (en) * 2009-12-09 2011-06-23 Sharp Corp Air conditioner, and method and program for opening control of expansion valve
JP2013124800A (en) * 2011-12-14 2013-06-24 Panasonic Corp Refrigerating cycle device
JP2014190632A (en) * 2013-03-27 2014-10-06 Hitachi Appliances Inc Air conditioner and air conditioner operation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708536B1 (en) * 2004-03-31 2005-10-19 松下電器産業株式会社 Refrigeration cycle apparatus and control method thereof
JP4550635B2 (en) * 2005-03-17 2010-09-22 シャープ株式会社 Air conditioner
JP4793328B2 (en) * 2007-06-08 2011-10-12 三菱電機株式会社 Heat pump equipment
JP2011196648A (en) * 2010-03-23 2011-10-06 Corona Corp Heat pump water heater
JP5430602B2 (en) * 2011-04-04 2014-03-05 三菱電機株式会社 Air conditioner
JP5816789B2 (en) * 2011-06-17 2015-11-18 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and hot water heating apparatus including the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170653A (en) * 1983-03-17 1984-09-26 株式会社東芝 Air conditioner
JPH08128763A (en) * 1994-10-31 1996-05-21 Daikin Ind Ltd Operation controller for air conditioner
JPH11108468A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Air conditioner
JP2001194015A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2001174075A (en) * 1999-12-14 2001-06-29 Daikin Ind Ltd Refrigerating device
JP2001304700A (en) * 2000-04-21 2001-10-31 Hitachi Ltd Air conditioner
JP2006078087A (en) * 2004-09-09 2006-03-23 Daikin Ind Ltd Refrigeration unit
JP2005069683A (en) * 2004-12-07 2005-03-17 Mitsubishi Electric Corp Air conditioner
JP2011122756A (en) * 2009-12-09 2011-06-23 Sharp Corp Air conditioner, and method and program for opening control of expansion valve
JP2013124800A (en) * 2011-12-14 2013-06-24 Panasonic Corp Refrigerating cycle device
JP2014190632A (en) * 2013-03-27 2014-10-06 Hitachi Appliances Inc Air conditioner and air conditioner operation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223739A (en) * 2015-06-03 2016-12-28 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device
CN108518806A (en) * 2018-05-21 2018-09-11 广东美的暖通设备有限公司 Progress control method, device, compressor, air conditioner and readable storage medium storing program for executing
CN108518806B (en) * 2018-05-21 2021-03-30 广东美的暖通设备有限公司 Operation control method and device, compressor, air conditioner and readable storage medium
CN114279056A (en) * 2021-12-29 2022-04-05 青岛海信日立空调***有限公司 Machine room air conditioner

Also Published As

Publication number Publication date
JP6266942B2 (en) 2018-01-24
CN104567155A (en) 2015-04-29
CN104567155B (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6595205B2 (en) Refrigeration cycle equipment
CN106461278B (en) Method for operating a cooler
JP2009270748A (en) Refrigerating device
JP6266942B2 (en) Air conditioner
JP6084297B2 (en) Air conditioner
JP2011252639A (en) Air conditioner
JP2007218460A (en) Refrigerating cycle device and cool box
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
JP2008275216A (en) Air conditioner
JP5772811B2 (en) Refrigeration equipment
JP5779527B2 (en) Air conditioner
JPWO2018179137A1 (en) Air conditioner
JP5766061B2 (en) Air conditioner
JP5971964B2 (en) Turbo refrigerator
JP2015014372A (en) Air conditioner
JP6333109B2 (en) Combined heat source heat pump device
JP6443557B2 (en) Multistage compression refrigeration cycle equipment
JP5854882B2 (en) Chilling unit
JP6253731B2 (en) Air conditioner
JP2012149834A (en) Heat pump
JP2013083361A (en) Refrigeration cycle device
JP6091077B2 (en) Refrigeration equipment
JP2010038463A (en) Refrigerating cycle device
JP6350824B2 (en) Air conditioner
JP6313950B2 (en) Air conditioner

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150818

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6266942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150