JP2015059266A - Copper alloy foil - Google Patents

Copper alloy foil Download PDF

Info

Publication number
JP2015059266A
JP2015059266A JP2013195812A JP2013195812A JP2015059266A JP 2015059266 A JP2015059266 A JP 2015059266A JP 2013195812 A JP2013195812 A JP 2013195812A JP 2013195812 A JP2013195812 A JP 2013195812A JP 2015059266 A JP2015059266 A JP 2015059266A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy foil
copper
mass
hkl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013195812A
Other languages
Japanese (ja)
Other versions
JP6041779B2 (en
Inventor
波多野 隆紹
Takaaki Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013195812A priority Critical patent/JP6041779B2/en
Priority to TW103131679A priority patent/TWI502085B/en
Priority to KR1020167010046A priority patent/KR101780908B1/en
Priority to CN201711101721.1A priority patent/CN107828984A/en
Priority to CN201480051572.0A priority patent/CN105637106B/en
Priority to PCT/JP2014/074948 priority patent/WO2015041348A1/en
Publication of JP2015059266A publication Critical patent/JP2015059266A/en
Application granted granted Critical
Publication of JP6041779B2 publication Critical patent/JP6041779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy foil suitable for use in a negative electrode collector of a secondary battery, FCCL, an electromagnetic wave-shielding body or the like.SOLUTION: The present invention relates to a copper alloy foil containing one or more of Ag, Cr, Fe, In, Ni, P, Si, Sn, Te, Ti, Zn and Zr by 0.01-0.50 mass% in total, with the balance being Cu and impurities, and having a conductivity of 80% IACS or more, and keeping a tensile strength of 300 MPa or more after heating for 30 minutes at 300°C.

Description

本発明は、リチウムイオン二次電池(LIB)をはじめとする二次電池の負極集電体材料、フレキシブル銅張積層板(FCCL)の導電体材料、電線被覆材等の電磁波シールド体材料等として好適な銅合金箔およびそれを用いた電子部品に関する。   The present invention relates to a negative electrode current collector material for secondary batteries including a lithium ion secondary battery (LIB), a conductor material for a flexible copper clad laminate (FCCL), and an electromagnetic shielding material such as a wire covering material. The present invention relates to a suitable copper alloy foil and an electronic component using the same.

電子・電気機器には、銅箔が多用されている。ここでは厚みが0.05mm以下の金属板を箔とする。銅箔には圧延銅箔と電解銅箔がある。電解銅箔に対する圧延銅箔の特徴は、合金元素の添加と圧延・熱処理条件の調整により、強度、ヤング率、疲労、耐熱性、導電性、耐食性等の諸特性を随意に調整できる点にある。したがって、より高い機能が求められる用途には、圧延銅合金箔(以下、銅合金箔とする)が用いられることが多い。   Copper foil is frequently used in electronic and electrical equipment. Here, a metal plate having a thickness of 0.05 mm or less is used as the foil. Copper foil includes rolled copper foil and electrolytic copper foil. The feature of rolled copper foil over electrolytic copper foil is that various properties such as strength, Young's modulus, fatigue, heat resistance, conductivity, and corrosion resistance can be adjusted arbitrarily by adding alloying elements and adjusting rolling and heat treatment conditions. . Therefore, rolled copper alloy foils (hereinafter referred to as copper alloy foils) are often used for applications that require higher functions.

例えば、特開2009−097075(特許文献1)では、FCCL用銅箔として、CuにSn、Mg、In、Agの中の二種以上を添加し耐熱性と屈曲性を改善した銅合金箔が開示されている。また、特開2011−216463(特許文献2)では、二次電池の充放電サイクル寿命を改善することを目的に、その負極集電体用銅箔として、CuにAg、Cr、Fe、In、Ni、P、Si、Sn、Te、Ti、Zn、Zrの中の一種以上を添加するとともにヤング率の異方性を低減した銅合金箔を用いている。   For example, in JP 2009-097075 (Patent Document 1), as a copper foil for FCCL, a copper alloy foil in which two or more of Sn, Mg, In, and Ag are added to Cu to improve heat resistance and flexibility is disclosed. It is disclosed. Moreover, in JP 2011-216463 (Patent Document 2), for the purpose of improving the charge / discharge cycle life of the secondary battery, as a copper foil for the negative electrode current collector, Ag, Cr, Fe, In, A copper alloy foil in which one or more of Ni, P, Si, Sn, Te, Ti, Zn, and Zr is added and anisotropy of Young's modulus is reduced is used.

特開2009−097075号公報JP 2009-097075 A 特開2011−216463号公報JP 2011-216463 A

電子・電気機器の小型化、高機能化に伴い、銅箔の特性に対する要求はますます高まっている。例えば、二次電池の負極集電体における充放電サイクル寿命、FCCLにおける屈曲寿命、電磁波シールド体における耐久性等があげられる。本発明は、これら要求に対応できる銅合金箔を提供することを課題とする。   With the downsizing and higher functionality of electronic and electrical equipment, the demand for copper foil characteristics is increasing. For example, charge / discharge cycle life in the negative electrode current collector of the secondary battery, flex life in FCCL, durability in the electromagnetic wave shield, and the like can be mentioned. It is an object of the present invention to provide a copper alloy foil that can meet these requirements.

本発明者は、銅合金箔に弾性限以下の応力を負荷し長時間保持すると、室温であっても微小な伸びが生じることを発見した。そして、この室温で生じる微小クリープ伸び(以下、クリープとする)が小さい銅合金箔を用いると、電子・電気機器の機能性が向上することを見出した。   The present inventor has discovered that when a stress below the elastic limit is applied to a copper alloy foil and kept for a long time, minute elongation occurs even at room temperature. It was also found that the functionality of electronic / electrical equipment is improved by using a copper alloy foil having a small creep elongation (hereinafter referred to as creep) generated at room temperature.

例えば、この銅合金箔に炭素質材料等を活物質としてコーティングし、これを負極集電体としてLIBを作製すると、LIBの充放電サイクル寿命が向上した。LIBの充電時にはリチウムイオンが正極から負極に移動し、放電時にはリチウムイオンが負極から正極に移動する。このリチウムイオンの移動に伴って負極活物質が膨張収縮するため、銅箔は充放電によって機械的な繰り返し応力を受ける。その結果、銅箔が永久変形して活物質が剥離し、電池特性が劣化する。クリープが小さい銅合金箔の場合、繰り返し応力下での銅合金箔の永久変形が軽減され、電池特性の劣化が改善されると考えられた。   For example, when the copper alloy foil was coated with a carbonaceous material or the like as an active material and LIB was produced using this as a negative electrode current collector, the charge / discharge cycle life of LIB was improved. During LIB charging, lithium ions move from the positive electrode to the negative electrode, and during discharging, lithium ions move from the negative electrode to the positive electrode. Since the negative electrode active material expands and contracts as the lithium ions move, the copper foil is subjected to mechanical repeated stress due to charge and discharge. As a result, the copper foil is permanently deformed, the active material is peeled off, and the battery characteristics are deteriorated. In the case of copper alloy foil with small creep, it was considered that the permanent deformation of the copper alloy foil under repeated stress was reduced and the deterioration of battery characteristics was improved.

また、クリープが小さい銅合金箔を用いてFCCLを作製すると、このFCCLを用いて作製したフレキシブルプリント基板(FPC)の屈曲寿命が向上した。クリープが小さい銅合金箔の場合、FPCが屈曲を受けた際の銅合金箔の永久変形が軽減され、これにより銅合金箔のクラック生成と成長が抑制されると考えられた。   Moreover, when FCCL was produced using copper alloy foil with small creep, the flex life of the flexible printed circuit board (FPC) produced using this FCCL was improved. In the case of a copper alloy foil with small creep, it was considered that the permanent deformation of the copper alloy foil when the FPC was bent was alleviated, thereby suppressing crack generation and growth of the copper alloy foil.

同様に電磁波シールド用の電線被覆材においても、クリープが小さい銅箔を用いると、電線を繰り返し折り曲げた際の銅合金箔の損傷が軽減される傾向が見られた。
銅合金箔のクリープ伸びは極微小であるが、長期間に渡って繰り返し応力を受ける環境下においては、上記のような影響が顕在化すると推察された。
Similarly, in the wire covering material for electromagnetic wave shielding, when a copper foil having a small creep was used, there was a tendency that damage to the copper alloy foil when the wire was repeatedly bent was reduced.
Although the creep elongation of the copper alloy foil is extremely small, it was speculated that the above-described influence becomes apparent in an environment where stress is repeatedly applied over a long period of time.

さらに、本発明者は鋭意検討を重ねた結果、銅合金箔の圧延面に配向する結晶粒の方位がクリープに影響を及ぼすことを見出した。具体的には、クリープを低減するためには、圧延面において(111)面および(220)面を増やすことが有効であり、逆に(200)面の増加は有害であった。そして、実験的検討を経て、クリープの指標となる結晶方位指数を発明し、この指数を制御することによりクリープの低減を成し得た。   Furthermore, as a result of intensive studies, the present inventors have found that the orientation of crystal grains oriented on the rolled surface of the copper alloy foil affects the creep. Specifically, in order to reduce creep, it was effective to increase the (111) plane and the (220) plane on the rolled surface, and conversely, the increase of the (200) plane was harmful. Through experimental studies, the inventors have invented a crystal orientation index that is an index of creep, and the creep can be reduced by controlling this index.

以上の知見を基礎として完成した本発明は一側面において、Ag、Cr、Fe、In、Ni、P、Si、Sn、Te、Ti、ZnおよびZrの中の一種以上を合計で0.01〜0.50質量%含有し残部がCu及び不純物からなり、80%IACS以上の導電率を有し、300℃で30分間加熱後に300MPa以上の引張り強さを維持し、次式で与えられるA値が0.5以上であることを特徴とする銅合金箔を提供する。
A=2X(111)+X(220)−X(200)
(hkl)=I(hkl)/I0(hkl)
ただし、I(hkl)およびI0(hkl)はそれぞれX線回折法を用い圧延面および銅粉に対し求めた(hkl)面の回折積分強度である。
In one aspect, the present invention completed based on the above knowledge is a total of 0.01 to one or more of Ag, Cr, Fe, In, Ni, P, Si, Sn, Te, Ti, Zn, and Zr. 0.50% by mass with the balance being Cu and impurities, having an electrical conductivity of 80% IACS or higher, maintaining a tensile strength of 300 MPa or higher after heating at 300 ° C. for 30 minutes, and given by the following formula The copper alloy foil is characterized in that is 0.5 or more.
A = 2X (111) + X (220) -X (200)
X (hkl) = I (hkl) / I 0 (hkl)
Here, I (hkl) and I 0 (hkl) are diffraction integrated intensities of the (hkl) plane obtained for the rolled surface and the copper powder using the X-ray diffraction method, respectively.

また、本発明は別の一側面において、Ag、Cr、Fe、In、Ni、P、Si、Sn、Te、Ti、ZnおよびZrの中の一種以上を合計で0.01〜0.50質量%含有し残部がCu及び不純物からなり、80%IACS以上の導電率を有し、300℃で30分間加熱後に300MPa以上の引張り強さを維持し、30℃にて100MPaの引張応力を付加し100時間保持したとき伸びが0.1%以下であることを特徴とする銅合金箔を提供する。   In another aspect of the present invention, one or more of Ag, Cr, Fe, In, Ni, P, Si, Sn, Te, Ti, Zn, and Zr are added in a total amount of 0.01 to 0.50 mass. The remainder is made of Cu and impurities, has a conductivity of 80% IACS or more, maintains a tensile strength of 300 MPa or more after heating at 300 ° C. for 30 minutes, and applies a tensile stress of 100 MPa at 30 ° C. Provided is a copper alloy foil characterized by having an elongation of 0.1% or less when held for 100 hours.

前述した銅合金箔において、Zrを0.01〜0.20質量%含有し残部がCu及び不純物からなることが好ましい。
前述した銅合金箔において、Snを0.01〜0.20質量%含有し残部がCu及び不純物からなることが好ましい。
前述した銅合金箔において、Agを0.05〜0.50質量%含有し残部がCu及び不純物からなることが好ましい。
前述した銅合金箔において、Feを0.05〜0.50質量%、Pを0.005〜0.10質量%含有し残部がCu及び不純物からなることが好ましい。
In the copper alloy foil described above, it is preferable that Zr is contained in an amount of 0.01 to 0.20% by mass, and the balance is made of Cu and impurities.
In the copper alloy foil described above, it is preferable that Sn is contained in an amount of 0.01 to 0.20% by mass, and the balance is made of Cu and impurities.
In the above-described copper alloy foil, it is preferable that 0.05 to 0.50 mass% of Ag is contained, and the balance is made of Cu and impurities.
In the above-described copper alloy foil, it is preferable that 0.05 to 0.50% by mass of Fe and 0.005 to 0.10% by mass of P are contained, with the balance being Cu and impurities.

前述した各銅合金箔において、厚みが0.003〜0.05mmであることが好ましい。   Each copper alloy foil described above preferably has a thickness of 0.003 to 0.05 mm.

前述した各銅合金箔は、二次電池の負極集電体に用いることができる。
この観点から、本発明は別の一側面において、前述した銅合金箔より構成される負極集電体を用いた二次電池を提供する。
Each copper alloy foil mentioned above can be used for the negative electrode collector of a secondary battery.
From this viewpoint, in another aspect, the present invention provides a secondary battery using a negative electrode current collector composed of the copper alloy foil described above.

前述した各銅合金箔は、フレキシブル銅張積層板に用いることができる。
この観点から、本発明は別の一側面において、前述した銅合金箔より構成されるフレキシブル銅張積層板を提供する。
Each copper alloy foil mentioned above can be used for a flexible copper clad laminate.
From this viewpoint, this invention provides the flexible copper clad laminated board comprised from the copper alloy foil mentioned above in another one side.

前述した各銅合金箔は、電磁波シールド体に用いることができる。
この観点から、本発明は別の一側面において、前述した銅合金箔より構成される電磁波シールド体を提供する。
Each copper alloy foil mentioned above can be used for an electromagnetic wave shield.
From this viewpoint, in another aspect, the present invention provides an electromagnetic wave shielding body composed of the copper alloy foil described above.

クリープ特性の測定原理を説明する図である。It is a figure explaining the measurement principle of a creep characteristic. 一般的な二次電池の構造を示す概略図である。It is the schematic which shows the structure of a general secondary battery.

(1)銅箔の成分
本発明の銅合金箔は、銅箔の強度および耐熱性を改善するために、銅にAg、Cr、Fe、In、Ni、P、Si、Sn、Te、Ti、ZnおよびZrの中の一種以上を合計で0.01〜0.50質量%含有する。上記元素の合計量が、0.50質量%を超えると導電率が低下し、導電材料として不適当になる。添加元素の合計量が0.01質量%未満では、含有元素の効果が発現せず強度や耐熱性が不足する。
(1) Components of copper foil In order to improve the strength and heat resistance of the copper foil, the copper alloy foil of the present invention is made of Ag, Cr, Fe, In, Ni, P, Si, Sn, Te, Ti, A total of 0.01 to 0.50 mass% of one or more of Zn and Zr. When the total amount of the above elements exceeds 0.50% by mass, the electrical conductivity is lowered and it becomes unsuitable as a conductive material. When the total amount of the additive elements is less than 0.01% by mass, the effect of the contained elements is not exhibited and the strength and heat resistance are insufficient.

ベースとするCu材料としてはJIS−C1020規定の無酸素銅またはJIS−C1100規定のタフピッチ銅が適する。無酸素銅溶湯の酸素濃度は通常0.001質量%以下であり、タフピッチ銅溶湯の酸素濃度は通常0.01〜0.05質量%である。   As the base Cu material, oxygen-free copper specified by JIS-C1020 or tough pitch copper specified by JIS-C1100 is suitable. The oxygen concentration of the oxygen free molten copper is usually 0.001% by mass or less, and the oxygen concentration of the tough pitch copper molten metal is usually 0.01 to 0.05% by mass.

Cuよりも酸化しやすいCr、Fe、In、Ni、P、Si、Sn、Te、Ti、ZnおよびZrのいずれか1種以上の元素を採用する場合は、これら元素が酸化物を形成して耐熱性改善効果が得られないことを避けるために無酸素銅溶湯中に添加するのが一般的である。   When one or more elements of Cr, Fe, In, Ni, P, Si, Sn, Te, Ti, Zn, and Zr, which are more easily oxidized than Cu, are employed, these elements form an oxide. In order to avoid the effect of improving the heat resistance, it is common to add it to the oxygen-free copper melt.

AgはCuより酸化しにくいので、タフピッチ銅溶湯中、無酸素銅溶湯中ともに添加できる。   Since Ag is less susceptible to oxidation than Cu, it can be added both in the tough pitch copper melt and in the oxygen free copper melt.

Ag、Cr、Fe、In、Ni、P、Si、Sn、Te、Ti、Zn及びZrの添加量は、合計で0.01〜0.50質量%の範囲で、後述する目的の引張強さ、耐熱性、導電率を満足するよう適宜調整する。   The total amount of Ag, Cr, Fe, In, Ni, P, Si, Sn, Te, Ti, Zn, and Zr added is in the range of 0.01 to 0.50% by mass. , And adjust as appropriate to satisfy heat resistance and electrical conductivity.

Ag、Teを添加することで、導電率をほとんど低下させることなく、強度と耐熱性を改善することができる。
Sn、Inは強度と耐熱性の改善に比較的高い効果を示し、インゴット溶製の際の取り扱いも比較的容易である。
By adding Ag and Te, strength and heat resistance can be improved with almost no decrease in conductivity.
Sn and In exhibit a relatively high effect in improving the strength and heat resistance, and are relatively easy to handle during ingot melting.

Zr、Ti、Crは、Cu中で析出し強度と耐熱性を著しく改善するが、非常に活性なため溶銅中で酸化物や炭化物を作りやすい。酸化物や炭化物が生成すると、箔に圧延する過程で材料が破断したりピンホールが発生したりするので、インゴット溶製の際に注意を要する。   Zr, Ti, and Cr precipitate in Cu and remarkably improve strength and heat resistance. However, they are very active and thus easily form oxides and carbides in molten copper. When oxides and carbides are generated, the material breaks or pinholes are generated in the process of rolling into foil, so care must be taken when melting ingots.

FeおよびNiは、PやSiと同時に添加することにより、Fe−P、Ni−P、Fe−Si、Ni−Siといった化合物が析出し、単独で添加する場合より、より高い強度と耐熱性が得られる。
Znは、強度や耐熱性を改善する効果はそれほど大きくないが、めっき性や耐マイグレーション性などの表面特性を改善する効果も有する。
When Fe and Ni are added at the same time as P and Si, compounds such as Fe-P, Ni-P, Fe-Si, and Ni-Si are precipitated, and higher strength and heat resistance than when added alone. can get.
Zn is not so effective in improving strength and heat resistance, but also has an effect of improving surface properties such as plating properties and migration resistance.

本発明の効果は、次の成分の銅合金箔において、特に好適に発揮される。
(a)Zrを0.01〜0.20質量%含有し残部がCu及び不純物からなることを特徴とする銅合金箔。
(b)Snを0.01〜0.20質量%含有し残部がCu及び不純物からなることを特徴とする銅合金箔。
(c)Agを0.05〜0.50質量%含有し残部がCu及び不純物からなることを特徴とする銅合金箔。
(d)Feを0.05〜0.50質量%、Pを0.005〜0.10質量%含有し残部がCu及び不純物からなることを特徴とする銅合金箔。
The effect of the present invention is particularly preferably exhibited in the copper alloy foil having the following components.
(A) A copper alloy foil characterized by containing Zr in an amount of 0.01 to 0.20 mass%, with the balance being Cu and impurities.
(B) A copper alloy foil containing 0.01 to 0.20% by mass of Sn with the balance being Cu and impurities.
(C) A copper alloy foil characterized by containing 0.05 to 0.50 mass% of Ag and the balance being made of Cu and impurities.
(D) A copper alloy foil comprising 0.05 to 0.50% by mass of Fe and 0.005 to 0.10% by mass of P, with the balance being Cu and impurities.

(2)銅合金箔の厚み
銅合金箔の厚みは、0.003〜0.05mmであることが好ましい。厚みが0.003mm未満になると、銅合金箔の取り扱いが難しくなる。厚みが0.05mmを超えると、電子部品の小型化が難しくなる。より好ましい厚みは、0.005〜0.02mmである。
(2) Thickness of copper alloy foil The thickness of the copper alloy foil is preferably 0.003 to 0.05 mm. When the thickness is less than 0.003 mm, handling of the copper alloy foil becomes difficult. When the thickness exceeds 0.05 mm, it is difficult to reduce the size of the electronic component. A more preferable thickness is 0.005 to 0.02 mm.

(3)クリープ特性
クリープ特性として、30℃にて100MPaの引張応力を付加し100時間保持したときの伸び率を評価する。当該伸び率が、0.1%以下、より好ましくは0.05%以下になると、電子・電気機器の機能が向上する。
(3) Creep characteristics As the creep characteristics, an elongation rate when a tensile stress of 100 MPa is applied at 30 ° C. and held for 100 hours is evaluated. When the elongation percentage is 0.1% or less, more preferably 0.05% or less, the function of the electronic / electrical device is improved.

(4)圧延面の結晶方位
次式で与えられる結晶方位指数A(以下、単にA値と記す)を0.5以上、より好ましくは1.0以上に調整する。ここで、I(hkl)およびI0(hkl)はそれぞれX線回折法を用い圧延面および銅粉に対し求めた(hkl)面の回折積分強度である。
A=2X(111)+X(220)−X(200)
(hkl)=I(hkl)/I0(hkl)
A値を0.5以上に調整すると、前記クリープ伸びが0.1%以下となり、電子・電気機器の機能が向上する。A値の上限値については、前記クリープ伸びの点からは制限されないものの、A値は典型的には10.0以下の値をとる。
(4) Crystal orientation of rolled surface Crystal orientation index A (hereinafter simply referred to as A value) given by the following formula is adjusted to 0.5 or more, more preferably 1.0 or more. Here, I (hkl) and I 0 (hkl) are diffraction integrated intensities of the (hkl) plane obtained for the rolled surface and copper powder using the X-ray diffraction method, respectively.
A = 2X (111) + X (220) -X (200)
X (hkl) = I (hkl) / I 0 (hkl)
When the A value is adjusted to 0.5 or more, the creep elongation becomes 0.1% or less, and the function of the electronic / electric device is improved. The upper limit of the A value is not limited from the point of creep elongation, but the A value typically takes a value of 10.0 or less.

(5)耐熱性、引張強さ、導電率
電子部品に加工される過程において、銅合金箔は熱処理を受ける。例えば、二次電池の負極集電体では、銅合金箔に塗布した活物質の乾燥が行われる。また、FCCLにおいては、銅合金箔をポリイミド等の樹脂フィルムに貼り合わせる際に熱が加えられる。このような熱処理で銅合金箔が軟化すると、電子・電気機器の機能が低下してしまう。
(5) Heat resistance, tensile strength, electrical conductivity In the process of being processed into electronic parts, the copper alloy foil is subjected to heat treatment. For example, in the negative electrode current collector of the secondary battery, the active material applied to the copper alloy foil is dried. In FCCL, heat is applied when the copper alloy foil is bonded to a resin film such as polyimide. When the copper alloy foil is softened by such heat treatment, the function of the electronic / electrical device is degraded.

そこで、本発明では、300℃で30分間加熱後の銅合金箔の引張強さを300MPa以上、好ましくは350MPa以上に規定する。300℃、30分は銅合金箔を加工する際の熱処理における一般的加熱条件に比べ厳しいものであり、この熱処理後に300MPa以上の引張強さを維持していれば、充分な耐熱性を有しているといえる。上記添加元素は、300℃で30分間加熱後の引張強さが300MPa以上になるように選択される。   Therefore, in the present invention, the tensile strength of the copper alloy foil after heating at 300 ° C. for 30 minutes is defined as 300 MPa or more, preferably 350 MPa or more. 300 ° C, 30 minutes is stricter than the general heating conditions in the heat treatment when processing copper alloy foil. If the tensile strength of 300 MPa or more is maintained after this heat treatment, it has sufficient heat resistance. It can be said that. The additive element is selected such that the tensile strength after heating at 300 ° C. for 30 minutes is 300 MPa or more.

300℃で30分間加熱後に300MPa以上の引張強さを維持するためには、加熱前の状態で350MPa以上の引張強さを有していることが好ましく、400MPa以上の引張強さを有していることがさらに好ましい。   In order to maintain a tensile strength of 300 MPa or more after heating at 300 ° C. for 30 minutes, it preferably has a tensile strength of 350 MPa or more in the state before heating, and has a tensile strength of 400 MPa or more. More preferably.

タフピッチ銅を素材とする従来の圧延銅箔の導電率は約100%IACSであるが、素材を銅合金化することにより導電率が低下すると、電子・電気機器の機能が低下する傾向がある。そこで、銅合金箔の導電率を80%IACS以上、好ましくは83%IACS以上に規定する。このレベルであると電子・電気機器の機能は低下しない。   The conductivity of a conventional rolled copper foil made of tough pitch copper is about 100% IACS. However, when the conductivity is lowered by forming a copper alloy into the material, the function of the electronic / electric equipment tends to be lowered. Therefore, the conductivity of the copper alloy foil is specified to be 80% IACS or more, preferably 83% IACS or more. At this level, the function of the electronic / electrical device does not deteriorate.

(6)製造方法
酸素濃度が調整された溶湯に合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延で所定の製品厚みに仕上げる。
A値を0.5以上に調整する方法は特定の方法に限定されないが、例えば熱間圧延条件の制御により可能となる。本発明の熱間圧延では、800〜1000℃に加熱したインゴットを一対の圧延ロール間に繰り返し通過させ、目標の板厚に仕上げてゆく。A値には1パスあたりの加工度が影響を及ぼす。ここで、1パスあたりの加工度R(%)とは、圧延ロールを1回通過したときの板厚減少率であり、R=(T0−T)/T0×100(T0:圧延ロール通過前の厚み、T:圧延ロール通過後の厚み)で与えられる。
このRについて、全パスのうちの最大値(Rmax)を25%以下にし、全パスの平均値(Rave)を20%以下にすることが好ましい。これら両条件を満足することで、A値が0.5以上になる。より好ましくはRaveを19%以下とする。
(6) Manufacturing method An alloy element is added to the molten metal in which the oxygen concentration is adjusted, and cast into an ingot having a thickness of about 30 to 300 mm. The ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling, and then cold rolling and recrystallization annealing are repeated, and finished to a predetermined product thickness by final cold rolling.
The method of adjusting the A value to 0.5 or more is not limited to a specific method, but can be achieved by controlling hot rolling conditions, for example. In the hot rolling of the present invention, an ingot heated to 800 to 1000 ° C. is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. The degree of processing per pass affects the A value. Here, the processing degree R (%) per pass is a sheet thickness reduction rate when the rolling roll passes once, and R = (T 0 −T) / T 0 × 100 (T 0 : rolling) Thickness before passing through roll, T: Thickness after passing through rolling roll).
Regarding R, it is preferable that the maximum value (Rmax) of all paths is 25% or less and the average value (Rave) of all paths is 20% or less. By satisfying both of these conditions, the A value becomes 0.5 or more. More preferably, Rave is set to 19% or less.

再結晶焼鈍では、圧延組織の一部または全てを再結晶化させる。最終冷間圧延前の再結晶焼鈍では、平均結晶粒径を50μm以下に調整する。平均結晶粒径が大きすぎると、製品の引張強さを350MPa以上に調整することが難しくなる。   In recrystallization annealing, part or all of the rolling structure is recrystallized. In the recrystallization annealing before the final cold rolling, the average crystal grain size is adjusted to 50 μm or less. When the average crystal grain size is too large, it becomes difficult to adjust the tensile strength of the product to 350 MPa or more.

最終冷間圧延前の再結晶焼鈍の条件は、目標とする焼鈍後の結晶粒径に基づき決定する。具体的には、バッチ炉または連続焼鈍炉を用い、炉内温度を250〜800℃として焼鈍を行えばよい。バッチ炉では250〜600℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整すればよい。連続焼鈍炉では450〜800℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整すればよい。   The recrystallization annealing conditions before the final cold rolling are determined based on the target crystal grain size after annealing. Specifically, annealing may be performed by using a batch furnace or a continuous annealing furnace and setting the furnace temperature to 250 to 800 ° C. In a batch furnace, the heating time may be appropriately adjusted within the range of 30 minutes to 30 hours at a furnace temperature of 250 to 600 ° C. In a continuous annealing furnace, the heating time may be appropriately adjusted within a range of 5 seconds to 10 minutes at a furnace temperature of 450 to 800 ° C.

最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げていく。最終冷間圧延の加工度は25〜99%とするのが好ましい。ここで加工度r(%)は、r=(t0−t)/t0×100(t0:圧延前の板厚、t:圧延後の板厚)で与えられる。rが小さすぎると、引張強さを350MPa以上に調整することが難しくなる。rが大きすぎると、圧延材のエッジが割れることがある。 In the final cold rolling, the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. The degree of work of the final cold rolling is preferably 25 to 99%. Here, the working degree r (%) is given by r = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before rolling, t: plate thickness after rolling). If r is too small, it becomes difficult to adjust the tensile strength to 350 MPa or more. If r is too large, the edge of the rolled material may be broken.

(7)銅合金箔の使用例
(7−1)リチウムイオン二次電池
(電池の構成)
本発明に関わる負極板及び二次電池は、上記銅合金箔を負極集電体として用いることを特徴とするものであり、これ以外の構成については限定されず、一般に用いられている公知のものを用いることができる。
(7) Use example of copper alloy foil (7-1) Lithium ion secondary battery (Battery structure)
A negative electrode plate and a secondary battery according to the present invention are characterized by using the above copper alloy foil as a negative electrode current collector. Other configurations are not limited, and commonly used publicly known ones Can be used.

(負極)
負極は、負極集電体としての銅合金箔と、負極集電体の片面もしくは両面に形成される負極活物質より構成される。
負極活物質と結着剤とを溶剤に混練分散したペーストを、銅合金箔の片面もしくは両面に塗布して負極板材とし、必要に応じ加圧しながら、150〜300℃の温度で数時間から数十時間加熱し乾燥させた後、所定形状の負極板へ成型する。
負極活物質としては、リチウムの吸蔵放出が可能な炭素質物、金属、金属化合物(金属酸化物、金属硫化物、金属窒化物)、リチウム合金などが挙げられる。
前記炭素質物としては、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体などの黒鉛質材料もしくは炭素質材料;熱硬化性樹脂、等方性ピッチ、メソフェーズピッチ系炭素、メソフェーズピッチ系炭素繊維、メソフェーズ小球体などに500〜3000℃で熱処理を施すことにより得られる黒鉛質材料又は炭素質材料;等が挙げられる。
(Negative electrode)
A negative electrode is comprised from the copper alloy foil as a negative electrode collector, and the negative electrode active material formed in the single side | surface or both surfaces of a negative electrode collector.
A paste in which a negative electrode active material and a binder are kneaded and dispersed in a solvent is applied to one or both sides of a copper alloy foil to form a negative electrode plate material. After heating for 10 hours and drying, it is molded into a negative electrode plate having a predetermined shape.
Examples of the negative electrode active material include carbonaceous materials capable of occluding and releasing lithium, metals, metal compounds (metal oxides, metal sulfides, metal nitrides), lithium alloys, and the like.
Examples of the carbonaceous material include graphite materials, carbonaceous materials such as graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor phase carbonaceous material, and resin fired body; thermosetting resin, isotropic pitch, and mesophase pitch carbon. , Graphite materials or carbonaceous materials obtained by subjecting mesophase pitch carbon fibers, mesophase spherules, etc. to heat treatment at 500 to 3000 ° C.

前記金属としては、リチウム、アルミニウム、マグネシウム、すず、けい素等が挙げられる。
前記金属酸化物としては、すず酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物等が挙げられる。前記金属硫化物としては、すず硫化物、チタン硫化物等が挙げられる。前記金属窒化物としては、リチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等が挙げられる。
リチウム合金としては、リチウムアルミニウム合金、リチウムすず合金、リチウム鉛合金、リチウムケイ素合金等が挙げられる。
Examples of the metal include lithium, aluminum, magnesium, tin, and silicon.
Examples of the metal oxide include tin oxide, silicon oxide, lithium titanium oxide, niobium oxide, and tungsten oxide. Examples of the metal sulfide include tin sulfide and titanium sulfide. Examples of the metal nitride include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.
Examples of the lithium alloy include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.

負極活物質含有層には結着剤を含有させることができる。結着剤としては、例えば、有機溶剤系のポリフッ化ビニリデン(PVDF)、水分散系のスチレンブタジエンゴム(SBR)等を用いることができる。SBRには、増粘剤として、例えばカルボキシメチルセルロース(CMC)を併用することができる。SBRとCMCの混合物を使用することによって、負極活物質と集電体との密着性をより高くすることができる。
負極活物質含有層には、導電剤を含有させることができる。導電剤としては、アセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等が挙げられる。
The negative electrode active material-containing layer can contain a binder. As the binder, for example, organic solvent-based polyvinylidene fluoride (PVDF), water-dispersed styrene butadiene rubber (SBR), or the like can be used. SBR can be used in combination with, for example, carboxymethylcellulose (CMC) as a thickener. By using a mixture of SBR and CMC, the adhesion between the negative electrode active material and the current collector can be further increased.
The negative electrode active material-containing layer can contain a conductive agent. Examples of the conductive agent include acetylene black, graphite such as powdered expanded graphite, pulverized carbon fiber, pulverized graphitized carbon fiber, and the like.

(正極)
正極は、正極集電体と、前記正極集電体の片面もしくは両面に形成される正極活物質含有層より構成される。
正極集電体としては、アルミニウム板、アルミニウムメッシュ材等が挙げられる。
正極活物質としては、二酸化マンガン、二硫化モリブデン、LiCoO2、LiNiO2、LiMn24等のカルコゲン化合物が挙げられる。これらのカルコゲン化合物は、2種以上の混合物で用いても良い。
(Positive electrode)
The positive electrode includes a positive electrode current collector and a positive electrode active material-containing layer formed on one or both surfaces of the positive electrode current collector.
Examples of the positive electrode current collector include an aluminum plate and an aluminum mesh material.
Examples of the positive electrode active material include chalcogen compounds such as manganese dioxide, molybdenum disulfide, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . These chalcogen compounds may be used in a mixture of two or more.

正極活物質含有層には結着剤を含有させることができる。結着剤としては、フッ素系樹脂、ポリオレフィン樹脂、スチレン系樹脂、アクリル系樹脂のような熱可塑性エラストマー系樹脂、又はフッ素ゴムのようなゴム系樹脂を用いることができる。その一例として、ポリテトラフルオロエチレン(PTFE)が挙げられる。結着剤には、増粘剤としては、例えばCMCを併用することができる。
活物質含有層には、導電補助材としてアセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等をさらに含有することができる。
The positive electrode active material-containing layer can contain a binder. As the binder, a fluoroelastomer resin, a polyolefin resin, a styrene resin, a thermoplastic elastomer resin such as an acrylic resin, or a rubber resin such as fluororubber can be used. One example is polytetrafluoroethylene (PTFE). As the thickener, for example, CMC can be used in combination with the binder.
The active material-containing layer may further contain acetylene black, graphite such as powdered expanded graphite, carbon fiber pulverized material, graphitized carbon fiber pulverized material, and the like as a conductive auxiliary material.

(セパレータ)
正極と負極の間には、セパレータか、固体もしくはゲル状の電解質層を配置することができる。セパレータとしては、例えば20〜30μmの厚さを有するポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等を用いることができる。
(Separator)
A separator or a solid or gel electrolyte layer can be disposed between the positive electrode and the negative electrode. As the separator, for example, a polyethylene porous film or a polypropylene porous film having a thickness of 20 to 30 μm can be used.

(非水電解質)
非水電解質には、液状、ゲル状もしくは固体状の形態を有するものを使用することができる。また、非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質とを含むことが望ましい。
非水溶媒としては、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、プロピオン酸メチル等が挙げられる。使用する非水溶媒の種類は、1種類もしくは2種類以上にすることが可能である。
電解質としては、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化硼酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)等が挙げられる。電解質は、単独でも混合物の形態でも使用することができる。
(Nonaqueous electrolyte)
As the non-aqueous electrolyte, those having a liquid, gel or solid form can be used. The non-aqueous electrolyte preferably includes a non-aqueous solvent and an electrolyte that is dissolved in the non-aqueous solvent.
Examples of the non-aqueous solvent include ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, γ-butyrolactone, and methyl propionate. The kind of nonaqueous solvent to be used can be one kind or two or more kinds.
Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and the like. The electrolyte can be used alone or in the form of a mixture.

(7−2)FCCL
(FCCLの構成)
本発明に関わるFCCLは、上記銅合金箔を導電体として用いることを特徴とするものであり、これ以外の構成については限定されず、一般に用いられている公知のものを用いることができる。
(7-2) FCCL
(Configuration of FCCL)
The FCCL according to the present invention is characterized in that the copper alloy foil is used as a conductor, and other configurations are not limited, and publicly known ones that are generally used can be used.

(銅合金箔の粗化処理)
最終冷間圧延後の銅合金箔には、投錨効果による樹脂層との密着性改善等を目的とし、表面の粗化処理が行われる。粗化処理の方法としては、ブラスト処理、機械研磨、電解研磨、化学研磨及び電着粒のめっき等の方法が知られており、これらの中でも特に電着粒のめっき(粗化めっき)が多用されている。粗化めっきは、銅箔表面に樹枝状又は小球状の銅などの金属を多数電着せしめて微細な凹凸を形成するものである。
(Roughening of copper alloy foil)
The copper alloy foil after the final cold rolling is subjected to a surface roughening treatment for the purpose of improving the adhesion with the resin layer by the anchoring effect. As a method of roughening treatment, methods such as blasting, mechanical polishing, electrolytic polishing, chemical polishing, and plating of electrodeposited grains are known, and among these, plating of electrodeposited grains (roughening plating) is particularly frequently used. Has been. Roughening plating is to form fine irregularities by electrodepositing many metals such as dendritic or small spherical copper on the surface of copper foil.

(樹脂層の形成)
ポリイミド系樹脂層の片面又は両面に銅合金箔を積層することで、FCCLを製造する。積層方法により三層FCCL、二層FCCL等の種類がある。
三層FCCLではエポキシ等の熱硬化性樹脂からなる接着剤を用いて、銅箔とポリイミド樹脂フィルムを貼り合わせる。この接着剤を硬化させるために、例えば130〜170℃の温度で0.5〜50時間程度の加熱処理を行う。
(Formation of resin layer)
FCCL is manufactured by laminating copper alloy foil on one or both sides of the polyimide resin layer. There are types such as three-layer FCCL and two-layer FCCL depending on the lamination method.
In the three-layer FCCL, a copper foil and a polyimide resin film are bonded together using an adhesive made of a thermosetting resin such as epoxy. In order to cure the adhesive, for example, heat treatment is performed at a temperature of 130 to 170 ° C. for about 0.5 to 50 hours.

二層FCCLの製造方法の一つであるキャスティング法では、ポリイミド樹脂の前駆体であるポリアミック酸を含むワニスを、銅箔上に塗布して加熱硬化させ、銅箔上にポリイミド被膜を形成する。この加熱硬化処理では、300〜450℃程度の温度で5〜40分程度加熱する。
両面に銅合金箔を積層する場合は、片面銅張積層板を形成後、銅箔層を熱プレスにより圧着する方法、2枚の銅箔層間にポリイミドフィルムを挟み、熱プレスにより圧着する方法等がある。
In a casting method, which is one of the methods for producing a two-layer FCCL, a varnish containing polyamic acid, which is a precursor of a polyimide resin, is applied on a copper foil and cured by heating to form a polyimide film on the copper foil. In this heat curing treatment, heating is performed at a temperature of about 300 to 450 ° C. for about 5 to 40 minutes.
When laminating copper alloy foils on both sides, after forming a single-sided copper clad laminate, a method of crimping the copper foil layer by hot pressing, a method of sandwiching a polyimide film between two copper foil layers, and crimping by hot pressing, etc. There is.

ポリイミド系樹脂層には任意の公知材料を使用すれば良く特に制限はないが、二層FCCLの場合、一般的には、公知のジアミンと酸無水物とを溶媒の存在下で反応させて得られるポリイミド前駆体樹脂(ポリアミック酸)を熱処理することによって形成することができる。ポリイミド系樹脂層は、単層のみからなるものでも、複数層から形成されるものでもよい。複数層のポリイミド樹脂層を形成する場合、異なる構成成分からなるポリイミド系樹脂層の上に他のポリイミド樹脂を順次塗布して形成することができる。ポリイミド樹脂層が3層以上からなる場合、同一の構成のポリイミド樹脂を2回以上使用してもよい。   Any known material may be used for the polyimide resin layer without any particular limitation. However, in the case of a two-layer FCCL, it is generally obtained by reacting a known diamine with an acid anhydride in the presence of a solvent. The polyimide precursor resin (polyamic acid) to be formed can be formed by heat treatment. The polyimide resin layer may be composed of only a single layer or may be formed of a plurality of layers. In the case of forming a plurality of polyimide resin layers, it can be formed by sequentially applying other polyimide resins on a polyimide resin layer made of different components. When the polyimide resin layer is composed of three or more layers, the polyimide resin having the same configuration may be used twice or more.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを950℃で3時間加熱し、熱間圧延により厚み15mmの板にした。熱間圧延後の板表面の酸化スケールを研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。   After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 950 ° C. for 3 hours and formed into a plate having a thickness of 15 mm by hot rolling. After grinding and removing the oxide scale on the surface of the plate after hot rolling, annealing and cold rolling were repeated and finished to a predetermined product thickness by final cold rolling.

熱間圧延では、1パスあたりの加工度の最大値(Rmax)および平均値(Rave)を種々変化させた。   In hot rolling, the maximum value (Rmax) and average value (Rave) of the degree of processing per pass were variously changed.

最終再結晶焼鈍(最終冷間圧延直前の焼鈍)は連続焼鈍ラインを用いて行った。炉温を700℃とし、焼鈍後の結晶粒径が10〜20μmになるように、材料の通板速度(炉内の保持時間)を調整した。
最終冷間圧延における加工度(r)を変化させるために、最終再結晶焼鈍を施す板厚を予め調整した。
The final recrystallization annealing (annealing immediately before the final cold rolling) was performed using a continuous annealing line. The temperature of the furnace was set to 700 ° C., and the material passing speed (retention time in the furnace) was adjusted so that the crystal grain size after annealing was 10 to 20 μm.
In order to change the degree of processing (r) in the final cold rolling, the thickness of the plate to be subjected to final recrystallization annealing was adjusted in advance.

最終冷間圧延後の銅合金箔につき、次の調査を行った。
(成分)
最終冷間圧延後の箔の合金元素濃度をICP−質量分析法で分析した。
The following investigation was conducted on the copper alloy foil after the final cold rolling.
(component)
The alloy element concentration of the foil after the final cold rolling was analyzed by ICP-mass spectrometry.

(引張強さ、耐熱性)
最終冷間圧延上がりの箔に対しIPC(Institute for Interconnecting and Packaging Electronics Circuits)規格、IPC−TM−650;Method 2.4.19に準じて引張強さを求めた。試験片は、幅12.7mm、長さ150mmとし、試験片の長さ方向が圧延方向と平行になるように採取した。引張り速度は50mm/minとした。また、300℃で30分間加熱した後の試料に対しても、同様に引張強さを求めた。
(Tensile strength, heat resistance)
The tensile strength was calculated | required according to IPC (Institute for Interconnecting and Packaging Electronics Circuits) specification, IPC-TM-650; Method 2.4.19 with respect to the foil after final cold rolling. The test piece was 12.7 mm in width and 150 mm in length, and was collected so that the length direction of the test piece was parallel to the rolling direction. The pulling speed was 50 mm / min. Moreover, the tensile strength was similarly calculated | required also about the sample after heating for 30 minutes at 300 degreeC.

(導電率)
最終冷間圧延上がりの試料に対し、引張り試験用の試験片を用い、四端子法により20℃での導電率を求めた。
(圧延面の結晶方位)
最終冷間圧延後の箔の表面に対し、厚み方向に(hkl)面のX線回折積分強度(I(hkl))を測定した。また、銅粉末(関東化学株式会社製、銅(粉末),2N5、>99.5%、325mesh)に対しても、(hkl)面のX線回折積分強度(I0(hkl))を測定した。X線回折装置には(株)リガク製RINT2500を使用し、Cu管球にて、管電圧25kV、管電流20mAで測定を行った。測定面((hkl))は(111)、(220)および(100)の三面とし、次式によりA値を算出した。
A=2X(111)+X(220)−X(200)
(hkl)=I(hkl)/I0(hkl)
なお、銅合金箔が薄く、X線が試料を透過する恐れがあるときは、複数枚の試料を重ねて測定を行った。
(conductivity)
Using the test piece for the tensile test, the conductivity at 20 ° C. was obtained by the four-terminal method for the final cold rolled sample.
(Crystal orientation of rolling surface)
The X-ray diffraction integrated intensity (I (hkl) ) of the (hkl) plane was measured in the thickness direction with respect to the surface of the foil after the final cold rolling. Also, X-ray diffraction integrated intensity (I 0 (hkl) ) of (hkl) plane was measured for copper powder (manufactured by Kanto Chemical Co., Inc., copper (powder), 2N5,> 99.5%, 325 mesh). did. RINT 2500 manufactured by Rigaku Corporation was used as the X-ray diffractometer, and measurement was performed with a Cu tube bulb at a tube voltage of 25 kV and a tube current of 20 mA. The measurement surface ((hkl)) was defined as three surfaces (111), (220), and (100), and the A value was calculated by the following equation.
A = 2X (111) + X (220) -X (200)
X (hkl) = I (hkl) / I 0 (hkl)
In addition, when copper alloy foil was thin and there existed a possibility that a X-ray might permeate | transmit a sample, it measured by stacking several samples.

(クリープ特性)
最終冷間圧延後の箔から、幅15.5mm、長さ200mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取した。次に、長手方向にL0(=100mm)の間隔を空け、試験片の幅方向中央に二点の打痕を刻印した。その後、図1に示すように、試験片の一端を支持して試験片を垂下し、他端に重りを取り付けた。重りの質量は、試験片に負荷される引張応力が100MPaになるよう調整した。この状態で、30℃にて100時間放置した。重りを取り外して打痕間隔(L)を測定し、(L−L0)/L0×100の式で、クリープ伸び(%)を算出した。
(Creep characteristics)
A strip-shaped test piece having a width of 15.5 mm and a length of 200 mm was taken from the foil after the final cold rolling so that the longitudinal direction of the test piece was parallel to the rolling direction. Next, an interval of L 0 (= 100 mm) was provided in the longitudinal direction, and two dents were imprinted in the center in the width direction of the test piece. Thereafter, as shown in FIG. 1, one end of the test piece was supported and the test piece was suspended, and a weight was attached to the other end. The mass of the weight was adjusted so that the tensile stress applied to the test piece was 100 MPa. In this state, it was left at 30 ° C. for 100 hours. The weight was removed, the dent spacing (L) was measured, and the creep elongation (%) was calculated by the formula of (L−L 0 ) / L 0 × 100.

(FPCの屈曲寿命)
次の手順で屈曲試験用のFPC試料を作製した。
(A)最終圧延後の箔の片面に粗化めっきを施した。粗化めっきは、銅−コバルト−ニッケルめっきとし、銅を17mg/dm2、コバルトを2000μg/dm2、ニッケルを500μg/dm2付着させた。
(B)FCCLの製造ラインにおいて、前記銅合金箔の粗化めっきを施した面上に、市販のポリイミド前駆体ワニス(宇部興産株式会社製、商品名U−ワニス−A)を塗布、乾燥し、銅箔層上にポリイミド前駆体樹脂層が形成された積層体を得た。この積層体をオーブンに入れて、300℃で30分間の熱処理を施し、ポリイミド樹脂厚み25μmの片面FCCLを得た。
(C)FCCLから、幅8mm、長さ150mmの試験片を、その長手方向が圧延方向と平行になるように採取した。
(D)試験片に0.2mm幅のラインアンドスペース回路を形成し、この回路上にプレスによりカバー材を積層し、屈曲試験用のFPCを得た。カバー材にはニッカン工業(株)製のCISV−1215を用いた。
(FPC flex life)
An FPC sample for a bending test was prepared by the following procedure.
(A) Roughening plating was performed on one side of the foil after final rolling. Roughening plating, copper - cobalt - and nickel plating, copper 17 mg / dm 2, cobalt 2000 [mu] g / dm 2, nickel was 500 [mu] g / dm 2 deposited.
(B) In the FCCL production line, a commercially available polyimide precursor varnish (trade name U-Varnish-A, manufactured by Ube Industries, Ltd.) is applied on the surface of the copper alloy foil subjected to the rough plating and dried. The laminated body by which the polyimide precursor resin layer was formed on the copper foil layer was obtained. This laminate was put in an oven and heat-treated at 300 ° C. for 30 minutes to obtain a single-sided FCCL having a polyimide resin thickness of 25 μm.
(C) A test piece having a width of 8 mm and a length of 150 mm was collected from FCCL so that the longitudinal direction thereof was parallel to the rolling direction.
(D) A 0.2 mm width line and space circuit was formed on the test piece, and a cover material was laminated on the circuit by pressing to obtain an FPC for a bending test. CISV-1215 manufactured by Nikkan Kogyo Co., Ltd. was used as the cover material.

屈曲試験では、信越エンジニアリング(株)製IPC屈曲試験機を用い、曲率半径1.25mm、振動ストローク20mm、振動速度1500回/分の条件で、FPC試料に屈曲変形を繰り返し与え、試料の電気抵抗値が5%上昇するまでの回数を求めた。   In the bending test, using an IPC bending tester manufactured by Shin-Etsu Engineering Co., Ltd., bending deformation was repeatedly applied to the FPC sample under the conditions of a radius of curvature of 1.25 mm, a vibration stroke of 20 mm, and a vibration speed of 1500 times / min. The number of times until the value increased by 5% was obtained.

銅合金箔が薄くなると、屈曲の際に銅箔表面に生じる歪が小さくなるため、屈曲寿命が増加する。そこで、箔厚に応じ、屈曲寿命を表1のように◎○×の三水準で評価した。   When the copper alloy foil is thin, the bending life is increased because the strain generated on the copper foil surface during bending is reduced. Therefore, according to the foil thickness, the bending life was evaluated at three levels of ○ ×× as shown in Table 1.

Figure 2015059266
Figure 2015059266

(リチウムイオン二次電池のサイクル寿命)
厚みが0.010mmの銅合金箔につき、図2に示す円筒型のリチウムイオン二次電池を以下の手順で作製し、サイクル寿命を測定した。
(a)負極活物質として鱗片状黒鉛粉末50重量部、結着剤としてSBR5重量部、そして増粘剤としてCMC1重量部に対して水99重量部に溶解した増粘剤水溶液23重量部を、混錬分散して負極用ペーストを得た。この負極用ペーストを圧延銅箔試料表面にドクターブレード方式で厚さ200μmに両面塗布し、300℃で30分間加熱し乾燥した。加圧して厚さを160μmに調整した後、せん断加工により成型し負極板6を得た。
(b)正極活物質としてLiCoO2粉末50重量部、導電剤としてアセチレンブラック1.5重量部、結着剤としてPTFE50重量%水性ディスパージョン7重量部、増粘剤としてCMC1重量%水溶液41.5重量部を、混練分散して正極用ペーストを得た。この正極用ペーストを、厚さ30μmのアルミニウム箔からなる集電体上にドクターブレード方式で厚さ約230μmに両面塗布して200℃で1時間加熱し乾燥した。加圧して厚さを180μmに調整した後、せん断加工により成型し正極板5を得た。
(c)正極板5と負極板6とを、厚さ20μmのポリプロピレン樹脂製の微多孔膜からなるセパレータ7を介して絶縁した状態で渦巻状に巻回した電極群を電池ケース8に収容した。
(d)負極板6から連接する負極リード9を、前記ケース8と下部絶縁板10を介して電気的に接続した。同様に正極板5から連接する正極リード3を、封口板1の内部端子に上部絶縁板4を介して電気的に接続した。これらの後、非水電解液を注液し、封口板1と電池ケース8とを絶縁ガスケット2を介してかしめ封口して、直径17mm、高さ50mmサイズで電池容量が780mAhの円筒型リチウムイオン二次電池を作製した。
(e)電解液は、エチレンカーボネート30体積%、メチルエチルカーボネート50体積%、プロピオン酸メチル20体積%の混合溶媒中に、電解質としてLiPF6を1.0モル溶かした電解液を所定量注液した。この電解液を正極活物質層及び負極活物質層内に含浸させた。
(Lithium ion secondary battery cycle life)
A cylindrical lithium ion secondary battery shown in FIG. 2 was produced by the following procedure for a copper alloy foil having a thickness of 0.010 mm, and the cycle life was measured.
(A) 50 parts by weight of scaly graphite powder as a negative electrode active material, 5 parts by weight of SBR as a binder, and 23 parts by weight of a thickener aqueous solution dissolved in 99 parts by weight of water with respect to 1 part by weight of CMC as a thickener, By kneading and dispersing, a negative electrode paste was obtained. This negative electrode paste was applied on both sides of the rolled copper foil sample surface to a thickness of 200 μm by a doctor blade method, heated at 300 ° C. for 30 minutes, and dried. After pressurizing to adjust the thickness to 160 μm, the negative electrode plate 6 was obtained by molding by shearing.
(B) LiCoO 2 powder 50 parts by weight as a positive electrode active material, acetylene black 1.5 parts by weight as a conductive agent, PTFE 50% by weight aqueous dispersion 7 parts by weight, CMC 1% by weight aqueous solution 41.5% as a thickener A weight part was kneaded and dispersed to obtain a positive electrode paste. This positive electrode paste was applied on both sides to a thickness of about 230 μm by a doctor blade method on a current collector made of an aluminum foil having a thickness of 30 μm, heated at 200 ° C. for 1 hour and dried. After pressurizing and adjusting the thickness to 180 μm, it was molded by shearing to obtain a positive electrode plate 5.
(C) A battery case 8 accommodates an electrode group in which the positive electrode plate 5 and the negative electrode plate 6 are spirally wound in a state where the positive electrode plate 5 and the negative electrode plate 6 are insulated through a separator 7 made of a polypropylene resin microporous film having a thickness of 20 μm. .
(D) The negative electrode lead 9 connected from the negative electrode plate 6 was electrically connected through the case 8 and the lower insulating plate 10. Similarly, the positive electrode lead 3 connected from the positive electrode plate 5 was electrically connected to the internal terminal of the sealing plate 1 via the upper insulating plate 4. After these, a non-aqueous electrolyte is injected, and the sealing plate 1 and the battery case 8 are caulked and sealed through the insulating gasket 2 to form a cylindrical lithium ion having a diameter of 17 mm, a height of 50 mm and a battery capacity of 780 mAh. A secondary battery was produced.
(E) The electrolyte is a predetermined amount of an electrolyte obtained by dissolving 1.0 mol of LiPF 6 as an electrolyte in a mixed solvent of 30% by volume of ethylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of methyl propionate. did. This electrolytic solution was impregnated in the positive electrode active material layer and the negative electrode active material layer.

作製した電池を用い、充放電サイクル特性を評価した。20℃の環境下で充放電を行い、3サイクル目における放電容量を初期容量とし、初期容量に対して放電容量が80%に低下するまでサイクル数を計数し、これをサイクル寿命とした。充電条件:4.2Vで2時間の定電流−定電圧充電を行い、電池電圧が4.2Vに達するまでは550mA(0.7CmA)の定電流充電を行った後、さらに電流値が減衰して40mA(0.05CmA)になるまで充電した。放電条件:780mA(1CmA)の定電流で3.0Vの放電終止電圧まで放電した。サイクル寿命が600回以上のときを良好(○)、600回未満の時を不良(×)と評価した。   Charge / discharge cycle characteristics were evaluated using the produced batteries. Charging / discharging was performed in an environment of 20 ° C., the discharge capacity at the third cycle was taken as the initial capacity, the number of cycles was counted until the discharge capacity was reduced to 80% of the initial capacity, and this was taken as the cycle life. Charging conditions: Constant current-constant voltage charging at 4.2V for 2 hours, and after 550mA (0.7CmA) constant current charging until the battery voltage reaches 4.2V, the current value further attenuates The battery was charged to 40 mA (0.05 CmA). Discharge conditions: Discharge to a discharge end voltage of 3.0 V with a constant current of 780 mA (1 CmA). When the cycle life was 600 times or more, it was evaluated as good (◯), and when it was less than 600 times, it was evaluated as bad (x).

表2に評価結果を示す。表3には熱間圧延の各パスにおける材料の仕上げ厚みおよび1パスあたりの加工度として、表2の発明例1、発明例4、比較例1および比較例5のものを例示した。   Table 2 shows the evaluation results. Table 3 shows examples of Invention Example 1, Invention Example 4, Comparative Example 1, and Comparative Example 5 in Table 2 as the finished thickness of the material in each pass of hot rolling and the degree of processing per pass.

Figure 2015059266
Figure 2015059266

Figure 2015059266
Figure 2015059266

発明例1〜27の銅合金箔では、Ag、Cr、Fe、In、Ni、P、Si、Sn、Te、Ti、ZnおよびZrの中の一種以上を合計で0.01〜0.50質量%添加し、熱間圧延においてRmaxを25%以下、Raveを20%以下とし、最終冷間圧延において加工度を25〜99%とした。その結果、A値が0.5以上となり、クリープ伸びが0.1%以下となった。また、80%IACS以上の導電率が得られ、300℃で30分間加熱後に300MPa以上の引張り強さが得られた。
クリープ伸びが0.05%以下の発明例の屈曲特性は◎の評価となり、クリープ伸びが0.06〜0.1%の発明例の屈曲特性は○の評価となった。
また、発明例の電池特性は○の評価となった。
In the copper alloy foils of Invention Examples 1 to 27, a total of 0.01 to 0.50 mass of one or more of Ag, Cr, Fe, In, Ni, P, Si, Sn, Te, Ti, Zn, and Zr %, Rmax was 25% or less and Rave was 20% or less in the hot rolling, and the workability was 25 to 99% in the final cold rolling. As a result, the A value was 0.5 or more, and the creep elongation was 0.1% or less. Further, an electrical conductivity of 80% IACS or higher was obtained, and a tensile strength of 300 MPa or higher was obtained after heating at 300 ° C. for 30 minutes.
The flexural characteristics of the inventive examples having a creep elongation of 0.05% or less were evaluated as “◎”, and the flexural characteristics of the inventive examples having a creep elongation of 0.06 to 0.1% were evaluated as “good”.
Further, the battery characteristics of the inventive examples were evaluated as “good”.

比較例1〜6では、RmaxまたはRave、あるいはその両方が本発明の規定から外れたため、A値が0.5未満になり、クリープ伸びは0.1%を超えた。その結果、屈曲特性、電池特性とも、×の評価となった。   In Comparative Examples 1 to 6, since Rmax and / or Rave deviated from the definition of the present invention, the A value was less than 0.5, and the creep elongation exceeded 0.1%. As a result, both the bending characteristics and the battery characteristics were evaluated as x.

比較例7では、Ag、Cr、Fe、In、Ni、P、Si、Sn、Te、Ti、ZnおよびZrの中の一種以上の合計が0.01質量%未満であったため、300℃で30分間加熱の引張強さが300MPa未満となった。このように比較例7は耐熱性に劣るため、屈曲試験用のFPCの作製過程において軟化し、クリープ伸びが0.1%以下であったにもかかわらず、屈曲特性は×の評価となった。   In Comparative Example 7, the total of one or more of Ag, Cr, Fe, In, Ni, P, Si, Sn, Te, Ti, Zn, and Zr was less than 0.01% by mass. The tensile strength after heating for less than 300 MPa. Thus, since Comparative Example 7 was inferior in heat resistance, it was softened in the manufacturing process of the FPC for the bending test, and the bending property was evaluated as x even though the creep elongation was 0.1% or less. .

1:封口板
2:絶縁ガスケット
3:正極リード
4:上部絶縁板
5:正極板
6:負極板
7:セパレータ
8:電池ケース
9:負極リード
10:下部絶縁板
1: Sealing plate 2: Insulating gasket 3: Positive electrode lead 4: Upper insulating plate 5: Positive electrode plate 6: Negative electrode plate 7: Separator 8: Battery case 9: Negative electrode lead 10: Lower insulating plate

Claims (13)

Ag、Cr、Fe、In、Ni、P、Si、Sn、Te、Ti、ZnおよびZrの中の一種以上を合計で0.01〜0.50質量%含有し残部がCu及び不純物からなり、80%IACS以上の導電率を有し、300℃で30分間加熱後に300MPa以上の引張り強さを維持し、次式で与えられるA値が0.5以上であることを特徴とする銅合金箔。
A=2X(111)+X(220)−X(200)
(hkl)=I(hkl)/I0(hkl)
ただし、I(hkl)およびI0(hkl)はそれぞれX線回折法を用い圧延面および銅粉に対し求めた(hkl)面の回折積分強度である。
Ag-, Cr-, Fe-, In-, Ni-, P-, Si-, Sn-, Te-, Ti-, Zn- and Zr-containing a total of 0.01 to 0.50% by mass, with the balance consisting of Cu and impurities, Copper alloy foil having a conductivity of 80% IACS or more, maintaining a tensile strength of 300 MPa or more after heating at 300 ° C. for 30 minutes, and an A value given by the following formula of 0.5 or more .
A = 2X (111) + X (220) -X (200)
X (hkl) = I (hkl) / I 0 (hkl)
Here, I (hkl) and I 0 (hkl) are diffraction integrated intensities of the (hkl) plane obtained for the rolled surface and the copper powder using the X-ray diffraction method, respectively.
Ag、Cr、Fe、In、Ni、P、Si、Sn、Te、Ti、ZnおよびZrの中の一種以上を合計で0.01〜0.50質量%含有し残部がCu及び不純物からなり、80%IACS以上の導電率を有し、300℃で30分間加熱後に300MPa以上の引張り強さを維持し、30℃にて100MPaの引張応力を付加し100時間保持したとき伸びが0.1%以下であることを特徴とする銅合金箔。   Ag-, Cr-, Fe-, In-, Ni-, P-, Si-, Sn-, Te-, Ti-, Zn- and Zr-containing a total of 0.01 to 0.50% by mass, with the balance consisting of Cu and impurities, It has a conductivity of 80% IACS or more, maintains a tensile strength of 300 MPa or more after heating at 300 ° C. for 30 minutes, and when applied at 100 ° C. for 30 hours at 30 ° C., the elongation is 0.1%. A copper alloy foil characterized by: Zrを0.01〜0.20質量%含有し残部がCu及び不純物からなることを特徴とする、請求項1または2の銅合金箔。   The copper alloy foil according to claim 1 or 2, wherein Zr is contained in an amount of 0.01 to 0.20 mass%, and the balance is made of Cu and impurities. Snを0.01〜0.20質量%含有し残部がCu及び不純物からなることを特徴とする、請求項1または2の銅合金箔。   The copper alloy foil according to claim 1 or 2, wherein Sn is contained in an amount of 0.01 to 0.20 mass%, and the balance is made of Cu and impurities. Agを0.05〜0.50質量%含有し残部がCu及び不純物からなることを特徴とする、請求項1または2の銅合金箔。   The copper alloy foil according to claim 1 or 2, wherein 0.05 to 0.50 mass% of Ag is contained, and the balance is made of Cu and impurities. Feを0.05〜0.50質量%、Pを0.005〜0.10質量%含有し残部がCu及び不純物からなることを特徴とする、請求項1または2の銅合金箔。   The copper alloy foil according to claim 1 or 2, wherein Fe is contained in an amount of 0.05 to 0.50 mass%, P is contained in an amount of 0.005 to 0.10 mass%, and the balance is Cu and impurities. 厚みが0.003〜0.05mmであることを特徴とする請求項1〜6の銅合金箔。   Thickness is 0.003-0.05mm, Copper alloy foil of Claims 1-6 characterized by the above-mentioned. 二次電池の負極集電体に用いられる請求項1〜7の銅合金箔。   The copper alloy foil according to claim 1, which is used for a negative electrode current collector of a secondary battery. 請求項8に記載の銅合金箔より構成される負極集電体を用いた二次電池。   The secondary battery using the negative electrode collector comprised from the copper alloy foil of Claim 8. フレキシブル銅張積層板に用いられることを特徴とする請求項1〜6の銅合金箔。   It is used for a flexible copper clad laminated board, The copper alloy foil of Claims 1-6 characterized by the above-mentioned. 請求項10に記載の銅合金箔より構成されるフレキシブル銅張積層板。   The flexible copper clad laminated board comprised from the copper alloy foil of Claim 10. 電磁波シールド体に用いられることを特徴とする請求項1〜6の銅合金箔。   It is used for an electromagnetic wave shield body, The copper alloy foil of Claims 1-6 characterized by the above-mentioned. 請求項12に記載の銅合金箔より構成される電磁波シールド体。   The electromagnetic wave shielding body comprised from the copper alloy foil of Claim 12.
JP2013195812A 2013-09-20 2013-09-20 Copper alloy foil Active JP6041779B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013195812A JP6041779B2 (en) 2013-09-20 2013-09-20 Copper alloy foil
TW103131679A TWI502085B (en) 2013-09-20 2014-09-15 Copper alloy foil
KR1020167010046A KR101780908B1 (en) 2013-09-20 2014-09-19 Copper alloy foil
CN201711101721.1A CN107828984A (en) 2013-09-20 2014-09-19 Copper alloy foil
CN201480051572.0A CN105637106B (en) 2013-09-20 2014-09-19 Copper alloy foil
PCT/JP2014/074948 WO2015041348A1 (en) 2013-09-20 2014-09-19 Copper alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013195812A JP6041779B2 (en) 2013-09-20 2013-09-20 Copper alloy foil

Publications (2)

Publication Number Publication Date
JP2015059266A true JP2015059266A (en) 2015-03-30
JP6041779B2 JP6041779B2 (en) 2016-12-14

Family

ID=52688995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195812A Active JP6041779B2 (en) 2013-09-20 2013-09-20 Copper alloy foil

Country Status (5)

Country Link
JP (1) JP6041779B2 (en)
KR (1) KR101780908B1 (en)
CN (2) CN107828984A (en)
TW (1) TWI502085B (en)
WO (1) WO2015041348A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191139A (en) * 2015-03-30 2016-11-10 Jx金属株式会社 Rolled copper foil for secondary battery, and lithium ion secondary battery and lithium ion capacitor using the same
CN108517440A (en) * 2018-04-11 2018-09-11 佛山市麦欧金属有限公司 A kind of environment-friendly and high-performance gold imitating copper alloy material and preparation method thereof
CN111304486A (en) * 2020-03-20 2020-06-19 中色奥博特铜铝业有限公司 Copper-iron-phosphorus-zinc-tin alloy foil and production process thereof
US20230411594A1 (en) * 2021-10-12 2023-12-21 Lg Energy Solution, Ltd. Anode for secondary battery and jelly-roll type electrode assembly including anode

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776471B1 (en) * 2015-03-30 2017-09-07 제이엑스금속주식회사 Rolled copper foil for secondary battery, and lithium ion secondary battery and lithium ion capacitor using the same
JP6703878B2 (en) * 2016-03-31 2020-06-03 Jx金属株式会社 Titanium copper foil and its manufacturing method
CN106101960A (en) * 2016-07-21 2016-11-09 瑞声科技(新加坡)有限公司 Copper alloy, the flexible PCB applying described copper alloy and minitype acoustic generator
JP2018028120A (en) * 2016-08-16 2018-02-22 古河電気工業株式会社 Copper alloy foil
CN107723499A (en) * 2017-09-20 2018-02-23 宁波兴敖达金属新材料有限公司 The tellurium silver chromium-bronze material of lead-free free-cutting high-strength high-plasticity high conductivity
JP2019175802A (en) * 2018-03-29 2019-10-10 Jx金属株式会社 Rolled copper foil for lithium ion battery current collector and lithium ion battery
CN109957670B (en) * 2019-02-28 2020-07-10 江西广信新材料股份有限公司 Copper-silver-tellurium alloy for commutator and preparation method thereof
CN109735739B (en) * 2019-03-01 2020-08-07 东莞市时运佳实业投资有限公司 Material for shielding sheet, preparation method of material and shielding sheet
CN109825739A (en) * 2019-03-29 2019-05-31 安徽众源新材料股份有限公司 A kind of fuse cap copper alloy and production technology
CN110252972B (en) * 2019-07-06 2021-11-30 湖北精益高精铜板带有限公司 High-strength high-conductivity microalloy copper foil and processing method thereof
CN112481518A (en) * 2019-12-26 2021-03-12 浙江杭机新型合金材料有限公司 High-strength high-conductivity copper-titanium alloy material and preparation method thereof
CN115064656A (en) * 2020-10-15 2022-09-16 宁德新能源科技有限公司 Electrochemical device and electronic device
CN113234955A (en) * 2021-04-30 2021-08-10 浙江利丰电器股份有限公司 Silver-copper alloy material for manufacturing commutator copper sheet
CN113502408B (en) * 2021-06-17 2022-06-07 四川科派新材料有限公司 High-conductivity copper alloy containing tellurium and nickel and preparation method thereof
JP7042961B1 (en) * 2021-11-17 2022-03-28 Jx金属株式会社 Rolled copper foil for secondary batteries, and secondary battery negative electrodes and secondary batteries using it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328159A (en) * 1999-05-19 2000-11-28 Kobe Steel Ltd Copper alloy foil
JP2004256879A (en) * 2003-02-27 2004-09-16 Nikko Metal Manufacturing Co Ltd Rolled copper foil having high elongation
JP2007107037A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper-alloy foil for circuit
JP2012195192A (en) * 2011-03-17 2012-10-11 Hitachi Cable Ltd Rolled copper foil for lithium ion secondary battery collector
JP2013170277A (en) * 2012-02-17 2013-09-02 Hitachi Cable Ltd Rolled copper foil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4381574B2 (en) * 2000-08-17 2009-12-09 日鉱金属株式会社 Copper alloy foil for laminates
JP2013256682A (en) * 2012-06-11 2013-12-26 Sh Copper Products Co Ltd Copper alloy foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, method of manufacturing copper alloy foil, and method of manufacturing negative electrode for lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328159A (en) * 1999-05-19 2000-11-28 Kobe Steel Ltd Copper alloy foil
JP2004256879A (en) * 2003-02-27 2004-09-16 Nikko Metal Manufacturing Co Ltd Rolled copper foil having high elongation
JP2007107037A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper-alloy foil for circuit
JP2012195192A (en) * 2011-03-17 2012-10-11 Hitachi Cable Ltd Rolled copper foil for lithium ion secondary battery collector
JP2013170277A (en) * 2012-02-17 2013-09-02 Hitachi Cable Ltd Rolled copper foil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191139A (en) * 2015-03-30 2016-11-10 Jx金属株式会社 Rolled copper foil for secondary battery, and lithium ion secondary battery and lithium ion capacitor using the same
CN108517440A (en) * 2018-04-11 2018-09-11 佛山市麦欧金属有限公司 A kind of environment-friendly and high-performance gold imitating copper alloy material and preparation method thereof
CN111304486A (en) * 2020-03-20 2020-06-19 中色奥博特铜铝业有限公司 Copper-iron-phosphorus-zinc-tin alloy foil and production process thereof
CN111304486B (en) * 2020-03-20 2021-01-29 中色奥博特铜铝业有限公司 Copper-iron-phosphorus-zinc-tin alloy foil and production process thereof
US20230411594A1 (en) * 2021-10-12 2023-12-21 Lg Energy Solution, Ltd. Anode for secondary battery and jelly-roll type electrode assembly including anode

Also Published As

Publication number Publication date
TW201518518A (en) 2015-05-16
CN107828984A (en) 2018-03-23
JP6041779B2 (en) 2016-12-14
CN105637106A (en) 2016-06-01
TWI502085B (en) 2015-10-01
KR101780908B1 (en) 2017-09-21
CN105637106B (en) 2018-11-27
KR20160058156A (en) 2016-05-24
WO2015041348A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP6041779B2 (en) Copper alloy foil
JP5718476B2 (en) Electrolytic copper foil for lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP5722813B2 (en) Electrode copper foil and negative electrode current collector for secondary battery
US10158119B2 (en) Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same
JP5490673B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
US10122021B2 (en) Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same
KR20140041804A (en) Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
US11108052B2 (en) Rolled copper foil for negative electrode current collector of secondary battery, negative electrode of secondary battery and secondary battery using the rolled copper, and method for manufacturing rolled copper foil for negative electrode current collector of secondary battery
JP5329372B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
KR101564139B1 (en) Electrolytic copper foil, and secondary battery collector and secondary battery using electrolytic copper foil
JP2011070830A (en) Rolled copper foil excellent in shearing processability and electrode collector using this, negative electrode plate, and secondary battery
JP5345974B2 (en) Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
CN103857818A (en) Steel foil and method for producing same
JP5416077B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
KR20130014331A (en) Rolled copper foil and the method to make it, negative electrode for lithium ion secondary battery using it
JP2014009364A (en) Electrolytic copper foil, negative pole electrode for lithium ion secondary battery and lithium ion secondary battery
JP5143208B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
KR20140039951A (en) Rolled copper foil for lithium ion secondary battery current collector
JP6058915B2 (en) Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5512332B2 (en) Method for designing negative electrode for secondary battery, method for producing negative electrode for secondary battery, negative electrode for secondary battery, and negative electrode copper foil for secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161108

R150 Certificate of patent or registration of utility model

Ref document number: 6041779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250