JP2015071785A - Reformer - Google Patents

Reformer Download PDF

Info

Publication number
JP2015071785A
JP2015071785A JP2014249387A JP2014249387A JP2015071785A JP 2015071785 A JP2015071785 A JP 2015071785A JP 2014249387 A JP2014249387 A JP 2014249387A JP 2014249387 A JP2014249387 A JP 2014249387A JP 2015071785 A JP2015071785 A JP 2015071785A
Authority
JP
Japan
Prior art keywords
coke oven
reforming furnace
oven gas
gas
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014249387A
Other languages
Japanese (ja)
Other versions
JP5901734B2 (en
Inventor
佐藤 一教
Kazunori Sato
一教 佐藤
谷田部 広志
Hiroshi Yatabe
広志 谷田部
信康 廻
Nobuyasu Meguri
信康 廻
琢也 石賀
Takuya Ishiga
琢也 石賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2014249387A priority Critical patent/JP5901734B2/en
Publication of JP2015071785A publication Critical patent/JP2015071785A/en
Application granted granted Critical
Publication of JP5901734B2 publication Critical patent/JP5901734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Industrial Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the enriching rates of carbon monoxide and hydrogen in a modified gas obtained by modifying coke oven gas, compared with those so far attainable.SOLUTION: A reformer 1 produces modified gas 5 by burning coke oven gas 3 obtained by dry distillation of coal partially with an oxidant and is provided with a cylindrical reaction passage 15 having an introduction port 11 for introduction of the coke oven gas 3 and a discharge port 13 for discharge of the modified gas 5 at both ends; the reaction passage 15 includes an enlarged-diameter part 19 expanding from the introduction port 11, a reduced-diameter part 21 decreased in diameter toward the discharge port 13 and a straight trunk part 23 sandwiched by the enlarged-diameter part 19 and the reduced-diameter part 21; and a plurality of oxidant nozzles 29 for injecting oxygen 27 into the reaction passage 15 are provided on the inclined surface of the enlarged-diameter part 19 so as to be directed toward the central part of the cross section of the reaction passage 15, in order to mix the coke oven gas 3 uniformly with oxygen 27.

Description

本発明は、石炭を乾留して得られるコークス炉ガスを改質して一酸化炭素及び水素に富んだ改質ガスを生成する改質炉に関する。   The present invention relates to a reforming furnace that reforms a coke oven gas obtained by carbonizing coal to produce a reformed gas rich in carbon monoxide and hydrogen.

例えば、特許文献1には、コークス炉ガスを酸素により部分燃焼して1100℃〜1300℃にし、コークス炉ガス中の炭化水素を熱分解して一酸化炭素及び水素に富んだ改質ガスを生成する改質炉が提案されている。立型の改質炉の頂部中心からコークス炉ガスを導入して改質させ、底部側壁に設けた排出口から改質ガスを排出している。また、コークス炉ガスの導入口より広がる拡径部を改質炉の頂部に設け、拡径部の傾斜面に反応流路内に酸素を噴出するノズルを複数設けている。   For example, in Patent Document 1, a coke oven gas is partially burned with oxygen to 1100 ° C. to 1300 ° C., and hydrocarbons in the coke oven gas are pyrolyzed to produce a reformed gas rich in carbon monoxide and hydrogen. A reforming furnace has been proposed. Coke oven gas is introduced and reformed from the center of the top of the vertical reforming furnace, and the reformed gas is discharged from an outlet provided in the bottom side wall. In addition, a diameter-expanded portion that extends from the inlet of the coke oven gas is provided at the top of the reforming furnace, and a plurality of nozzles that eject oxygen into the reaction flow path are provided on the inclined surface of the diameter-expanded portion.

一方、特許文献2には、廃棄物を熱分解して得られる熱分解ガスを酸素により部分燃焼して800℃以上にし、熱分解ガス中の炭化水素を熱分解して一酸化炭素及び水素に富んだ改質ガスを生成する改質炉が提案されている。同文献の改質炉は、特許文献1と同様に立型の改質炉の頂部中心から熱分解ガスと酸素を導入して改質させ、底部側壁に設けた排出口から改質ガスを排出している。   On the other hand, in Patent Document 2, a pyrolysis gas obtained by pyrolyzing waste is partially burned with oxygen to 800 ° C. or higher, and hydrocarbons in the pyrolysis gas are pyrolyzed to carbon monoxide and hydrogen. Reforming furnaces that produce rich reformed gas have been proposed. The reforming furnace of this document introduces a reforming gas and oxygen from the center of the top of the vertical reforming furnace as in Patent Document 1, and reforms, and discharges the reformed gas from an outlet provided in the bottom side wall. doing.

特開2000−273473号公報JP 2000-273473 A 特開2007−246620号公報JP 2007-246620 A

しかし、さらに、改質ガスの一酸化炭素及び水素の富化率を向上させることが要望されている。これに対して、特許文献1、2の反応流路は、排出口に向けて曲げられているから、ガスの流れが排出口近くで偏流になり、炭化水素と酸素の改質反応が損なわれるので、改質ガスの一酸化炭素及び水素の富化率を向上させる余地がある。   However, it is further desired to improve the enrichment ratio of carbon monoxide and hydrogen in the reformed gas. On the other hand, since the reaction channels of Patent Documents 1 and 2 are bent toward the outlet, the gas flow becomes uneven near the outlet and the reforming reaction of hydrocarbon and oxygen is impaired. Therefore, there is room for improving the enrichment ratio of carbon monoxide and hydrogen of the reformed gas.

本発明が解決しようとする課題は、コークス炉ガスを改質して得られる改質ガスの一酸化炭素及び水素の富化率を、従来より向上させることにある。   The problem to be solved by the present invention is to improve the enrichment ratio of carbon monoxide and hydrogen of the reformed gas obtained by reforming the coke oven gas.

上記の課題を解決するため、本発明は、石炭を乾留して得られるコークス炉ガスを酸化剤により部分燃焼して改質ガスを生成する改質炉において、コークス炉ガスを導入させる導入口と改質ガスを排出させる排出口が両端に設けられた筒状の反応流路を備え、反応流路は、導入口より広がる拡径部と、排出口に向かい狭まる縮径部と、拡径部と縮径部に挟まれた直状の胴部を有して形成され、拡径部の傾斜面に、反応流路内に酸化剤を噴出させる酸化剤ノズルが、反応流路の断面中心部に向けて複数設けられることを特徴とする。   In order to solve the above-mentioned problems, the present invention provides an inlet for introducing coke oven gas in a reformer that generates a reformed gas by partially burning a coke oven gas obtained by dry distillation of coal with an oxidizing agent. Equipped with a cylindrical reaction channel with outlets for discharging the reformed gas at both ends, the reaction channel has a diameter-expanded part that expands from the inlet, a diameter-reduced part that narrows toward the outlet, and a diameter-expanded part And an oxidizer nozzle that ejects an oxidizer into the reaction channel on the inclined surface of the enlarged diameter portion. It is characterized in that a plurality are provided toward the front.

これによれば、拡径部を、例えば、円錐状又は角錐状に形成することにより、導入されるコークス炉ガスの流れが徐々に広がって、渦などの乱流が発生することなく、整流されたコークス炉ガスが胴部に導かれる。一方、傾斜面から酸化剤が噴出されるので、コークス炉ガスと酸化剤が混合され、コークス炉ガスが部分燃焼される。これにより、高温となったコークス炉ガスと酸化剤の混合体が胴部に導入され、コークス炉ガスと酸化剤がさらに均一に混ざって、部分燃焼を熱源とする改質反応が行われる。生成された改質ガスは、導入口と排出口が同軸の流れなので、胴部の流れに偏流を起こすことなく排出される。したがって、コークス炉ガスを改質して得られる改質ガスの一酸化炭素及び水素の富化率を、従来より向上させることができる。   According to this, by forming the enlarged diameter portion in, for example, a conical shape or a pyramid shape, the flow of the introduced coke oven gas gradually spreads and is rectified without generating a turbulent flow such as a vortex. Coke oven gas is introduced into the barrel. On the other hand, since the oxidizing agent is ejected from the inclined surface, the coke oven gas and the oxidizing agent are mixed, and the coke oven gas is partially burned. As a result, the mixture of the coke oven gas and the oxidant that has reached a high temperature is introduced into the body, and the coke oven gas and the oxidant are mixed more uniformly, and a reforming reaction using partial combustion as a heat source is performed. The generated reformed gas is discharged without causing a drift in the flow of the body portion because the inlet and the outlet have a coaxial flow. Therefore, the enrichment ratio of carbon monoxide and hydrogen in the reformed gas obtained by reforming the coke oven gas can be improved as compared with the conventional art.

この場合において、反応流路の中心軸と拡径部の傾斜面とのなす角度は、30°を超えない角度にすることが好ましい。これに反して、傾斜角が30°を超えると、導入されるコークス炉ガスの広がりにより渦ができるから、胴部の均一な流れを妨げるおそれがある。一方、傾斜角が小さすぎると、拡径部が長くなり、改質炉が大型化する。   In this case, it is preferable that the angle formed by the central axis of the reaction flow path and the inclined surface of the enlarged diameter portion does not exceed 30 °. On the other hand, if the inclination angle exceeds 30 °, a vortex is generated due to the spread of the introduced coke oven gas, which may hinder the uniform flow of the body portion. On the other hand, if the inclination angle is too small, the diameter-expanded portion becomes longer and the reforming furnace becomes larger.

また、胴部の流路断面を、導入口の10倍以上の大きさにすることが好ましい。これにより、コークス炉ガスの流速を10分の1以下に低下でき、反応流路における滞留時間を長くできるから、改質反応を一層促進できる。   Moreover, it is preferable to make the flow path cross section of the trunk part 10 times larger than the introduction port. Thereby, the flow rate of the coke oven gas can be reduced to 1/10 or less, and the residence time in the reaction channel can be increased, so that the reforming reaction can be further promoted.

また、酸化剤ノズルの中心軸を、反応流路の中心軸に対して偏心させて設けることが好ましい。これにより、反応流路内に旋回流を形成でき、酸化剤の混合性を向上できるから、改質反応をより一層促進できる。   Further, it is preferable that the central axis of the oxidizer nozzle is provided eccentric to the central axis of the reaction channel. As a result, a swirling flow can be formed in the reaction channel, and the mixing property of the oxidant can be improved, so that the reforming reaction can be further promoted.

本発明によれば、コークス炉ガスを改質して得られる改質ガスの一酸化炭素及び水素の富化率を、従来より向上できる。   ADVANTAGE OF THE INVENTION According to this invention, the enrichment rate of carbon monoxide and hydrogen of the reformed gas obtained by reforming coke oven gas can be improved as compared with the prior art.

本発明の実施形態の改質炉の側断面図である。It is a sectional side view of the reforming furnace of the embodiment of the present invention. 図1のA−A線における矢視図である。It is an arrow line view in the AA line of FIG. 反応流路内に強い旋回流を形成した場合のガスの流れを示す図である。It is a figure which shows the flow of the gas at the time of forming a strong swirl flow in the reaction channel. 図1の温度計の位置を示す模式図である。It is a schematic diagram which shows the position of the thermometer of FIG. 反応流路内の温度分布を示す図である。It is a figure which shows the temperature distribution in a reaction flow path. 本発明の実施例の炉内最高温度と改質ガス中のメタン残存率の関係を示す図である。It is a figure which shows the relationship between the maximum temperature in a furnace of the Example of this invention, and the methane residual rate in reformed gas. 比較例の反応流路の排出口側を示す側断面図である。It is a sectional side view which shows the discharge port side of the reaction channel of a comparative example. 拡径部の傾斜角が小さい場合の、コークス炉ガスと酸素の流れを示す図である。It is a figure which shows the flow of coke oven gas and oxygen in case the inclination | tilt angle of an enlarged diameter part is small.

以下、本発明を実施の形態に基づいて説明する。
(実施形態)
図1、2に示すように、本実施形態の改質炉1は、石炭を乾留して得られるコークス炉ガス3を導入して、一酸化炭素及び水素に富んだ改質ガス5を生成するようになっている。改質炉1は、外表面が鋼板のケーシング7で覆われた、例えば、円筒状の耐火材9により形成されている。改質炉1の筒の両端には、コークス炉ガス3を導入させる導入口11と改質ガス5を排出させる排出口13が設けられている。これにより、円筒状の反応流路15が形成されている。導入口11には、図示していないコークス炉が配管を介して接続されている。排出口13には、図示していないガス精製設備が配管を介して接続されている。
Hereinafter, the present invention will be described based on embodiments.
(Embodiment)
As shown in FIGS. 1 and 2, the reforming furnace 1 of the present embodiment introduces a coke oven gas 3 obtained by carbonizing coal to produce a reformed gas 5 rich in carbon monoxide and hydrogen. It is like that. The reforming furnace 1 is formed of, for example, a cylindrical refractory material 9 whose outer surface is covered with a steel casing 7. At both ends of the cylinder of the reforming furnace 1, an inlet 11 for introducing the coke oven gas 3 and an outlet 13 for discharging the reformed gas 5 are provided. Thereby, the cylindrical reaction flow path 15 is formed. A coke oven (not shown) is connected to the introduction port 11 via a pipe. A gas purification facility (not shown) is connected to the discharge port 13 via a pipe.

次に、本実施形態の特徴部に係る構成を説明する。反応流路15は、導入口11より広がる円錐状の拡径部19と、排出口13に向かい狭まる円錐状の縮径部21と、拡径部19と縮径部21に挟まれた直状の胴部23により構成されている。   Next, the structure which concerns on the characteristic part of this embodiment is demonstrated. The reaction channel 15 includes a conical diameter-expanded portion 19 that extends from the introduction port 11, a conical diameter-reduced portion 21 that narrows toward the discharge port 13, and a straight shape sandwiched between the diameter-expanded portion 19 and the diameter-reduced portion 21. It is comprised by the trunk | drum 23. FIG.

拡径部19と縮径部21は、対称構造で同一寸法になるように形成されている。拡径部19と縮径部21の中心軸は、胴部23と同心になるように形成されている。拡径部19の傾斜角度は、例えば、反応流路15の中心軸17と拡径部19の傾斜面25とのなす角度φが30°を超えないように形成されている。   The enlarged diameter portion 19 and the reduced diameter portion 21 are formed to have the same dimensions with a symmetrical structure. The central axes of the enlarged diameter portion 19 and the reduced diameter portion 21 are formed to be concentric with the body portion 23. The inclination angle of the enlarged diameter portion 19 is formed so that, for example, the angle φ formed by the central axis 17 of the reaction channel 15 and the inclined surface 25 of the enlarged diameter portion 19 does not exceed 30 °.

拡径部19と縮径部21に挟まれた胴部23の流路断面は、例えば、導入口11の10倍以上の大きさになるように形成されている。つまり、胴部23の内径をD、導入口11の内径をDiとすると、胴部断面積(πD/4)と導入口断面積(πDi/4)の比は、以下の(式1)の関係にある。
(πD/4)/(πDi/4)≧ 10・・・(式1)。
したがって、胴部23と導入口11の内径は、以下の(式2)の関係にある。
D ≧ 3.16Di・・・(式2)
この(式2)を満たすように、胴部23の内径Dと導入口11の内径Diは設計されている。
The flow path cross section of the trunk portion 23 sandwiched between the enlarged diameter portion 19 and the reduced diameter portion 21 is formed to have a size that is 10 times or more that of the introduction port 11, for example. That is, when the inner diameter of the trunk portion 23 D, the inner diameter of the inlet 11 and Di, the ratio of the torso cross-sectional area as ([pi] D 2/4) inlet cross-sectional area (πDi 2/4), the following equation (1 ).
(ΠD 2/4) / ( πDi 2/4) ≧ 10 ··· ( Equation 1).
Therefore, the inner diameters of the body portion 23 and the introduction port 11 are in the relationship of (Equation 2) below.
D ≧ 3.16Di (Expression 2)
The inner diameter D of the body portion 23 and the inner diameter Di of the introduction port 11 are designed so as to satisfy (Equation 2).

拡径部19の傾斜面25には、反応流路15内に酸化剤、例えば、酸素27を噴出させる酸化剤ノズル29が反応流路15の断面中心部に向けて、放射状に複数(本実施形態では4つ)設けられている。酸化剤ノズル29は、各酸化剤ノズル29の中心軸31と傾斜面25とのなす角度φが略90°になるように設けられている。各酸化剤ノズル29の中心軸31は、反応流路の中心32から同一方向にδの長さの分だけわずかにずらされ、反応流路15内に旋回流を形成できるようになっている。なお、δの寸法を大きくすると、旋回力が大きくなり過ぎ、コークス炉ガス3や酸素27が反応流路15の内壁に押し付けられてガスの流れが偏る。また、旋回力が強くなると、図3に示すように、反応流路15の下流から上流に向かう2次流が形成され、この2次流により改質ガス5が上流に戻され燃焼する。したがって、δの寸法は、ガス流の偏り及び2次流を抑制できるように、コークス炉ガス3及び酸素27の流速、反応流路15の寸法などを考慮して適宜設計する。 On the inclined surface 25 of the enlarged diameter portion 19, a plurality of oxidizer nozzles 29 for ejecting an oxidant, for example, oxygen 27, into the reaction channel 15 radiate toward the center of the cross section of the reaction channel 15 (this embodiment). In the form, four) are provided. Oxidant nozzle 29, the angle phi 0 between the center axis 31 and the inclined surface 25 of each oxidant nozzle 29 is provided so as to be substantially 90 °. The central axis 31 of each oxidizer nozzle 29 is slightly shifted from the center 32 of the reaction flow path by the length of δ in the same direction so that a swirl flow can be formed in the reaction flow path 15. When the dimension of δ is increased, the turning force becomes too large, and the coke oven gas 3 and oxygen 27 are pressed against the inner wall of the reaction flow path 15 so that the gas flow is biased. Further, when the turning force becomes strong, as shown in FIG. 3, a secondary flow is formed from the downstream to the upstream of the reaction flow path 15, and the reformed gas 5 is returned to the upstream by this secondary flow and burned. Therefore, the dimension of δ is appropriately designed in consideration of the coke oven gas 3 and the flow rates of the oxygen 27, the dimensions of the reaction flow path 15, and the like so that the deviation of the gas flow and the secondary flow can be suppressed.

各酸化剤ノズル29の本数n及び内径dは、例えば、以下の(式3)、(式4)を満たすように設計されている。
4 ≦(πDi/4)/(nπd /4)≦ 8・・・(式3)
4nd ≦ Di≦ 8nd ・・・(式4)
つまり、各酸化剤ノズル29の流路断面積の総和に対して、導入口11の流路断面積が、4倍以上8倍以下になるように設計されている。
The number n and an inner diameter d 0 of the oxidant nozzle 29, for example, the following equation (3) is designed so as to satisfy the equation (4).
4 ≦ (πDi 2/4) / (nπd 0 2/4) ≦ 8 ··· ( Equation 3)
4nd 0 2 ≦ Di 2 ≦ 8nd 0 2 (Formula 4)
That is, the flow passage cross-sectional area of the introduction port 11 is designed to be 4 to 8 times the sum of the flow passage cross-sectional areas of the oxidant nozzles 29.

反応流路15内の最高温度を示す位置には、温度計24が設けられている。温度計24の位置は、例えば、図4に示すように、各酸化ノズル29の中心軸31の交差部33より、胴部23の内径Dに近い長さDa分、反応流路15の下流側にすることができる。   A thermometer 24 is provided at a position indicating the maximum temperature in the reaction channel 15. The position of the thermometer 24 is, for example, as shown in FIG. 4, the length Da closer to the inner diameter D of the body portion 23 than the intersection 33 of the central axis 31 of each oxidation nozzle 29, and downstream of the reaction channel 15. Can be.

このように構成される本実施形態の改質炉の動作を説明する。石炭を乾留して得られるコークス炉ガス3は、水素、一酸化炭素、二酸化炭素、窒素、メタン及びエチレンを主成分とし、ベンゼン、トルエン、キシレンなどの芳香族、ナフタレン、アントラセンなどの多環芳香族、重質なタール状物質を含んでいる。このようなコークス炉ガス3を反応流路15内に導入し、酸化剤ノズル29から酸素27を噴射してコークス炉ガス3に混合する。これによりコークス炉ガス3が部分燃焼し、この燃焼熱により以下の(式5)、(式6)に示すとおり、コークス炉ガス3中の炭化水素及び微細な石炭粒子が一酸化炭素及び水素に転換される。
+(m/2)O→ mCO+(n/2)H・・・(式5)
C+(m/2)O→ mCO・・・(式6)
さらに、以下の(式7)に示すとおり、コークス炉ガス3中の水蒸気により炭化水素が一酸化炭素及び水素に転換される。
+(m/2)HO→(m/2)CO+(n/2+m/2)H・・・(式7)
(式5)乃至(式7)の反応により、コークス炉ガス3が改質され、一酸化炭素及び水素に富んだ改質ガス5が生成できる。生成された改質ガス5を、排出口13から排出させてガス精製設備で精製する。精製された改質ガスは、コークス工場の燃料、発電用ボイラの燃料、都市ガスの原料、高炉における酸化鉄の還元剤などに使用できる。なお、コークス炉ガス3中の水蒸気量が少ない場合は、反応流路15内に水蒸気を噴射することができる。
The operation of the reforming furnace of this embodiment configured as described above will be described. Coke oven gas 3 obtained by carbonization of coal is mainly composed of hydrogen, carbon monoxide, carbon dioxide, nitrogen, methane and ethylene, aromatics such as benzene, toluene and xylene, polycyclic aromatics such as naphthalene and anthracene. Family, contains heavy tar-like substances. Such coke oven gas 3 is introduced into the reaction channel 15, and oxygen 27 is injected from the oxidizer nozzle 29 to be mixed with the coke oven gas 3. As a result, the coke oven gas 3 is partially combusted, and the combustion heat causes hydrocarbons and fine coal particles in the coke oven gas 3 to be converted into carbon monoxide and hydrogen as shown in the following (formula 5) and (formula 6). Converted.
C m H n + (m / 2) O 2 → mCO + (n / 2) H 2 (Formula 5)
C + (m / 2) O 2 → mCO (Formula 6)
Furthermore, as shown in the following (Formula 7), the hydrocarbon is converted into carbon monoxide and hydrogen by the water vapor in the coke oven gas 3.
C m H n + (m / 2) H 2 O → (m / 2) CO + (n / 2 + m / 2) H 2 ··· ( Equation 7)
By the reactions of (Formula 5) to (Formula 7), the coke oven gas 3 is reformed, and the reformed gas 5 rich in carbon monoxide and hydrogen can be generated. The generated reformed gas 5 is discharged from the discharge port 13 and purified by a gas purification facility. The refined reformed gas can be used as a coke plant fuel, power generation boiler fuel, city gas feedstock, iron oxide reducing agent in a blast furnace, and the like. When the amount of water vapor in the coke oven gas 3 is small, water vapor can be injected into the reaction channel 15.

次に、本実施形態の特徴動作を説明する。反応流路15内に導入された高温のコークス炉ガス3は、拡径部19の傾斜面25に沿って徐々に拡大され、整流されたコークス炉ガス3が胴部23に導かれる。さらに、酸化剤ノズル29から噴出された酸素27により旋回する。これにより、コークス炉ガス3と酸素27の混合ガスを安定して旋回でき、コークス炉ガス3と酸素27が均一に混合され、コークス炉ガス3が部分燃焼する。この部分燃焼により、反応流路15内は所定温度に昇温される。   Next, the characteristic operation of this embodiment will be described. The high-temperature coke oven gas 3 introduced into the reaction channel 15 is gradually expanded along the inclined surface 25 of the enlarged diameter portion 19, and the rectified coke oven gas 3 is guided to the trunk portion 23. Furthermore, it is swung by oxygen 27 ejected from the oxidizer nozzle 29. Thereby, the mixed gas of the coke oven gas 3 and the oxygen 27 can be stably swirled, the coke oven gas 3 and the oxygen 27 are uniformly mixed, and the coke oven gas 3 is partially combusted. By this partial combustion, the temperature in the reaction channel 15 is raised to a predetermined temperature.

高温となったコークス炉ガス3と酸素27の混合ガスは、胴部23でさらに均一混合される。この混合ガスの熱量により、コークス炉ガス3中の炭化水素と酸素及び水蒸気が反応して、一酸化炭素と水素に転換される。この際、炭化水素と水蒸気の反応は吸熱反応であるから、反応流路15内の温度分布は図5に示すとおり、排出口13に向かって徐々に低くなる。しかし、拡径部19によりコークス炉ガス3と酸素27の混合ガスが整流され、酸素27が均一に混ざるから、炉内最高温度を、例えば、1340℃以上にでき、排出口13の近くの温度を、例えば、約1100℃の高温に維持できる。そして、整流された混合ガスが胴部23でさらに均一に混ざる。これにより、排出口13近くまで改質反応を維持できる。なお、炉内最高温度を示す位置の温度を改質反応が発生するか否かの目安として測定する。   The mixed gas of the coke oven gas 3 and oxygen 27 that has reached a high temperature is further uniformly mixed in the body portion 23. The hydrocarbon in the coke oven gas 3 reacts with oxygen and water vapor by the amount of heat of the mixed gas, and is converted into carbon monoxide and hydrogen. At this time, since the reaction between the hydrocarbon and the water vapor is an endothermic reaction, the temperature distribution in the reaction channel 15 gradually decreases toward the discharge port 13 as shown in FIG. However, since the mixed gas of the coke oven gas 3 and the oxygen 27 is rectified by the expanded diameter portion 19 and the oxygen 27 is uniformly mixed, the maximum temperature in the furnace can be set to, for example, 1340 ° C. or higher, and the temperature near the discharge port 13. Can be maintained at a high temperature of about 1100 ° C., for example. Then, the rectified mixed gas is mixed more uniformly in the body portion 23. Thereby, the reforming reaction can be maintained up to the vicinity of the discharge port 13. Note that the temperature at the position showing the maximum temperature in the furnace is measured as a measure of whether or not the reforming reaction occurs.

改質反応により生成した改質ガス5は、縮径部21により絞られながら排出口13に導かれ、改質ガス5を、導入口11と同軸の排出口13から排出される。   The reformed gas 5 generated by the reforming reaction is guided to the discharge port 13 while being throttled by the reduced diameter portion 21, and the reformed gas 5 is discharged from the discharge port 13 coaxial with the introduction port 11.

これによれば、円錐状の拡径部19により、導入されるコークス炉ガス3の流れが徐々に広がって、渦などの乱流が発生することなく、旋回されたコークス炉ガス3が胴部23に導かれる。一方、傾斜面25から酸素27が噴出されるので、コークス炉ガス3と酸素27が混合され、コークス炉ガス3が部分燃焼される。これにより、高温となったコークス炉ガス3と酸素27の混合体が胴部23に導入され、コークス炉ガス3と酸素27がさらに均一に混ざって、部分燃焼を熱源とする改質反応が行われる。生成された改質ガス5は、導入口11と排出口13が同軸の流れなので、胴部23の流れに偏流を起こすことなく排出される。したがって、コークス炉ガス3を改質して得られる改質ガス5の一酸化炭素及び水素の富化率を、従来より向上させることができる。   According to this, the flow of the introduced coke oven gas 3 gradually spreads due to the conical diameter-expanded portion 19, and the swirled coke oven gas 3 is formed in the trunk without generating turbulent flow such as vortex. 23. On the other hand, since the oxygen 27 is ejected from the inclined surface 25, the coke oven gas 3 and the oxygen 27 are mixed, and the coke oven gas 3 is partially burned. As a result, the mixture of the coke oven gas 3 and the oxygen 27, which has reached a high temperature, is introduced into the body 23, and the coke oven gas 3 and the oxygen 27 are further uniformly mixed to perform a reforming reaction using partial combustion as a heat source. Is called. The generated reformed gas 5 is discharged without causing a drift in the flow of the body portion 23 because the introduction port 11 and the discharge port 13 have a coaxial flow. Therefore, the enrichment ratio of carbon monoxide and hydrogen of the reformed gas 5 obtained by reforming the coke oven gas 3 can be improved as compared with the conventional art.

また、拡径部19の傾斜角度を、例えば、30°を超えないようにしているから、拡径部19でコークス炉ガス3が緩やかに広がり、コークス炉ガス3の流れを一層均一化できる。これに反して、傾斜角度が30°を超えると、コークス炉ガス3が急に拡大され渦ができ、胴部23の均一な流れを妨げるおそれがある。一方、傾斜角が小さすぎると、拡径部19が長くなり、改質炉1が大型化する。また、傾斜角が緩やかな場合には、図8に示すように酸素27は酸素噴流45として、胴部23の下流側までコークス炉ガス3と平行に流れて、コークス炉ガス3との混合が遅れる。   Further, since the inclination angle of the enlarged diameter portion 19 does not exceed, for example, 30 °, the coke oven gas 3 gradually spreads at the enlarged diameter portion 19, and the flow of the coke oven gas 3 can be made more uniform. On the other hand, when the inclination angle exceeds 30 °, the coke oven gas 3 is suddenly expanded to form a vortex, and there is a possibility that the uniform flow of the body portion 23 may be hindered. On the other hand, if the inclination angle is too small, the diameter-expanded portion 19 becomes longer, and the reforming furnace 1 becomes larger. Further, when the inclination angle is gentle, as shown in FIG. 8, oxygen 27 flows as an oxygen jet 45 in parallel to the coke oven gas 3 up to the downstream side of the body 23, and mixing with the coke oven gas 3 is performed. Be late.

また、胴部23の流路断面を所定寸法、例えば、導入口の10倍以上の大きさにすることで、コークス炉ガス3の流速を10分の1以下に低下でき、反応流路における滞留時間を長くできる。これにより、コークス炉ガス3と酸素27の混合を一層均一化でき、濃度のむらが発生することを抑制できるから、改質反応を促進できるとともに、不完全燃焼によるすすの発生を抑制できる。   In addition, by setting the cross section of the body portion 23 to a predetermined dimension, for example, 10 times the size of the inlet, the flow rate of the coke oven gas 3 can be reduced to 1/10 or less, and the residence in the reaction channel You can lengthen the time. Thereby, since mixing of the coke oven gas 3 and the oxygen 27 can be made more uniform and unevenness in concentration can be suppressed, the reforming reaction can be promoted, and the generation of soot due to incomplete combustion can be suppressed.

また、各酸化剤ノズル29の中心軸31と傾斜面25とのなす角度を、同一角、例えば、略90°にすることが好ましい。これにより、反応流路15の上流に酸素27を集中してコークス炉ガス3を部分燃焼できるから、反応流路15内を所定温度に急速に昇温でき、改質反応を迅速に開始できる。   Moreover, it is preferable that the angle formed by the central axis 31 of each oxidizer nozzle 29 and the inclined surface 25 is the same angle, for example, approximately 90 °. Thereby, oxygen 27 can be concentrated upstream of the reaction channel 15 and the coke oven gas 3 can be partially combusted. Therefore, the temperature in the reaction channel 15 can be rapidly increased to a predetermined temperature, and the reforming reaction can be started quickly.

また、各酸化剤ノズル29の本数及び流路断面積は、改質反応に必要な酸素量、コークス炉ガス及び酸素の流速、導入口11の流路断面積などに応じて適宜選択できる。例えば、各酸化剤ノズル29の流路断面積の総和に対して、導入口11の流路断面積が、4倍以上8倍以下に設計し、混合に必要な流速及び改質反応に必要な酸素量を確保できる。   Further, the number of the oxidizer nozzles 29 and the channel cross-sectional area can be appropriately selected according to the amount of oxygen necessary for the reforming reaction, the flow rate of the coke oven gas and oxygen, the channel cross-sectional area of the inlet 11, and the like. For example, the flow passage cross-sectional area of the introduction port 11 is designed to be 4 times or more and 8 times or less with respect to the sum of the flow passage cross-sectional areas of the oxidizer nozzles 29, and is necessary for the flow rate and the reforming reaction necessary for mixing. The amount of oxygen can be secured.

また、反応流路15の軸方向長さは、例えば、コークス炉ガス3の滞留時間が3秒以上になるように設計できる。これは、本発明の発明者らが滞留時間を1.5〜15秒の範囲で試験をして導いた結論である。滞留時間が3秒以下の場合には、酸素27との混合が良好であっても未分解成分が排出されることがあった。さらに、改質ガス中に残存する炭化水素、例えば、メタンの濃度が1.5%以下になるように、反応流路15の軸方向長さを設計することができる。   The axial length of the reaction channel 15 can be designed so that the residence time of the coke oven gas 3 is 3 seconds or more, for example. This is a conclusion derived by the inventors of the present invention testing the residence time in the range of 1.5 to 15 seconds. When the residence time is 3 seconds or less, undecomposed components may be discharged even if the mixing with oxygen 27 is good. Furthermore, the axial length of the reaction channel 15 can be designed so that the concentration of hydrocarbons remaining in the reformed gas, for example, methane, is 1.5% or less.

なお、本実施形態の反応流路15は円筒状に形成したが、これに限定されるものではなく、例えば、角筒状に形成することができる。   In addition, although the reaction flow path 15 of this embodiment was formed in the cylindrical shape, it is not limited to this, For example, it can form in a rectangular tube shape.

以下、本発明の実施例を説明する。図6は、炉内最高温度と改質ガス中のメタンの残存率の関係を示す図である。なお、比較例として、図7に改質炉でコークス炉ガス3を改質した場合のデータを示す。比較例の改質炉が本実施例の改質炉と相違する点は、拡径部19を設けず、コークス炉ガス3を導入口11から胴部23に向けて急拡大させている点である。さらに、酸素ノズル40を導入口11から反応流路15内に挿入している点である。   Examples of the present invention will be described below. FIG. 6 is a diagram showing the relationship between the maximum temperature in the furnace and the residual rate of methane in the reformed gas. As a comparative example, FIG. 7 shows data when the coke oven gas 3 is reformed in the reforming furnace. The difference between the reforming furnace of the comparative example and the reforming furnace of the present embodiment is that the coke oven gas 3 is rapidly expanded from the inlet 11 toward the body 23 without providing the enlarged diameter portion 19. is there. Furthermore, the oxygen nozzle 40 is inserted into the reaction channel 15 from the inlet 11.

図6に示すとおり、本実施例の改質炉は、改質ガス中のメタンの残存率は約1%であり、コークス炉ガス3中の炭化水素の殆どが一酸化炭素及び水素に分解されていることがわかる。つまり、本実施例の改質炉は、拡径部19でコークス炉ガス3が整流され、反応流路15の上流側におけるコークス炉ガス3と酸素27が均一に混ざるから、部分燃焼を促進でき、炉内最高温度を1390℃にできる。さらに、生成された改質ガス5は、縮径部21により整流されて、導入口11と同心の排出口13から排出されるから、胴部23に偏流が発生しない。これにより、排出口13の近くまで改質反応を進行でき、炭化水素の殆どを分解できる。   As shown in FIG. 6, in the reforming furnace of this example, the residual ratio of methane in the reformed gas is about 1%, and most of the hydrocarbons in the coke oven gas 3 are decomposed into carbon monoxide and hydrogen. You can see that That is, in the reforming furnace of this embodiment, the coke oven gas 3 is rectified in the enlarged diameter portion 19 and the coke oven gas 3 and the oxygen 27 on the upstream side of the reaction channel 15 are uniformly mixed. The maximum temperature in the furnace can be 1390 ° C. Furthermore, since the generated reformed gas 5 is rectified by the reduced diameter portion 21 and discharged from the discharge port 13 concentric with the introduction port 11, no drift occurs in the body portion 23. Thereby, reforming reaction can be advanced to the vicinity of the discharge port 13, and most hydrocarbons can be decomposed | disassembled.

これに対して、比較例の改質炉は、コークス炉ガス3を急拡大しているから、渦などの乱流が発生し、コークス炉ガス3と酸素27の混合性が悪く、部分燃焼が不十分となっている。そのため、炉内最高温度が1040℃までしか上がらず、反応流路の下流側の温度が低下し、下流側の改質反応が不十分となり、メタンが約23%残存したと考えられる。   On the other hand, since the reforming furnace of the comparative example rapidly expands the coke oven gas 3, a turbulent flow such as vortex is generated, the miscibility of the coke oven gas 3 and oxygen 27 is poor, and partial combustion occurs. It is insufficient. Therefore, it is considered that the maximum temperature in the furnace rises only to 1040 ° C., the temperature on the downstream side of the reaction channel decreases, the reforming reaction on the downstream side becomes insufficient, and about 23% of methane remains.

1 改質炉
3 コークス炉ガス
5 改質ガス
11 導入口
13 排出口
15 反応流路
19 拡径部
21 縮径部
23 胴部
25 傾斜面
29 酸化剤ノズル
DESCRIPTION OF SYMBOLS 1 Reforming furnace 3 Coke oven gas 5 Reformed gas 11 Inlet port 13 Outlet port 15 Reaction flow path 19 Expanded portion 21 Reduced portion 23 Trunk portion 25 Inclined surface 29 Oxidant nozzle

上記の課題を解決するため、本発明は、石炭を乾留して得られるコークス炉ガスを酸化剤により部分燃焼して改質ガスを生成する改質炉において、コークス炉ガスを導入させる導入口と改質ガスを排出させる排出口が両端に設けられた筒状の反応流路を備え、反応流路は、導入口より広がる拡径部と、排出口に向かい狭まる縮径部と、拡径部と縮径部に挟まれた直状の胴部を有して形成され、拡径部の傾斜面に、反応流路内に酸化剤を噴出させる酸化剤ノズルが、反応流路の断面中心部に向けて複数設けられ、反応流路の中心軸と拡径部の傾斜面とのなす角度は、導入口より導入されるコークス炉ガスを整流で胴部に導くように30°を超えない角度に設定され、各酸化剤ノズルの中心軸と拡径部の傾斜面とのなす角度は略90°に設定され、各酸化剤ノズルの中心軸は、反応流路の中心軸から径方向にわずかな寸法δずらして設けられていることを特徴とする。 In order to solve the above-mentioned problems, the present invention provides an inlet for introducing coke oven gas in a reformer that generates a reformed gas by partially burning a coke oven gas obtained by dry distillation of coal with an oxidizing agent. Equipped with a cylindrical reaction channel with outlets for discharging the reformed gas at both ends, the reaction channel has a diameter-expanded part that expands from the inlet, a diameter-reduced part that narrows toward the outlet, and a diameter-expanded part And an oxidizer nozzle that ejects an oxidizer into the reaction channel on the inclined surface of the enlarged diameter portion. The angle formed between the central axis of the reaction channel and the inclined surface of the enlarged diameter portion is an angle that does not exceed 30 ° so that the coke oven gas introduced from the inlet port is guided to the body portion by rectification. The angle formed by the central axis of each oxidizer nozzle and the inclined surface of the enlarged diameter portion is set to approximately 90 °, The central axis of each oxidizer nozzle is characterized by being slightly offset from the central axis of the reaction channel in the radial direction by a dimension δ .

これによれば、拡径部を、例えば、円錐状又は角錐状に形成し、反応流路の中心軸と拡径部の傾斜面とのなす角度を導入口より導入されるコークス炉ガスを整流で胴部に導くように30°を超えない角度に設定されるから、導入されるコークス炉ガスの流れが徐々に広がって、渦などの乱流が発生することなく、整流されたコークス炉ガスが胴部に導かれる。一方、傾斜面から酸化剤が噴出されるので、コークス炉ガスと酸化剤が混合され、コークス炉ガスが部分燃焼される。これにより、高温となったコークス炉ガスと酸化剤の混合体が胴部に導入され、コークス炉ガスと酸化剤がさらに均一に混ざって、部分燃焼を熱源とする改質反応が行われる。生成された改質ガスは、導入口と排出口が同軸の流れなので、胴部の流れに偏流を起こすことなく排出される。したがって、コークス炉ガスを改質して得られる改質ガスの一酸化炭素及び水素の富化率を、従来より向上させることができる。 According to this, the diameter-expanded portion is formed in , for example, a cone shape or a pyramid shape, and the coke oven gas introduced from the inlet is rectified by an angle formed by the central axis of the reaction channel and the inclined surface of the diameter-expanded portion. Is set to an angle that does not exceed 30 ° so as to be guided to the body portion, so that the flow of the introduced coke oven gas gradually spreads, and rectified coke oven gas is generated without generating turbulent flow such as vortices. Is guided to the torso. On the other hand, since the oxidizing agent is ejected from the inclined surface, the coke oven gas and the oxidizing agent are mixed, and the coke oven gas is partially burned. As a result, the mixture of the coke oven gas and the oxidant that has reached a high temperature is introduced into the body, and the coke oven gas and the oxidant are mixed more uniformly, and a reforming reaction using partial combustion as a heat source is performed. The generated reformed gas is discharged without causing a drift in the flow of the body portion because the inlet and the outlet have a coaxial flow. Therefore, the enrichment ratio of carbon monoxide and hydrogen in the reformed gas obtained by reforming the coke oven gas can be improved as compared with the conventional art.

ここで、拡径部の傾斜面の傾斜角が30°を超えると、導入されるコークス炉ガスの広がりにより渦ができるから、胴部の均一な流れを妨げるおそれがある。一方、傾斜角が小さすぎると、拡径部が長くなり、改質炉が大型化する。 Here, the tilt oblique angle of the inclined surface of the enlarged diameter portion exceeds 30 °, because it is the vortex by the spread of the coke oven gas to be introduced, which may interfere with the uniform flow of the body portion. On the other hand, if the inclination angle is too small, the diameter-expanded portion becomes longer and the reforming furnace becomes larger.

特に、酸化剤ノズルの中心軸を、反応流路の中心軸に対して偏心させて、つまり各酸化剤ノズルの中心軸を反応流路の中心軸から径方向にわずかな寸法δずらして設けているので、反応流路内に旋回流を形成でき、酸化剤の混合性を向上できるから、改質反応をより一層促進できる。ここで、寸法δを大きくし過ぎると、旋回力が大きくなり過ぎ、コークス炉ガスや酸化剤が反応流路の内壁に押し付けられてガスの流れが偏る。また、旋回力が強くなると、図3に示すように、反応流路の下流から上流に向かう2次流が形成され、この2次流により改質ガスが上流に戻されて燃焼する。このことから、寸法δは、ガス流の偏り及び2次流を抑制できるように、コークス炉ガス及び酸化剤の流速、反応流路の寸法などを考慮して設定する。
In particular, the central axis of the oxidant nozzle is decentered with respect to the central axis of the reaction flow path , that is, the central axis of each oxidant nozzle is shifted by a slight dimension δ in the radial direction from the central axis of the reaction flow path. because there can be formed a swirl flow in a counter応流path, possible to improve the mixing of the oxidizing agent, it can further promote the reforming reaction. Here, if the dimension δ is excessively increased, the turning force becomes excessively large, and the coke oven gas and the oxidant are pressed against the inner wall of the reaction flow path, and the gas flow is biased. Further, when the turning force becomes strong, as shown in FIG. 3, a secondary flow is formed from the downstream to the upstream of the reaction channel, and the reformed gas is returned to the upstream by the secondary flow and burned. Therefore, the dimension δ is set in consideration of the coke oven gas and the flow rates of the oxidant, the dimensions of the reaction flow path, and the like so that the deviation of the gas flow and the secondary flow can be suppressed.

Claims (7)

石炭を乾留して得られるコークス炉ガスを酸化剤により部分燃焼して改質ガスを生成する改質炉において、
前記コークス炉ガスを導入させる導入口と前記改質ガスを排出させる排出口が両端に設けられた筒状の反応流路を備え、
該反応流路は、前記導入口より広がる拡径部と、前記排出口に向かい狭まる縮径部と、前記拡径部と前記縮径部に挟まれた直状の胴部を有して形成され、
前記拡径部の傾斜面に、前記反応流路内に前記酸化剤を噴出させる酸化剤ノズルが、前記反応流路の断面中心部に向けて複数設けられることを特徴とする改質炉。
In a reforming furnace that generates reformed gas by partially burning coke oven gas obtained by carbonizing coal with an oxidant,
A cylindrical reaction channel provided at both ends with an inlet for introducing the coke oven gas and an outlet for discharging the reformed gas;
The reaction channel has a diameter-expanded portion that extends from the introduction port, a diameter-reduced portion that narrows toward the discharge port, and a straight body sandwiched between the diameter-expanded portion and the diameter-reduced portion. And
A reforming furnace, wherein a plurality of oxidant nozzles for ejecting the oxidant into the reaction channel are provided on an inclined surface of the enlarged diameter part toward a central portion of a cross section of the reaction channel.
請求項1に記載の改質炉において、
前記反応流路の中心軸と前記拡径部の傾斜面とのなす角度は30°を超えない角度であることを特徴とする改質炉。
The reforming furnace according to claim 1, wherein
A reforming furnace characterized in that an angle formed by a central axis of the reaction channel and an inclined surface of the enlarged diameter portion does not exceed 30 °.
請求項1又は2に記載の改質炉において、
前記胴部の流路断面は、前記導入口の10倍以上の大きさであることを特徴とする改質炉。
In the reforming furnace according to claim 1 or 2,
A reforming furnace characterized in that a cross-section of the flow path of the body portion is 10 times or more the size of the introduction port.
請求項1乃至3のいずれかに記載の改質炉において、
前記導入口は、前記各酸化剤ノズルの流路断面積の総和の4倍以上8倍以下の大きさであることを特徴とする改質炉。
In the reforming furnace according to any one of claims 1 to 3,
The reforming furnace characterized in that the introduction port has a size that is not less than 4 times and not more than 8 times the sum total of the channel cross-sectional areas of the oxidant nozzles.
請求項1乃至4のいずれかに記載の改質炉において、
前記各酸化剤ノズルの中心軸は、前記反応流路の中心軸から同方向にずらされていることを特徴とする改質炉。
In the reforming furnace according to any one of claims 1 to 4,
A reforming furnace, wherein a central axis of each oxidizer nozzle is shifted in the same direction from a central axis of the reaction flow path.
請求項1乃至5のいずれかに記載の改質炉において、
前記各酸化剤ノズルの中心軸と前記拡径部の傾斜面とのなす角度は略90°であることを特徴とする改質炉。
In the reforming furnace according to any one of claims 1 to 5,
The reforming furnace characterized in that an angle formed by a central axis of each of the oxidizer nozzles and an inclined surface of the enlarged diameter portion is approximately 90 °.
請求項1乃至6のいずれかに記載の改質炉において、
前記反応流路は円筒状に形成され、前記各酸化剤ノズルの中心軸が交差する位置より前記反応流路の直径分下流側に温度計が設けられることを特徴とする改質炉。
In the reforming furnace according to any one of claims 1 to 6,
The reforming furnace, wherein the reaction channel is formed in a cylindrical shape, and a thermometer is provided downstream from the position where the central axes of the oxidant nozzles intersect each other by the diameter of the reaction channel.
JP2014249387A 2014-12-09 2014-12-09 Reforming furnace Expired - Fee Related JP5901734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249387A JP5901734B2 (en) 2014-12-09 2014-12-09 Reforming furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249387A JP5901734B2 (en) 2014-12-09 2014-12-09 Reforming furnace

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009209612A Division JP2011057869A (en) 2009-09-10 2009-09-10 Reforming furnace

Publications (2)

Publication Number Publication Date
JP2015071785A true JP2015071785A (en) 2015-04-16
JP5901734B2 JP5901734B2 (en) 2016-04-13

Family

ID=53014361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249387A Expired - Fee Related JP5901734B2 (en) 2014-12-09 2014-12-09 Reforming furnace

Country Status (1)

Country Link
JP (1) JP5901734B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277647A (en) * 2003-03-18 2004-10-07 Nippon Steel Corp Process for gasification of waste product and installation therefor
WO2008129676A1 (en) * 2007-04-18 2008-10-30 K.E.M. Corporation Reformer for coke oven gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277647A (en) * 2003-03-18 2004-10-07 Nippon Steel Corp Process for gasification of waste product and installation therefor
WO2008129676A1 (en) * 2007-04-18 2008-10-30 K.E.M. Corporation Reformer for coke oven gas

Also Published As

Publication number Publication date
JP5901734B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
US9834442B2 (en) Gliding arc plasmatron reactor with reverse vortex for the conversion of hydrocarbon fuel into synthesis gas
US8931283B2 (en) Reformed multi-fuel premixed low emission combustor and related method
EP3017249B1 (en) Mixing of recycle gas with fuel gas to a burner
US20110016790A1 (en) Process and apparatus for thermal partial oxidation of hydrocarbons
JP2017538091A (en) Catalyst burner equipment
JP2011057869A (en) Reforming furnace
CN101618303A (en) A process and a reactor for oxidation of a hydrocarbon
JP5901734B2 (en) Reforming furnace
JP2008214165A (en) Combustible gas mixing method and mixer
JP6248495B2 (en) Equipment for reforming tar in gasification gas
US9988267B2 (en) Mixing device for a fuel reformer for converting hydrocarbon fuels into hydrogen rich gas
JP2008214163A (en) Combustible gas mixing method and mixer
CA2318687A1 (en) Improved nozzle-mix burner
EP2707325B1 (en) Process for producing synthesis gas
KR100834173B1 (en) The burner of reactor for reforming the natural gas into clean energy
CN113382956B (en) Method for partial oxidation
CN114423517B (en) Reactor system for producing high value chemical products
CN103249669A (en) Process and apparatus for preparing acetylene and synthesis gas
JP5686646B2 (en) Burner
JP2003286004A (en) Reformer and reforming method
JP2005257169A (en) Combustion device for different fuel
JPH10273302A (en) Manufacturing equipment of synthesis gas
JP2023056036A (en) Gas burner, and combustion facility
CN115803565A (en) Scrubber burner
JP2015004110A (en) Carburization method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160308

R150 Certificate of patent or registration of utility model

Ref document number: 5901734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees