JP2015072816A - Capacity improvement method of all-solid-state secondary battery and all-solid-state secondary battery having enhanced capacity - Google Patents

Capacity improvement method of all-solid-state secondary battery and all-solid-state secondary battery having enhanced capacity Download PDF

Info

Publication number
JP2015072816A
JP2015072816A JP2013208245A JP2013208245A JP2015072816A JP 2015072816 A JP2015072816 A JP 2015072816A JP 2013208245 A JP2013208245 A JP 2013208245A JP 2013208245 A JP2013208245 A JP 2013208245A JP 2015072816 A JP2015072816 A JP 2015072816A
Authority
JP
Japan
Prior art keywords
solid
secondary battery
capacity
positive electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013208245A
Other languages
Japanese (ja)
Inventor
晃敏 林
Akitoshi Hayashi
晃敏 林
辰巳砂 昌弘
Masahiro Tatsumisago
昌弘 辰巳砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University
Original Assignee
Osaka University NUC
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University filed Critical Osaka University NUC
Priority to JP2013208245A priority Critical patent/JP2015072816A/en
Publication of JP2015072816A publication Critical patent/JP2015072816A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for enhancing the capacity of an all-solid-state secondary battery.SOLUTION: In an all-solid-state secondary battery including a positive electrode, a solid electrolyte layer and a negative electrode, in this order, the positive electrode contains a carbon-based conductive material and a solid electrolyte. After manufacturing an all-solid-state secondary battery and before actual use, charge and discharge are performed with a current density higher than that used in normal charge and discharge during actual use, thus enhancing the capacity of an all-solid-state secondary battery.

Description

本発明は、全固体二次電池の容量向上方法及び容量が向上した全固体二次電池に関する。   The present invention relates to a method for improving the capacity of an all-solid secondary battery and an all-solid secondary battery having an improved capacity.

リチウムイオン二次電池は、高電圧、高容量を有するため、携帯電話、デジタルカメラ、ビデオカメラ、ノートパソコン、電気自動車等の電源として多用されている。一般に流通しているリチウム二次電池は、電解質として、電解塩を非水系溶媒に溶解した液状電解質を使用している。非水系溶媒には、可燃性の溶媒が多く含まれているため、安全性の確保が望まれている。
安全性を確保するために、非水系溶媒を使用せずに、電解質を固体材料から形成する、いわゆる固体電解質を使用した全固体二次電池が提案されている(特開2004−95243号公報:特許文献1)。
Lithium ion secondary batteries have high voltage and high capacity, and are therefore widely used as power sources for mobile phones, digital cameras, video cameras, notebook computers, electric vehicles, and the like. Generally, lithium secondary batteries in circulation use a liquid electrolyte in which an electrolytic salt is dissolved in a non-aqueous solvent as an electrolyte. Since non-aqueous solvents contain a lot of flammable solvents, it is desired to ensure safety.
In order to ensure safety, an all-solid secondary battery using a so-called solid electrolyte in which an electrolyte is formed from a solid material without using a non-aqueous solvent has been proposed (Japanese Patent Laid-Open No. 2004-95243: Patent Document 1).

特開2004−95243号公報JP 2004-95243 A

全固体二次電池は、理論容量がリチウムイオン二次電池より大きいという特色を有するが、更に容量を大きくできれば、自動車用の電池や発電施設に併設される電池としてより有用であるため、更なる充放電容量の向上が望まれていた。   The all-solid-state secondary battery has a feature that its theoretical capacity is larger than that of a lithium ion secondary battery. However, if the capacity can be further increased, it is more useful as a battery for an automobile or a power generation facility. Improvement of charge / discharge capacity has been desired.

かくして本発明によれば、正極、固体電解質層及び負極をこの順で備えた全固体二次電池において、前記正極が、カーボン系導電材と固体電解質とを含み、全固体二次電池を製造後、実際の使用前に、実際の使用時における通常の充放電に使用される電流密度より高い電流密度で充放電を行うことを特徴とする全固体二次電池の容量向上方法が提供される。
また、本発明によれば、正極、固体電解質層及び負極をこの順で備えた全固体二次電池において、前記正極が、カーボン系導電材と固体電解質とを含み、全固体二次電池を製造後、実際の使用時における通常の充放電に使用される電流密度より高い電流密度で充放電を行うことで容量を向上させ、次いで実際の使用における通常の充放電に供することを特徴とする全固体二次電池の充放電方法が提供される。
更に、本発明によれば、上記方法により得られた容量が向上した全固体二次電池が提供される。
Thus, according to the present invention, in the all-solid secondary battery including the positive electrode, the solid electrolyte layer, and the negative electrode in this order, the positive electrode includes the carbon-based conductive material and the solid electrolyte, and the all-solid secondary battery is manufactured. In addition, a method for improving the capacity of an all-solid-state secondary battery is provided, in which charging and discharging is performed at a current density higher than that used for normal charging and discharging during actual use before actual use.
According to the present invention, in the all-solid-state secondary battery including the positive electrode, the solid electrolyte layer, and the negative electrode in this order, the positive electrode includes the carbon-based conductive material and the solid electrolyte, and manufactures the all-solid-state secondary battery. Thereafter, the capacity is improved by charging / discharging at a current density higher than the current density used for normal charging / discharging in actual use, and then subjected to normal charging / discharging in actual use. A method for charging and discharging a solid secondary battery is provided.
Furthermore, according to the present invention, an all-solid secondary battery with improved capacity obtained by the above method is provided.

本発明によれば、全固体二次電池製造後、通常の充放電前に、所定の高電流密度で充放電を行うという単純な方法で、全固体二次電池の充放電容量を顕著に向上できる。
また、正極、負極及び固体電解質層に含まれる固体電解質が、A2S−Mxy(AはLi又はNa、MはP、Si、Ge、B、Al、Gaから選択され、x及びyは、Mの種類に応じて、化学量論比を与える整数である)で表される場合、より充放電容量を向上できる。
更に、カーボン系導電材が、アセチレンブラック又は気相成長カーボンファイバ(VGCF)である場合、より充放電容量を向上できる。
According to the present invention, the charge / discharge capacity of the all-solid-state secondary battery is remarkably improved by a simple method of charging / discharging at a predetermined high current density after the manufacture of the all-solid-state secondary battery and before normal charge / discharge. it can.
Further, the solid electrolyte contained in the positive electrode, the negative electrode, and the solid electrolyte layer is A 2 S-M x S y (A is selected from Li or Na, M is selected from P, Si, Ge, B, Al, Ga, x and When y is an integer that gives a stoichiometric ratio according to the type of M), the charge / discharge capacity can be further improved.
Furthermore, when the carbon-based conductive material is acetylene black or vapor grown carbon fiber (VGCF), the charge / discharge capacity can be further improved.

実施例1の電流密度と放電容量との関係を示すグラフである。It is a graph which shows the relationship between the current density of Example 1, and discharge capacity. 実施例2の電流密度と放電容量との関係を示すグラフである。It is a graph which shows the relationship between the current density of Example 2, and discharge capacity. 実施例2の電流密度と放電容量との関係を示すグラフである。It is a graph which shows the relationship between the current density of Example 2, and discharge capacity. 実施例3の電流密度と放電容量との関係を示すグラフである。It is a graph which shows the relationship between the current density of Example 3, and discharge capacity. 実施例4の電流密度と放電容量との関係を示すグラフである。It is a graph which shows the relationship between the current density of Example 4, and discharge capacity.

本発明の容量向上方法が適用される全固体二次電池は、正極、固体電解質層及び負極をこの順で備えている。
(正極)
正極は、カーボン系導電材と固体電解質(正極活物質を兼ねる)とを含んでいる。
(1)カーボン系導電材
カーボン系導電材としては、天然黒鉛、人工黒鉛、アセチレンブラック、ケッチェンブラック、デンカブラック、カーボンブラック、気相成長カーボンファィバ(VGCF)等が挙げられる。カーボン系導電材は、固体電解質100重量部に対して、5〜100重量部であることが好ましい。5重量部未満である場合、固体電解質へ移動可能な電子の量が減ることで、十分な充放電容量が得られないことがある。100重量部より多い場合、固体電解質の正極に占める量が相対的に少なくなり、充放電効率が低下することがある。より好ましいカーボン系導電材の量は、10〜50重量部の範囲である。
The all solid state secondary battery to which the capacity increasing method of the present invention is applied includes a positive electrode, a solid electrolyte layer, and a negative electrode in this order.
(Positive electrode)
The positive electrode includes a carbon-based conductive material and a solid electrolyte (also serving as a positive electrode active material).
(1) Carbon-based conductive material Examples of the carbon-based conductive material include natural graphite, artificial graphite, acetylene black, ketjen black, Denka black, carbon black, vapor grown carbon fiber (VGCF), and the like. The carbon-based conductive material is preferably 5 to 100 parts by weight with respect to 100 parts by weight of the solid electrolyte. When the amount is less than 5 parts by weight, a sufficient charge / discharge capacity may not be obtained due to a decrease in the amount of electrons that can move to the solid electrolyte. When the amount is more than 100 parts by weight, the amount of the solid electrolyte in the positive electrode is relatively small, and the charge / discharge efficiency may be lowered. A more preferable amount of the carbon-based conductive material is in the range of 10 to 50 parts by weight.

(2)固体電解質
正極に含まれる固体電解質は、固体電解質層に含まれる固体電解質と同一でも異なっていてもよい。固体電解質は、当該分野で知られているものをいずれも使用できる。例えば、A2S−Mxy(AはLi又はNa、MはP、Si、Ge、B、Al、Gaから選択され、x及びyは、Mの種類に応じて、化学量論比を与える整数である)で表される固体電解質が挙げられる。
硫化物であるMxy中、MはP、Si、Ge、B、Al、Gaから選択され、x及びyは、Mの種類に応じて、化学量論比を与える数である。Mとして使用可能な6種の元素は、種々の価数をとり得、その価数に応じてx及びyを設定できる。例えばPは3価及び5価、Siは4価、Geは2価及び4価、Bは3価、Alは3価、Gaは3価をとり得る。具体的なMxyとしては、P25、SiS2、GeS2、B23、Al23、Ga23等が挙げられる。これら具体的なMxyは、1種のみ使用してもよく、2種以上併用してもよい。この内、P25が特に好ましい。
更に、A2SとMxyとのモル比は、50:50〜95:5であることが好ましく、67:33〜87.5:12.5であることがより好ましく、70:30〜80:20であることが更に好ましい。
(2) Solid electrolyte The solid electrolyte contained in the positive electrode may be the same as or different from the solid electrolyte contained in the solid electrolyte layer. Any solid electrolyte known in the art can be used. For example, A 2 S-M x S y (A is selected from Li or Na, M is selected from P, Si, Ge, B, Al, Ga, and x and y are stoichiometric ratios depending on the type of M. A solid electrolyte represented by the following formula:
In M x S y that is a sulfide, M is selected from P, Si, Ge, B, Al, and Ga, and x and y are numbers that give a stoichiometric ratio depending on the type of M. The six elements that can be used as M can have various valences, and x and y can be set according to the valences. For example, P can be trivalent and pentavalent, Si can be tetravalent, Ge can be divalent and tetravalent, B can be trivalent, Al can be trivalent, and Ga can be trivalent. Specific examples of M x S y include P 2 S 5 , SiS 2 , GeS 2 , B 2 S 3 , Al 2 S 3 , Ga 2 S 3 and the like. These specific M x S y may be used alone or in combination of two or more. Of these, P 2 S 5 is particularly preferred.
Furthermore, the molar ratio of A 2 S to M x S y is preferably 50:50 to 95: 5, more preferably 67:33 to 87.5: 12.5, and 70:30. More preferably, it is ˜80: 20.

固体電解質には、A2S−Mxy以外に、LiI、Li3PO4、NaI、Na3PO4等の他の電解質が含まれていてもよい。
固体電解質は、正極中、50〜95重量%を占めることが好ましい。50重量%未満である場合、正極中で移動可能なリチウムイオンの量が減ることで、十分な充放電容量が得られないことがある。95重量%より多い場合、カーボン系導電材の正極に占める量が相対的に少なくなり、充放電効率が低下することがある。より好ましい固体電解質の量は、70〜85重量%の範囲である。
The solid electrolyte may contain other electrolytes such as LiI, Li 3 PO 4 , NaI, and Na 3 PO 4 in addition to A 2 S-M x S y .
The solid electrolyte preferably accounts for 50 to 95% by weight in the positive electrode. When the amount is less than 50% by weight, a sufficient charge / discharge capacity may not be obtained due to a decrease in the amount of lithium ions that can move in the positive electrode. When the amount is more than 95% by weight, the amount of the carbon-based conductive material in the positive electrode is relatively small, and the charge / discharge efficiency may be lowered. A more preferred amount of solid electrolyte is in the range of 70 to 85% by weight.

2S−Mxyで表される固体電解質は、例えば、A2S−Mxyを与えるA2SとMxyとを所定割合で含む原料混合物をメカニカルミリング処理に付して得ることができる。この処理に付された固体電解質は、通常ガラス状の形態をとっている。 Solid electrolyte represented by A 2 S-M x S y, for example, with a raw material mixture comprising A 2 S and M x S y that gives A 2 S-M x S y in predetermined proportions to the mechanical milling process Can be obtained. The solid electrolyte subjected to this treatment usually takes a glassy form.

(1)工程(i)
工程(i)におけるメカニカルミリング処理は、原料を十分混合・反応できさえすれば、処理装置及び処理条件には特に限定されない。
処理装置としては、通常ボールミルが使用できる。ボールミルは、大きな機械的エネルギーが得られるため好ましい。ボールミルの中でも、遊星型ボールミルは、ポットが自転回転すると共に、台盤が公転回転するため、高い衝撃エネルギーを効率よく発生させることができるので、好ましい。
(1) Step (i)
The mechanical milling process in the step (i) is not particularly limited to the processing apparatus and the processing conditions as long as the raw materials can be sufficiently mixed and reacted.
As a processing apparatus, a ball mill can be used normally. A ball mill is preferable because large mechanical energy can be obtained. Among the ball mills, the planetary ball mill is preferable because the pot rotates and the base plate revolves and high impact energy can be generated efficiently.

処理条件は、使用する処理装置に応じて適宜設定できる。例えば、ボールミルを使用する場合、回転速度が大きいほど及び/又は処理時間が長いほど、原料を均一に混合・反応できる。なお、「及び/又は」は、A及び/又はBで表現すると、A、B又は、A及びBを意味する。具体的には、遊星型ボールミルを使用する場合、50〜600回転/分の回転速度、0.1〜50時間の処理時間、1〜100kWh/原料混合物1kgの条件が挙げられる。より好ましい処理条件としては、200〜500回転/分の回転速度、1〜20時間の処理時間、6〜50kWh/原料混合物1kgが挙げられる。   The processing conditions can be appropriately set according to the processing apparatus to be used. For example, when a ball mill is used, the raw materials can be mixed and reacted more uniformly as the rotational speed is higher and / or the treatment time is longer. Note that “and / or” means A, B, or A and B when expressed as A and / or B. Specifically, when a planetary ball mill is used, conditions of a rotation speed of 50 to 600 revolutions / minute, a treatment time of 0.1 to 50 hours, and 1 kg of raw material mixture of 1 to 100 kWh are exemplified. More preferable processing conditions include a rotation speed of 200 to 500 rotations / minute, a processing time of 1 to 20 hours, and 1 to 6 kg of a raw material mixture.

(2)工程(ii)
上記工程(i)で得られたガラスを、熱処理に付すことで、イオン伝導性ガラスセラミックスに変換する。この熱処理は、ガラスのガラス転移点以上の温度で行われる。
ガラス転移点(Tg)は、A2SとMxyの種類及び割合によって相違するが、例えば、Li2S−P25の場合、180〜200℃の範囲にある。
熱処理時間は、ガラスをイオン伝導性ガラスセラミックスに変換し得る時間であり、熱処理温度が高いと短く、低いと長くなる。熱処理時間は、通常、0.1〜10時間の範囲である。
(2) Step (ii)
The glass obtained in the above step (i) is subjected to a heat treatment to be converted into ion conductive glass ceramics. This heat treatment is performed at a temperature equal to or higher than the glass transition point of the glass.
The glass transition point (T g ) varies depending on the types and proportions of A 2 S and M x S y , but is, for example, in the range of 180 to 200 ° C. in the case of Li 2 S—P 2 S 5 .
The heat treatment time is a time during which glass can be converted into ion conductive glass ceramics, and is short when the heat treatment temperature is high and long when the heat treatment temperature is low. The heat treatment time is usually in the range of 0.1 to 10 hours.

(3)その他の成分
上記A2S−Mxyで表される固体電解質は、正極活物質としても機能させることができる。従って、公知の正極活物質を正極は含まなくてもよいが、本発明の効果を阻害しない範囲で加えてもよい。
正極活物質としては、例えば、全固体二次電池がリチウムを介して電子のやり取りを行うタイプの電池の場合は、Li0.44MnO2、LiNi0.5Mn0.52、FeS、TiS2、NaCoO2、LiFeO2、Li32(PO4)3、LiMn24、LiCoO2等の種々の遷移金属化合物や、硫黄、硫化リチウム、多硫化リチウム等が挙げられる。また、ナトリウムを介して電子のやり取りを行うタイプの電池の場合は、Na0.44MnO2、NaNi0.5Mn0.52、FeS、TiS2、NaCoO2、NaFeO2、Na32(PO4)3、NaMn24、NaCoO2等の種々の遷移金属化合物や、硫黄、硫化ナトリウム、多硫化ナトリウム等が挙げられる。
(3) Other components The solid electrolyte represented by the above A 2 S-M x S y can also function as a positive electrode active material. Therefore, a known positive electrode active material may not be included in the positive electrode, but may be added as long as the effect of the present invention is not impaired.
Examples of the positive electrode active material include Li 0.44 MnO 2 , LiNi 0.5 Mn 0.5 O 2 , FeS, TiS 2 , NaCoO 2 , when the all-solid-state secondary battery exchanges electrons via lithium. Examples include various transition metal compounds such as LiFeO 2 , Li 3 V 2 (PO 4 ) 3 , LiMn 2 O 4 , and LiCoO 2 , sulfur, lithium sulfide, and lithium polysulfide. In the case of a battery that exchanges electrons through sodium, Na 0.44 MnO 2 , NaNi 0.5 Mn 0.5 O 2 , FeS, TiS 2 , NaCoO 2 , NaFeO 2 , Na 3 V 2 (PO 4 ) 3 And various transition metal compounds such as NaMn 2 O 4 and NaCoO 2 , sulfur, sodium sulfide, sodium polysulfide and the like.

正極活物質は、その表面に、Ni、Mn、Fe、Coから選択される金属の硫化物による被膜を備えていてもよい。被膜を形成する方法としては、例えば、被膜の前駆体溶液中に正極活物質を浸漬し、次いで熱処理する方法、被膜の前駆体溶液を活物質に噴霧し、次いで熱処理する方法等が挙げられる。
正極には、結着剤が含まれていてもよい。結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルアルコール、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン等が挙げられる。
正極は、アルミニウム又は銅等の集電体の上に形成されていてもよい。
The positive electrode active material may be provided with a film of a metal sulfide selected from Ni, Mn, Fe, and Co on the surface thereof. Examples of the method for forming a film include a method in which a positive electrode active material is immersed in a film precursor solution and then heat-treated, and a method in which a film precursor solution is sprayed on the active material and then heat-treated.
The positive electrode may contain a binder. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, polyvinyl acetate, polymethyl methacrylate, and polyethylene.
The positive electrode may be formed on a current collector such as aluminum or copper.

(4)正極の製造方法
正極は、例えば、導電材及び固体電解質と、任意にその他の成分とを混合し、得られた混合物をプレスすることで、ペレット状として得ることができる。
上記混合は、所望の充放電容量が得られさえすれば、特に限定されない。例えば、乳鉢での混合、メカニカルミリング処理等が挙げられる。この内、より大きな充放電容量を得られるメカニカルミリング処理が好ましい。メカニカルミリング処理は、乾式でも湿式でもよい。
(4) Method for Producing Positive Electrode The positive electrode can be obtained in the form of a pellet by, for example, mixing a conductive material and a solid electrolyte and optionally other components and pressing the obtained mixture.
The mixing is not particularly limited as long as a desired charge / discharge capacity can be obtained. For example, mixing in a mortar, mechanical milling treatment and the like can be mentioned. Among these, the mechanical milling process which can obtain a larger charge / discharge capacity is preferable. The mechanical milling process may be dry or wet.

メカニカルミリング処理は、所望の充放電特性が得られさえすれば、処理装置及び処理条件には特に限定されない。
処理装置としては、通常ボールミルが使用できる。ボールミルは、大きな機械的エネルギーが得られるため好ましい。ボールミルの中でも、遊星型ボールミルは、ポットが自転回転すると共に、台盤が公転回転するため、高い衝撃エネルギーを効率よく発生させることができるので、好ましい。
処理条件は、遊星型ボールミルを使用し、乾式の場合、50〜600回転/分の回転速度、0.1〜10時間の処理時間、1〜100kWh/処理対象1kgの条件が挙げられる。より好ましい処理条件としては、200〜500回転/分の回転速度、1〜5時間の処理時間、6〜50kWh/処理対象1kgが挙げられる。湿式の場合、50〜500回転/分の回転速度、0.1〜10時間の処理時間、1〜100kWh/原料混合物1kgの条件が挙げられる。より好ましい処理条件としては、150〜300回転/分の回転速度、0.5〜2時間の処理時間、6〜50kWh/処理対象1kgが挙げられる。
The mechanical milling process is not particularly limited to a processing apparatus and processing conditions as long as desired charge / discharge characteristics can be obtained.
As a processing apparatus, a ball mill can be used normally. A ball mill is preferable because large mechanical energy can be obtained. Among the ball mills, the planetary ball mill is preferable because the pot rotates and the base plate revolves and high impact energy can be generated efficiently.
As for the processing conditions, a planetary ball mill is used, and in the case of a dry type, the rotational speed is 50 to 600 rotations / minute, the processing time is 0.1 to 10 hours, and the conditions are 1 to 100 kWh / processing target 1 kg. More preferable processing conditions include a rotation speed of 200 to 500 rotations / minute, a processing time of 1 to 5 hours, and 6 to 50 kWh / kg of a processing target. In the case of a wet type, conditions of a rotation speed of 50 to 500 rotations / minute, a processing time of 0.1 to 10 hours, and 1 kg of raw material mixture of 1 to 100 kWh can be mentioned. More preferable processing conditions include a rotational speed of 150 to 300 rotations / minute, a processing time of 0.5 to 2 hours, and 6 to 50 kWh / kg of processing target.

湿式メカニカルミリング処理は、溶媒の存在下で行なうことができる。溶媒は、この処理時の温度(例えば、10〜50℃)で液体であり、正極活物質に対して不活性であることが好ましい。溶媒としては、例えば、トルエン、キシレン、デカリン、テトラヒドロナフタレン等の芳香族炭化水素、ヘキサン、ペンタン、エチルへキサン、ヘプタン、デカン、シクロヘキサン等の飽和炭化水素、ヘキセン、ヘプテン、シクロヘキセン等の不飽和炭化水素等が挙げられる。この内、芳香族炭化水素がより好ましく、トルエンが更に好ましい。溶媒の使用量は、例えば、正極活物質100重量部に対して、10〜100重量部の範囲とすることができる。   The wet mechanical milling process can be performed in the presence of a solvent. The solvent is preferably a liquid at the temperature during the treatment (for example, 10 to 50 ° C.) and inert to the positive electrode active material. Examples of the solvent include aromatic hydrocarbons such as toluene, xylene, decalin, and tetrahydronaphthalene, saturated hydrocarbons such as hexane, pentane, ethyl hexane, heptane, decane, and cyclohexane, and unsaturated carbons such as hexene, heptene, and cyclohexene. Hydrogen etc. are mentioned. Of these, aromatic hydrocarbons are more preferred, and toluene is even more preferred. The usage-amount of a solvent can be made into the range of 10-100 weight part with respect to 100 weight part of positive electrode active materials, for example.

湿式メカニカルミリング処理後、溶媒は除去しておくことが好ましい。溶媒の除去は、最終的に正極中に溶媒が存在しなければどの段階で行ってもよい。例えば、湿式メカニカルミリング処理直後に行ってもよく、導電材及び/又は電解質との混合後に行ってもよく、正極に成形後に行ってもよい。   It is preferable to remove the solvent after the wet mechanical milling treatment. The removal of the solvent may be performed at any stage as long as no solvent is finally present in the positive electrode. For example, it may be performed immediately after the wet mechanical milling treatment, may be performed after mixing with the conductive material and / or the electrolyte, or may be performed after forming the positive electrode.

(負極)
負極は、特に限定されない。負極は、負極活物質のみからなっていてもよく、結着剤、導電材、電解質等と混合されていてもよい。
負極活物質としては、Li、Na、In、Sn等の金属や、Li合金、Na合金等の合金、グラファイト、ハードカーボン等の炭素材料、Li4/3Ti5/34、Na32(PO4)3、SnO等の種々の遷移金属酸化物等が挙げられる。
結着剤、導電材及び電解質は、上記正極の欄で挙げた物をいずれも使用できる。
負極は、例えば、負極活物質及び、任意に結着剤、導電材、電解質等を混合し、得られた混合物をプレスすることで、ペレット状として得ることができる。また、負極活物質として金属又はその合金からなる金属シート(箔)を使用する場合、それをそのまま使用可能である。
負極は、アルミニウム又は銅等の集電体の上に形成されていてもよい。
(Negative electrode)
The negative electrode is not particularly limited. The negative electrode may consist only of the negative electrode active material, and may be mixed with a binder, a conductive material, an electrolyte, and the like.
Examples of the negative electrode active material include metals such as Li, Na, In, and Sn, alloys such as Li alloys and Na alloys, carbon materials such as graphite and hard carbon, Li 4/3 Ti 5/3 O 4 , and Na 3 V. Examples thereof include various transition metal oxides such as 2 (PO 4 ) 3 and SnO.
As the binder, the conductive material, and the electrolyte, any of those mentioned in the column of the positive electrode can be used.
The negative electrode can be obtained as a pellet by, for example, mixing a negative electrode active material and optionally a binder, a conductive material, an electrolyte, and the like, and pressing the obtained mixture. Moreover, when using the metal sheet (foil) which consists of a metal or its alloy as a negative electrode active material, it can be used as it is.
The negative electrode may be formed on a current collector such as aluminum or copper.

(固体電解質層)
固体電解質層に含まれる固体電解質は、当該分野で知られているものをいずれも使用できる。例えば、上記正極に含まれる固体電解質の欄で説明した、A2S−Mxy(AはLi又はNa、MはP、Si、Ge、B、Al、Gaから選択され、x及びyは、Mの種類に応じて、化学量論比を与える整数である)で表される固体電解質が挙げられる。なお、全固体二次電池がリチウムを介して電子のやり取りを行うタイプの電池の場合は、AがLiの固体電解質を、ナトリウムを介して電子のやり取りを行うタイプの電池の場合は、AがNaの固体電解質を使用する。
(Solid electrolyte layer)
As the solid electrolyte contained in the solid electrolyte layer, any known solid electrolyte can be used. For example, A 2 S-M x S y (A is selected from Li or Na, M is selected from P, Si, Ge, B, Al, Ga, and x and y described in the section of the solid electrolyte contained in the positive electrode) Is an integer that gives a stoichiometric ratio depending on the type of M). When the all-solid-state secondary battery is a type of battery that exchanges electrons through lithium, A is a solid electrolyte of Li, and when the battery is a type of exchange of electrons through sodium, A is A solid electrolyte of Na is used.

(全固体二次電池の製造法)
全固体二次電池は、例えば、正極と、電解質層と、負極とを積層し、プレスすることにより得ることができる。
(All-solid-state secondary battery manufacturing method)
The all solid state secondary battery can be obtained, for example, by laminating and pressing a positive electrode, an electrolyte layer, and a negative electrode.

(容量向上方法)
容量向上は、全固体二次電池を製造後、通常の充放電前に、通常の充放電に使用される電流密度より高い電流密度で充放電を行うことにより実現できる。ここで、通常の充放電に使用される電流密度は、例えば、0.01〜0.20mAcm-2の範囲である。
(Capacity improvement method)
The capacity can be improved by charging / discharging at a higher current density than that used for normal charging / discharging after manufacturing the all-solid-state secondary battery and before normal charging / discharging. Here, the current density used for normal charging / discharging is the range of 0.01-0.20 mAcm <-2 >, for example.

電流密度の高さの程度は、容量が向上できさえすれば特に限定されない。例えば、以下の実施例にも記載するが、アセチレンブラック(カーボン系導電材)及び75Li2S−25P25(固体電解質、兼正極活物質)からなる正極、In箔からなる負極、80Li2S−20P25(固体電解質)からなる固体電解質層から構成される全固体リチウム二次電池の場合、通常の充放電に使用される電流密度(0.064mAcm-2)より高い電流密度(1.3mAcm-2)で10サイクル充放電を繰り返すことで、容量を2倍程度に向上できることを確認している。
また、高い電流密度で充放電を行う回数、時間、充放電深度は、容量が向上できさえすれば特に限定されない。
The degree of current density is not particularly limited as long as the capacity can be improved. For example, as described in the following examples, a positive electrode made of acetylene black (carbon-based conductive material) and 75Li 2 S-25P 2 S 5 (solid electrolyte and positive electrode active material), a negative electrode made of In foil, 80Li 2 In the case of an all-solid lithium secondary battery composed of a solid electrolyte layer made of S-20P 2 S 5 (solid electrolyte), a current density higher than the current density (0.064 mAcm −2 ) used for normal charge / discharge ( It has been confirmed that the capacity can be improved by a factor of about 2 by repeating 10 cycles of charge and discharge at 1.3 mAcm −2 ).
Further, the number of times of charging / discharging at a high current density, time, and charging / discharging depth are not particularly limited as long as the capacity can be improved.

以下、実施例によって本発明を更に具体的に説明するが、本発明はこれらによりなんら制限されるものではない。
実施例1
75Li2S−25P25(以下、SE又はLi3PO4ともいう。75及び25はモル比:平均粒子径5μm)0.42gと、アセチレンブラック(電気化学工業社製デンカブラック:平均粒子径35nm:以下、ABともいう)0.18gとを乾式メカニカルミリング処理に付した(SE:AB=70:30(重量比))。処理装置には、ポット及びボールを備えた遊星型ボールミルであるFritsch社製Pulverisette P−7を使用した。ポット及びボールは酸化ジルコニウム製であり、45mlのポット内で直径4mmのボールを160個使用した。処理条件は、室温(約25℃)、370回転/分、10時間、約30kWh/1kgとした。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
75Li 2 S-25P 2 S 5 (hereinafter also referred to as SE or Li 3 PO 4 , 75 and 25 are molar ratio: average particle diameter 5 μm) 0.42 g and acetylene black (Denka Black: Denki Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) The diameter of 35 nm: 0.18 g (hereinafter also referred to as AB) was subjected to dry mechanical milling (SE: AB = 70: 30 (weight ratio)). Pulverisete P-7 manufactured by Fritsch, which is a planetary ball mill equipped with a pot and a ball, was used as the processing apparatus. The pots and balls were made of zirconium oxide, and 160 balls with a diameter of 4 mm were used in a 45 ml pot. The treatment conditions were room temperature (about 25 ° C.), 370 revolutions / minute, 10 hours, and about 30 kWh / 1 kg.

使用したSEは、以下の方法で合成した。
Li2S(出光興産社製:純度99.9%以上)及びP25(アルドリッチ社製純度99%)を75:25のモル比で遊星型ボールミルに投入した。投入後、乾式メカニカルミリング処理することで、SEを得た。遊星型ボールミルは、Fritsch社製Pulverisette P−7を使用し、ポット及びボールは酸化ジルコニウム製であり、45mlのポット内に直径4mmのボールが500個入っているミルを使用した。乾式メカニカルミリング処理は、510rpmの回転速度、室温、乾燥窒素グローブボックス内で10時間行った。なお、この合成法は、Akitoshi Hayashi et al., Journal of Non−Crystalline Solids 356 (2010) 2670−2673のExperimentalの記載に準じている。
処理後のABとSEとの複合体10mgをプレス(圧力370MPa/cm2)することで直径10mm、厚さ約0.1mmのペレット(正極)を得た。
The SE used was synthesized by the following method.
Li 2 S (Idemitsu Kosan Co., Ltd .: purity 99.9% or higher) and P 2 S 5 (Aldrich purity 99%) were charged into a planetary ball mill at a molar ratio of 75:25. After the addition, SE was obtained by dry mechanical milling. As the planetary ball mill, Pulverisette P-7 manufactured by Fritsch was used, and the pot and balls were made of zirconium oxide, and a mill containing 500 balls having a diameter of 4 mm in a 45 ml pot was used. The dry mechanical milling process was performed for 10 hours in a dry nitrogen glove box at a rotation speed of 510 rpm, room temperature. This synthesis method is described in Akitoshi Hayashi et al. , Journal of Non-Crystalline Solids 356 (2010) 2670-2673.
10 mg of a composite of AB and SE after treatment was pressed (pressure 370 MPa / cm 2 ) to obtain a pellet (positive electrode) having a diameter of 10 mm and a thickness of about 0.1 mm.

上記正極に含まれる固体電解質と同様にして、固体電解質層形成用のLi2S−P25からなる固体電解質(Li2SとP25とのモル比80:20)を得た。得られた固体電解質80mgをプレス(圧力370MPa/cm2)することで直径10mm、厚さ約0.8mmのペレット(固体電解質層)を得た。
負極には、厚さ0.1mmのインジウム箔を使用した。
上記正極、電解質層及び負極を積層し、ステンレススチール製集電体で挟み、プレス(圧力250MPa/cm2)することで全固体リチウム二次電池を得た。
In the same manner as the solid electrolyte contained in the positive electrode, a solid electrolyte composed of Li 2 S—P 2 S 5 for forming a solid electrolyte layer (a molar ratio of Li 2 S to P 2 S 5 of 80:20) was obtained. . 80 mg of the obtained solid electrolyte was pressed (pressure 370 MPa / cm 2 ) to obtain pellets (solid electrolyte layer) having a diameter of 10 mm and a thickness of about 0.8 mm.
For the negative electrode, an indium foil having a thickness of 0.1 mm was used.
The positive electrode, electrolyte layer, and negative electrode were laminated, sandwiched between stainless steel current collectors, and pressed (pressure 250 MPa / cm 2 ) to obtain an all-solid lithium secondary battery.

得られた二次電池(セル)を、25℃下、1.3mAcm-2の電流密度で充放電を10回繰り返し、次いで、0.064mAcm-2の電流密度で充放電を2回繰り返した場合のセル電位と充放電容量との関係を図1に示す。図1において、○は1.3mAcm-2の電流密度での充放電曲線を、×は0.064mAcm-2の電流密度での充放電曲線をそれぞれ意味している。
図1から、1.3mAcm-2の高い電流密度で充放電を繰り返した後、通常の充放電時の電流密度である0.064mAcm-2で充放電すると、約200mAhg-1の容量が得られることが分かる。
When the obtained secondary battery (cell) is repeatedly charged and discharged 10 times at a current density of 1.3 mAcm −2 at 25 ° C. and then repeatedly charged and discharged twice at a current density of 0.064 mAcm −2 The relationship between the cell potential and the charge / discharge capacity is shown in FIG. In Figure 1, ○ is a charge-discharge curve of a current density of 1.3mAcm -2, × is meant respectively the charge-discharge curve of a current density of 0.064mAcm -2.
From Figure 1, after repeated charging and discharging at high current density 1.3MAcm -2, when charge and discharge at 0.064MAcm -2 is the current density at the time of normal charging and discharging, the capacity of about 200MAhg -1 is obtained I understand that.

実施例2
実施例1と同様にして製造した二次電池を2つ用意した。一方の二次電池には、電流密度を1.3mAcm-2から0.25mAcm-2に変更すること以外は実施例1と同様にして充放電に付した。他方の二次電池には高い電流密度での充放電は行わず、最初から0.064mAcm-2の電流密度での充放電に付した。
図2に0.25mAcm-2の電流密度で充放電に付した後、初回の0.064mAcm-2の電流密度での充放電に付した場合のセル電位と充放電容量との関係を示す。図2には、実施例1の二次電池における1.3mAcm-2の電流密度で充放電に付した後、初回の0.064mAcm-2の電流密度での充放電に付した場合のセル電位と充放電容量との関係と、高い電流密度での充放電は行わず、最初から0.064mAcm-2の電流密度での充放電に付した場合のセル電位と充放電容量との関係とを合わせて示す。図中、●が1.3mAcm-2、◇が0.25mAcm-2、実線が0.064mAcm-2の電流密度でのプロットである。
図2から、通常の電流密度での充放電前に、高い電流密度での充放電に付すことで、容量が明らかに向上していることが分かる。例えば、最初から0.064mAcm-2の電流密度での充放電に付した場合の容量に比べて、1.3mAcm-2の電流密度で充放電に付した後に0.064mAcm-2の電流密度で充放電した場合の容量は約200mAhg-1であることから、約2倍の容量の向上効果が示されている。
なお、参考までに、1.3mAcm-2、0.25mAcm-2及び0.064mAcm-2の電流密度で5回充放電に付した場合のセル電位と充放電容量との関係を図3に示す。
Example 2
Two secondary batteries manufactured in the same manner as in Example 1 were prepared. One secondary battery was charged and discharged in the same manner as in Example 1 except that the current density was changed from 1.3 mAcm −2 to 0.25 mAcm −2 . The other secondary battery was not charged / discharged at a high current density, and was initially charged / discharged at a current density of 0.064 mAcm −2 .
After subjected to charging and discharging at a current density of 0.25MAcm -2 2 shows the relationship between cell potential and the charge-discharge capacity when subjected to charge and discharge at a current density of initial 0.064mAcm -2. FIG. 2 shows the cell potential when the secondary battery of Example 1 was subjected to charge / discharge at a current density of 1.3 mAcm −2 and then subjected to the initial charge / discharge at a current density of 0.064 mAcm −2. The relationship between the cell potential and the charge / discharge capacity, and the relationship between the cell potential and the charge / discharge capacity when charging / discharging at a current density of 0.064 mAcm −2 from the beginning is not performed. Shown together. In the figure, ● is a plot at a current density of 1.3 mAcm −2 , ◇ is 0.25 mAcm −2 , and a solid line is 0.064 mAcm −2 .
From FIG. 2, it can be seen that the capacity is clearly improved by charging and discharging at a high current density before charging and discharging at a normal current density. For example, compared to the capacity when subjected initially to charge and discharge at a current density of 0.064MAcm -2, after subjected to charging and discharging at a current density of 1.3MAcm -2 at a current density of 0.064MAcm -2 Since the capacity when charging / discharging is about 200 mAhg −1 , the capacity improvement effect of about twice is shown.
For reference, FIG. 3 shows the relationship between the cell potential and the charge / discharge capacity when subjected to charge / discharge five times at current densities of 1.3 mAcm −2 , 0.25 mAcm −2 and 0.064 mAcm −2 . .

実施例3
正極の導電材として、ABに代えて気相成長カーボンファィバ(昭和電工社製気相成長炭素繊維(VGCF):炭素径10nm、平均繊維長10〜20μm:以下、VGCFともいう)を使用し、SE:VGCF=85:15(重量比)とし、ミリング処理条件中の回転速度を510回転/分としたこと以外は実施例1と同様にして全固体リチウム二次電池を得た。
得られた二次電池を実施例1と同様にして充放電に付し、結果を図4に示す。図4において、○は1.3mAcm-2の電流密度での充放電曲線を、×は0.064mAcm-2の電流密度での充放電曲線をそれぞれ意味している。
図4から、1.3mAcm-2の高い電流密度で充放電を繰り返した後、通常の充放電時の電流密度である0.064mAcm-2で充放電すると、約300mAhg-1の容量が得られることが分かる。またVGCFを用いた場合、アセチレンブラックを用いた場合(図1)と比較して、カーボン添加量が少なくても、約1.5倍の可逆容量が得られることがわかった。
Example 3
As a conductive material for the positive electrode, a vapor-grown carbon fiber (vapor-grown carbon fiber (VGCF) manufactured by Showa Denko KK: carbon diameter 10 nm, average fiber length 10-20 μm: hereinafter also referred to as VGCF) is used instead of AB, and SE. : VGCF = 85: 15 (weight ratio), and an all-solid lithium secondary battery was obtained in the same manner as in Example 1 except that the rotation speed in the milling conditions was 510 rotations / minute.
The obtained secondary battery was subjected to charge / discharge in the same manner as in Example 1, and the results are shown in FIG. In FIG. 4, ○ is a charge-discharge curve of a current density of 1.3mAcm -2, × is meant respectively the charge-discharge curve of a current density of 0.064mAcm -2.
From Figure 4, after repeated charging and discharging at high current density 1.3MAcm -2, when charge and discharge at 0.064MAcm -2 is the current density at the time of normal charging and discharging, the capacity of about 300MAhg -1 is obtained I understand that. Further, it was found that when VGCF was used, a reversible capacity about 1.5 times as large as that obtained when acetylene black was used (FIG. 1) even when the amount of carbon added was small.

実施例4
SE:VGCF=90:10(重量比)としたこと以外は実施例2と同様にして全固体リチウム二次電池を得た。
得られた二次電池を実施例1と同様にして充放電に付し、結果を図5に示す。図5において、○は1.3mAcm-2の電流密度での充放電曲線を、×は0.064mAcm-2の電流密度での充放電曲線をそれぞれ意味している。
図5から、1.3mAcm-2の高い電流密度で充放電を繰り返した後、通常の充放電時の電流密度である0.064mAcm-2で充放電すると、約160mAhg-1の容量が得られることが分かる。
Example 4
An all solid lithium secondary battery was obtained in the same manner as in Example 2 except that SE: VGCF = 90: 10 (weight ratio).
The obtained secondary battery was subjected to charge / discharge in the same manner as in Example 1, and the results are shown in FIG. In FIG. 5, ○ is a charge-discharge curve of a current density of 1.3mAcm -2, × is meant respectively the charge-discharge curve of a current density of 0.064mAcm -2.
From Figure 5, after repeated charging and discharging at high current density 1.3MAcm -2, when charge and discharge at 0.064MAcm -2 is the current density at the time of normal charging and discharging, the capacity of about 160MAhg -1 is obtained I understand that.

Claims (6)

正極、固体電解質層及び負極をこの順で備えた全固体二次電池において、前記正極が、カーボン系導電材と固体電解質とを含み、全固体二次電池を製造後、実際の使用前に、実際の使用時における通常の充放電に使用される電流密度より高い電流密度で充放電を行うことを特徴とする全固体二次電池の容量向上方法。 In an all-solid secondary battery comprising a positive electrode, a solid electrolyte layer, and a negative electrode in this order, the positive electrode includes a carbon-based conductive material and a solid electrolyte, and after manufacturing the all-solid secondary battery, before actual use, A method for improving the capacity of an all-solid-state secondary battery, wherein charging and discharging are performed at a current density higher than that used for normal charging and discharging during actual use. 前記正極及び固体電解質層に含まれる固体電解質が、A2S−Mxy(AはLi又はNa、MはP、Si、Ge、B、Al、Gaから選択され、x及びyは、Mの種類に応じて、化学量論比を与える整数である)で表される請求項1に記載の全固体二次電池の容量向上方法。 The solid electrolyte contained in the positive electrode and the solid electrolyte layer, A 2 S-M x S y (A is Li or Na, M is selected P, Si, Ge, B, Al, from Ga, x and y, The method for improving the capacity of an all-solid-state secondary battery according to claim 1, which is an integer that gives a stoichiometric ratio according to the kind of M). 前記カーボン系導電材が、アセチレンブラック又は気相成長カーボンファイバ(VGCF)である請求項1又は2に記載の全固体二次電池の容量向上方法。 The method for improving the capacity of an all-solid-state secondary battery according to claim 1, wherein the carbon-based conductive material is acetylene black or vapor grown carbon fiber (VGCF). 前記正極に含まれる固体電解質が、正極活物質としても機能する請求項1〜3のいずれか1つに記載の全固体二次電池の容量向上方法。 The capacity improvement method of the all-solid-state secondary battery as described in any one of Claims 1-3 with which the solid electrolyte contained in the said positive electrode functions also as a positive electrode active material. 請求項1〜4のいずれか1つに記載の方法により得られた容量が向上した全固体二次電池。 An all-solid secondary battery having an improved capacity obtained by the method according to claim 1. 正極、固体電解質層及び負極をこの順で備えた全固体二次電池において、前記正極が、カーボン系導電材と固体電解質とを含み、全固体二次電池を製造後、実際の使用時における通常の充放電に使用される電流密度より高い電流密度で充放電を行うことで容量を向上させ、次いで実際の使用における通常の充放電に供することを特徴とする全固体二次電池の充放電方法。 In an all-solid secondary battery having a positive electrode, a solid electrolyte layer, and a negative electrode in this order, the positive electrode includes a carbon-based conductive material and a solid electrolyte, and after manufacturing the all-solid secondary battery, it is usually Charge / discharge method of all-solid-state secondary battery characterized in that capacity is improved by performing charge / discharge at a current density higher than the current density used for charge / discharge of the battery and then subjected to normal charge / discharge in actual use .
JP2013208245A 2013-10-03 2013-10-03 Capacity improvement method of all-solid-state secondary battery and all-solid-state secondary battery having enhanced capacity Pending JP2015072816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013208245A JP2015072816A (en) 2013-10-03 2013-10-03 Capacity improvement method of all-solid-state secondary battery and all-solid-state secondary battery having enhanced capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208245A JP2015072816A (en) 2013-10-03 2013-10-03 Capacity improvement method of all-solid-state secondary battery and all-solid-state secondary battery having enhanced capacity

Publications (1)

Publication Number Publication Date
JP2015072816A true JP2015072816A (en) 2015-04-16

Family

ID=53015060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208245A Pending JP2015072816A (en) 2013-10-03 2013-10-03 Capacity improvement method of all-solid-state secondary battery and all-solid-state secondary battery having enhanced capacity

Country Status (1)

Country Link
JP (1) JP2015072816A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147158A (en) * 2016-02-18 2017-08-24 トヨタ自動車株式会社 Positive electrode mixture manufacturing method, positive electrode manufacturing method, all-solid lithium ion secondary battery manufacturing method, positive electrode mixture, positive electrode, and all-solid lithium ion secondary battery
CN111092247A (en) * 2019-12-31 2020-05-01 上海神力科技有限公司 Water management method for fuel cell stack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147158A (en) * 2016-02-18 2017-08-24 トヨタ自動車株式会社 Positive electrode mixture manufacturing method, positive electrode manufacturing method, all-solid lithium ion secondary battery manufacturing method, positive electrode mixture, positive electrode, and all-solid lithium ion secondary battery
CN111092247A (en) * 2019-12-31 2020-05-01 上海神力科技有限公司 Water management method for fuel cell stack
CN111092247B (en) * 2019-12-31 2021-07-09 上海神力科技有限公司 Water management method for fuel cell stack

Similar Documents

Publication Publication Date Title
Choi et al. Advanced lithium‐ion batteries for practical applications: Technology, development, and future perspectives
Yi et al. Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries
JP5388069B2 (en) Positive electrode for all-solid lithium secondary battery and method for producing the same
JP6529508B2 (en) Positive electrode for all solid secondary battery, manufacturing method thereof and all solid secondary battery
JP6246816B2 (en) All solid battery
JP5660210B2 (en) Solid electrolyte material, solid battery, and method for producing solid electrolyte material
CN111864207B (en) All-solid battery
JP6362371B2 (en) Oxide-based solid electrolyte and its use
WO2012077225A1 (en) Electrode body and all-solid-state battery
JP5682318B2 (en) All solid battery
JP6337852B2 (en) Solid electrolyte material and all solid lithium battery
JP5686300B2 (en) Solid electrolyte material and all solid lithium secondary battery
JP6937009B2 (en) Solid electrolyte layer for all-solid-state alkali metal rechargeable battery and all-solid-state alkali metal rechargeable battery
WO2013190930A1 (en) Battery system, method for manufacturing battery system, and battery control apparatus
JP2012028231A (en) Solid lithium ion secondary battery
JP4496366B2 (en) Negative electrode material for polymer solid electrolyte lithium secondary battery and method for producing the same
JP2013089321A (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
KR20120010552A (en) Solid lithium ion secondary battery and electrode usable with same
JP2013054958A (en) Negative electrode material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
JP2014035987A (en) METHOD FOR MANUFACTURING Si-CONTAINING ACTIVE MATERIAL LAYER, METHOD FOR MANUFACTURING SOLID-STATE BATTERY, Si-CONTAINING ACTIVE MATERIAL LAYER, AND SOLID-STATE BATTERY
WO2013141241A1 (en) Solid-state electrolyte layer, and all-solid-state lithium secondary battery
JP2013222501A (en) Positive electrode for all-solid-state lithium secondary battery and manufacturing method therefor
CN116845235B (en) Positive electrode material, positive electrode sheet and battery
JP2017157473A (en) Lithium ion secondary battery
US11532837B2 (en) Sulfide solid electrolyte particles and all-solid-state battery