JP2015058496A - Method of manufacturing corrosion-resistant member, and boiler - Google Patents

Method of manufacturing corrosion-resistant member, and boiler Download PDF

Info

Publication number
JP2015058496A
JP2015058496A JP2013192932A JP2013192932A JP2015058496A JP 2015058496 A JP2015058496 A JP 2015058496A JP 2013192932 A JP2013192932 A JP 2013192932A JP 2013192932 A JP2013192932 A JP 2013192932A JP 2015058496 A JP2015058496 A JP 2015058496A
Authority
JP
Japan
Prior art keywords
corrosion
resistant member
based alloy
boiler
boiler tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013192932A
Other languages
Japanese (ja)
Inventor
育生 下村
Ikuo Shimomura
育生 下村
裕次 亀井
Yuji Kamei
裕次 亀井
竹田 航哉
Kouya Takeda
航哉 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2013192932A priority Critical patent/JP2015058496A/en
Publication of JP2015058496A publication Critical patent/JP2015058496A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method that enables manufacture of a corrosion-resistant member having a surface made of an Ni-based alloy hardly causing local corrosion.SOLUTION: A corrosion-resistant member manufactured by a manufacturing method of the present invention is used in a state in which a surface made of an Ni-based alloy is exposed in a corrosive environment. In this manufacturing method, the corrosion-resistant member 3 having a plastically-worked layer of the Ni-based alloy on a surface is manufactured by applying surface treatment to material having at least a surface made of the Ni-based alloy. For example, the corrosion-resistant member is used as a boiler tube.

Description

本発明は、耐食性に優れた耐食部材の製造方法、およびこの耐食部材をボイラチューブとして用いたボイラに関する。   The present invention relates to a method for producing a corrosion-resistant member having excellent corrosion resistance, and a boiler using the corrosion-resistant member as a boiler tube.

ステンレス鋼は、表面に形成される不動態被膜により、優れた耐食性を有する。このようなステンレス鋼は、ショットピーニングにより応力腐食割れを抑制することができるが、環境によっては耐全面腐食性が低下することがある。あるいは、特許文献1に記載されているように、ショットピーニングを特定の条件で行うことにより、特定の化学組成のステンレス鋼の耐孔食性および耐全面腐食性を向上させることができる場合もある。   Stainless steel has excellent corrosion resistance due to the passive film formed on the surface. Such stainless steel can suppress stress corrosion cracking by shot peening, but the overall corrosion resistance may decrease depending on the environment. Alternatively, as described in Patent Document 1, by performing shot peening under specific conditions, the pitting corrosion resistance and overall corrosion resistance of stainless steel having a specific chemical composition may be improved in some cases.

ところで、例えばごみ焼却炉に併設されるボイラの中には、ごみ焼却炉から腐食性の強いガスが供給されるものもある。このような過酷な腐食環境下では、ステンレス鋼よりも耐食性に優れたNi基合金を用いることが望ましい。   By the way, for example, some boilers attached to the waste incinerator are supplied with highly corrosive gas from the waste incinerator. In such a severe corrosive environment, it is desirable to use a Ni-based alloy that has better corrosion resistance than stainless steel.

例えば、特許文献2には、Ni基合金からなる基材の表面上に、溶融塩腐食に強い材料を溶射してコーティング層を形成した耐食部材が開示されている。なお、特許文献2には、基材の表面がブラスト処理されていることが好ましいと記載されているが、その目的はコーティング層との密着性を向上させるためである。   For example, Patent Document 2 discloses a corrosion-resistant member in which a coating layer is formed by spraying a material resistant to molten salt corrosion on the surface of a base material made of a Ni-based alloy. In Patent Document 2, it is described that the surface of the substrate is preferably blasted, but the purpose is to improve the adhesion to the coating layer.

特開2001−198828号公報JP 2001-198828 A 特開2006−241514号公報JP 2006-241514 A

ところで、Ni基合金は耐全面腐食性に非常に優れているため、例えばボイラチューブをNi基合金のみで構成することも考えられる。しかしながら、本発明の発明者らがNi基合金を用いて腐食試験を行ったところ、Ni基合金ではステンレス鋼に比べて全体的な肉厚減少(全面腐食)量は低減したものの、局所的に深い窪み(局部腐食)が確認された。このような局部腐食が進行すると、ボイラチューブの補修や、ボイラチューブに穴が空いた場合は交換などが必要になる。   By the way, since Ni-base alloy is very excellent in general corrosion resistance, it is also conceivable that, for example, a boiler tube is composed only of a Ni-base alloy. However, when the inventors of the present invention conducted a corrosion test using a Ni-based alloy, the Ni-based alloy reduced the overall thickness reduction (total corrosion) compared to stainless steel, but locally. A deep depression (local corrosion) was confirmed. When such local corrosion progresses, it is necessary to repair the boiler tube or replace the boiler tube if a hole is formed.

そこで、本発明は、局部腐食が起き難いNi基合金からなる表面の耐食部材を製造することができる方法を提供することを目的とする。また、本発明は、その耐食部材をボイラチューブとして用いたボイラを提供する。   Then, an object of this invention is to provide the method which can manufacture the corrosion-resistant member of the surface which consists of Ni base alloy which a local corrosion does not occur easily. Moreover, this invention provides the boiler which used the corrosion-resistant member as a boiler tube.

前記課題を解決するために、本発明の発明者らは、鋭意研究の結果、Ni基合金において生じる局部腐食は耐全面腐食性が非常に優れていることに起因することを突き止めた。そして、全面腐食による肉厚減少に対しては元々の肉厚を厚くしておくことで対応可能であるため、耐全面腐食性を表面処理により意図的に低下させることによって局部腐食を抑制することを思い付いた。本発明は、このような観点からなされたものである。   In order to solve the above-mentioned problems, the inventors of the present invention, as a result of intensive studies, have found that the local corrosion that occurs in the Ni-based alloy is caused by the excellent overall corrosion resistance. And since it is possible to cope with the thickness reduction due to the overall corrosion by increasing the original thickness, it is possible to suppress the local corrosion by intentionally reducing the overall corrosion resistance by the surface treatment. I came up with. The present invention has been made from such a viewpoint.

すなわち、本発明の耐食部材の製造方法は、Ni基合金からなる表面が腐食環境下に露出する状態で使用される耐食部材の製造方法であって、少なくとも表面がNi基合金からなる素材に対して表面処理を行うことにより、表面にNi基合金の塑性加工層を有する耐食部材を製造する、ことを特徴とする。   That is, the method for producing a corrosion-resistant member of the present invention is a method for producing a corrosion-resistant member that is used in a state where the surface made of a Ni-based alloy is exposed in a corrosive environment, and at least the surface of the material made of a Ni-based alloy is used. By performing surface treatment, a corrosion-resistant member having a Ni-based alloy plastic working layer on the surface is manufactured.

例えば、前記表面処理はブラスト処理であってもよい。前記Ni基合金は、質量%で表示して、Niを40〜70%、Crを15〜25%、Feを1〜40%含んでもよい。   For example, the surface treatment may be a blast treatment. The Ni-based alloy may include 40 to 70% Ni, 15 to 25% Cr, and 1 to 40% Fe, expressed in mass%.

また、本発明のボイラは、腐食性ガスが流れるガス通路と、表面が前記ガス通路を流れる腐食性ガスに接するように配置された、前記表面にNi基合金の塑性加工層を有するボイラチューブと、を備える、ことを特徴とする。   Further, the boiler of the present invention includes a gas passage through which corrosive gas flows, a boiler tube having a surface that is in contact with the corrosive gas flowing through the gas passage, and a plastic working layer of a Ni-based alloy on the surface; , Comprising.

本発明の製造方法によれば、局部腐食が起き難いNi基合金からなる表面の耐食部材を得ることができる。   According to the manufacturing method of the present invention, a corrosion-resistant member having a surface made of a Ni-based alloy that is unlikely to cause local corrosion can be obtained.

ごみ焼却炉およびボイラの概略構成図である。It is a schematic block diagram of a waste incinerator and a boiler. 耐食部材であるボイラチューブの一部断面図である。It is a partial cross section figure of the boiler tube which is a corrosion-resistant member.

図1に、本発明の一実施形態に係る製造方法により得られる耐食部材をボイラチューブ3として用いたボイラ2を示す。このボイラ2はごみ焼却炉1に併設されており、ボイラ2にはごみ焼却炉1から腐食性ガスを含む排ガスが供給される。   In FIG. 1, the boiler 2 which used the corrosion-resistant member obtained by the manufacturing method which concerns on one Embodiment of this invention as the boiler tube 3 is shown. The boiler 2 is attached to the waste incinerator 1, and the boiler 2 is supplied with exhaust gas containing corrosive gas from the waste incinerator 1.

図1に示す例では、ごみ焼却炉1が流動床式焼却炉であるが、ごみ焼却炉1はストーカ式焼却炉であってもよい。   In the example shown in FIG. 1, the waste incinerator 1 is a fluidized bed incinerator, but the waste incinerator 1 may be a stoker type incinerator.

ボイラ2は、ごみ焼却炉1の上方に配置された放射室25と、放射室25の側方に配置された第2煙道26および第3煙道27を含む。第2煙道26および第3煙道27は共に上下に延びており、その下部同士がつながっている。これらの放射室25、第2煙道26および第3煙道27は、腐食性ガスが流れるガス通路を形成する。すなわち、腐食性ガスは、図1中に矢印A,B,Cで示すようにガス通路を流れ、その後に排出路28を通じてボイラ2から排出される。   The boiler 2 includes a radiation chamber 25 disposed above the waste incinerator 1, and a second flue 26 and a third flue 27 disposed on the side of the radiation chamber 25. Both the second flue 26 and the third flue 27 extend vertically, and their lower portions are connected. The radiation chamber 25, the second flue 26, and the third flue 27 form a gas passage through which corrosive gas flows. That is, the corrosive gas flows through the gas passage as indicated by arrows A, B, and C in FIG. 1 and is then discharged from the boiler 2 through the discharge passage 28.

また、ボイラ2は、ガス通路を区画する壁上に設けられた水管22と、水管22内に水を供給するとともに水管22内で発生した水蒸気を収集するボイラドラム21と、第3煙道27内に配置された複数の過熱器23を備えている。ボイラチューブ3は、水管22および過熱器23の構成要素であり、表面31(図2参照)がガス通路を流れる腐食性ガスに接するように配置されている。換言すれば、ボイラチューブ3の表面31は腐食環境下に露出している。腐食性ガス中の腐食成分の濃度は、一般的にはHCl:100〜1000ppm、SOx:10〜100ppmであり、ときには、HCl:2000ppm、SO:600ppmにまで上昇する。 The boiler 2 includes a water pipe 22 provided on a wall defining the gas passage, a boiler drum 21 that supplies water into the water pipe 22 and collects water vapor generated in the water pipe 22, and a third flue 27. A plurality of superheaters 23 are provided. The boiler tube 3 is a component of the water tube 22 and the superheater 23, and is disposed so that the surface 31 (see FIG. 2) is in contact with the corrosive gas flowing through the gas passage. In other words, the surface 31 of the boiler tube 3 is exposed to a corrosive environment. The concentration of the corrosive component in the corrosive gas is generally HCl: 100 to 1000 ppm and SO x : 10 to 100 ppm, and sometimes rises to HCl: 2000 ppm and SO 2 : 600 ppm.

図2は、ボイラチューブ3の一部断面図である。ボイラチューブ3は、例えば、Ni基合金のみからなる単一材料の部材である。ただし、本発明の製造方法により得られる耐食部材は、必ずしも単一材料の部材である必要はなく、少なくとも表面がNi基合金からなっていればよい。例えば、耐食部材が密着ニ重管、溶接肉盛管、溶射管などであり、耐食部材の内部と表層とが異なる材料で構成されていてもよい。   FIG. 2 is a partial cross-sectional view of the boiler tube 3. The boiler tube 3 is a single material member made of, for example, a Ni-based alloy only. However, the corrosion-resistant member obtained by the production method of the present invention does not necessarily need to be a single material member, and at least the surface may be made of a Ni-based alloy. For example, the corrosion-resistant member is a close-contact double tube, a weld overlay tube, a thermal spray tube, or the like, and the inside of the corrosion-resistant member and the surface layer may be made of different materials.

Ni基合金は、例えば、質量%で表示して、Niを40〜70%、Crを15〜25%、Feを1〜40%含む。このようなNi基合金としては、インコネル(INCONEL:登録商標)625,825、ハステロイ(登録商標)C−22,C−276などが挙げられる。Ni基合金には、上記成分の他に、必要に応じて種々の成分(例えば、Mo、Nbなど)が添加されていてもよい。   The Ni-base alloy includes, for example, 40% to 70% Ni, 15% to 25% Cr, and 1% to 40% Fe, expressed in mass%. Examples of such Ni-based alloys include Inconel (registered trademark) 625,825 and Hastelloy (registered trademark) C-22, C-276. In addition to the above components, various components (for example, Mo, Nb, etc.) may be added to the Ni-based alloy as necessary.

ボイラチューブ3は、表面31にNi基合金の塑性加工層32を有している。塑性加工層32は、少なくとも表面がNi基合金からなる素材に対して表面処理を行うことにより形成される。塑性加工層32を形成するための表面処理は、特に限定されるものではない。例えば、ブラスト処理によって塑性加工層32を形成してもよいし、ショットピーニング、レーザーピーニング、キャビテーションピーニングのようなピーニング処理によって塑性加工層32を形成してもよい。ブラスト処理またはピーニング処理では、ボイラチューブ3の表面31が粗面化される。あるいは、素材を成形する際の加工、例えば、圧延、鍛造、押し出し加工、引き抜き加工、スピニングなどにより塑性加工層32を形成してもよい。   The boiler tube 3 has a Ni-based alloy plastic working layer 32 on a surface 31. The plastic working layer 32 is formed by performing a surface treatment on a material having at least a surface made of a Ni-based alloy. The surface treatment for forming the plastic working layer 32 is not particularly limited. For example, the plastic working layer 32 may be formed by blasting, or the plastic working layer 32 may be formed by peening such as shot peening, laser peening, and cavitation peening. In the blasting process or the peening process, the surface 31 of the boiler tube 3 is roughened. Or you may form the plastic processing layer 32 by the process at the time of shape | molding a raw material, for example, rolling, forging, extrusion process, drawing process, spinning, etc.

塑性加工層32の厚さは、腐食により経時的に減少していく。このような塑性加工層32の厚さが減少したボイラチューブ3に対して表面処理を施すことにより、ボイラチューブ3の表面31に塑性加工層32を新たに形成することができる。すなわち、素材は、塑性加工層32の厚さが減少したボイラチューブ3であってもよい。   The thickness of the plastic working layer 32 decreases with time due to corrosion. By applying a surface treatment to the boiler tube 3 in which the thickness of the plastic working layer 32 is reduced, the plastic working layer 32 can be newly formed on the surface 31 of the boiler tube 3. That is, the material may be the boiler tube 3 in which the thickness of the plastic working layer 32 is reduced.

塑性加工層32の厚さは、ボイラチューブ3の使用状態を考慮して決めればよい。例えば、定期的に表面処理を行う場合は、次の表面処理を行うまでに減肉すると予想される厚みよりも、塑性加工層32が厚くなるように表面処理を行えばよい。   The thickness of the plastic working layer 32 may be determined in consideration of the usage state of the boiler tube 3. For example, when the surface treatment is performed periodically, the surface treatment may be performed so that the plastic working layer 32 is thicker than the thickness that is expected to be reduced before the next surface treatment.

次に、ボイラチューブ(耐食部材)3をブラスト処理により製造する方法を説明する。   Next, a method for manufacturing the boiler tube (corrosion resistant member) 3 by blasting will be described.

ボイラチューブ3を製造するには、少なくとも表面がNi基合金からなる筒状の素材の表面を全周に亘ってブラスト処理するだけでよい。具体的には、基材の表面にブラスト材を吹き付ける。これにより、素材の表層が塑性加工層32に変換され、ボイラチューブ3が得られる。   In order to manufacture the boiler tube 3, it is only necessary to blast the entire surface of a cylindrical material having at least a surface made of a Ni-based alloy. Specifically, a blast material is sprayed on the surface of the substrate. Thereby, the surface layer of a raw material is converted into the plastic working layer 32, and the boiler tube 3 is obtained.

ブラスト材の基材表面への吹き付けは、例えば、基材を中心軸回りに回転させながら行う。ブラスト材は、砂であってもよいし、金属、ガラス、セラミックスなどからなる球状体であってもよい。すなわち、ブラスト処理は、サンドブラストであってもよいしショットブラストであってもよい。   The blast material is sprayed onto the surface of the base material, for example, while rotating the base material around the central axis. The blast material may be sand or a spherical body made of metal, glass, ceramics, or the like. That is, the blasting process may be sand blasting or shot blasting.

以上説明した製造方法により、局部腐食が起き難いNi基合金からなる表面31の耐ボイラチューブ(耐食部材)3を得ることができる。局部腐食が起き難いことは、孔食電位を測定することにより確認することができる。   By the manufacturing method described above, it is possible to obtain a boiler tube (corrosion resistant member) 3 having a surface 31 made of a Ni-based alloy that is unlikely to cause local corrosion. It is possible to confirm that local corrosion hardly occurs by measuring the pitting potential.

ボイラ2の操業中にはボイラチューブ3上に灰が積もるため、その灰を定期的に除去してボイラチューブ3の腐食の状態を確認することが望ましい。この灰の除去には、サンドブラストを用いることができる。もし塑性加工層32が全面腐食により消失していた場合には、その部分にサンドブラストを継続して行うことにより、新たに塑性加工層32を形成することができる。   Since ash accumulates on the boiler tube 3 during operation of the boiler 2, it is desirable to periodically remove the ash and check the state of corrosion of the boiler tube 3. Sand blasting can be used to remove the ash. If the plastic working layer 32 has disappeared due to the overall corrosion, the plastic working layer 32 can be newly formed by continuing sand blasting to that portion.

なお、本発明の製造方法により得られる耐食部材は、ボイラだけでなく種々の用途に用いることができる。また、耐食部材の形状は、必ずしもチューブである必要はなく、用途によっては例えば平板であってもよい。あるいは、耐食部材は、ボイラチューブの表面を覆う円弧状のパネル(プロテクタ)であってもよい。   In addition, the corrosion-resistant member obtained by the manufacturing method of this invention can be used not only for a boiler but for various uses. Further, the shape of the corrosion-resistant member is not necessarily a tube, and may be a flat plate depending on the application. Alternatively, the corrosion-resistant member may be an arc-shaped panel (protector) that covers the surface of the boiler tube.

1 ごみ焼却炉
2 ボイラ
3 ボイラチューブ(耐食部材)
31 表面
32 塑性加工層
1 Waste incinerator 2 Boiler 3 Boiler tube (corrosion resistant material)
31 Surface 32 Plastic working layer

Claims (4)

Ni基合金からなる表面が腐食環境下に露出する状態で使用される耐食部材の製造方法であって、
少なくとも表面がNi基合金からなる素材に対して表面処理を行うことにより、表面にNi基合金の塑性加工層を有する耐食部材を製造する、耐食部材の製造方法。
A method for producing a corrosion-resistant member used in a state where a surface made of a Ni-based alloy is exposed to a corrosive environment,
A method for producing a corrosion-resistant member, comprising producing a corrosion-resistant member having a plastic working layer of a Ni-based alloy on a surface by performing a surface treatment on a material having at least a surface made of a Ni-based alloy.
前記表面処理はブラスト処理である、請求項1に記載の耐食部材の製造方法。   The method for manufacturing a corrosion-resistant member according to claim 1, wherein the surface treatment is a blast treatment. 前記Ni基合金は、質量%で表示して、Niを40〜70%、Crを15〜25%、Feを1〜40%含む、請求項1または2に記載の耐食部材の製造方法。   3. The method for producing a corrosion-resistant member according to claim 1, wherein the Ni-based alloy includes 40 to 70% Ni, 15 to 25% Cr, and 1 to 40% Fe in terms of mass%. 腐食性ガスが流れるガス通路と、
表面が前記ガス通路を流れる腐食性ガスに接するように配置された、前記表面にNi基合金の塑性加工層を有するボイラチューブと、
を備える、ボイラ。
A gas passage through which corrosive gas flows;
A boiler tube having a surface that is in contact with corrosive gas flowing through the gas passage and having a plastic working layer of a Ni-based alloy on the surface;
Boiler equipped with.
JP2013192932A 2013-09-18 2013-09-18 Method of manufacturing corrosion-resistant member, and boiler Pending JP2015058496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192932A JP2015058496A (en) 2013-09-18 2013-09-18 Method of manufacturing corrosion-resistant member, and boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013192932A JP2015058496A (en) 2013-09-18 2013-09-18 Method of manufacturing corrosion-resistant member, and boiler

Publications (1)

Publication Number Publication Date
JP2015058496A true JP2015058496A (en) 2015-03-30

Family

ID=52816450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192932A Pending JP2015058496A (en) 2013-09-18 2013-09-18 Method of manufacturing corrosion-resistant member, and boiler

Country Status (1)

Country Link
JP (1) JP2015058496A (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458297A (en) * 1977-10-18 1979-05-10 Sumitomo Metal Ind Ltd Surface grinding method of non-magnetic tube and surface grinding device being used in this method
JPS54121493A (en) * 1978-03-14 1979-09-20 Sumitomo Metal Ind Ltd Shot peening of curvature cutting material
JPS57144668A (en) * 1981-02-24 1982-09-07 Kobe Steel Ltd Method and apparatus for shot peening of curved pipe
US4658761A (en) * 1983-11-19 1987-04-21 Duggan Alain J Treatment of boiler tubes
JPH0790496A (en) * 1993-09-17 1995-04-04 Sumitomo Metal Ind Ltd Wear resistant double-layered steel tube for boiler and its production
JPH07258781A (en) * 1994-03-23 1995-10-09 Mitsubishi Materials Corp Heat exchanger tube material of waste heat boiler utilizing waste gas from garbage incineration excellent in high-temperature corrosion resistance and high-temperature strength
JPH07266230A (en) * 1994-03-29 1995-10-17 Toshiba Corp Method and device for reforming structural material
JPH08239728A (en) * 1995-02-28 1996-09-17 Mitsubishi Materials Corp Laminated tube for heat transfer
JPH09256090A (en) * 1996-03-18 1997-09-30 Mitsubishi Materials Corp Laminated tube for heat transfer for waste heat boiler utilizing waste incineration exhaust gas, excellent in intergranular corrosion resistance
JPH09256089A (en) * 1996-03-18 1997-09-30 Mitsubishi Materials Corp Laminated tube for heat transfer for waste heat boiler utilizing waste incineration exhaust gas, excellent in intergranular corrosion resistance
JPH10156582A (en) * 1996-11-26 1998-06-16 Daido Steel Co Ltd Manufacture of corrosion resistant metallic tube by cladding by welding
JPH10204563A (en) * 1997-01-22 1998-08-04 Mitsubishi Materials Corp Composite heat exchanger tube for waste heat boiler using exhaust gas of refuse incinerator excellent in high temperature corrosion resistance
JPH1190830A (en) * 1997-09-12 1999-04-06 Toshiba Corp Surface improving method
JP2001198828A (en) * 2000-01-20 2001-07-24 Nkk Corp Manufacturing method for stainless steel with excellent corrosion resistance
JP2002235134A (en) * 2001-02-06 2002-08-23 Toshiba Corp Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts
JP2010138474A (en) * 2008-12-15 2010-06-24 Toshiba Corp Method for producing corrosion-resistant member
WO2011077650A1 (en) * 2009-12-21 2011-06-30 住友金属工業株式会社 Base tube for cold-drawing, manufacturing method for same, and manufacturing method for cold-drawn tube

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458297A (en) * 1977-10-18 1979-05-10 Sumitomo Metal Ind Ltd Surface grinding method of non-magnetic tube and surface grinding device being used in this method
JPS54121493A (en) * 1978-03-14 1979-09-20 Sumitomo Metal Ind Ltd Shot peening of curvature cutting material
JPS57144668A (en) * 1981-02-24 1982-09-07 Kobe Steel Ltd Method and apparatus for shot peening of curved pipe
US4658761A (en) * 1983-11-19 1987-04-21 Duggan Alain J Treatment of boiler tubes
JPH0790496A (en) * 1993-09-17 1995-04-04 Sumitomo Metal Ind Ltd Wear resistant double-layered steel tube for boiler and its production
JPH07258781A (en) * 1994-03-23 1995-10-09 Mitsubishi Materials Corp Heat exchanger tube material of waste heat boiler utilizing waste gas from garbage incineration excellent in high-temperature corrosion resistance and high-temperature strength
JPH07266230A (en) * 1994-03-29 1995-10-17 Toshiba Corp Method and device for reforming structural material
JPH08239728A (en) * 1995-02-28 1996-09-17 Mitsubishi Materials Corp Laminated tube for heat transfer
JPH09256090A (en) * 1996-03-18 1997-09-30 Mitsubishi Materials Corp Laminated tube for heat transfer for waste heat boiler utilizing waste incineration exhaust gas, excellent in intergranular corrosion resistance
JPH09256089A (en) * 1996-03-18 1997-09-30 Mitsubishi Materials Corp Laminated tube for heat transfer for waste heat boiler utilizing waste incineration exhaust gas, excellent in intergranular corrosion resistance
JPH10156582A (en) * 1996-11-26 1998-06-16 Daido Steel Co Ltd Manufacture of corrosion resistant metallic tube by cladding by welding
JPH10204563A (en) * 1997-01-22 1998-08-04 Mitsubishi Materials Corp Composite heat exchanger tube for waste heat boiler using exhaust gas of refuse incinerator excellent in high temperature corrosion resistance
JPH1190830A (en) * 1997-09-12 1999-04-06 Toshiba Corp Surface improving method
JP2001198828A (en) * 2000-01-20 2001-07-24 Nkk Corp Manufacturing method for stainless steel with excellent corrosion resistance
JP2002235134A (en) * 2001-02-06 2002-08-23 Toshiba Corp Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts
JP2010138474A (en) * 2008-12-15 2010-06-24 Toshiba Corp Method for producing corrosion-resistant member
WO2011077650A1 (en) * 2009-12-21 2011-06-30 住友金属工業株式会社 Base tube for cold-drawing, manufacturing method for same, and manufacturing method for cold-drawn tube

Similar Documents

Publication Publication Date Title
Uusitalo et al. Elevated temperature erosion–corrosion of thermal sprayed coatings in chlorine containing environments
JP5669821B2 (en) Metal tube coating with fatigue corrosion cracking
CN101548120B (en) Valve device
RU2399836C2 (en) Part of steam generator or component of power installation with surface treated by shot-blast method
Sequeira et al. On the performance of commercially available corrosion-resistant nickel alloys: a review
Griggs et al. A review of modelling high pH stress corrosion cracking of high pressure gas pipelines
CN107042370A (en) A kind of high-Cr Ni-base high-temperature alloy welding wire and preparation technology
Song et al. Laser cladding of Ni50Cr: A parametric and dilution study
CN108220857A (en) The anti-chlorine corrosion double-layer structure alloy coat of waste incinerator heating surface and preparation method
CN104384749B (en) A kind of plasma spray anticorrosion Co-based alloy powder
Ali et al. Corrosion-related failures in heat exchangers
JP2015058496A (en) Method of manufacturing corrosion-resistant member, and boiler
CA2926597C (en) Method for the in situ passivation of the steel surfaces of a nuclear reactor
JP2013079844A (en) Nuclear reactor containment and anticorrosive coating method for nuclear reactor containment
RU147694U1 (en) BIMETALLIC PIPE FOR REDUCED STEAM PIPELINES
CN110079759A (en) A kind of metal bellows surface treatment method
CN107335550A (en) A kind of high anti-corrosion incrustation scale of high fatigue rinses valve body and its manufacture method
JP2014237864A (en) Manufacturing method of coated member and coated member
JP2009036670A (en) Working temperature estimating method of austenitic steel
CN113337791B (en) Preparation method of thermal barrier coating for boiler protection
CN109722617B (en) Preparation method of composite coating used in high-temperature, high-chlorine and high-scouring environment
TW201304910A (en) Austenitic stainless steel pipe, boiler device, and method for processing inner surface of pipe
JP4464752B2 (en) Adhesion prevention method
Prakash Development of advanced alloys with improved resistance to corrosion and stress corrosion cracking (SCC) in power plants
JP2003290919A (en) Method for improving surface of clad-welded part in powder cladding by welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180626