JP2015055719A - Reflection telescope - Google Patents

Reflection telescope Download PDF

Info

Publication number
JP2015055719A
JP2015055719A JP2013188224A JP2013188224A JP2015055719A JP 2015055719 A JP2015055719 A JP 2015055719A JP 2013188224 A JP2013188224 A JP 2013188224A JP 2013188224 A JP2013188224 A JP 2013188224A JP 2015055719 A JP2015055719 A JP 2015055719A
Authority
JP
Japan
Prior art keywords
lens
compound lens
amount
correction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013188224A
Other languages
Japanese (ja)
Inventor
融 松田
Toru Matsuda
融 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013188224A priority Critical patent/JP2015055719A/en
Priority to US14/481,263 priority patent/US20150070496A1/en
Publication of JP2015055719A publication Critical patent/JP2015055719A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/06Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors having a focussing action, e.g. parabolic mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0852Catadioptric systems having a field corrector only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Telescopes (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain a reflection telescope that has an atmospheric dispersion correction function, and enables a celestial body to be excellently observed in a state where a field-of-view angle is large.SOLUTION: A reflection telescope has: a reflection mirror that has an image forming action; a correction optical system that corrects an image to be formed by the reflection telescope; and an image pickup element photoelectrically converting the image via the correction optical system. The correction optical system has a compound lens that comprises a positive lens and a negative lens, and moves in a direction with a component of a vertical direction with respect to an optical axis. A difference between refractive indices of materials of the positive lens and the negative lens constituting the compound lens is equal to or more than 0.5%, and the reflection telescope has: detection means for detecting an amount of drive of the compound lens; computation means for computing an amount of tilt correction with respect to the optical axis of the image pickup element from the amount of drive of the compound lens detected by the detection means; and control means for performing a drive control of an amount of movement of the compound lens and an amount of tilt with respect to the optical axis of the image pickup element from the amount of correction calculated by the computation means.

Description

本発明は、結像作用を有する反射鏡と、反射鏡の結像性能を補正する補正光学系と、撮像素子を有し、広視野で天体観察を良好に行うことができる反射望遠鏡に関する。   The present invention relates to a reflecting telescope that has an imaging function, a correction optical system that corrects the imaging performance of the reflecting mirror, and an imaging device, and can perform astronomical observation with a wide field of view.

天体観察に用いられる反射望遠鏡は口径が大きいほど観測する天体の分解能が高くなるため、遠方の天体を高分解能で観測するためには大口径であることが必要となる。天体観測において、天頂以外の観測では大気分散に起因して、星像に光の波長によるずれが生ずる。そのため星像がぼけて、大口径の反射望遠鏡を使用しても本来の分解能が得られない場合がある。本出願人は、このような大気分散を補正する収差補正系を備えた天体望遠鏡(反射望遠鏡)を提案している(特許文献1)。   A reflecting telescope used for astronomical observation has a larger aperture so that the larger the aperture, the higher the resolution of the celestial object to be observed. In observations other than the zenith, astronomical observations cause a shift in the star image due to the wavelength of light due to atmospheric dispersion. As a result, the star image may be blurred and the original resolution may not be obtained even when a large-diameter reflecting telescope is used. The present applicant has proposed an astronomical telescope (reflecting telescope) provided with an aberration correction system for correcting such atmospheric dispersion (Patent Document 1).

特許文献1に開示されている収差補正系では、天体望遠鏡の一部を構成する主鏡(反射鏡)の焦点位置の近傍に配置し、主鏡の持つ収差及び大気分散を補正する。これにより、例えば主鏡と副鏡とを組み合わせたカセグレン型の反射望遠鏡で天体観測する場合に比べて、明るく広視野、かつ高分解能で天体観察ができるようにしている。   The aberration correction system disclosed in Patent Document 1 is arranged near the focal position of a primary mirror (reflecting mirror) that constitutes a part of the astronomical telescope, and corrects aberrations and atmospheric dispersion of the primary mirror. As a result, for example, astronomical observation can be performed with a brighter, wider field of view and higher resolution than in the case of astronomical observation with a Cassegrain type reflective telescope combining a primary mirror and a secondary mirror.

特許文献1の天体望遠鏡では、互いに波長分散の異なる材料で構成された一対のレンズで構成された複合レンズを備える収差補正系において、該複合レンズを光軸に対して垂直方向に移動させることにより、大気分散の補正を行っている。これにより、レンズ系全体の小型化を達成しつつ、主鏡の収差補正と大気分散による色収差の補正の双方を良好に補正している。大気分散補正用の複合レンズ(以下、Atmospheric Dispersion Corrector あるいはADCとも呼ぶ)に使用する材料としては、屈折率がほぼ同じで分散だけが異なる材料を選ぶのが好ましい。   In the astronomical telescope of Patent Document 1, in an aberration correction system including a compound lens composed of a pair of lenses made of materials having different wavelength dispersion, the compound lens is moved in a direction perpendicular to the optical axis. The atmospheric dispersion is corrected. As a result, both the aberration correction of the main mirror and the correction of chromatic aberration due to atmospheric dispersion are satisfactorily corrected while achieving the miniaturization of the entire lens system. As a material to be used for a compound lens for correcting atmospheric dispersion (hereinafter also referred to as an atmospheric dispersion corrector or ADC), it is preferable to select materials having substantially the same refractive index but different dispersion.

そうすることによって、中心となる波長では複合レンズ(ADC)は平板ガラスと光学的に等価になり、移動しても他の収差に影響を与えるおそれが無くなる。複合レンズ(ADC)が比較的小型の場合は、複合レンズ(ADC)に使用できる材料は比較的上記要求を満足できるものがある。例えば特許文献1の実施例で用いている複合レンズに使用されている材料の組合せでは、屈折率の差が約0.5%以内である。   By doing so, the compound lens (ADC) becomes optically equivalent to the flat glass at the central wavelength, and there is no possibility of affecting other aberrations even if it moves. When the composite lens (ADC) is relatively small, some materials that can be used for the composite lens (ADC) can satisfy the above-described requirements. For example, in the combination of materials used in the compound lens used in the example of Patent Document 1, the difference in refractive index is within about 0.5%.

特許文献1の収差補正系を用いた天体望遠鏡の視野角(観察視野角)の直径は0.5°である。近年、天体望遠鏡の更なるサーベイ能力の向上が望まれており、そのために収差補正系の更なる広視野化が求められている。本出願人は視野角を1.5°〜1.9°にまで広角化して、且つ良好な星像を実現し得る主焦点補正光学系(収差補正系)を用いた反射望遠鏡を提案している(特許文献2,3,4)。   The diameter of the viewing angle (observation viewing angle) of the astronomical telescope using the aberration correction system of Patent Document 1 is 0.5 °. In recent years, further improvement in the survey capability of astronomical telescopes has been desired, and for this purpose, further expansion of the aberration correction system is required. The present applicant has proposed a reflection telescope using a main focus correction optical system (aberration correction system) capable of widening the viewing angle from 1.5 ° to 1.9 ° and realizing a good star image. (Patent Documents 2, 3, and 4).

特開平06−230274号公報Japanese Patent Laid-Open No. 06-230274 特開2009−036976号公報JP 2009-036976 A 特開2009−223019号公報JP 2009-223019 A 特開2010−091597号公報JP 2010-091597 A

本発明者らの研究によれば、視野角を1.5°以上にまで広画角化して、且つ良好な星像を観察するためには、収差補正系(以下「主焦点補正光学系」ともいう。)を構成する各単レンズおよび複合レンズの直径を大きくする必要があることがわかった。複合レンズが大型になると、材料の製造難度が高まるため、使用できる材料の種類が限られてしまう。この結果、複合レンズを構成する2つの材料の屈折率の差が0.5%以内で波長分散だけが異なるような材料の組み合わせを得ることが困難となる。   According to the study by the present inventors, in order to widen the viewing angle to 1.5 ° or more and observe a good star image, an aberration correction system (hereinafter referred to as “main focus correction optical system”). It was also found that it is necessary to increase the diameter of each single lens and compound lens constituting the lens. If the compound lens is large, the difficulty of manufacturing the material increases, and the types of materials that can be used are limited. As a result, it becomes difficult to obtain a combination of materials in which the difference in refractive index between the two materials constituting the compound lens is within 0.5% and only the chromatic dispersion is different.

特許文献2および特許文献3に開示されている主焦点補正光学系では、このような材料の制約を克服して光学配置の工夫で高い結像性能を実現している。いま、材料の屈折率に少なからぬ差がある2つの材料よりなるレンズの組み合わせより複合レンズを構成したとする。   In the principal focus correction optical systems disclosed in Patent Document 2 and Patent Document 3, high imaging performance is realized by devising the optical arrangement while overcoming such material limitations. Now, suppose that a composite lens is composed of a combination of lenses made of two materials having a considerable difference in the refractive index of the materials.

このとき、複合レンズの移動により大気分散による色収差は補正されるが、少なからず収差劣化も生じる。すなわち、天頂付近の天体を撮影する場合は非常に良好な分解能で撮影できる。しかしながら、天体の高度角(離角)変化に追従して複合レンズの移動量を変えていくと、収差劣化により天頂付近よりも分解能が低下してしまう。   At this time, the chromatic aberration due to atmospheric dispersion is corrected by the movement of the compound lens, but not a little aberration deterioration occurs. That is, when photographing a celestial body near the zenith, it is possible to photograph with very good resolution. However, if the amount of movement of the compound lens is changed following the change in altitude angle (separation angle) of the celestial body, the resolution becomes lower than that near the zenith due to aberration deterioration.

特許文献1乃至3の実施例では光学パラメータを最適化することにより、複合レンズの移動量が大きい場合でも収差劣化が許容範囲内に収まるように構成している。しかしながら、更なる分解能の向上を図るためには複合レンズの移動量が大きい場合でも収差劣化を小さくすることが重要になってくる。   In the embodiments of Patent Documents 1 to 3, the optical parameters are optimized so that the aberration deterioration is within an allowable range even when the moving amount of the compound lens is large. However, in order to further improve the resolution, it is important to reduce aberration deterioration even when the amount of movement of the compound lens is large.

本発明は、大気分散補正機能を有し、視野角が大きい状態で天体を良好に観察することができる反射望遠鏡の提供を目的とする。   An object of the present invention is to provide a reflecting telescope that has an atmospheric dispersion correction function and can observe a celestial body well in a state where a viewing angle is large.

本発明の反射望遠鏡は、結像作用を有する反射鏡と、該反射鏡で結像する像を補正する補正光学系と、該補正光学系を介した像を光電変換する撮像素子とを有する反射望遠鏡であって、前記補正光学系は正レンズと負レンズよりなり、光軸に対して垂直方向の成分を持つ方向に移動する複合レンズを有しており、前記複合レンズを構成する正レンズと負レンズの材料の屈折率の差は0.5%以上あり、前記反射望遠鏡は、前記複合レンズの駆動量を検知する検知手段と、前記検知手段によって検知された複合レンズの駆動量から前記撮像素子の光軸に対する傾き補正量を演算する演算手段と、該演算手段によって算出された補正量から前記複合レンズの移動量と前記撮像素子の光軸に対する傾き量を駆動制御する制御手段と、を有することを特徴としている。   The reflecting telescope of the present invention includes a reflecting mirror having an imaging function, a correcting optical system that corrects an image formed by the reflecting mirror, and an imaging device that photoelectrically converts the image via the correcting optical system. A telescope, wherein the correction optical system includes a positive lens and a negative lens, and has a compound lens that moves in a direction having a component perpendicular to the optical axis, and a positive lens that constitutes the compound lens; The difference in refractive index of the material of the negative lens is 0.5% or more, and the reflection telescope is configured to detect the imaging from the detection amount of the composite lens and the drive amount of the composite lens detected by the detection means. Calculating means for calculating an inclination correction amount with respect to the optical axis of the element, and control means for driving and controlling the movement amount of the compound lens and the inclination amount with respect to the optical axis of the imaging element from the correction amount calculated by the calculating means. Having We are a symptom.

本発明によれば、星像のシャープさを維持しつつ大気分散補正効果を発揮することができるため、大気分散補正機能を有し、大きな視野角での天体観測ができる反射望遠鏡が得られる。   According to the present invention, since the atmospheric dispersion correction effect can be exhibited while maintaining the sharpness of the star image, a reflection telescope having an atmospheric dispersion correction function and capable of observing astronomical objects with a large viewing angle can be obtained.

実施例1の反射望遠鏡の光学配置の説明図である。It is explanatory drawing of the optical arrangement | positioning of the reflective telescope of Example 1. FIG. 実施例1の反射望遠鏡に用いられる主焦点補正光学系の構成を示す説明図である。FIG. 3 is an explanatory diagram illustrating a configuration of a main focus correction optical system used in the reflecting telescope according to the first embodiment. 実施例1の反射望遠鏡の縦収差図である。FIG. 3 is a longitudinal aberration diagram of the reflective telescope of Example 1. 実施例1の反射望遠鏡の横収差図である。3 is a lateral aberration diagram of the reflective telescope of Example 1. FIG. 実施例1の反射望遠鏡において複合レンズの移動による収差劣化を補正するための構成を示す概念図である。FIG. 3 is a conceptual diagram illustrating a configuration for correcting aberration deterioration due to movement of a compound lens in the reflecting telescope according to the first exemplary embodiment. 実施例1において複合レンズを駆動していない天頂方向の観測状態での結像性能を示したエンサークルドエネルギー図である。FIG. 5 is an encircled energy diagram showing imaging performance in an observation state in a zenith direction where the compound lens is not driven in Example 1. 実施例1において複合レンズを最大に駆動している天頂離角60度方向の観測状態での結像性能を示したエンサークルドエネルギー図である。FIG. 3 is an encircled energy diagram showing imaging performance in an observation state in a direction of a zenith separation angle of 60 degrees in which the compound lens is driven to the maximum in Example 1. 実施例1において複合レンズを最大に駆動している天頂離角60度方向の観測状態で、撮像素子の傾きを補正した後の結像性能を示したエンサークルドエネルギー図である。FIG. 5 is an encircled energy diagram showing imaging performance after correcting the tilt of the image sensor in the observation state in the direction of the zenith separation angle of 60 degrees in which the compound lens is driven to the maximum in Example 1.

以下、図面を用いて本発明の反射望遠鏡の実施例について説明する。本発明の反射望遠鏡は、結像作用を有する反射鏡と、反射鏡で結像する像を補正する補正光学系(主焦点補正光学系)と、結像した像を光電変換する(電気信号に変換する)撮像素子を有する。補正光学系は互いに材料の屈折率が0.5%以上異なる正レンズと負レンズよりなり、光軸に対して垂直方向の成分を持つ方向に移動する複合レンズを有している。   Hereinafter, embodiments of the reflecting telescope of the present invention will be described with reference to the drawings. The reflecting telescope of the present invention includes a reflecting mirror having an imaging function, a correction optical system that corrects an image formed by the reflecting mirror (main focus correction optical system), and photoelectrically converts the formed image (to an electric signal). (Convert) Image sensor. The correction optical system is composed of a positive lens and a negative lens having a refractive index of 0.5% or more different from each other, and has a compound lens that moves in a direction having a component perpendicular to the optical axis.

反射望遠鏡は、複合レンズの駆動量を検知する検知手段と、検知手段によって検知された複合レンズの駆動量から撮像素子の光軸に対する傾きの補正量を算出する演算手段を有する。更に、演算手段によって算出された補正量から複合レンズの移動量と撮像素子の傾き量を駆動制御する制御手段と、を有する。複合レンズの移動量に応じて撮像素子の傾き量を変えている。   The reflecting telescope includes a detecting unit that detects the driving amount of the compound lens, and an arithmetic unit that calculates a correction amount of the tilt with respect to the optical axis of the image sensor from the driving amount of the compound lens detected by the detecting unit. Furthermore, it has a control means for drivingly controlling the moving amount of the compound lens and the tilt amount of the image sensor from the correction amount calculated by the calculating means. The amount of tilt of the image sensor is changed according to the amount of movement of the compound lens.

複合レンズはリニアモーター等の駆動手段で移動し、撮像素子はピエゾアクチュエータ等を用いた傾き駆動手段で駆動している。反射望遠鏡で観察する天体の天頂からの離角を天頂離角検知手段で検出し、その検出結果に基づいて又は外部の入力手段からの入力信号(離角信号)に応じて複合レンズの移動量が決定される。複合レンズを移動することによって生ずる像面の傾きを微調整するために撮像素子の傾きを調整する。これによって画面全体における光学性能を良好に維持している。   The compound lens is moved by driving means such as a linear motor, and the image sensor is driven by tilt driving means using a piezo actuator or the like. The distance from the zenith of the celestial body to be observed by the reflection telescope is detected by the zenith angle detection means, and the amount of movement of the compound lens based on the detection result or according to the input signal (distance signal) from the external input means Is determined. In order to finely adjust the tilt of the image plane caused by moving the compound lens, the tilt of the image sensor is adjusted. As a result, the optical performance of the entire screen is maintained well.

[実施例1]
図1は、本発明の実施例1の補正光学系を有する反射望遠鏡の光学配置の説明図である。図2は、図1の補正光学系の拡大説明図である。
[Example 1]
FIG. 1 is an explanatory diagram of an optical arrangement of a reflective telescope having a correction optical system according to Embodiment 1 of the present invention. FIG. 2 is an enlarged explanatory view of the correction optical system of FIG.

図1において、1は反射望遠鏡である。M1は結像作用のある主鏡、100は補正光学系である。主鏡M1は、凹形状の回転双曲面(反射鏡)よりなっている。補正光学系100は、主鏡M1の焦点の近傍に配置され、主鏡M1によって発生する収差を補正する。天体からの光束は、図中右方から主鏡M1に入射し、主鏡M1で反射したあとに補正光学系100を介して撮像素子(撮像手段)3が配置される撮像面C1に結像する。   In FIG. 1, 1 is a reflective telescope. M1 is a primary mirror having an imaging function, and 100 is a correction optical system. The primary mirror M1 is made of a concave rotating hyperboloid (reflecting mirror). The correction optical system 100 is disposed in the vicinity of the focal point of the primary mirror M1, and corrects aberrations generated by the primary mirror M1. The light beam from the celestial body is incident on the main mirror M1 from the right side in the figure, and after being reflected by the main mirror M1, forms an image on the image pickup surface C1 on which the image pickup element (image pickup means) 3 is disposed via the correction optical system 100. To do.

2は補正光学系100の一部を構成する複合レンズA1を光軸に対して垂直方向に移動させるADC駆動手段である。4は反射望遠鏡1の天頂からの離角を検出する天頂離角検出手段である。   Reference numeral 2 denotes ADC driving means for moving a compound lens A1 constituting a part of the correction optical system 100 in a direction perpendicular to the optical axis. Reference numeral 4 denotes a zenith separation angle detection means for detecting the separation angle of the reflection telescope 1 from the zenith.

図2に示した補正光学系100の構成について説明する。補正光学系100は、レンズL11〜レンズL15、複合レンズA1を有している。レンズL11〜レンズL15の5枚のレンズの形状を最適化している。   The configuration of the correction optical system 100 shown in FIG. 2 will be described. The correction optical system 100 includes a lens L11 to a lens L15 and a compound lens A1. The shapes of the five lenses L11 to L15 are optimized.

具体的には、補正光学系は、主鏡M1側から撮像面C1側に向かって順に、第1レンズL11、第2レンズL12、2枚の単レンズからなる大気分散補正用(大気色分散の補正用)の複合レンズ(ADC)A1を有する。更に第3レンズL13、第4レンズL14、第5レンズL15、と配置されている。天体からやってきた光は主鏡M1で反射されたあと、補正光学系100の第1レンズL11、第2レンズL12、複合レンズ(A1)、第3レンズL13、第4レンズL14、第5レンズL15を順に通過したあと、撮像手段3の撮像面C1に天体の像を結像する。   Specifically, the correction optical system is for atmospheric dispersion correction (atmospheric color dispersion of the first lens L11, the second lens L12, and two single lenses in order from the primary mirror M1 side to the imaging surface C1 side. A correction compound lens (ADC) A1. Further, a third lens L13, a fourth lens L14, and a fifth lens L15 are arranged. The light coming from the celestial body is reflected by the primary mirror M1, and then the first lens L11, the second lens L12, the compound lens (A1), the third lens L13, the fourth lens L14, and the fifth lens L15 of the correction optical system 100. Then, an image of the astronomical object is formed on the imaging surface C1 of the imaging means 3.

これにより補正光学系100は視野角1.6度の範囲内で良好に収差を補正しているが、大型化を避けるために有効視野角は1.5度として有効径を決定している。F1は透過波長帯域を選択するためのフィルタとCCDデュワーの窓材の厚みに相当する平行平面板である。   As a result, the correction optical system 100 corrects aberrations well within a viewing angle range of 1.6 degrees, but the effective viewing angle is determined to be 1.5 degrees in order to avoid an increase in size. F1 is a parallel plane plate corresponding to the thickness of the filter for selecting the transmission wavelength band and the window material of the CCD dewar.

複合レンズA1は大気分散を補正するため、互いに屈折率と分散の異なる材料よりなる負レンズA11と正レンズA12の2つのレンズより構成されている。アクチュエータ(駆動手段)(移動機構)2により複合レンズA1を光軸に対し直交する方向の成分を持つように(図の矢印方向)に移動させることにより、大気分散による色ずれを補正する。複合レンズA1は、屈折率が互いに0.5%以上異なり、互いに分散の異なる材料よりなる一対のレンズA11,A12を、接合又は光軸方向に僅かの空気間隔(空気層)を隔てて隣接配置して構成している。   In order to correct atmospheric dispersion, the compound lens A1 includes two lenses, a negative lens A11 and a positive lens A12, which are made of materials having different refractive indexes and dispersions. The actuator (driving means) (moving mechanism) 2 moves the compound lens A1 so as to have a component in the direction orthogonal to the optical axis (in the direction of the arrow in the figure), thereby correcting the color shift due to atmospheric dispersion. The compound lens A1 has a pair of lenses A11 and A12 made of materials having different refractive indexes of 0.5% or more and different dispersion from each other and arranged adjacent to each other with a slight air gap (air layer) in the optical axis direction. Configured.

具体的には、レンズ(第1レンズ)A11を構成する材料(商品名BSL7Y)の屈折率ndが1.51633、アッベ数νdが64.2である。また、レンズ(第2レンズ)A12を構成する材料(商品名PBL1Y)の屈折率ndが1.54814、アッベ数νdが45.8である。このときレンズA11とレンズA12の材料の屈折率の比は
1.51633/1.54814=0.979
である。即ち屈折率は互いに2.1%異なっている。
Specifically, the refractive index nd of the material (trade name BSL7Y) constituting the lens (first lens) A11 is 1.51633, and the Abbe number νd is 64.2. Further, the material (trade name PBL1Y) constituting the lens (second lens) A12 has a refractive index nd of 1.54814 and an Abbe number νd of 45.8. At this time, the ratio of the refractive indexes of the materials of the lens A11 and the lens A12 is 1.51633 / 1.54814 = 0.799.
It is. That is, the refractive indexes are 2.1% different from each other.

本実施例の複合レンズA1は、材料の屈折率が互いに0.5%以上(好ましくは5%以下)異なる正レンズ(レンズA12)と負レンズ(レンズA11)を光軸方向に隣接配置して構成されている。これらの材料を組み合せ、しかも対向するレンズ面に同程度(曲率半径で±5%以内の差)の曲率を持たせている。即ち、レンズA11とレンズA12の対向するレンズ面の曲率半径を各々Rp、Rnとするとき、
0.95<Rn/Rp<1.05
の条件式を満足するようにしている。
In the compound lens A1 of this embodiment, a positive lens (lens A12) and a negative lens (lens A11) having different refractive indexes of materials of 0.5% or more (preferably 5% or less) are arranged adjacent to each other in the optical axis direction. It is configured. These materials are combined, and the opposite lens surfaces have the same degree of curvature (difference within ± 5% in radius of curvature). That is, when the curvature radii of the lens surfaces facing the lens A11 and the lens A12 are respectively Rp and Rn,
0.95 <Rn / Rp <1.05
Is satisfied.

これにより、複合レンズA1を光軸に対して直交する方向に移動させて大気分散の補正を行う場合に、必要な量の色収差を発生させている。なお、屈折率ndはd線(587.6nm)に対する屈折率である。アッベ数νdは以下によって定義される。   As a result, when the compound lens A1 is moved in the direction orthogonal to the optical axis to correct atmospheric dispersion, a necessary amount of chromatic aberration is generated. The refractive index nd is a refractive index with respect to d-line (587.6 nm). The Abbe number νd is defined by:

νd=(nd−1)/(nF−nC)
但し、nd:d線(587.6nm)に対する屈折率
nF:F線(486.1nm)に対する屈折率
nC:C線(656.3nm)に対する屈折率
また、レンズA11は物体側(主鏡M1側)の面が平面、レンズA12は撮像面(CI)側のレンズ面が平面となっている。すなわち、複合レンズA1の光入射面と光出射面は共に平面となっている。
νd = (nd−1) / (nF−nC)
However, refractive index for nd: d line (587.6 nm) nF: refractive index for F line (486.1 nm) nC: refractive index for C line (656.3 nm) Lens A11 is on the object side (primary mirror M1 side) ) Is a plane, and the lens surface of the lens A12 on the imaging surface (CI) side is a plane. That is, the light incident surface and the light exit surface of the compound lens A1 are both flat.

これにより、単色光線に対しては、複合レンズA1を光軸に対して直交する方向に移動させたときの効果は単純な平板ガラスを移動させた場合と大差無くなり、単色収差の変化を小さく保っている。   As a result, for monochromatic light, the effect of moving the compound lens A1 in the direction perpendicular to the optical axis is not much different from that of moving a simple flat glass, and the change in monochromatic aberration is kept small. ing.

次に、表1に反射望遠鏡1の実施例1の数値データを示す。表中の面番号は天体側から光束の進行順に各面に付した番号である。iは天体からの面の順序を示す。Riは各面の曲率半径、diは第i面と第(i+1)面との間の間隔を示す。R1は主鏡、R2〜R15は補正光学系100の面である。   Next, Table 1 shows numerical data of the first embodiment of the reflecting telescope 1. The surface numbers in the table are numbers assigned to the respective surfaces in the order of light flux from the celestial side. i indicates the order of the surfaces from the celestial body. Ri represents the radius of curvature of each surface, and di represents the distance between the i-th surface and the (i + 1) -th surface. R1 is a primary mirror, and R2 to R15 are surfaces of the correction optical system 100.

材料には、石英(SILICA)と商品名BSL7Y,PBL1Yの2種類の材料を用いている。詳細には、石英(SILICA)は屈折率ndが1.45846、アッベ数νdが67.8である。材料BSL7Yは屈折率ndが1.51633、アッベ数νdが64.2である。材料PBL1Yは屈折率ndが1.54814、アッベ数νdが45.8である。実施例中の材料名は(株)オハラのガラス名を使用したが、他の同等品を使用してもよい。   As materials, two types of materials, quartz (SILICA) and trade names BSL7Y and PBL1Y are used. Specifically, quartz (SILICA) has a refractive index nd of 1.45846 and an Abbe number νd of 67.8. The material BSL7Y has a refractive index nd of 1.51633 and an Abbe number νd of 64.2. The material PBL1Y has a refractive index nd of 1.54814 and an Abbe number νd of 45.8. Although the glass name of OHARA INC. Was used as the material name in the examples, other equivalent products may be used.

本実施例の補正光学系100は5つの非球面を有する。非球面形状は、光軸方向にz軸、光軸と垂直方向にh軸、光の進行方向を正とし、Rを近軸曲率半径、kを円錐定数、A〜Gを4次〜16次の非球面係数としたとき   The correction optical system 100 of this embodiment has five aspheric surfaces. The aspherical shape is the z axis in the optical axis direction, the h axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, k is the conic constant, and A to G are the 4th to 16th orders. When the aspheric coefficient of

なる式で表わしている。また、表1においてfは主鏡M1と補正光学系100の合成焦点距離、FNOはFナンバー、2ωは全画角(視野角)(度)を表す。なお、本実施例では、補正光学系100を含む反射望遠鏡1が天体観測に適した高山に設置されることを想定して、気温0℃、気圧600mbarの環境で良好な結像性能が得られるよう光学諸値を調整している。 It is expressed by the following formula. In Table 1, f represents the combined focal length of the primary mirror M1 and the correction optical system 100, FNO represents the F number, and 2ω represents the total field angle (viewing angle) (degrees). In the present embodiment, it is assumed that the reflecting telescope 1 including the correcting optical system 100 is installed in a high mountain suitable for astronomical observation, and good imaging performance can be obtained in an environment of an air temperature of 0 ° C. and an atmospheric pressure of 600 mbar. Various optical values are adjusted.

(表1)
f = 18320mm FNO = 2.23 2ω= 1.5°
面番号 曲率半径R 面間隔d 材質 有効径
1(主鏡) 30000.0000(非球面) 13455.0000 8200.0
2 760.0000 98.0000 SILICA 820.0
3 1375.1117(非球面) 372.4491 804.5
4 -3535.0517(非球面) 46.0000 BSL7Y 615.5
5 656.2499 317.9915 573.4
6(ADC) ∞ 40.0000 BSL7Y 609.5
7(ADC) 1058.0000 3.0000 607.8
8(ADC) 1040.0000 82.0000 PBL1Y 608.9
9(ADC) ∞ 274.2607 607.6
10 -840.0002(非球面) 40.0000 PBL1Y 551.9
11 9800.0000 90.0000 567.9
12 480.0000(非球面) 102.0000 BSL7Y 627.3
13 4021.7590 100.0000 624.3
14 4176.7484 88.0000 SILICA 616.5
15 -1272.8223(非球面) 118.5964 613.5
16(Filter) ∞ 58.0000 SILICA 525.0
17(Filter) ∞ 15.0000 504.2
18 撮像面 ∞ --- --- 496.2
(Table 1)
f = 18320mm FNO = 2.23 2ω = 1.5 °
Surface number Curvature radius R Surface spacing d Material Effective diameter
1 (primary mirror) 30000.0000 (aspherical surface) 13455.0000 8200.0
2 760.0000 98.0000 SILICA 820.0
3 1375.1117 (Aspherical surface) 372.4491 804.5
4 -3535.0517 (Aspherical) 46.0000 BSL7Y 615.5
5 656.2499 317.9915 573.4
6 (ADC) ∞ 40.0000 BSL7Y 609.5
7 (ADC) 1058.0000 3.0000 607.8
8 (ADC) 1040.0000 82.0000 PBL1Y 608.9
9 (ADC) ∞ 274.2607 607.6
10 -840.0002 (Aspherical) 40.0000 PBL1Y 551.9
11 9800.0000 90.0000 567.9
12 480.0000 (Aspherical) 102.0000 BSL7Y 627.3
13 4021.7590 100.0000 624.3
14 4176.7484 88.0000 SILICA 616.5
15 -1272.8223 (Aspherical surface) 118.5964 613.5
16 (Filter) ∞ 58.0000 SILICA 525.0
17 (Filter) ∞ 15.0000 504.2
18 Imaging surface ∞ --- --- 496.2

(非球面)
面 k A (4次) B(6次) C(8次)
1 -1.00835 0.00000 0.00000 0.00000

D(10次) E(12次) F(14次) G(16次)
0.00000 0.00000 0.00000 0.00000

面 k A (4次) B(6次) C(8次)
3 0.00000 -1.5010E-10 -7.8810E-17 -7.3909E-22

D(10次) E(12次) F(14次) G(16次)
1.0128E-26 -7.1216E-32 2.6165E-37 -3.8976E-43

面 k A (4次) B(6次) C(8次)
4 0.00000 6.8480E-11 5.6166E-16 -1.3924E-20

D(10次) E(12次) F(14次) G(16次)
3.3242E-25 -4.3715E-30 2.9654E-35 -8.1533E-41

面 k A (4次) B(6次) C(8次)
10 0.00000 2.7685E-09 -4.8556E-14 7.1761E-19

D(10次) E(12次) F(14次) G(16次)
-1.0764E-23 1.1874E-28 -7.9838E-34 2.3936E-39


面 k A (4次) B(6次) C(8次)
12 0.00000 -4.3555E-09 3.6359E-14 -5.9513E-19

D(10次) E(12次) F(14次) G(16次)
7.6588E-24 -7.1941E-29 3.9428E-34 -9.5434E-40

面 k A (4次) B(6次) C(8次)
15 0.00000 -1.0647E-09 3.3778E-15 -1.1026E-19

D(10次) E(12次) F(14次) G(16次)
2.2824E-24 -2.7430E-29 1.7558E-34 -4.8219E-40
(Aspherical)
Surface k A (4th order) B (6th order) C (8th order)
1 -1.00835 0.00000 0.00000 0.00000

D (10th order) E (12th order) F (14th order) G (16th order)
0.00000 0.00000 0.00000 0.00000

Surface k A (4th order) B (6th order) C (8th order)
3 0.00000 -1.5010E-10 -7.8810E-17 -7.3909E-22

D (10th order) E (12th order) F (14th order) G (16th order)
1.0128E-26 -7.1216E-32 2.6165E-37 -3.8976E-43

Surface k A (4th order) B (6th order) C (8th order)
4 0.00000 6.8480E-11 5.6166E-16 -1.3924E-20

D (10th order) E (12th order) F (14th order) G (16th order)
3.3242E-25 -4.3715E-30 2.9654E-35 -8.1533E-41

Surface k A (4th order) B (6th order) C (8th order)
10 0.00000 2.7685E-09 -4.8556E-14 7.1761E-19

D (10th order) E (12th order) F (14th order) G (16th order)
-1.0764E-23 1.1874E-28 -7.9838E-34 2.3936E-39


Surface k A (4th order) B (6th order) C (8th order)
12 0.00000 -4.3555E-09 3.6359E-14 -5.9513E-19

D (10th order) E (12th order) F (14th order) G (16th order)
7.6588E-24 -7.1941E-29 3.9428E-34 -9.5434E-40

Surface k A (4th order) B (6th order) C (8th order)
15 0.00000 -1.0647E-09 3.3778E-15 -1.1026E-19

D (10th order) E (12th order) F (14th order) G (16th order)
2.2824E-24 -2.7430E-29 1.7558E-34 -4.8219E-40

図3,図4は、実施例1の反射望遠鏡1の収差図である。図3が縦収差図であり、図4が横収差図である。収差図から明らかなように、本実施例の主焦点補正光学系100を用いた反射望遠鏡1は、大気分散補正機能を有しつつ1.5度の視野角全域にわたって星像直径がRMS0.3秒角以内の良好な結像性能を有する。   3 and 4 are aberration diagrams of the reflecting telescope 1 according to the first embodiment. FIG. 3 is a longitudinal aberration diagram, and FIG. 4 is a lateral aberration diagram. As is apparent from the aberration diagrams, the reflecting telescope 1 using the main focus correction optical system 100 of this embodiment has an atmospheric dispersion correction function and a star image diameter of RMS 0.3 over the entire viewing angle of 1.5 degrees. Good imaging performance within a second angle.

実施例1の反射望遠鏡においては、観測したい天体が天頂方向にある場合には大気分散がの影響が無いので複合レンズA1を移動する必要はない。天頂方向からの離角を検出する天頂離角検出手段4によって検出された天体が、天頂方向から60度の方向(離角角度60度)にある場合に複合レンズA1の移動量が最大の約22mmとなる。   In the reflecting telescope of the first embodiment, when the celestial body to be observed is in the zenith direction, there is no influence of atmospheric dispersion, so there is no need to move the compound lens A1. When the celestial body detected by the zenith separation angle detection means 4 for detecting the separation angle from the zenith direction is in a direction of 60 degrees from the zenith direction (separation angle 60 degrees), the amount of movement of the compound lens A1 is about the maximum. 22 mm.

本実施例において天頂離角検出手段4を用いずに入力手段より外部から天頂離角を入力し、その値に基づいて複合レンズA1を駆動しても良い。   In this embodiment, the zenith divergence angle detection means 4 may be used without inputting the zenith divergence angle from the outside, and the compound lens A1 may be driven based on the value.

複合レンズA1を光軸に対して約22mm移動した場合でも収差は比較的良好に保たれているが、複合レンズA1を移動しない天頂方向での観測時と比べるとコマ収差および像面の倒れによる結像性能が低下する。これは複合レンズA1を構成するレンズA11とレンズA12の材料の組み合わせが必ずしも理想的ではなく、屈折率に差があることが原因である。主焦点補正光学系100の視野角を1.5度以上に大きくしようとすると必然的に複合レンズA1のサイズも非常に大きくなり、実施例1の反射望遠鏡1では有効径が600mmを超えるサイズとなっている。   Even when the compound lens A1 is moved about 22 mm with respect to the optical axis, the aberration is kept relatively good, but due to coma aberration and image plane tilt compared to observation in the zenith direction where the compound lens A1 is not moved. Imaging performance is degraded. This is because the combination of materials of the lens A11 and the lens A12 constituting the compound lens A1 is not necessarily ideal, and there is a difference in refractive index. When the viewing angle of the main focus correction optical system 100 is increased to 1.5 degrees or more, the size of the compound lens A1 is inevitably very large, and the effective diameter of the reflecting telescope 1 of Example 1 exceeds 600 mm. It has become.

これほどの大きいサイズの光学材料は製造が難しく、現実的には使用できる材料の種類が厳しく制約されてしまう。従って、現実には屈折率がほぼ同じで波長分散だけが異なるような理想的な光学材料の組み合わせを選択できないという制約の中で反射望遠鏡1を構成することが避けられない。そこで本実施例の反射望遠鏡1では、この複合レンズA1の移動によって発生する収差劣化による影響を補正する手段を設けている。   Optical materials of such a large size are difficult to manufacture, and in reality, the types of materials that can be used are severely restricted. Therefore, in reality, it is inevitable to construct the reflecting telescope 1 under the constraint that an ideal combination of optical materials having substantially the same refractive index but different only in chromatic dispersion cannot be selected. In view of this, the reflecting telescope 1 of the present embodiment is provided with means for correcting the influence of aberration deterioration caused by the movement of the compound lens A1.

図5は本実施例の収差劣化を補正する手段を有する補正光学系100の要部概略図である。図5は複合レンズA1の移動による収差劣化を補正するための構成を示している。図5においてS1は複合レンズA1の光軸に対し垂直方向の成分に関する駆動量を検知する検知手段である。S2は検知手段S1によって検知された複合レンズA1の駆動量から撮像素子3の傾き補正量を算出する演算手段である。S3は、演算手段S2によって算出された補正量から撮像素子3の傾き角を変える制御手段である。S4は制御手段S3からの制御信号に基づいて撮像素子3を傾ける傾き駆動手段である。   FIG. 5 is a schematic view of a main part of a correction optical system 100 having means for correcting aberration deterioration of the present embodiment. FIG. 5 shows a configuration for correcting aberration deterioration due to movement of the compound lens A1. In FIG. 5, S1 is a detecting means for detecting a driving amount related to a component in a direction perpendicular to the optical axis of the compound lens A1. S2 is a calculation means for calculating the tilt correction amount of the image sensor 3 from the driving amount of the compound lens A1 detected by the detection means S1. S3 is control means for changing the tilt angle of the image sensor 3 from the correction amount calculated by the calculation means S2. S4 is an inclination driving means for inclining the image sensor 3 based on a control signal from the control means S3.

以下に本実施例の動作について説明する。反射望遠鏡1が天頂から離れた方向にある天体を観測する際、目標天体の天頂離角に応じて複合レンズA1(ADC)の光軸に対する差異的な駆動量が決定される。天頂離角に対応する複合レンズA1の光軸に対する最適駆動量は、光学設計値から計算された数値テーブルあるいは数式の形で用意されている。複合レンズA1を駆動するための駆動手段(ADC駆動手段)2には検知手段S1が組み込まれており、複合レンズA1がどれだけ移動したかを検知する。   The operation of this embodiment will be described below. When the reflecting telescope 1 observes a celestial body in a direction away from the zenith, a differential driving amount with respect to the optical axis of the compound lens A1 (ADC) is determined according to the zenith separation angle of the target celestial body. The optimum driving amount for the optical axis of the compound lens A1 corresponding to the zenith separation angle is prepared in the form of a numerical table or a mathematical formula calculated from the optical design values. A detecting means S1 is incorporated in the driving means (ADC driving means) 2 for driving the compound lens A1, and detects how much the compound lens A1 has moved.

駆動手段2は検知手段S1と別々に構成されていても良い。駆動手段2を組み込む検知手段S1としては、光電スケール方式あるいは干渉方式のエンコーダ等が使用できる。なお、駆動手段2の駆動精度が十分に良いと考えられる場合には、複合レンズA1の駆動量指示値をそのまま検知結果としても良い。   The drive unit 2 may be configured separately from the detection unit S1. As the detection means S1 incorporating the drive means 2, a photoelectric scale type or interference type encoder or the like can be used. If it is considered that the driving accuracy of the driving unit 2 is sufficiently good, the driving amount instruction value of the compound lens A1 may be used as it is as a detection result.

次に補正量を演算する演算手段S2は、検知手段S1によって検知された複合レンズA1の移動量から予測される各画角での収差発生量を算出する。ここでいう収差発生量には画角によるフォーカス変動の成分も含んでいる。複合レンズA1の移動量と収差発生量の関係は光学設計パラメータから光線追跡により計算されるが、実際には予め計算しておいた結果を数値テーブルあるいは近似式の形で用意しておけば良い。   Next, the calculation means S2 for calculating the correction amount calculates the aberration generation amount at each angle of view predicted from the movement amount of the compound lens A1 detected by the detection means S1. The aberration generation amount here also includes a component of focus fluctuation due to the angle of view. The relationship between the amount of movement of the compound lens A1 and the amount of aberration generated is calculated by ray tracing from the optical design parameters. Actually, however, the result calculated in advance may be prepared in the form of a numerical table or approximate expression. .

演算手段S2には、撮像素子3の駆動に対する収差変化の敏感度テーブルが予め用意されている。この敏感度テーブルを用いて、予測される収差の影響を全画角に渡って最も低減できる撮像素子3の光軸に対する傾き補正量を最適化演算により算出する。   The computing means S2 is prepared in advance with an aberration change sensitivity table with respect to driving of the image sensor 3. Using this sensitivity table, the amount of tilt correction with respect to the optical axis of the image sensor 3 that can most reduce the influence of the predicted aberration over the entire angle of view is calculated by an optimization calculation.

次に撮像素子3の傾きを制御する制御手段S3は、演算手段S2によって決定された補正量の分だけ主焦点補正光学系100と撮像素子3との相対的な傾きが変更されるように、複合レンズA1の移動と同期して傾き駆動手段(アクチュエータ)S4を駆動させる。以上の手順により、複合レンズA1の移動に伴う収差劣化の影響を低減して天体観測を行っている。   Next, the control means S3 for controlling the inclination of the image pickup device 3 changes the relative inclination between the main focus correction optical system 100 and the image pickup device 3 by the correction amount determined by the calculation means S2. The tilt driving means (actuator) S4 is driven in synchronization with the movement of the compound lens A1. According to the above procedure, astronomical observation is performed while reducing the influence of aberration deterioration accompanying the movement of the compound lens A1.

図6に本実施例の反射望遠鏡で天頂方向の天体を観測する際、すなわち複合レンズA1を駆動していない状態でのエンサークルドエネルギー図を示す。計算波長は波長570nm〜670nmを透過する赤色フィルタを使って観測した場合としている。横軸は天体からの光束が撮像面C1上に集光するスポット半径をミクロン単位で示している。縦軸はそのスポット半径に包含される光エネルギーの比率を示している。   FIG. 6 shows an encircled energy diagram when a celestial body in the zenith direction is observed with the reflecting telescope of the present embodiment, that is, when the compound lens A1 is not driven. The calculation wavelength is assumed to be observed using a red filter that transmits wavelengths of 570 nm to 670 nm. The horizontal axis indicates the spot radius in micron where the light beam from the celestial body is condensed on the imaging surface C1. The vertical axis represents the ratio of light energy included in the spot radius.

複数描かれているカーブは各々異なる画角におけるエンサークルドエネルギーを示している。図中に縦に描かれている点線は、最も良くない画角において80%のエネルギーを包含するスポット半径を示しており、結像性能の評価の目安としている。   A plurality of drawn curves indicate encircled energy at different angles of view. A dotted line vertically drawn in the figure indicates a spot radius including 80% of energy at the worst angle of view, and is used as a standard for evaluating the imaging performance.

図7は本実施例の主焦点補正光学系100で想定している最も大きな天頂離角60°に位置する天体を観測する際のエンサークルドエネルギー図である。この場合に大気分散の影響が最大となり、大気分散を補正するために複合レンズA1の駆動量も最大の約22mmとなる。図6と比較して分かるように、複合レンズA1の駆動によって少なからずコマ収差と像面傾きが発生し、結像性能が低下している。それでも複合レンズA1を駆動しない場合、すなわち大気分散の影響を補正しない場合と比べれば大幅に高い結像性能が得られている。   FIG. 7 is an encircled energy diagram when observing a celestial body located at the largest zenith divergence angle of 60 ° assumed in the main focus correction optical system 100 of the present embodiment. In this case, the influence of atmospheric dispersion is maximized, and the driving amount of the compound lens A1 is about 22 mm, which is the maximum in order to correct the atmospheric dispersion. As can be seen from comparison with FIG. 6, not only a coma aberration and an image plane tilt are generated due to the driving of the compound lens A1, and the imaging performance is degraded. Even so, imaging performance is significantly higher than when the compound lens A1 is not driven, that is, when the influence of atmospheric dispersion is not corrected.

図8は天頂離角60°に位置する天体を観測する際に本発明を適用した結果のエンサークルドエネルギー図である。複合レンズA1の駆動による像面傾きとコマ収差を補正するために、主焦点補正光学系100に対して撮像素子3の傾きを約11秒(0.003°)だけ傾けている。これにより、複合レンズA1が駆動される方向の画角とその反対方向の画角における収差の非対称性が改善され、図8に示されるように最も良くない画角においても結像性能が向上している。   FIG. 8 is an encircled energy diagram as a result of applying the present invention when observing a celestial body located at a zenith separation angle of 60 °. In order to correct the image plane tilt and coma aberration due to the driving of the compound lens A1, the tilt of the image sensor 3 is tilted by about 11 seconds (0.003 °) with respect to the main focus correction optical system 100. As a result, the asymmetry of aberration between the angle of view in the direction in which the compound lens A1 is driven and the angle of view in the opposite direction is improved, and the imaging performance is improved even at the worst angle of view as shown in FIG. ing.

本実施例では波長570nm〜670nmを透過する赤色フィルタで観測する場合に最適化して撮像素子3の傾きを補正しているが、使用するフィルタ波長ごとに補正量を個別に設定することも可能である。   In this embodiment, the inclination of the image pickup device 3 is corrected by optimizing when observing with a red filter that transmits wavelengths of 570 nm to 670 nm. However, the correction amount can be set individually for each filter wavelength to be used. is there.

以上のように本実施例によれば、屈折率に0.5%以上の差がある2種類の材料で複合レンズを構成した場合でも星像のシャープさを損なうことなく大気分散補正効果を発揮することができる。このため、大気分散補正機能を有しつつ従来に比して視野角の大きな主焦点での高分解能な観測ができる反射望遠鏡が得られる。   As described above, according to the present embodiment, even when a compound lens is composed of two kinds of materials having a difference in refractive index of 0.5% or more, the atmospheric dispersion correction effect is exhibited without impairing the sharpness of the star image. can do. Therefore, it is possible to obtain a reflective telescope having an atmospheric dispersion correction function and capable of high-resolution observation at a main focal point having a larger viewing angle than the conventional one.

以上述べた実施例では、視野角1.5°の例について説明したが、視野角はこの値に限らず実施可能である。例えば、視野角が1.2°や2.0°など、異なる視野角についても本発明を適用することができる。   In the embodiment described above, the example of the viewing angle of 1.5 ° has been described, but the viewing angle is not limited to this value, and can be implemented. For example, the present invention can be applied to different viewing angles such as a viewing angle of 1.2 ° or 2.0 °.

また、上記の実施例においては、複合レンズA1として、光入射側と光出射側の面が平面または曲率半径の大きな球面である複合レンズA1を用いて光軸に対して直交する成分を持つ方向に複合レンズA1を移動させて大気分散を補正する例を示した。   In the above-described embodiment, the compound lens A1 has a component orthogonal to the optical axis by using the compound lens A1 whose surfaces on the light incident side and the light emitting side are flat surfaces or spherical surfaces having a large curvature radius. An example of correcting the atmospheric dispersion by moving the compound lens A1 is shown.

しかし、これ以外の構成の複合レンズA1を用いても良い。例えば、特許文献1に記載されているように、両端面が同心球面形状である複合レンズを用いて、その曲率中心を回転中心として複合レンズを回転させて大気分散を補正する方式を用いてもよい。   However, a compound lens A1 having a configuration other than this may be used. For example, as described in Patent Document 1, a method of correcting atmospheric dispersion by using a compound lens having both concentric spherical surfaces at both ends and rotating the compound lens with the center of curvature as the center of rotation is used. Good.

M1 主鏡 100 補正光学系 L11 第1レンズ
L12 第2レンズ L13 第3レンズ L14 第4レンズ
L15 第5レンズ A1 複合レンズ(ADC)
A11 複合レンズを構成する第1レンズ
A12 複合レンズを構成する第2レンズ
F1 平行平面板 C1 撮像素子面 S1 ADC駆動量検知手段
S2 傾き補正量演算手段 S3 傾き制御手段 S4 傾き駆動手段
1 反射望遠鏡 2 ADC駆動手段 3 撮像手段
4 天頂離角検出手段
M1 Primary mirror 100 Correction optical system L11 1st lens L12 2nd lens L13 3rd lens L14 4th lens L15 5th lens A1 Compound lens (ADC)
A11 First lens constituting the compound lens A12 Second lens constituting the compound lens F1 Parallel plane plate C1 Imaging element surface S1 ADC drive amount detection means S2 Inclination correction amount calculation means S3 Inclination control means S4 Inclination drive means 1 Reflective telescope 2 ADC driving means 3 Imaging means 4 Zenith divergence angle detecting means

Claims (6)

結像作用を有する反射鏡と、該反射鏡で結像する像を補正する補正光学系と、該補正光学系を介した像を光電変換する撮像素子とを有する反射望遠鏡であって、
前記補正光学系は正レンズと負レンズよりなり、光軸に対して垂直方向の成分を持つ方向に移動する複合レンズを有しており、
前記複合レンズを構成する正レンズと負レンズの材料の屈折率の差は0.5%以上あり、
前記反射望遠鏡は、前記複合レンズの駆動量を検知する検知手段と、前記検知手段によって検知された複合レンズの駆動量から前記撮像素子の光軸に対する傾き補正量を演算する演算手段と、該演算手段によって算出された補正量から前記複合レンズの移動量と前記撮像素子の光軸に対する傾き量を駆動制御する制御手段と、を有することを特徴とする反射望遠鏡。
A reflecting telescope having a reflecting mirror having an imaging action, a correcting optical system that corrects an image formed by the reflecting mirror, and an image sensor that photoelectrically converts an image via the correcting optical system;
The correction optical system includes a positive lens and a negative lens, and has a compound lens that moves in a direction having a component perpendicular to the optical axis.
The difference in refractive index between the positive lens material and negative lens material constituting the compound lens is 0.5% or more,
The reflecting telescope includes a detecting unit that detects a driving amount of the compound lens, a calculating unit that calculates a tilt correction amount with respect to the optical axis of the imaging element from the driving amount of the compound lens detected by the detecting unit, and the calculation And a control means for drivingly controlling the amount of movement of the compound lens and the amount of inclination of the image sensor with respect to the optical axis from the correction amount calculated by the means.
前記複合レンズの正レンズと負レンズの材料の屈折率の差は5%以下であり、前記正レンズと前記負レンズは光軸方向に隣接配置して構成されていることを特徴とする請求項1に記載の反射望遠鏡。   The difference in refractive index between the positive lens and negative lens material of the compound lens is 5% or less, and the positive lens and the negative lens are arranged adjacent to each other in the optical axis direction. The reflecting telescope according to 1. 前記複合レンズの光入射側の面と光出射側の面は平面であることを特徴とする請求項1又は2の反射望遠鏡。   3. The reflecting telescope according to claim 1, wherein the light incident side surface and the light emitting side surface of the compound lens are flat surfaces. 前記複合レンズの正レンズと負レンズは大気色分散を補正するために分散の異なる材料からなり、接合又は空気層を介して隣接配置されていることを特徴とする請求項1乃至3のいずれか1項の反射望遠鏡。   The positive lens and the negative lens of the compound lens are made of materials having different dispersions for correcting atmospheric color dispersion, and are disposed adjacent to each other via a joint or an air layer. Item 1. Reflective telescope. 前記複合レンズの正レンズと負レンズの対向するレンズ面の曲率半径を各々Rp、Rnとするとき、
0.95<Rn/Rp<1.05
なる条件式を満足することを特徴とする請求項1乃至4のいずれか1項の反射望遠鏡。
When the curvature radii of the lens surfaces of the positive lens and the negative lens facing each other are Rp and Rn, respectively,
0.95 <Rn / Rp <1.05
The reflecting telescope according to claim 1, wherein the following conditional expression is satisfied.
天頂からの離角を検出する天頂離角検出手段を有し、該天頂離角検出手段からの検出結果に基づいて前記複合レンズを移動させる駆動手段を有することを特徴とする請求項1乃至5のいずれか1項の反射望遠鏡。   6. A zenith separation angle detection means for detecting a separation angle from the zenith, and a drive means for moving the compound lens based on a detection result from the zenith separation angle detection means. A reflecting telescope according to any one of the above.
JP2013188224A 2013-09-11 2013-09-11 Reflection telescope Pending JP2015055719A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013188224A JP2015055719A (en) 2013-09-11 2013-09-11 Reflection telescope
US14/481,263 US20150070496A1 (en) 2013-09-11 2014-09-09 Reflecting telescope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013188224A JP2015055719A (en) 2013-09-11 2013-09-11 Reflection telescope

Publications (1)

Publication Number Publication Date
JP2015055719A true JP2015055719A (en) 2015-03-23

Family

ID=52625225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188224A Pending JP2015055719A (en) 2013-09-11 2013-09-11 Reflection telescope

Country Status (2)

Country Link
US (1) US20150070496A1 (en)
JP (1) JP2015055719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111273455A (en) * 2019-12-12 2020-06-12 河北汉光重工有限责任公司 Method for assembling and adjusting visible light/infrared composite lens

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11009687B2 (en) * 2017-11-29 2021-05-18 Opto Engineering S.R.L. Telecentric lens
CN108152218B (en) * 2017-12-13 2020-04-21 中国人民解放军国防科技大学 Method and device for measuring gas covering color difference
CN115769100A (en) * 2020-06-19 2023-03-07 Ams-欧司朗有限公司 Apparatus for display
CN117666094B (en) * 2024-01-30 2024-04-16 中国科学院长春光学精密机械与物理研究所 Large-caliber large-view-field telescope optical structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057946B2 (en) * 1993-01-29 2000-07-04 キヤノン株式会社 Aberration correction system and astronomical telescope using it
JP5264395B2 (en) * 2008-10-03 2013-08-14 キヤノン株式会社 Astronomical telescope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111273455A (en) * 2019-12-12 2020-06-12 河北汉光重工有限责任公司 Method for assembling and adjusting visible light/infrared composite lens

Also Published As

Publication number Publication date
US20150070496A1 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
CN102890336B (en) Photographic optical system and image pickup apparatus equipped with the same
US8730593B2 (en) Image pickup optical system and image pickup apparatus having the same
JP4944436B2 (en) Zoom lens and imaging apparatus having the same
US8928992B2 (en) Zoom lens and image pickup apparatus including the same
US9563041B2 (en) Optical system for an infrared ray
US20140293427A1 (en) Optical device with variable wavelength interference filter
JP5596428B2 (en) Lens system
JP2015055719A (en) Reflection telescope
JP2015172651A (en) Zoom lens, imaging apparatus, and monitoring video camera
WO2017090495A1 (en) Infrared optical system, image pickup optical device, and digital apparatus
US20120212808A1 (en) Infrared Lens
JP2018205434A (en) Zoom lens and imaging apparatus having the same
US10054773B2 (en) Wide-field infrared imaging system
JP6939469B2 (en) Projection optics and projection type image display device
JP5264395B2 (en) Astronomical telescope
JPH09101456A (en) Objective lens system
JP5063243B2 (en) Main focus correction optical system and reflection telescope using the same
JP7027736B2 (en) Projection type image display device
JP2737272B2 (en) Variable power optical system for infrared
JP6779520B2 (en) Large-diameter telephoto zoom lens with anti-vibration function
JP5164620B2 (en) Main focus correction optical system and reflection telescope using the same
US11415784B2 (en) Imagaing optical system, projection display device, and imaging apparatus
JP2020118779A (en) Far-infrared zoom optical system
JP2015031868A (en) Reflector telescope
US7508600B2 (en) Optical system and optical apparatus including the same