JP2015072261A - Masking grating, and talbot interferometer - Google Patents

Masking grating, and talbot interferometer Download PDF

Info

Publication number
JP2015072261A
JP2015072261A JP2014160674A JP2014160674A JP2015072261A JP 2015072261 A JP2015072261 A JP 2015072261A JP 2014160674 A JP2014160674 A JP 2014160674A JP 2014160674 A JP2014160674 A JP 2014160674A JP 2015072261 A JP2015072261 A JP 2015072261A
Authority
JP
Japan
Prior art keywords
shielding
grating
small
dimensional
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014160674A
Other languages
Japanese (ja)
Other versions
JP6362103B2 (en
Inventor
中村 高士
Takashi Nakamura
高士 中村
佐藤 玄太
Genta Sato
玄太 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014160674A priority Critical patent/JP6362103B2/en
Priority to PCT/JP2014/004496 priority patent/WO2015033552A1/en
Publication of JP2015072261A publication Critical patent/JP2015072261A/en
Application granted granted Critical
Publication of JP6362103B2 publication Critical patent/JP6362103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • G02B5/1823Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a masking grating and a Talbot interferometer provided with the masking grating for making the acquisition of phase information in the overlapped regions easier than heretofore, when two-dimensional small masking gratings are overlapped with each other.SOLUTION: A masking grating 4 includes a plurality of small masking gratings 3 in which transmission parts 9 transmitting an X-ray and shielding parts 8 shielding the X-ray are arranged. Each of the small masking gratings 3 includes a two-dimensional grating region arranged in two directions where the transmission parts 8 and the shielding parts 9 intersect each other; and one-dimensional grid region where the transmission parts and the shielding parts are arranged in a one-dimensional direction. The one-dimensional region is formed at least in a part of an outer periphery of the two-dimensional grating region. The masking grating includes an overlapping region 10 where at least parts of the one-dimensional regions possessed by mutually adjacent small masking gratings 3 among the plurality of small masking gratings 3 are overlapped with each other, and the arrangement directions of the small masking gratings intersect each other in the overlapping region 10.

Description

本発明は、遮蔽格子及びトールボット干渉計に関する。   The present invention relates to a shield grating and a Talbot interferometer.

X線位相イメージング法は、X線の位相シフトに基づいてコントラストを発生させ、被検体に関する情報を得る方法である。X線位相イメージング法の1つとして、トールボット干渉法がある。   The X-ray phase imaging method is a method in which contrast is generated based on the X-ray phase shift to obtain information on the subject. One of the X-ray phase imaging methods is Talbot interferometry.

X線を用いたトールボット干渉を観測するためには、空間的に可干渉なX線を出射するX線源、X線の位相を周期的に変調するための回折格子、検出器が少なくとも必要である。空間的に可干渉性なX線が回折格子を透過すると、X線の位相が回折格子の形状を反映して周期的に変化する。すると、トールボット距離と呼ばれる特定の距離だけ回折格子から離れた位置に自己像と呼ばれる第1の干渉パターンが形成される。   In order to observe Talbot interference using X-rays, an X-ray source that emits spatially coherent X-rays, a diffraction grating for periodically modulating the phase of X-rays, and a detector are required. It is. When spatially coherent X-rays pass through the diffraction grating, the phase of the X-rays periodically changes to reflect the shape of the diffraction grating. Then, a first interference pattern called a self image is formed at a position away from the diffraction grating by a specific distance called a Talbot distance.

被検体をX線源と回折格子の間又は回折格子と検出器の間に置くことで、被検体の形状と複素屈折率により自己像が変形され、この自己像の変形から被検体の位相に関する情報(以下、位相情報と呼ぶことがある。)を得ることができる。
尚、被検体の位相に関する情報として、微分位相微分像、位相像、散乱像が挙げられる。
By placing the subject between the X-ray source and the diffraction grating or between the diffraction grating and the detector, the self-image is deformed by the shape of the subject and the complex refractive index, and the phase of the subject is related to the deformation of the self-image. Information (hereinafter sometimes referred to as phase information) can be obtained.
Note that examples of the information regarding the phase of the subject include a differential phase differential image, a phase image, and a scattered image.

しかし、一般的に、X線を用いたトールボット干渉法において形成される自己像のピッチは検出器の画素ピッチと比較して小さいため、自己像を直接検出することは困難である。
そこで、X線を遮る遮蔽部とX線を透過する透過部が周期的に配列された周期構造を持つ、遮蔽格子を用いて、第2の干渉パターンを形成する。
However, since the pitch of the self-image formed in the Talbot interferometry using X-rays is generally smaller than the pixel pitch of the detector, it is difficult to directly detect the self-image.
Therefore, the second interference pattern is formed using a shielding grating having a periodic structure in which shielding portions that block X-rays and transmission portions that transmit X-rays are periodically arranged.

遮蔽格子に形成されている遮蔽部と透過部の周期は自己像の周期と同じもしくはほぼ同じであり、第2の干渉パターンとして自己像よりも周期が大きいモアレを形成したり、自己像との相対位置を移動させることで縞走査を可能にしたりする。   The period of the shielding part and the transmission part formed on the shielding grating is the same as or substantially the same as the period of the self-image, and a moire having a period larger than that of the self-image is formed as the second interference pattern. By moving the relative position, fringe scanning is enabled.

また、遮蔽部はX線を十分遮蔽するために高アスペクト比の金属構造体から構成されており、遮蔽格子を大面積で作製することは困難である。   In addition, the shielding part is made of a metal structure having a high aspect ratio to sufficiently shield X-rays, and it is difficult to produce a shielding grid with a large area.

このため特許文献1には、1次元構造の遮蔽部を持つ複数の小遮蔽格子を重ね合わせて作製した大面積の遮蔽格子が記載されている。   For this reason, Patent Document 1 describes a large-area shielding grating produced by superposing a plurality of small shielding gratings having a one-dimensional structure shielding portion.

特開2012−045099号公報JP 2012-045099 A

しかし、特許文献1のように複数の小遮蔽格子を重ね合わせると、小遮蔽格子の重ね合わせの精度によっては、小遮蔽格子を重ね合わせた領域における位相情報の取得が困難になる。これは、小遮蔽格子の重ね合わせズレにより、設計上は遮蔽部が位置する位置に遮蔽部が位置しなかったり、設計上は透過部が位置する位置に透過部が位置しなかったりすることによる。特に、2方向に遮蔽部と透過部とが配列された2次元の小遮蔽格子を精度よく重ね合わせることは難しい。   However, when a plurality of small shielding gratings are overlapped as in Patent Document 1, it is difficult to obtain phase information in a region where the small shielding gratings are overlapped depending on the accuracy of the overlapping of the small shielding gratings. This is because the shielding part is not located at the position where the shielding part is located by design, or the transmission part is not located at the position where the transmission part is located by design, due to the overlay deviation of the small shielding grids. . In particular, it is difficult to accurately overlay a two-dimensional small shielding grid in which shielding portions and transmission portions are arranged in two directions.

本発明は、上記課題に鑑み、2次元の小遮蔽格子を重ね合わせる場合において、重ね合わせた領域における位相情報の取得を従来よりも容易にすることが可能となる遮蔽格子及び該遮蔽格子を備えるトールボット干渉計の提供を目的とする。   In view of the above-described problems, the present invention includes a shielding grating and the shielding grating that make it easier to obtain phase information in the overlapped region than before when two-dimensional small shielding gratings are overlaid. The purpose is to provide a Talbot interferometer.

本発明の一側面としての遮蔽格子は、X線を透過する透過部とX線を遮蔽する遮蔽部とが配列された、複数の小遮蔽格子を備え、前記複数の小遮蔽格子のそれぞれは、前記透過部と前記遮蔽部とが交差する2方向に配列された2次元の格子領域と、前記透過部と前記遮蔽部とが1方向に配列された1次元の格子領域とを有し、前記1次元の格子領域は、前記2次元の格子領域の外周の少なくとも一部に形成され、前記複数の小遮蔽格子のうち、隣り合う小遮蔽格子が有する1次元の格子領域同士の少なくとも一部が重なることで形成される重なり領域を有し、前記重なり領域において、前記小遮蔽格子同士の配列方向が交差することを特徴とする。   The shielding grating as one aspect of the present invention includes a plurality of small shielding gratings in which a transmission part that transmits X-rays and a shielding part that shields X-rays are arranged, and each of the plurality of small shielding gratings includes: A two-dimensional lattice region arranged in two directions where the transmission portion and the shielding portion intersect, and a one-dimensional lattice region in which the transmission portion and the shielding portion are arranged in one direction, The one-dimensional lattice region is formed on at least a part of the outer periphery of the two-dimensional lattice region, and at least a part of the one-dimensional lattice regions of the adjacent small shielding lattices among the plurality of small shielding lattices is It has an overlapping region formed by overlapping, and the arrangement direction of the small shielding lattices intersects in the overlapping region.

本発明の一側面としての遮蔽格子によれば、2次元の小遮蔽格子を重ね合わせる場合において、重ね合わせた領域における位相情報の取得を従来よりも容易にすることが可能となる遮蔽格子を実現することができる。   According to the shielding grating as one aspect of the present invention, when a two-dimensional small shielding grating is overlaid, a shielding grating that makes it easier to obtain phase information in the overlapped region than before is realized. can do.

本発明のその他の側面については、以下で説明する実施の形態で明らかにする。   Other aspects of the present invention will be clarified in the embodiments described below.

本発明の実施形態及び実施例1における複数の小遮蔽格子を有する遮蔽格子の模式図。The schematic diagram of the shielding grating | lattice which has the some small shielding grating | lattice in embodiment and Example 1 of this invention. 本発明の実施形態及び実施例2における複数の小遮蔽格子を有する遮蔽格子の模式図。The schematic diagram of the shielding grating | lattice which has several small shielding grating | lattice in embodiment and Example 2 of this invention. 本発明の実施形態における複数の小遮蔽格子を有する遮蔽格子の模式図。The schematic diagram of the shielding grating | lattice which has several small shielding grating | lattices in embodiment of this invention. 本発明の実施形態における1次元周期構造と2次元周期構造の模式図である。It is a schematic diagram of the one-dimensional periodic structure and the two-dimensional periodic structure in the embodiment of the present invention. 発明の実施形態における複数の小遮蔽格子を有する遮蔽格子の模式図。The schematic diagram of the shielding grating | lattice which has several small shielding grating | lattices in embodiment of invention. 発明の実施形態における、法線が交差するように配置された複数の小遮蔽格子を有する遮蔽格子の模式図。The schematic diagram of the shielding grating | lattice which has the some small shielding grating | lattice arrange | positioned so that a normal line may cross | intersect in embodiment of invention. 複数の小遮蔽格子を有する、従来の遮蔽格子の例の模式図。The schematic diagram of the example of the conventional shielding grating which has a some small shielding grating. 本発明の実施形態における遮蔽格子を備えるトールボット干渉計の模式図。The schematic diagram of a Talbot interferometer provided with the shielding grating in embodiment of this invention.

上述のように、複数の小遮蔽格子を重ね合わせると、小遮蔽格子の重ね合わせズレにより、設計上は遮蔽部が位置する位置に遮蔽部が位置しなかったり、設計上は透過部が位置する位置に透過部が位置しなかったりすることがある。このため、小遮蔽格子を重ね合わせた領域(以下、重なり領域と呼ぶことがある)におけるX線の透過率が、小遮蔽格子を重ね合わせなかった領域におけるX線の透過率よりも低くなり、重なり領域において検出器に到達するフォトン数が減少し、検出器ノイズに対する取得信号量(SN比)が低下する。そのため、重なり領域における位相情報の取得が困難になる可能性がある。   As described above, when a plurality of small shielding gratings are overlapped, the shielding part is not positioned at the position where the shielding part is positioned due to the overlapping of the small shielding grids, or the transmission part is positioned according to the design. The transmissive part may not be located at the position. For this reason, the X-ray transmittance in the region where the small shielding grating is overlapped (hereinafter sometimes referred to as the overlapping region) is lower than the X-ray transmittance in the region where the small shielding lattice is not overlapped, The number of photons that reach the detector in the overlapping region decreases, and the amount of acquired signal (SN ratio) with respect to detector noise decreases. Therefore, it may be difficult to obtain phase information in the overlapping region.

そこで、本発明の実施形態においては、2次元の小遮蔽格子を重ね合わせる場合において、重ね合わせた領域における位相情報の取得を従来よりも容易にすることが可能となる遮蔽格子を提供する。そのために、本実施形態の遮蔽格子は、小遮蔽格子同士が重なる領域におけるX線の透過率と、小遮蔽格子を重ね合わせなかった領域におけるX線の透過率との差を小さくする。具体的には、本実施形態の遮蔽格子は、次のような構成を備える。   Therefore, in the embodiment of the present invention, there is provided a shielding grating capable of facilitating acquisition of phase information in the overlapped region when a two-dimensional small shielding grating is overlaid. Therefore, the shielding grating of the present embodiment reduces the difference between the X-ray transmittance in the region where the small shielding gratings overlap and the X-ray transmittance in the region where the small shielding gratings are not overlapped. Specifically, the shielding grid of this embodiment has the following configuration.

遮蔽格子は、X線を透過する透過部とX線を遮蔽する遮蔽部とが配列された、複数の小遮蔽格子を備える。そして、この小遮蔽格子のそれぞれは、透過部と遮蔽部とが交差する2方向に配列された2次元の格子領域と、透過部と遮蔽部とが1方向に配列された1次元の格子領域とを有している。1次元の格子領域は、前記2次元の格子領域の外周の少なくとも一部に形成され、遮蔽格子は、複数の小遮蔽格子のうち、隣り合う小遮蔽格子が有する1次元の格子領域同士の少なくとも一部が重なることで形成される重なり領域を有する。重なり領域において、隣り合う小遮蔽格子が有する1次元の格子領域の配列方向同士は交差する。これにより、重なり領域において透過部と遮蔽部とが交差する2方向に配列されている。   The shielding grating includes a plurality of small shielding gratings in which a transmission part that transmits X-rays and a shielding part that shields X-rays are arranged. Each of the small shielding grids includes a two-dimensional lattice region arranged in two directions where the transmission portion and the shielding portion intersect, and a one-dimensional lattice region where the transmission portion and the shielding portion are arranged in one direction. And have. The one-dimensional lattice region is formed on at least a part of the outer periphery of the two-dimensional lattice region, and the shielding lattice is at least one of the one-dimensional lattice regions of adjacent small shielding lattices among the plurality of small shielding lattices. It has an overlapping region formed by partly overlapping. In the overlapping region, the arrangement directions of the one-dimensional lattice regions of adjacent small shielding lattices intersect each other. Thereby, in the overlapping region, the transmission part and the shielding part are arranged in two directions intersecting each other.

また、小遮蔽格子のそれぞれは、2次元の格子領域における透過部と遮蔽部との配列方向のうちのいずれか1方向と、1次元の格子領域における透過部と遮蔽部との配列方向と、が平行に構成されていることが好ましい。更に、2次元の格子領域における透過部と遮蔽部との配列方向のそれぞれと、重なり領域における、1次元の格子領域同士による透過部と遮蔽部との配列方向のそれぞれと、が平行に構成されていることがより好ましい。   Each of the small shielding grids includes any one direction of the arrangement direction of the transmission part and the shielding part in the two-dimensional grating region, the arrangement direction of the transmission part and the shielding part in the one-dimensional grating region, Are preferably configured in parallel. Further, each of the arrangement direction of the transmission part and the shielding part in the two-dimensional lattice area and each of the arrangement direction of the transmission part and the shielding part by the one-dimensional lattice area in the overlapping area are configured in parallel. More preferably.

更に、2次元の格子領域における透過部と遮蔽部との配列方向において、2次元の格子領域における透過部と遮蔽部とのピッチと、重なり領域における透過部と遮蔽部とのピッチと、が等しいピッチに構成されていることが更に好ましい。但し、本発明及び本明細書において、ピッチが等しいとは、ピッチが±10%の範囲内にあることを指す。つまり、あるピッチが、1.1A以下、0.9A以上であるとき、そのピッチは、ピッチAと等しいというものとする。また、配列方向が平行とは、配列方向同士がなす角度の絶対値が0.1度以内であることを指す。また、配列方向が直交とは、配列方向同士がなす角度の絶対値が89.9度以上90.1度以下であることを指す。   Furthermore, in the arrangement direction of the transmission part and the shielding part in the two-dimensional lattice region, the pitch between the transmission part and the shielding part in the two-dimensional lattice region is equal to the pitch between the transmission part and the shielding part in the overlapping region. More preferably, the pitch is configured. However, in the present invention and the present specification, “equal pitch” means that the pitch is within a range of ± 10%. That is, when a certain pitch is 1.1 A or less and 0.9 A or more, the pitch is equal to the pitch A. The parallel arrangement direction means that the absolute value of the angle formed by the arrangement directions is within 0.1 degrees. In addition, the orthogonal arrangement direction means that the absolute value of the angle formed by the arrangement directions is 89.9 degrees or more and 90.1 degrees or less.

以下に、具体例として、複数の小遮蔽格子により構成されたX線位相イメージングに用いられる遮蔽格子について、図を用いて説明する。   Hereinafter, as a specific example, a shielding grating used for X-ray phase imaging constituted by a plurality of small shielding gratings will be described with reference to the drawings.

透過部9と遮蔽部8とが交差する2方向に周期的に配列された2次元の格子領域の構造(以下、2次元周期構造と呼ぶことがある)1の例を図4(a)に示す。また、透過部9と遮蔽部8とが1方向に周期的に配列された1次元の格子領域の構造((以下、1次元周期構造と呼ぶことがある)2の例を図4(b)に示す。本実施形態の遮蔽格子4は、2次元周期構造1を有する遮蔽部と、2次元周期構造1の外周の少なくとも一部に形成された1次元周期構造2を有する遮蔽部から成る複数枚の小遮蔽格子3より構成されている。
1次元周期構造2は2次元周期構造1が有する配列方向(x方向、y方向)のうち、1つの方向と同じ配列方向を有し、この配列方向に対して2次元周期構造1と同じピッチで遮蔽部が配置されていることが好ましい。
FIG. 4A shows an example of a structure of a two-dimensional lattice region (hereinafter sometimes referred to as a two-dimensional periodic structure) 1 in which the transmission portion 9 and the shielding portion 8 are periodically arranged in two directions intersecting each other. Show. Further, FIG. 4B shows an example of a structure of a one-dimensional lattice region (hereinafter, sometimes referred to as a one-dimensional periodic structure) 2 in which the transmission portion 9 and the shielding portion 8 are periodically arranged in one direction. The shielding grating 4 of the present embodiment includes a plurality of shielding parts having a two-dimensional periodic structure 1 and a shielding part having a one-dimensional periodic structure 2 formed on at least a part of the outer periphery of the two-dimensional periodic structure 1. It is composed of a single small shielding grid 3.
The one-dimensional periodic structure 2 has the same arrangement direction as one direction among the arrangement directions (x direction, y direction) of the two-dimensional periodic structure 1, and the same pitch as the two-dimensional periodic structure 1 with respect to this arrangement direction. It is preferable that the shielding part is arranged.

基板に対して垂直方向から見たときに、小遮蔽格子3の外周に形成された1次元周期構造2同士が重なるように、小遮蔽格子同士を重ね合わせる。このとき、1次元周期構造の配列方向同士が交差するように遮蔽格子同士を重ね合わせる。これにより、重なり領域も透過部と遮蔽部とが交差する2方向に周期的に配列された領域となる。加えて、重なり領域におけるX線透過率を2次元周期構造との)のX線透過率と同程度とすることが可能である。   When viewed from the direction perpendicular to the substrate, the small shielding lattices are overlapped so that the one-dimensional periodic structures 2 formed on the outer periphery of the small shielding lattice 3 overlap each other. At this time, the shielding gratings are overlapped so that the arrangement directions of the one-dimensional periodic structure intersect each other. As a result, the overlapping region also becomes a region periodically arranged in two directions where the transmission portion and the shielding portion intersect. In addition, it is possible to make the X-ray transmittance in the overlapping region comparable to that of the two-dimensional periodic structure).

2次元周期構造1としては、メッシュ状構造が好ましく、このメッシュ状構造の配列方向が直交することがより好ましい。また、2次元周期構造の2つの配列方向のそれぞれと、重なり領域における2つの配列方向のそれぞれとが一致することが好ましい。そのためには、重ね合わせる小遮蔽格子同士の2次元周期構造が同じ配列方向(第1と第2の方向とする)を有し、且つ、重なり領域において重なり合う1次元周期構造の一方の配列方向が第1の方向であり、もう一方の配列方向が第2の方向であればよい。   As the two-dimensional periodic structure 1, a mesh structure is preferable, and the arrangement direction of the mesh structure is more preferably orthogonal. In addition, it is preferable that each of the two arrangement directions of the two-dimensional periodic structure and each of the two arrangement directions in the overlapping region match. For this purpose, the two-dimensional periodic structures of the small shielding lattices to be superimposed have the same arrangement direction (first and second directions), and one arrangement direction of the one-dimensional periodic structures overlapping in the overlapping region is It is the first direction, and the other arrangement direction may be the second direction.

メッシュ状の小遮蔽格子の場合、1枚ではX線の透過率が理想的には1/4(配列方向が直交する場合)だが、小遮蔽格子の2次元周期構造同士を2枚重ねると完全に遮光してしまう可能性がある。   In the case of a mesh-shaped small shielding grid, the X-ray transmittance is ideally 1/4 (one when the arrangement direction is orthogonal) with one mesh, but it is perfect when two two-dimensional periodic structures of small shielding grids are overlapped. May be shielded from light.

図7に示すように、2次元周期構造のみを有する小遮蔽格子31同士の重なりによりモアレ縞が形成されるような場合でも、重なり領域の平均的な透過率は1/16となってしまう。   As shown in FIG. 7, even in the case where moire fringes are formed by the overlapping of the small shielding gratings 31 having only a two-dimensional periodic structure, the average transmittance of the overlapping region is 1/16.

複数の小遮蔽格子を正確な位置合わせを行って固定すれば、重なり領域におけるX線透過率は、小遮蔽格子同士が重なり合わない領域(以下、中央領域と呼ぶことがある)のX線透過率と変わらない。しかしながら、遮蔽格子はμmオーダーの遮蔽部から成るため、少なくともμmオーダーの位置合わせ精度が必要となるため、重ね合わせが難しかった。   If a plurality of small shielding grids are fixed by being accurately aligned, the X-ray transmittance in the overlapping region is an X-ray transmission in a region where the small shielding lattices do not overlap (hereinafter sometimes referred to as a central region). It is not different from the rate. However, since the shielding grating is composed of a shielding portion of the order of μm, alignment accuracy of at least the order of μm is required, so that the overlaying is difficult.

これに対し、本実施形態のメッシュ状に2次元周期構造1を持つ小遮蔽格子3同士は、2枚の小遮蔽格子3が有する1次元周期構造同士を配列方向が交差するように重ね合わせる。   On the other hand, the small shielding lattices 3 having the two-dimensional periodic structure 1 in a mesh shape according to the present embodiment are overlapped so that the one-dimensional periodic structures of the two small shielding lattices 3 intersect each other.

1枚の1次元状格子の透過率は1/2(50%)であり、1次元周期構造2の配列方向が直交するように積層した場合1/4(25%)となる。このとき、数度の回転誤差やμmオーダーの位置合わせ誤差があったとしても、透過率はほとんど変わらない。   The transmittance of one one-dimensional grating is ½ (50%), and is ¼ (25%) when the one-dimensional periodic structure 2 is laminated so that the arrangement direction is orthogonal. At this time, even if there is a rotation error of several degrees or an alignment error on the order of μm, the transmittance is hardly changed.

このため、2次元周期構造1の外周に1次元周期構造2を形成した小遮蔽格子3を複数枚作製し、1次元周期構造2同士を重ね合わせて遮蔽格子4とすることで、2次元周期構造のみを有する遮蔽格子の2次元周期構造同士を重ね合わせた遮蔽格子よりも容易な位置合わせで大面積の遮蔽格子4を作製することができる。   For this reason, a plurality of small shielding gratings 3 in which the one-dimensional periodic structure 2 is formed on the outer periphery of the two-dimensional periodic structure 1 are manufactured, and the one-dimensional periodic structures 2 are overlapped to form the shielding grating 4. The shield grating 4 having a large area can be produced with easier alignment than the shield grating in which the two-dimensional periodic structures of the shield grating having only the structure are overlapped.

2次元周期構造の配列方向が直交するとき、基板に対して垂直方向から見たときに、重なり領域における1次元周期構造2同士の配列方向も直交することが好ましい。また、小遮蔽格子同士を重ね合わせるときに、小遮蔽格子の1次元周期構造は、隣り合う小遮蔽格子の1次元構造と重ならない領域を有していても良いし、1次元周期構造2と2次元周期構造1の一部が重なり合っても良い。1次元周期構造の一部が重なり合わなかった場合、その領域の透過率は50%であり、2次元周期構造の透過率(25%)と異なる。しかし、2次元周期構造のみを有する小遮蔽格子の2次元周期構造同士が重なり合わなかった場合の透過率(100%)よりも、2次元周期構造の透過率に近く、1次元周期構造の配列方向に対しての位相情報の取得が容易である。また、1次元周期構造2と2次元周期構造1の一部が重なり合う場合も、2次元周期構造同士が重なったときよりも、その重なり領域の透過率への影響は小さいため、位相情報の取得が容易である。但し、1次元周期構造2のうち、隣り合う小遮蔽格子の1次元周期構造と重ならない領域や、1次元周期構造2と2次元周期構造1が重なる領域は少ないほうが好ましく、小遮蔽格子が有する1次元周期構造の面積の1/2以上が、隣り合う小遮蔽格子のうち、共に重なり領域を形成する1次元周期構造と重なることが好ましく、その面積が3/4以上であることがより好ましく、1次元周期構造2部分のみが重ね合わされ、重なり合わない1次元周期構造がないことが更に好ましい。   When the arrangement directions of the two-dimensional periodic structures are orthogonal, it is preferable that the arrangement directions of the one-dimensional periodic structures 2 in the overlapping region are also orthogonal when viewed from the direction perpendicular to the substrate. Further, when the small shielding gratings are overlapped with each other, the one-dimensional periodic structure of the small shielding gratings may have a region that does not overlap with the one-dimensional structure of the adjacent small shielding gratings. A part of the two-dimensional periodic structure 1 may overlap. When a part of the one-dimensional periodic structure does not overlap, the transmittance of the region is 50%, which is different from the transmittance of the two-dimensional periodic structure (25%). However, it is closer to the transmittance of the two-dimensional periodic structure than the transmittance (100%) when the two-dimensional periodic structures of the small shielding lattice having only the two-dimensional periodic structure do not overlap with each other. It is easy to obtain phase information with respect to the direction. Also, when the one-dimensional periodic structure 2 and a part of the two-dimensional periodic structure 1 overlap each other, the influence on the transmittance of the overlapping region is smaller than when the two-dimensional periodic structures overlap each other. Is easy. However, in the one-dimensional periodic structure 2, it is preferable that the area where the adjacent one of the small shielding gratings does not overlap with the one-dimensional periodic structure and the area where the one-dimensional periodic structure 2 and the two-dimensional periodic structure 1 overlap are smaller. It is preferable that 1/2 or more of the area of the one-dimensional periodic structure overlaps with the one-dimensional periodic structure that forms an overlapping region in the adjacent small shielding lattices, and more preferably, the area is 3/4 or more. More preferably, only two portions of the one-dimensional periodic structure are overlapped and there is no one-dimensional periodic structure that does not overlap.

このため、1次元周期構造2部分と2次元周期構造1部分の境界は直線状であると積層が容易であるため好ましい。   For this reason, it is preferable that the boundary between the two-dimensional periodic structure 2 part and the two-dimensional periodic structure 1 part is a straight line because lamination is easy.

また、2次元周期構造1の配列方向が互いに直交する場合、2次元周期構造1を形成する領域は長方形(正方形を含む。)であることが好ましい。   In addition, when the arrangement directions of the two-dimensional periodic structure 1 are orthogonal to each other, the region forming the two-dimensional periodic structure 1 is preferably a rectangle (including a square).

遮蔽格子は、1種類の小遮蔽格子を用いて構成して良いし、複数種類の小遮蔽格子3を組み合わせて構成しても良い。尚、小遮蔽格子の遮蔽部の形状が等しいとき、その小遮蔽格子は同じ種類の小遮蔽格子であるとし、小遮蔽格子の遮蔽部の形状が異なるとき、その小遮蔽格子は異なる種類の小遮蔽格子であるとする。   The shielding grid may be configured using one type of small shielding grid, or may be configured by combining a plurality of types of small shielding grids 3. In addition, when the shape of the shielding part of the small shielding grid is the same, the small shielding grid is the same type of small shielding grid, and when the shape of the shielding part of the small shielding grid is different, the small shielding grid is of different types Suppose that it is a shielding grid.

1種類の小遮蔽格子3を用いて大面積の遮蔽格子を形成する場合に用いられる、小遮蔽格子の形状として2パターンを例示する。1つめの小遮蔽格子の形状の例(第1の形状)は、図1(a)に示した小遮蔽格子のように、2次元周期構造に対して対向する位置(2次元周期構造の上と下が対向する位置にあり、左と右も対向する位置にあるという)にある1次元周期構造同士の配列方向が交差する形状である。但し、2次元周期構造の配列方向が直交する場合、対向する位置にある1次元周期構造同士の配列方向も直交することが好ましい。   Two patterns are exemplified as the shape of the small shielding grid used when a large-area shielding grid is formed using one kind of small shielding grid 3. An example of the shape of the first small shielding grating (first shape) is a position facing the two-dimensional periodic structure (above and below the two-dimensional periodic structure) as in the small shielding grating shown in FIG. Is in a position where the arrangement directions of the one-dimensional periodic structures in the left and right sides are opposite to each other). However, when the arrangement directions of the two-dimensional periodic structures are orthogonal, it is preferable that the arrangement directions of the one-dimensional periodic structures at the opposing positions are also orthogonal.

2つめの小遮蔽格子の形状の例(第2の形状)は、図2(a),(b)に示した小遮蔽格子のように、2次元周期構造の上下左右の4つの1次元周期構造2の配列方向が平行な形状である。   An example of the shape of the second small shielding grating (second shape) is four one-dimensional periods on the top, bottom, left, and right of the two-dimensional periodic structure, as in the small shielding gratings shown in FIGS. The structure 2 has a parallel arrangement direction.

第2の形状の小遮蔽格子を用いる場合は、隣り合う小遮蔽格子3が有する1次元周期構造の配列方向が交差するように、小遮蔽格子を回転させて重ね合わせる。   In the case of using the second-shaped small shielding grating, the small shielding gratings are rotated and overlapped so that the arrangement directions of the one-dimensional periodic structures of the adjacent small shielding gratings 3 intersect.

次に、2種類の小遮蔽格子3を用いて大面積の遮蔽格子を形成する場合に用いられる、小遮蔽格子の形状の例として、第3の形状の小遮蔽格子と第4の形状の小遮蔽格子とを用いる場合について説明する。   Next, as an example of the shape of the small shielding grid used in the case of forming a large area shielding grid using the two types of small shielding grids 3, the third shape small shielding grid and the fourth shape small shielding grid are used. A case where a shielding grid is used will be described.

第3と第4の形状の小遮蔽格子は、共に、2次元周期構造に対して対向する位置にある1次元周期構造同士の配列方向が平行であり、且つ、隣り合う位置(つまり、対向しない位置)にある1次元周期構造同士の配列方向が交差する形状である。但し、2次元周期構造の配列方向が直交する場合、隣り合う位置にある1次元周期構造同士の配列方向も直交することが好ましい。   In both the third and fourth shaped small shielding gratings, the arrangement directions of the one-dimensional periodic structures at positions facing the two-dimensional periodic structure are parallel to each other, and adjacent positions (that is, not facing each other). The arrangement direction of the one-dimensional periodic structures in the position) intersects. However, when the arrangement directions of the two-dimensional periodic structures are orthogonal, it is preferable that the arrangement directions of the one-dimensional periodic structures at adjacent positions are also orthogonal.

第3の形状の小遮蔽格子3は、図3(b)に示した小遮蔽格子のように、1次元周期構造2が2次元周期構造1の遮蔽部の延長により形成される。つまり、2次元周期構造の上下に位置する1次元周期構造は、上下に延びる遮蔽部が横方向に配列した構造であり、左右に位置する1次元周期構造は、左右に延びる遮蔽部が縦方向に配列した構造である。   The small shield grating 3 of the third shape is formed by extending the shield part of the two-dimensional periodic structure 1 in the one-dimensional periodic structure 2 as in the small shield grating shown in FIG. In other words, the one-dimensional periodic structure positioned above and below the two-dimensional periodic structure is a structure in which shielding portions extending vertically are arranged in the horizontal direction, and the one-dimensional periodic structure positioned on the left and right is configured such that the shielding portions extending left and right are in the vertical direction. It is a structure arranged in

一方、第4の形状の小遮蔽格子3は、図3(a)に示した小遮蔽格子のように、1次元周期構造2が2次元周期構造1の外周を囲うように形成する。つまり、2次元周期構造の左右に位置する1次元周期構造は、上下に延びる遮蔽部が横方向に配列した構造であり、上下に位置する1次元周期構造は、左右に延びる遮蔽部が縦方向に配列した構造である。   On the other hand, the small shielding grating 3 having the fourth shape is formed such that the one-dimensional periodic structure 2 surrounds the outer periphery of the two-dimensional periodic structure 1 as in the small shielding grating shown in FIG. In other words, the one-dimensional periodic structure located on the left and right of the two-dimensional periodic structure is a structure in which the shielding portions extending vertically are arranged in the horizontal direction, and the one-dimensional periodic structure located on the top and bottom is composed of the shielding portions extending left and right in the vertical direction It is a structure arranged in

複数枚の小遮蔽格子3を平面状に貼り合わせるとき、3枚分以上の周期構造体が重なる可能性がある。   When a plurality of small shielding grids 3 are bonded together in a plane, three or more periodic structures may overlap.

積層枚数が3枚以上となり、3つ以上の1次元周期構造が重なると、その領域の透過率が中央領域よりも低下することがある。よって、遮蔽格子が3枚以上の小遮蔽格子を有する場合、重なり領域が2つの小遮蔽格子の1次元周期構造が重なることで形成され、3つ以上の小遮蔽格子の1次元周期構造が重ならないように1次元周期構造を形成することが好ましい。   When the number of stacked layers is three or more and three or more one-dimensional periodic structures overlap, the transmittance of the region may be lower than that of the central region. Therefore, when the shielding grating has three or more small shielding gratings, the overlapping region is formed by overlapping one-dimensional periodic structures of two small shielding gratings, and the one-dimensional periodic structures of three or more small shielding gratings overlap. It is preferable to form a one-dimensional periodic structure so as not to occur.

例えば、小遮蔽格子のそれぞれは、図1(a)に示すように、2次元周期構造1の頂点に接する4か所のエリアのうち2か所は1次元周期構造2を形成しないことが好ましい。この2か所に1次元周期構造を形成しないことで、小遮蔽格子の周期構造(1次元と2次元を含む)が形成される領域は、四角形のうち、2つの角を小さな四角形で切り落としたような形状を有する。切り落とした小さな四角形は、1次元周期構造の幅×1次元周期構造の高さであることが好ましい。   For example, as shown in FIG. 1A, each of the small shielding lattices preferably does not form the one-dimensional periodic structure 2 in two of the four areas in contact with the apex of the two-dimensional periodic structure 1. . By not forming a one-dimensional periodic structure in these two places, two corners of the quadrilateral are cut out with small squares in the area where the periodic structure (including one-dimensional and two-dimensional) of the small shielding lattice is formed. It has such a shape. It is preferable that the cut-off small square is the width of the one-dimensional periodic structure × the height of the one-dimensional periodic structure.

図1〜3に示した小遮蔽格子3は、2次元周期構造1の外周4辺に接するように一次元周期構造2を形成しているが、対向する位置にある1次元周期構造2のみを形成しても良い。例えば、図5(a)に示す小遮蔽格子のように、対向する位置にある1次元周期構造の配列方向が交差する小遮蔽格子を、図5(b)に示すように、1次元周期構造の配列方向が交差するように重ね合わせればよい。また、図5(c)に示す小遮蔽格子のように、対向する位置にある1次元周期構造の配列方向が平行な小遮蔽格子を、図5(b)に示すように、1次元周期構造の配列方向が交差するように重ね合わせても良い。   The small shielding grating 3 shown in FIGS. 1 to 3 forms the one-dimensional periodic structure 2 so as to be in contact with the four outer edges of the two-dimensional periodic structure 1, but only the one-dimensional periodic structure 2 located at the opposite position. It may be formed. For example, as shown in FIG. 5 (a), a small shielding grating in which the arrangement directions of the one-dimensional periodic structures at opposite positions intersect each other is changed to a one-dimensional periodic structure as shown in FIG. 5 (b). They may be overlapped so that their arrangement directions intersect. Further, as shown in FIG. 5 (c), a small shielding grating in which the arrangement directions of the one-dimensional periodic structures at the opposing positions are parallel to each other, as shown in FIG. 5 (b). You may superimpose so that the arrangement | positioning direction may cross | intersect.

小遮蔽格子のそれぞれは、平面でも良いし、図6(a)に示した断面図のように、湾曲していても良い。湾曲した小遮蔽格子を用いると、発散するX線を用いる場合であっても、格子の中心から遠い領域で生じるX線のケラレ(影)を軽減させることができる。発散するX線とは、点光源状のX線源から射出されるコーンビーム又はファンビームのようなX線のことを指す。また、ここでいう格子の中心とは、遮蔽格子のうち、X線が照射される領域の中心のことを指すものとする。ケラレを軽減させるためには、小遮蔽格子のそれぞれが、X線源との距離を曲率半径として湾曲した形状を有することが好ましい。このとき、小遮蔽格子のそれぞれは、ファンビームのように1方向に発散するX線の場合はシリンドリカル面を有するように湾曲し、コーンビームのように2方向に発散するX線の場合は球の表面の一部に沿うような形状を有するように湾曲していることが好ましい。加えて、これらの小遮蔽格子のそれぞれの法線5が1点で交差するように小遮蔽格子同士を重ね合わせることが好ましい。交差する点とそれぞれの小遮蔽格子との距離は、曲率半径と等しいことが好ましく、交差する点にX線源を配置すれば、理論的にはケラレを解消することができる。実際には、小遮蔽格子の法線同士が交差すれば、ケラレの軽減という効果を得ることができる。   Each of the small shielding grids may be a flat surface or may be curved as shown in the cross-sectional view of FIG. When a curved small shielding grating is used, vignetting (shadows) of X-rays generated in a region far from the center of the grating can be reduced even when diverging X-rays are used. The divergent X-ray refers to an X-ray such as a cone beam or a fan beam emitted from a point light source X-ray source. In addition, the center of the grating here refers to the center of the area irradiated with X-rays in the shielding grating. In order to reduce vignetting, each of the small shielding gratings preferably has a curved shape with the distance from the X-ray source as the radius of curvature. At this time, each of the small shielding gratings is curved so as to have a cylindrical surface in the case of X-rays diverging in one direction like a fan beam, and is spherical in the case of X-rays diverging in two directions like a cone beam. It is preferable to be curved so as to have a shape along a part of the surface. In addition, it is preferable to overlap the small shielding grids so that the normal lines 5 of these small shielding grids intersect at one point. The distance between the intersecting points and the respective small shielding grids is preferably equal to the radius of curvature. If an X-ray source is arranged at the intersecting points, vignetting can theoretically be eliminated. Actually, the effect of reducing vignetting can be obtained if the normal lines of the small shielding lattice intersect.

また、小遮蔽格子のそれぞれが平面であっても、図6(b)に示した断面図のように、小遮蔽格子のそれぞれの法線(平面に垂直な線とする)が1点で交わるように小遮蔽格子同士を重ね合わせることで、同様の効果を得ることができる。この場合、角度を有する支持基板6に小遮蔽格子を配置することで小遮蔽格子のそれぞれの法線が交差するように配置することができる。角度を有する支持基板6の代わりに、図6(c)のように凸部を有する支持基板7を用い、小遮蔽格子の一部が凸部に配置されるように小遮蔽格子を支持基板7に配置しても同様の効果が得られる。また、図6(d)のように、小遮蔽格子自体の厚みを利用して、小遮蔽格子のそれぞれの法線が交差するように配置しても良い。この場合、小遮蔽格子の厚みを調整することで、法線が交差する点と遮蔽格子との距離を適宜調整することができる。   Further, even if each of the small shielding grids is a plane, each normal line of the small shielding grid (a line perpendicular to the plane) intersects at one point as shown in the cross-sectional view of FIG. 6B. In this way, the same effect can be obtained by overlapping the small shielding lattices. In this case, it can arrange | position so that each normal line of a small shielding grid may cross | intersect by arrange | positioning a small shielding grating on the support substrate 6 which has an angle. Instead of the support substrate 6 having an angle, a support substrate 7 having a convex portion as shown in FIG. 6C is used, and the small shielding lattice is arranged so that a part of the small shielding lattice is arranged on the convex portion. The same effect can be obtained even if it is arranged in the position. Further, as shown in FIG. 6D, the thicknesses of the small shielding gratings themselves may be used so that the normal lines of the small shielding gratings intersect each other. In this case, by adjusting the thickness of the small shielding grid, the distance between the point where the normals intersect and the shielding grid can be appropriately adjusted.

尚、このように、小遮蔽格子同士の法線が交差するように小遮蔽格子を配置する場合(小遮蔽格子の湾曲の有無は問わない)、小遮蔽格子のそれぞれの形状は特に問わず、法線が平行である時と同様に、例示した図1〜3、5のいずれであっても良い。   As described above, when the small shielding grating is arranged so that the normal lines of the small shielding gratings intersect each other (regardless of whether the small shielding grating is curved), the shape of each of the small shielding gratings is not particularly limited. As in the case where the normal lines are parallel, any of FIGS.

小遮蔽格子3を製造する方法は特に問わないが、例としてめっきを用いて小遮蔽格子を製造する方法について説明をする。平滑な基板表面に感光性レジストやSiにより高アスペクト比の構造物を形成し、その間をめっき物で充填する。高アスペクト比の構造物は、例えば、シリコン基板をエッチングすることによって形成することができる。
高アスペクト比の構造物は透過部9を形成し、めっき物が充填されて形成される構造物は遮蔽部8を形成する。
Although the method for manufacturing the small shielding grid 3 is not particularly limited, a method for manufacturing the small shielding grid using plating will be described as an example. A structure having a high aspect ratio is formed on a smooth substrate surface with a photosensitive resist or Si, and a space between the structures is filled with a plated product. A high aspect ratio structure can be formed, for example, by etching a silicon substrate.
The structure having a high aspect ratio forms the transmission part 9, and the structure formed by filling the plating object forms the shielding part 8.

めっき物は、X線透過率の低い材料であればよいが、めっきが比較的容易なため、金又は白金あるいは、これらの金属を含む合金が好ましい。   The plated material may be any material having a low X-ray transmittance. However, since plating is relatively easy, gold or platinum or an alloy containing these metals is preferable.

以上のようにして製造した遮蔽格子4は、位相格子18・検出器19とともに、トールボット干渉計15を構成することができる。また、トールボット干渉計15は、X線源20と計算機16とともに用いることにより、X線トールボット干渉システム150を構成することが可能である。また、X線を周期的に遮蔽する格子として、それ以外の用途にも用いることができる。例えば、X線発生手段2と組み合わせて、X線の空間的可干渉性を上げる線源格子12として用いることもできる。   The shield grating 4 manufactured as described above can constitute a Talbot interferometer 15 together with the phase grating 18 and the detector 19. The Talbot interferometer 15 can be used together with the X-ray source 20 and the computer 16 to constitute an X-ray Talbot interference system 150. Further, it can be used for other purposes as a grating that periodically shields X-rays. For example, in combination with the X-ray generation means 2, it can also be used as the source grating 12 that increases the spatial coherence of X-rays.

以下に、本発明の実施例について説明する。   Examples of the present invention will be described below.

[実施例1]
実施例1として、2次元周期構造に対して対向する位置にある1次元周期構造同士が直交した配列方向を有する小遮蔽格子(第1の形状の小遮蔽格子)3を貼り合わせて構成した遮蔽格子4の例について、図1を用いて説明する。
[Example 1]
As Example 1, a shield formed by bonding small shielding gratings (first shape small shielding gratings) 3 having an arrangement direction in which one-dimensional periodic structures located at positions opposed to a two-dimensional periodic structure are orthogonal to each other. An example of the lattice 4 will be described with reference to FIG.

本実施例においては、用いる小遮蔽格子3は1種類とすることができる。このときの小遮蔽格子3を図1(a)に示す。   In the present embodiment, one type of small shielding grid 3 can be used. The small shielding grating 3 at this time is shown in FIG.

長方形の領域に2次元周期構造1が形成され、その外周に1次元周期構造2が形成されている。2次元周期構造の配列方向同士(x方向、y方向)は直交しており、
対向する領域の1次元周期構造の配列方向同士は、互いに直交している。また、対向する領域の1次元周期構造のうち、いずれか1つの1次元周期構造の配列方向と、2次元周期構造の配列方向のうちの1つとは平行である。同様にもう1つの1次元周期構造の配列方向と、2次元周期構造の配列方向の1つも平行である。つまり、図1(a)において、2次元周期構造の上に位置する1次元周期構造の配列方向はy方向であり、2次元周期構造の下に位置する1次元周期構造の配列方向はx方向である。また、2次元周期構造の左に位置する1次元周期構造の配列方向はy方向であり、2次元周期構造の右に位置する1次元周期構造の配列方向はx方向である。
A two-dimensional periodic structure 1 is formed in a rectangular region, and a one-dimensional periodic structure 2 is formed on the outer periphery thereof. The arrangement directions (x direction, y direction) of the two-dimensional periodic structure are orthogonal to each other,
The arrangement directions of the one-dimensional periodic structures in the opposing regions are orthogonal to each other. In addition, among the one-dimensional periodic structures in the facing region, the arrangement direction of any one one-dimensional periodic structure and one of the arrangement directions of the two-dimensional periodic structure are parallel. Similarly, the arrangement direction of another one-dimensional periodic structure and one of the arrangement directions of the two-dimensional periodic structure are also parallel. That is, in FIG. 1A, the arrangement direction of the one-dimensional periodic structure located above the two-dimensional periodic structure is the y direction, and the arrangement direction of the one-dimensional periodic structure located below the two-dimensional periodic structure is the x direction. It is. The arrangement direction of the one-dimensional periodic structure located on the left of the two-dimensional periodic structure is the y direction, and the arrangement direction of the one-dimensional periodic structure located on the right of the two-dimensional periodic structure is the x direction.

このときの1次元構造のx方向におけるピッチと2次元構造のx方向におけるピッチは等しい。同様に、1次元周期構造のy方向におけるピッチと2次元構造のy方向におけるピッチは等しい。尚、図1では、x方向におけるピッチとy方向におけるピッチは等しいが、異なっていても良い。複数の小遮蔽格子3を同じ方向に向け、図1(b)のように1次元周期構造2を重ね合わせて遮蔽格子4を構成する。これにより、1次元周期構造の重ね合わせにより形成される格子パターンと、2次元周期構造の格子パターンが一致する。   At this time, the pitch in the x direction of the one-dimensional structure is equal to the pitch in the x direction of the two-dimensional structure. Similarly, the pitch in the y direction of the one-dimensional periodic structure is equal to the pitch in the y direction of the two-dimensional structure. In FIG. 1, the pitch in the x direction and the pitch in the y direction are the same, but they may be different. A plurality of small shielding gratings 3 are directed in the same direction, and the one-dimensional periodic structure 2 is overlaid as shown in FIG. Thereby, the lattice pattern formed by superimposing the one-dimensional periodic structure coincides with the lattice pattern of the two-dimensional periodic structure.

つまり、複数の小遮蔽格子同士の、小遮蔽格子全体における透過部と遮蔽部の配列によって形成される格子パターンが一致している遮蔽格子4が構成される。別の言い方をすると、第1の小遮蔽格子の1次元周期構造と、第1の小遮蔽格子と隣接する第2の小遮蔽格子の1次元周期構造とにより、第1と第2の小遮蔽格子が有する2次元周期構造と同じ形状を有する2次元周期構造が形成される。   In other words, the shielding grid 4 is formed in which the lattice patterns formed by the arrangement of the transmission portions and the shielding portions in the entire small shielding lattice of the plurality of small shielding lattices are the same. In other words, the first and second small shields are formed by the one-dimensional periodic structure of the first small shield grating and the one-dimensional periodic structure of the second small shield grating adjacent to the first small shield grating. A two-dimensional periodic structure having the same shape as the two-dimensional periodic structure of the lattice is formed.

これにより、連続する2次元周期構造形成領域が単一の小遮蔽格子と比較して大面積化する。   As a result, the continuous two-dimensional periodic structure forming region becomes larger than a single small shielding lattice.

小遮蔽格子3の作製には、LIGAプロセスを用いることができる。6インチSiウェハー中央部90mm角エリアに5μmピッチ・線幅2.5μm、厚さ50μmのメッシュ状構造を金めっきで形成する。メッシュ状構造の外周には幅1mmで図1(a)と同様の1次元構造を5μmピッチ・線幅2.5μmで作製する。これにより、4角形が有する4つの頂点(角)に接するエリアのうちの同じ辺に接する2つのエリアが切り落とされた形状の格子パターンを有する小遮蔽格子3が形成される。   A LIGA process can be used for the production of the small shielding grid 3. A mesh-like structure having a pitch of 5 μm, a line width of 2.5 μm, and a thickness of 50 μm is formed by gold plating on a 90 mm square area at the center of a 6-inch Si wafer. A one-dimensional structure similar to that shown in FIG. 1A having a width of 1 mm is produced on the outer periphery of the mesh structure with a pitch of 5 μm and a line width of 2.5 μm. Thereby, the small shielding lattice 3 having a lattice pattern in which two areas in contact with the same side among the areas in contact with the four apexes (corners) of the quadrilateral are cut off is formed.

同様にして合計4枚の小遮蔽格子3を作製し、1mm幅の1次元周期構造を重ねて貼り合わせることで181mm角の遮蔽格子4を得ることができる。   Similarly, a total of four small shielding grids 3 are manufactured, and a one-dimensional periodic structure having a width of 1 mm is overlapped and bonded to obtain a 181 mm square shielding grid 4.

[実施例2]
実施例2として、1次元周期構造の配列方向が平行であり、隣り合う小遮蔽格子(第2の形状の小遮蔽格子)3を90°回転させて重ね合わせることで構成した遮蔽格子4の例を、図2を用いて説明する。
[Example 2]
Example 2 is an example of a shielding grid 4 in which the arrangement directions of the one-dimensional periodic structures are parallel and adjacent small shielding gratings (second-shaped small shielding gratings) 3 are rotated by 90 ° and overlapped. Will be described with reference to FIG.

本実施例においても、用いる小遮蔽格子3は1種類とすることができる。   Also in this embodiment, the small shielding grid 3 to be used can be one type.

このときの小遮蔽格子3の構造を図2(a)に示す。長方形の領域に2次元周期構造が形成され、その外周に1次元周期構造が形成されている。   The structure of the small shielding grid 3 at this time is shown in FIG. A two-dimensional periodic structure is formed in the rectangular region, and a one-dimensional periodic structure is formed on the outer periphery thereof.

小遮蔽格子3内では、1次元周期構造の配列方向は互い平行である。また、1次元構造のピッチと2次元構造のピッチは等しい。   In the small shielding grating 3, the arrangement directions of the one-dimensional periodic structures are parallel to each other. Further, the pitch of the one-dimensional structure is equal to the pitch of the two-dimensional structure.

図2(a)に示した小遮蔽格子の隣には、図2(b)のように、図2(a)を90°回転させた小遮蔽格子を重ね合わせる。これにより、重ね合わせた領域において2つの配列方向は直交する。   Next to the small shielding grating shown in FIG. 2A, a small shielding grating obtained by rotating FIG. 2A by 90 ° is overlapped as shown in FIG. 2B. As a result, the two arrangement directions are orthogonal to each other in the overlapped region.

図2(c)のように1次元周期構造を重ね合わせて遮蔽格子4を構成することにより、連続する2次元周期構造形成領域が単一の小遮蔽格子3と比較して大面積化する。   As shown in FIG. 2C, the one-dimensional periodic structure is overlapped to form the shielding grating 4, so that the continuous two-dimensional periodic structure forming region is larger than the single small shielding grating 3.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

1 二次元周期構造
2 一次元周期構造
3 小遮蔽格子
4 遮蔽格子
8 遮蔽部
9 透過部
10 重なり領域
DESCRIPTION OF SYMBOLS 1 Two-dimensional periodic structure 2 One-dimensional periodic structure 3 Small shielding grating 4 Shielding grating 8 Shielding part 9 Transmission part 10 Overlapping region

Claims (11)

X線を透過する透過部とX線を遮蔽する遮蔽部とが配列された、複数の小遮蔽格子を備え、
前記複数の小遮蔽格子のそれぞれは、
前記透過部と前記遮蔽部とが交差する2方向に配列された2次元の格子領域と、
前記透過部と前記遮蔽部とが1方向に配列された1次元の格子領域とを有し、
前記1次元の格子領域は、前記2次元の格子領域の外周の少なくとも一部に形成され、
前記複数の小遮蔽格子のうち、隣り合う小遮蔽格子が有する1次元の格子領域同士の少なくとも一部が重なる重なり領域において、前記小遮蔽格子同士の配列方向が交差することを特徴とする遮蔽格子。
A plurality of small shielding grids in which a transmission part that transmits X-rays and a shielding part that shields X-rays are arranged;
Each of the plurality of small shielding grids is
A two-dimensional lattice region arranged in two directions where the transmission part and the shielding part intersect;
The transmission part and the shielding part have a one-dimensional lattice region arranged in one direction,
The one-dimensional lattice region is formed on at least a part of the outer periphery of the two-dimensional lattice region;
Among the plurality of small shielding grids, in the overlapping region where at least a part of one-dimensional lattice areas of adjacent small shielding grids overlap, the arrangement direction of the small shielding grids intersects. .
前記小遮蔽格子のそれぞれにおいて、
前記2次元の格子領域における前記透過部と前記遮蔽部との配列方向のうちのいずれか1方向と、
前記1次元の格子領域における前記透過部と前記遮蔽部との配列方向と、が平行であることを特徴とする請求項1に記載の遮蔽格子。
In each of the small shielding grids,
Any one of the arrangement directions of the transmission part and the shielding part in the two-dimensional lattice region;
The shielding grid according to claim 1, wherein an arrangement direction of the transmission part and the shielding part in the one-dimensional grating region is parallel.
前記2次元の格子領域における前記透過部と前記遮蔽部との配列方向のそれぞれと、
前記重なり領域における、前記1次元の格子領域の配列方向のそれぞれと、が平行であることを特徴とする請求項1または請求項2に記載の遮蔽格子。
Each of the arrangement direction of the transmission part and the shielding part in the two-dimensional lattice region,
3. The shielding grating according to claim 1, wherein each of the one-dimensional grating areas in the overlapping area is parallel to the arrangement direction. 4.
前記2次元の格子領域における前記2方向に配列された前記透過部と前記遮蔽部との配列方向が互いに直交しており、
前記重なり領域における、前記1次元の格子領域の前記透過部と前記遮蔽部との配列方向同士が互いに直交していることを特徴とする請求項1乃至3のいずれか1項に記載の遮蔽格子。
The arrangement direction of the transmission part and the shielding part arranged in the two directions in the two-dimensional lattice region is orthogonal to each other,
The shielding grid according to any one of claims 1 to 3, wherein arrangement directions of the transmission part and the shielding part of the one-dimensional lattice area in the overlapping region are orthogonal to each other. .
前記2次元の格子領域における前記透過部と前記遮蔽部との配列方向において、
前記2次元の格子領域における前記透過部と前記遮蔽部とのピッチと、
前記重なり領域における前記透過部と前記遮蔽部とのピッチと、が等しいことを特徴とする請求項1乃至4のいずれか1項に記載の遮蔽格子。
In the arrangement direction of the transmission part and the shielding part in the two-dimensional lattice region,
A pitch between the transmission part and the shielding part in the two-dimensional lattice region;
5. The shielding grating according to claim 1, wherein pitches of the transmission part and the shielding part in the overlapping region are equal.
前記小遮蔽格子のそれぞれにおいて、前記2次元の格子領域が長方形であることを特徴とする請求項1乃至5のいずれか1項に記載の遮蔽格子。   The shielding grid according to any one of claims 1 to 5, wherein in each of the small shielding grids, the two-dimensional lattice region is a rectangle. 前記複数の小遮蔽格子同士の、小遮蔽格子全体における透過部と遮蔽部の配列によって形成される格子パターンが一致していることを特徴とする請求項1乃至6のいずれか1項に記載の遮蔽格子。   The lattice pattern formed by the arrangement | sequence of the permeation | transmission part and shielding part in the whole small shielding grid of these small shielding gratings corresponds, The one of Claim 1 thru | or 6 characterized by the above-mentioned. Shielding grid. 前記複数の小遮蔽格子同士の、前記2次元の格子領域における透過部と遮蔽部の配列によって形成される格子パターンが一致しており、
前記1次元の格子領域における前記格子パターンが異なっていることを特徴とする請求項1乃至7のいずれか1項に記載の遮蔽格子。
The lattice pattern formed by the arrangement of the transmission portion and the shielding portion in the two-dimensional lattice region of the plurality of small shielding lattices is the same,
The shielding grating according to any one of claims 1 to 7, wherein the grating patterns in the one-dimensional grating region are different.
前記複数の小遮蔽格子のうち一部の小遮蔽格子は、
前記1次元の格子領域の遮蔽部と、前記2次元の格子領域の遮蔽部が連続して形成されていることを特徴とする請求項8に記載の遮蔽格子。
Some of the plurality of small shielding grids are:
The shielding grid according to claim 8, wherein the shielding part of the one-dimensional grating region and the shielding part of the two-dimensional grating region are formed continuously.
前記複数の小遮蔽格子の透過部と遮蔽部の配列によって形成される格子パターンは、
4角形が有する4つの角のうちの同じ辺に位置する2つの角が、切り落とされた形状を有していることを特徴とする請求項1乃至9のいずれか1項に記載の遮蔽格子。
The lattice pattern formed by the arrangement of the transmissive portions and the shielding portions of the plurality of small shielding lattices,
The shielding grid according to any one of claims 1 to 9, wherein two corners located on the same side of the four corners of the quadrilateral have a cut-off shape.
X線源からのX線を回折する回折格子と、
前記回折格子からのX線の一部を遮蔽する遮蔽格子と、
前記遮蔽格子からのX線を検出する検出器とを備え、
前記遮蔽格子は、請求項1乃至10のいずれか1項に記載の遮蔽格子であることを特徴とするトールボット干渉計。
A diffraction grating for diffracting X-rays from an X-ray source;
A shielding grating that shields part of the X-rays from the diffraction grating;
A detector for detecting X-rays from the shielding grid,
The Talbot interferometer according to claim 1, wherein the shielding grating is the shielding grating according to claim 1.
JP2014160674A 2013-09-04 2014-08-06 Screened grating and Talbot interferometer Active JP6362103B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014160674A JP6362103B2 (en) 2013-09-04 2014-08-06 Screened grating and Talbot interferometer
PCT/JP2014/004496 WO2015033552A1 (en) 2013-09-04 2014-09-02 Absorption grating and talbot interferometer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013182791 2013-09-04
JP2013182791 2013-09-04
JP2014160674A JP6362103B2 (en) 2013-09-04 2014-08-06 Screened grating and Talbot interferometer

Publications (2)

Publication Number Publication Date
JP2015072261A true JP2015072261A (en) 2015-04-16
JP6362103B2 JP6362103B2 (en) 2018-07-25

Family

ID=51846869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014160674A Active JP6362103B2 (en) 2013-09-04 2014-08-06 Screened grating and Talbot interferometer

Country Status (2)

Country Link
JP (1) JP6362103B2 (en)
WO (1) WO2015033552A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039654A1 (en) * 2018-08-22 2020-02-27 株式会社島津製作所 X-ray phase imaging device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220206300A1 (en) * 2019-03-13 2022-06-30 Lg Chem, Ltd. Diffraction light guide plate
JP7188261B2 (en) * 2019-04-24 2022-12-13 株式会社島津製作所 X-ray phase imaging system
CN113805333A (en) * 2021-08-23 2021-12-17 中山大学 Grating structure design method for double pattern encryption

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276342A (en) * 2008-04-15 2009-11-26 Canon Inc Source grating for x-rays, and imaging apparatus for x-ray phase contrast image
US20100080341A1 (en) * 2008-09-24 2010-04-01 Stefan Popescu X-ray ct system to generate tomographic phase contrast or dark field exposures
JP2012045099A (en) * 2010-08-25 2012-03-08 Fujifilm Corp Grid for capturing radiation image, method for manufacturing the same, and radiation image capturing system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339975B2 (en) * 2008-03-13 2013-11-13 キヤノン株式会社 Phase grating used for X-ray phase imaging, X-ray phase contrast image imaging apparatus using the phase grating, X-ray computed tomography system
US8532252B2 (en) * 2010-01-27 2013-09-10 Canon Kabushiki Kaisha X-ray shield grating, manufacturing method therefor, and X-ray imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276342A (en) * 2008-04-15 2009-11-26 Canon Inc Source grating for x-rays, and imaging apparatus for x-ray phase contrast image
US20100080341A1 (en) * 2008-09-24 2010-04-01 Stefan Popescu X-ray ct system to generate tomographic phase contrast or dark field exposures
JP2012045099A (en) * 2010-08-25 2012-03-08 Fujifilm Corp Grid for capturing radiation image, method for manufacturing the same, and radiation image capturing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039654A1 (en) * 2018-08-22 2020-02-27 株式会社島津製作所 X-ray phase imaging device

Also Published As

Publication number Publication date
WO2015033552A1 (en) 2015-03-12
JP6362103B2 (en) 2018-07-25
WO2015033552A4 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
JP7188261B2 (en) X-ray phase imaging system
JP6362103B2 (en) Screened grating and Talbot interferometer
US8908824B2 (en) Imaging apparatus
JP5760391B2 (en) Diffractive optical element and measuring device
WO2014104186A9 (en) Interferometer and inspection subject information acquisition system
JP5804848B2 (en) Imaging device
JP6399833B2 (en) Source grating, interferometer, and object information acquisition system
JP5777360B2 (en) X-ray imaging device
US20150071402A1 (en) X-ray imaging system
JP2014171799A (en) X-ray imaging apparatus, and x-ray imaging system
JP5796976B2 (en) X-ray imaging device
US20140270060A1 (en) X-ray talbot interferometer and x-ray talbot imaging system
US10393681B2 (en) X-ray Talbot interferometer and X-ray Talbot interferometer system
JP5792961B2 (en) Talbot interferometer and imaging method
JP2013116270A (en) X-ray imaging apparatus
JP2015166676A (en) X-ray imaging system
JP5578868B2 (en) Light source grating, X-ray phase contrast image imaging apparatus having the light source grating, and X-ray computed tomography system
JP6150648B2 (en) Subject information acquisition apparatus and subject information acquisition system
JP2013114025A (en) Grating of talbot-lau interferometer
JP2017032508A (en) X-ray Talbot interferometer
JP2015135322A (en) X-ray shielding grating and production method thereof
JP5787597B2 (en) Imaging device
JP2011075581A (en) Optical encoder
JP2012235919A (en) X-ray imaging apparatus
JP2012189446A (en) Imaging apparatus and imaging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R151 Written notification of patent or utility model registration

Ref document number: 6362103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151