JP2015054055A - Bone joint region regeneration material - Google Patents

Bone joint region regeneration material Download PDF

Info

Publication number
JP2015054055A
JP2015054055A JP2013188775A JP2013188775A JP2015054055A JP 2015054055 A JP2015054055 A JP 2015054055A JP 2013188775 A JP2013188775 A JP 2013188775A JP 2013188775 A JP2013188775 A JP 2013188775A JP 2015054055 A JP2015054055 A JP 2015054055A
Authority
JP
Japan
Prior art keywords
bone
ocp
tendon
gel
collagen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013188775A
Other languages
Japanese (ja)
Other versions
JP2015054055A5 (en
JP6265665B2 (en
Inventor
鈴木 治
Osamu Suzuki
治 鈴木
栄二 井樋
Eiji Itoi
栄二 井樋
善昭 糸魚川
Yoshiaki Itoigawa
善昭 糸魚川
博高 佐野
Hirotaka Sano
博高 佐野
高橋 敦
Atsushi Takahashi
敦 高橋
貴久 穴田
Takahisa Anada
貴久 穴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2013188775A priority Critical patent/JP6265665B2/en
Publication of JP2015054055A publication Critical patent/JP2015054055A/en
Publication of JP2015054055A5 publication Critical patent/JP2015054055A5/ja
Application granted granted Critical
Publication of JP6265665B2 publication Critical patent/JP6265665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an artificial material which can promote the treatment of a bone joint region such as a tendon and a ligament.SOLUTION: There is provided a bone joint region regeneration material comprising a complex of octacalcium phosphate and gelatin.

Description

本発明は、骨接合部再生材料に関する。   The present invention relates to an osteosynthesis regenerated material.

骨再生材料として、ハイドロキシアパタイト(Ca10(PO46(OH)2)の前駆体である第8リン酸カルシウム(Ca82(PO46・5H2O)、以下OCP)と天然高分子との複合体が有用であることが従来より知られており、本願発明者らはこれまでにOCPとアルギン酸ナトリウムとの複合体(特許文献1)、OCPと非晶質リン酸カルシウム(Ca3(PO42・nH2O)、第2リン酸カルシウム無水和物(CaHPO4)、第2リン酸カルシウム2水和物(CaHPO4・2H2O)、低結晶性のハイドロキシアパタイト又は低結晶性の第8リン酸カルシウムとの複合体(特許文献2)、並びにOCPとゼラチンとの複合体(特許文献3,4)あるいはOCPとコラーゲンとの複合体(非特許文献1)が優れた骨再生能を有することを報告してきた。 As a bone regeneration material, hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ), which is a precursor of eighth calcium phosphate (Ca 8 H 2 (PO 4 ) 6 · 5H 2 O), hereinafter referred to as OCP) and natural high It has been conventionally known that a complex with a molecule is useful, and the inventors of the present application have so far made a complex of OCP and sodium alginate (Patent Document 1), OCP and amorphous calcium phosphate (Ca 3 ( PO 4 ) 2 · nH 2 O), dibasic calcium phosphate anhydrate (CaHPO 4 ), dicalcium phosphate dihydrate (CaHPO 4 .2H 2 O), low crystalline hydroxyapatite or low crystalline eighth Bone reconstitution excellent in a complex of calcium phosphate (Patent Document 2), a complex of OCP and gelatin (Patent Documents 3 and 4), or a complex of OCP and collagen (Non-patent Document 1). It has been reported that it has vitality.

肩の腱板断裂は、上腕骨頭に停止する筋肉の腱が、加齢や肩の酷使、外傷により断裂する疾患であり、特に中高年以降における肩の痛み及び機能不全の最も一般的な原因である (非特許文献2)。保存療法が成功しなかった場合には、上腕骨頭に腱板を縫着する外科手術が行なわれるが (非特許文献3〜5)、25%〜90%の割合で術後に再断裂が起こることが報告されている(非特許文献3〜6)。ウサギのモデルでは腱板修復後に新たな腱の骨付着部(enthesis)が形成されるのに24週間かかると報告されているが(非特許文献7)、その理由の一つとして、顕微鏡レベルにおける腱骨接合部の再形成に時間がかかることが挙げられる。腱板修復術後に再断裂した患者では、再断裂のない患者よりも肩の機能が劣ることが広く知られている(非特許文献4,5)。そのため、腱板再建後の治癒を改善し、再断裂率を減少させるには腱の骨付着部の再建プロセスを早める必要がある。   Shoulder rotator cuff tear is a disease in which the muscular tendon that stops at the head of the humerus tears due to aging, overuse of the shoulder, or trauma, and is the most common cause of shoulder pain and dysfunction, especially after middle-aged and older (Non-patent document 2). If conservative therapy is unsuccessful, a surgical operation is performed in which a rotator cuff is sewn to the humeral head (Non-Patent Documents 3 to 5), but re-rupture occurs after surgery at a rate of 25% to 90%. It has been reported (Non-Patent Documents 3 to 6). In the rabbit model, it has been reported that it takes 24 weeks to form a new tendon bone enthesis after rotator cuff repair (Non-patent Document 7). For example, it takes time to reconstruct the tendon joint. It is well known that patients who have re-teared after rotator cuff repair have poorer shoulder function than patients without re-tear (Non-Patent Documents 4 and 5). Therefore, in order to improve healing after rotator cuff reconstruction and reduce the re-tear rate, it is necessary to accelerate the reconstruction process of the tendon bone attachment.

また、膝靭帯損傷(スポーツ膝等)の再建時に、手術場にて自家腱(移植腱)を採取し、その自家腱にリンゲル液に浸漬することによりリン酸カルシウムを析出させて石灰化腱とし、対向する大腿骨の遠位部と脛骨の近位部とに形成した貫通穴に該損傷部を移植する方法が、損傷靭帯治療に有効性があるという報告がある(非特許文献8)。しかしながら、この方法では患者の腱を、手術中に繰り返して溶液で処理する必要があり、操作の煩雑さや手術時間の延長といった問題があり一般に普及するには至っていない。   At the time of reconstruction of knee ligament injury (sports knee, etc.), autologous tendons (transplanted tendons) are collected at the operation site, and immersed in Ringer's solution in the self-tendons to precipitate calcium phosphate to form calcified tendons. There is a report that a method of implanting the damaged portion into a through hole formed in the distal portion of the femur and the proximal portion of the tibia is effective for treating a damaged ligament (Non-patent Document 8). However, in this method, it is necessary to repeatedly treat a patient's tendon with a solution during the operation, and there are problems such as complicated operation and prolonged operation time.

特開2009−254547JP2009-254547 特開2010−110404JP 2010-110404 A 特開2011−234799JP2011-234799A 特開2013−106644JP2013-106644A

J Biomed Mater Res B Appl Biomater 2006 79(2): 210-217J Biomed Mater Res B Appl Biomater 2006 79 (2): 210-217 J Shoulder Elbow Surg. 2010 Jan; 19(1): 116-120J Shoulder Elbow Surg. 2010 Jan; 19 (1): 116-120 J Bone Joint Surg Am. 1997 Jul; 79(7):1064-8J Bone Joint Surg Am. 1997 Jul; 79 (7): 1064-8 Clin Orthop Relat Res. 1994 Jul;(304):43-53.Clin Orthop Relat Res. 1994 Jul; (304): 43-53. J Bone Joint Surg Am. 1991 Aug;73(7):982-9.J Bone Joint Surg Am. 1991 Aug; 73 (7): 982-9. Arthroscopy. 1994 Feb;10(1):54-60.Arthroscopy. 1994 Feb; 10 (1): 54-60. J Orthop Res. 2005 Nov;23(6):1433-40.J Orthop Res. 2005 Nov; 23 (6): 1433-40. Biomaterials 26 (2005) 1027-1034Biomaterials 26 (2005) 1027-1034

本願発明者らの研究から、OCPとゼラチンとの複合体(OCP−Gel)が骨自体の高い再生能を示すことは判明していたが、骨以外の組織の再生にかかる複合体が有用であるかどうかは不明であった。   From the studies by the present inventors, it has been found that a complex of OCP and gelatin (OCP-Gel) exhibits a high regenerative ability of bone itself, but a complex related to regeneration of tissues other than bone is useful. It was unknown whether there was.

そこで、本願発明者らは、組織石灰化を早めることが可能な材料は、腱や靭帯などの結合組織における骨付着部の再形成にも有用であると考え、OCP−Gelが応用できると考えた。   Therefore, the present inventors consider that a material capable of accelerating tissue calcification is also useful for re-forming the bone attachment part in connective tissues such as tendons and ligaments, and that OCP-Gel can be applied. It was.

完全な人工材料であるOCP−Gelを、腱や靭帯などの骨接合部の治療にも用いることができれば、材料を安定供給しつつ、骨接合部の疾患の治癒を促進することができ、有益である。   If OCP-Gel, which is a complete artificial material, can be used for the treatment of bone joints such as tendons and ligaments, it is possible to promote the healing of bone joint diseases while stably supplying materials. It is.

本発明者らは鋭意研究した結果、OCP−Gelを腱の断裂部に適用したところ、腱側からのコラーゲン線維の再生及び骨との連結も促進することで、腱骨接合部の再形成を促進する効果を見出した。本発明は、かかる新規の知見に基づくものである。     As a result of intensive research, the present inventors applied OCP-Gel to a tendon tear, and promoted the regeneration of collagen fibers from the tendon side and the connection with the bone, thereby regenerating the tendon joint. I found the effect to promote. The present invention is based on such novel findings.

従って、本発明は、以下の項を提供する:
項1.第8リン酸カルシウムとゼラチンとの複合体を含む骨接合部再生材料。
Accordingly, the present invention provides the following sections:
Item 1. A bone joint regeneration material comprising a composite of eighth calcium phosphate and gelatin.

項2.前記骨接合部は骨と接合する結合組織の部分である項1に記載の骨接合部再生材料。   Item 2. The osteosynthesis regenerated material according to item 1, wherein the osteosynthesis is a portion of connective tissue to be joined to bone.

項3.前記骨接合部は腱又は靭帯である項1に記載の骨接合部再生材料。   Item 3. Item 2. The bone joint regeneration material according to Item 1, wherein the bone joint is a tendon or a ligament.

項4.骨と腱、骨と靭帯、又は骨と骨の間に適用される項1に記載の骨接合部再生材料。   Item 4. Item 2. The bone joint regeneration material according to Item 1, which is applied between bone and tendon, bone and ligament, or between bone and bone.

項5.質量比でゼラチン1に対して第8リン酸カルシウムが0.1〜9である項1〜4のいずれか一項に記載の骨接合部再生材料。   Item 5. Item 5. The bone joint regeneration material according to any one of Items 1 to 4, wherein the eighth calcium phosphate is 0.1 to 9 with respect to gelatin 1 by mass ratio.

本発明によれば、治療の際の患者への負担が少ない上、人工骨材料であるOCP−Gelを安定供給できるため有利である。靭帯も含め吸収置換することのない人工材料(高分子繊維)で腱断裂部を結ぶ従来の方法と比較して、本発明の骨接合部再生材料は新しい治療への用途に有効であり、また整形外科領域における応用が期待される。   According to the present invention, the burden on the patient during treatment is small, and the OCP-Gel that is an artificial bone material can be stably supplied, which is advantageous. Compared with the conventional method of ligating the tendon rupture with an artificial material (polymer fiber) that does not absorb and replace, including the ligament, the bone joint regeneration material of the present invention is effective for new therapeutic applications, and Applications in the orthopedic field are expected.

棘下筋腱修復の手順。(A)棘下筋腱の修復前。左側の黒色矢印は取外した棘下筋腱の断端を示し、右側の白色矢印は大結節上の骨溝を示す。(B)棘下筋腱の修復後。青色矢印は棘下筋腱の修復後の骨溝を示す。(C)棘下筋腱の断端の再取り付けのスキーム。Procedure for subspinous tendon repair. (A) Before repair of the subspinous muscle tendon. The black arrow on the left indicates the stump of the removed subspinous muscle tendon, and the white arrow on the right indicates the bony groove on the large nodule. (B) After repair of the subspinous muscle tendon. The blue arrow indicates the bone groove after repair of the subspinous muscle tendon. (C) Scheme of reattachment of the stump of the subspinous muscle tendon. 移植に使用されたOCP/Gel複合体のディスク表面のSEM顕微鏡写真。(A)30倍、(B)300倍。SEM micrograph of the disk surface of the OCP / Gel composite used for implantation. (A) 30 times, (B) 300 times. (a)−(c)手術後2週後の骨溝内のヘマトキシリン−エオシン(HE)染色。Tは棘下筋腱、Bは骨を示す。すべての群で骨溝は顆粒組織で満たされ、多数の未分化な間葉系細胞が観察できる。(c)のOCP+群では、OCP沈殿物がまだ残っており、多くの未分化な間葉系細胞に囲まれている(青色矢印)。(A)-(c) Hematoxylin-eosin (HE) staining in the bone groove 2 weeks after surgery. T represents the subspinous muscle tendon, and B represents the bone. In all groups, the bone sulcus is filled with granular tissue and a large number of undifferentiated mesenchymal cells can be observed. In the OCP + group of (c), the OCP precipitate still remains and is surrounded by many undifferentiated mesenchymal cells (blue arrows). ヘマトキシリン−エオシン(HE)染色(図4a−c:4週間、図4g−i:8週間)。偏光顕微鏡でのHE染色(図4d−f:4週間、図4j−l:8週間。Tは棘下筋腱、Bは骨を示す。赤色矢印(上向きの矢印)がコラーゲン線維、青色矢印(下向きの矢印)がSharpey線維である。Hematoxylin-eosin (HE) staining (FIG. 4a-c: 4 weeks, FIG. 4g-i: 8 weeks). HE staining (FIG. 4d-f: 4 weeks, FIG. 4j-l: 8 weeks, T represents the inferior spinal tendon, B represents the bone, red arrow (upward arrow) is collagen fiber, blue arrow ( The downward arrow) is the Sharpey fiber. トルイジンブルー染色。Tは棘下筋腱、Bは骨を示す。取り付け後8週目の染色領域。3つの群で、腱と骨の接合部に染色が観察された。これはプロテオグリカンが含まれることを示す(白色矢印)。Toluidine blue staining. T represents the subspinous muscle tendon, and B represents the bone. Stained area 8 weeks after installation. In three groups, staining was observed at the tendon-bone junction. This indicates that proteoglycan is contained (white arrow). (A)2週目、4週目、及び8週目の未分化間葉系細胞の数、(B)異染色性面積。(C)回折した偏光、(D)Sharpey線維の数。エラーバーは標準誤差を示す。*P<0.05。(A) Number of undifferentiated mesenchymal cells at 2 weeks, 4 weeks, and 8 weeks, (B) Metachromatic area. (C) Diffracted polarized light, (D) Number of Sharpey fibers. Error bars indicate standard error. * P <0.05. 手術後8週目のI型及びIII型コラーゲンの免疫組織化学。Tは棘下筋腱、Bは骨を示す。青色矢印はSharpey線維を示し、赤色矢印(図7fの左側の矢印)はIII型コラーゲンにより染色された腱を示す。Immunohistochemistry of type I and type III collagen 8 weeks after surgery. T represents the subspinous muscle tendon, and B represents the bone. Blue arrows indicate Sharpey fibers, and red arrows (left arrow in FIG. 7f) indicate tendons stained with type III collagen.

本明細書において、「骨接合部」とは、腱や靭帯を初めとする、骨と接合する組織の部分、特に結合組織の部分を指す。また、骨接合部は、骨と実際に接合している状態のもののみならず、正常な状態では骨と接合しているが、損傷または切断などの理由により骨と部分的または完全に分離したものも含む。   In the present specification, the “osseous joint” refers to a portion of tissue that joins with bone, particularly a portion of connective tissue, including tendons and ligaments. In addition, the bone joint is not only in a state where it is actually joined to the bone, but in a normal state, it is joined to the bone, but it is partially or completely separated from the bone due to reasons such as damage or cutting. Including things.

本発明の骨接合部再生材料は、第8リン酸カルシウム(octacalcium phosphate、(Ca82(PO46・5H2O)、以下OCP)と、ゼラチン(gelatin, Gel)との複合体(以下、OCP/Gel材料と記載する場合がある)を含む。なお「OCP/Gel材料」、「OCPとGelとの複合体」、「OCP及びGelを含む混合物」、及び「OCP及びGelを含有する組成物」は互換的に使用可能であるものとする。 Bone joint regeneration material of the present invention, the eighth phosphate (octacalcium phosphate, (Ca 8 H 2 (PO 4) 6 · 5H 2 O), hereinafter OCP) and gelatin (gelatin, Gel) complex with (hereinafter May be described as OCP / Gel material). It should be noted that “OCP / Gel material”, “OCP / Gel composite”, “mixture containing OCP and Gel”, and “composition containing OCP and Gel” can be used interchangeably.

OCP/Gel材料は、変性コラーゲンであるゼラチンにOCPの結晶を直接析出させた複合体であり、OCPの結晶が均一に分散していると考えられる。   The OCP / Gel material is a composite in which OCP crystals are directly deposited on gelatin, which is a modified collagen, and it is considered that the OCP crystals are uniformly dispersed.

ゼラチンとしては、特に限定されない。通常、コラーゲンを熱処理して得られる。市販のゼラチンであってもよい。ゼラチンはOCPのキャリアー材料として作用すると考えられる。   The gelatin is not particularly limited. Usually obtained by heat treatment of collagen. Commercially available gelatin may also be used. Gelatin is believed to act as a carrier material for OCP.

コラーゲンとしては、特に限定されない。例えば、豚、牛の皮膚、骨、腱に由来するコラーゲンが挙げられる。好ましくは、蛋白分解酵素(例えば、ペプシン、プロナーゼ)により可溶化され、テロペプチドが除去された酵素可溶化コラーゲンである。コラーゲンのタイプとしては、例えば、I型コラーゲン、及びI型コラーゲンとIII型コラーゲンの組み合わせが好ましい。コラーゲンは生体由来成分であるので、安全性が高く、特に酵素可溶化コラーゲンがアレルゲン性も低く好ましい。市販のコラーゲンであってもよい。   Collagen is not particularly limited. For example, collagen derived from pigs, cow skin, bones, and tendons. Preferably, the enzyme-solubilized collagen is solubilized with a proteolytic enzyme (for example, pepsin or pronase) and the telopeptide is removed. As the type of collagen, for example, type I collagen and a combination of type I collagen and type III collagen are preferable. Since collagen is a biological component, it is highly safe, and enzyme-solubilized collagen is particularly preferred because it has low allergenicity. Commercially available collagen may be used.

OCPとゼラチンとの割合は特に限定されないが、好ましくは、質量比で、ゼラチン1に対してOCPが0.1〜9、より好ましくは0.67〜4である。ゼラチン1に対してOCPが0.1未満であると、得られる骨再生材料の骨再生能が劣り、9を超えると、形状付与性が低下する。   The ratio of OCP to gelatin is not particularly limited, but is preferably 0.1 to 9 and more preferably 0.67 to 4 in terms of mass ratio with respect to gelatin 1. When the OCP is less than 0.1 with respect to gelatin 1, the bone regeneration ability of the obtained bone regeneration material is inferior.

また、OCP/Gel材料中のOCPは、10〜90%、より好ましくは20〜90%であり、特に40〜80%の範囲で骨接合部の修復効果が最良となる。   In addition, OCP in the OCP / Gel material is 10 to 90%, more preferably 20 to 90%, and the repair effect of the bone joint is best in the range of 40 to 80%.

OCP/Gel材料の製造方法は特には限定されず、例えばOCPとゼラチンを共沈及び加熱する方法によって得られた熱脱水架橋体(特開2011−234799号参照)であってもよいし、OCPの微粉末をゼラチン水溶液に分散させた分散液の凍結乾燥法(特開2013−116644号参照)によって得られた凍結乾燥物であってもよいし、凍結乾燥と熱脱水処理を組み合わせたものでもよく、或いは、Gel上への析出(Handa T et al. Acta Biomater 8 (2012) 1190-1200)、Gelとのナノ−マイクロサイズOCPとの混合(Miura K et al. Appl Sur Sci 282 (2013) 138-145),OCP顆粒とコラーゲンの混合(Kamakrua S et al., J Biomed Mater Res B Appl Biomater 79: 210-217)等の方法により得られたものであってもよい。
OCPの微粉末は、市販のものを用いてもよく、OCP結晶から作製する場合には、OCPを硬組織破砕装置、ボールミル、解砕機を用いる手段などを含むがこれらに限定されないOCPを機械的に粉砕する手段により、通常5〜1000nm、好ましくは100〜400nmの粒径に粉砕し得る。
骨接合部再生材料は、本発明の効果が阻害されない範囲内で、一般的に人工骨再生材料に含まれる成分を含んでいてもよい。このような成分としては、例えば、生体吸収性高分子(ポリ乳酸、ポリ乳酸−ポリエチレングリコール共重合体など)、生体吸収性リン酸カルシウム(β−TCPなど)、生体非吸収性材料(HAセラミックスなど)が挙げられる。
The production method of the OCP / Gel material is not particularly limited, and may be, for example, a thermally dehydrated crosslinked product obtained by a method of coprecipitation and heating of OCP and gelatin (see JP 2011-234799 A), or OCP Or a freeze-dried product obtained by freeze-drying a dispersion obtained by dispersing a fine powder of the above in an aqueous gelatin solution (see JP2013-116644), or a combination of freeze-drying and thermal dehydration treatment Well or alternatively, precipitation onto Gel (Handa T et al. Acta Biomater 8 (2012) 1190-1200), mixing with nano-micro size OCP with Gel (Miura K et al. Appl Sur Sci 282 (2013) 138-145), and a mixture of OCP granules and collagen (Kamakrua S et al., J Biomed Mater Res B Appl Biomater 79: 210-217).
The OCP fine powder may be a commercially available product. When the OCP crystal is produced from OCP crystal, the OCP includes a means for using a hard tissue crushing device, a ball mill, a crusher, etc., but is not limited thereto. According to the means for pulverizing, a particle diameter of usually 5 to 1000 nm, preferably 100 to 400 nm can be obtained.
The osteosynthesis regenerated material may contain components generally contained in the artificial bone regenerative material as long as the effects of the present invention are not inhibited. Examples of such components include bioabsorbable polymers (such as polylactic acid and polylactic acid-polyethylene glycol copolymers), bioabsorbable calcium phosphates (such as β-TCP), and non-bioabsorbable materials (such as HA ceramics). Is mentioned.

本発明の骨接合部再生材料は、適用部位の形状に応じて、生理食塩水や血液などの流体と混合してゲル水和物にするか、又は固形に適宜成形され、放射線滅菌、高圧蒸気滅菌、乾燥加熱処理などにより滅菌処理後、適用部位に埋入される。   The osteosynthesis regenerating material of the present invention is mixed with a fluid such as physiological saline or blood to form a gel hydrate or appropriately formed into a solid depending on the shape of the application site, and is sterilized by radiation, high-pressure steam After sterilization by sterilization, dry heat treatment, etc., it is embedded in the application site.

適用部位としては、骨と腱の間や、骨と靭帯の間、及び骨と骨の間が挙げられる。   Application sites include between bone and tendon, between bone and ligament, and between bone and bone.

本発明の骨接合部再生材料が適用される対象は、哺乳動物、例えば、マウス、ラット、モルモット、ウサギ、イヌ、ネコ、サル、ヒト等であり、好ましくはヒトに適用される。
かかる骨接合部再生材料を移植することにより、対象動物における材料自身の吸収と骨接合部の再生が促進され、断裂腱及び膝靭帯損傷などの関連疾患の治療に有効である。
The target to which the bone junction regeneration material of the present invention is applied is a mammal such as a mouse, rat, guinea pig, rabbit, dog, cat, monkey, human, etc., and preferably applied to a human.
By transplanting such a bone joint regeneration material, the absorption of the material itself and the regeneration of the bone joint in the target animal are promoted, and it is effective for treatment of related diseases such as torn tendon and knee ligament damage.

実施例
ウサギ腱板断裂モデルのインビボ実験において、腱板の組織学的治癒プロセスを検討した。
1.材料及び方法
(移植用のOCP/Gel複合体及びGelディスクの調製)
OCP/Gel共沈物はSuzuki, O. et al., Tohoku J Exp Med 164, 37, 1991及びHanda, T. et. al, Acta Biomater 8, 1190, 2012に記載の方法に従って製造した。ゼラチンはSigma-Aldrich(米国ミズーリ州セントルイス所在)から得た。Gel分子(酸性処理を用いてブタ皮膚から単離した試薬グレードのGel)によるOCPの直接核形成を行った。40%のOCP結晶を含むOCP/Gel共沈物を調製し、これを型に入れて凍結乾燥した。次に、凍結乾燥させた複合体から直径9mm、厚さ1mmのディスクを得た。OCP/Gel複合体は真空乾燥オーブン(DP32、ヤマトサイエンティフィック社、日本国東京所在)で150℃にて24時間、熱脱水処理した。OCP結晶のないGelのみのディスクも対照材料として成形した。
(ウサギ腱板断裂モデル)
体重3.0-3.5kgの29匹の成日本ウサギの雄を用いた。ゼラチンの評価のために、肩の手術は以下の3種類に分けた:1)対照(OCP/Gel複合体無し)、2)OCP/Gel複合体(OCP+群)、及び3)OCPなしでGelのみ(OCP−群)。動物の数を減らすために、両側の肩に異なる手術を行った。ウサギ腱板断裂モデルはSano H. et al, J Shoulder Elbow Surg 11, 166, 2002に基づいて作製した。
EXAMPLE The histological healing process of the rotator cuff was examined in an in vivo experiment of a rabbit rotator cuff tear model.
1. Materials and Methods (Preparation of OCP / Gel Composite and Gel Disc for Implantation)
OCP / Gel coprecipitates were prepared according to the methods described in Suzuki, O. et al., Tohoku J Exp Med 164, 37, 1991 and Handa, T. et. Al, Acta Biomater 8, 1190, 2012. Gelatin was obtained from Sigma-Aldrich (St. Louis, MO, USA). Direct nucleation of OCP was performed with Gel molecules (reagent grade Gel isolated from porcine skin using acid treatment). An OCP / Gel coprecipitate containing 40% OCP crystals was prepared and placed in a mold and lyophilized. Next, a disk having a diameter of 9 mm and a thickness of 1 mm was obtained from the lyophilized composite. The OCP / Gel composite was thermally dehydrated at 150 ° C. for 24 hours in a vacuum drying oven (DP32, Yamato Scientific Co., Tokyo, Japan). A Gel-only disk without OCP crystals was also molded as a control material.
(Rabbit rotator cuff tear model)
Twenty-nine adult Japanese rabbit males weighing 3.0-3.5 kg were used. For gelatin assessment, shoulder surgery was divided into three types: 1) Control (no OCP / Gel complex), 2) OCP / Gel complex (OCP + group), and 3) Gel without OCP. Only (OCP-group). To reduce the number of animals, different surgeries were performed on both shoulders. A rabbit rotator cuff tear model was prepared based on Sano H. et al, J Shoulder Elbow Surg 11, 166, 2002.

筋肉注射によるケタミン(25mg/kg)の臀部への事前投与後、ケタミン(10mg/kg)及びキシラジン(3mg/kg)の耳介静脈への注射によりウサギを麻酔した。麻酔維持の為必要に応じて、ケタミン(10mg/kg)をさらに投与した。   After pre-administration of ketamine (25 mg / kg) into the buttocks by intramuscular injection, the rabbits were anesthetized by injection of ketamine (10 mg / kg) and xylazine (3 mg / kg) into the auricular vein. Ketamine (10 mg / kg) was further administered as necessary to maintain anesthesia.

無菌状態で、両側の肩に、縦方向前外側に4cmの皮膚の切開を行い、肩−脊椎の筋肉と三角筋の筋間から棘下筋腱を露出させた。図1(C)を参照して説明すると、上腕骨大結節(1)から棘下筋(2)の腱(棘下筋腱、符号(3))を完全に切離し、大結節側に残存する線維軟骨を十分に切除し、上腕骨大結節(1)を露出させた。上腕骨大結節(1)にOCP/Gel複合体を載せるために、歯科用バーを用いて10mm長、2mm幅、及び2mm深さの溝を作製した。上腕の側面から骨溝へと2つの小さな穿孔を作製し、この上腕骨大結節(1)の溝にOCP/Gel複合体(OCP+群)又はOCPなしでGelのみ(OCP−群)のいずれか(4)を載せた(図1A)。対照群の骨溝には何も載せなかった。棘下筋腱の断端を、非吸収性の2-0ナイロンを用いた水平マットレス縫合(5)で骨溝へ修復した。各縫合端は穿孔に通し、皮質の側面で結びつけた。皮膚は4-0ナイロンで閉じた。術後、外固定は行わなかった。手術の前後ともウサギは個別ケージで飼い、標準飼料と水に自由にアクセスさせた。ウサギはすべて術後に食欲不振及び低体重でないことを確認し、ウサギの数は統計学的処理に必要な数に合わせて最小限とした。動物実験プロトコールは本願発明者らの所属施設の動物実験委員会で承認されたものである。
(安楽死及び組織標本の調製)
ケタミン(25mg/kg)の事前投与後、耳介静脈へ過剰量のペントバルビタールナトリウム(120mg/kg)を注射することにより、ウサギを安楽死させた。術後2週目(N=6)、4週目(N=6)、及び8週目(N=7又は8)に肩をすべて採集した。上腕骨頭に付着している棘下筋腱の複合物を注意深く切除し、肉眼で観察し、これを次に棘下筋腱に平行に切り出した。4%パラホルムアルデヒドにより4℃で1日固定した後、4℃の12.5%エチレンジアミン四酢酸溶液(pH7.0)で脱石灰化を行った。
(肉眼による観察)
再断裂の有無を、各標本の切断面の観察により決定した。棘下筋腱が骨溝から完全に離れている場合、その標本には再断裂が有ると判断した。
(組織学的評価)
肉眼で再断裂が有ると判断した標本は以下の組織学的評価から除外した。パラフィン包埋後、切片をヘマトキシリン−エオシン(HE)及びトルイジンブルー(TB)で染色した。96枚のスライド(HEで対照:17、OCP-:15、OCP+:16、TBで対照:17、OCP-:15、OCP+:16)はすべて一人の研究者Aが調べた。群の名称及び術後の期間を含むすべての情報を隠すために、各スライドはランダムに生成した数で符号を付けた。すべての情報を上記研究者Aに分からないようにするために組織学的評価は2週間後に行った。
本研究では、本願発明者らは、腱付着の再建を評価するために、Koike Y. et al, J Orthop Res 23, 1433, 2005及びSano H., J Sholder Elbow Surg 11, 166, 2002に報告されている以下の4つの組織学的基準を使用した:
1.未分化間葉系細胞
測定は常に骨溝表面よりも近位側200μmの位置で行った。この位置で、前掲のKoike Y. et alで報告された方法を用いて、標準化した四角形の視野(600×220μm)内のすべての核をHE染色スライド上で数えた。
2.線維軟骨
線維軟骨はTBなどの基本的な青色染料に結合し、かかる染料の色を赤みを帯びた青色に変化させる(前掲のKoike Y. et al)。この現象は異染色性として知られ、プロテオグリカンを含有していることの指標として用いられている(Weischer C.H., Histol Histopathol 1, 303, 1986)。本研究では、強い異染色性のある領域をImageJ 1.42ソフトウェア(米国国立衛生研究書、メリーランド州所在)を用いて測定した。対象の領域を、骨−腱接合の標準化された視野(3×1mm)として設定した。
3.コラーゲン線維
コラーゲンの配向を、偏光顕微鏡を用いてHE染色パラフィン切片で評価した。組織切片中のコラーゲン線維に向けられた偏光は回折し、暗い背景に対して眩しく輝く(前掲のKoike Y. et al)。
本研究では、最大輝度の位置を見出すために、各スライドを顕微鏡のトレイ上で360℃回転させた。次に、異染色性の測定に使用されたのと同じ標準化視野を捕捉した。標準化視野内の明るく回折した光の領域をImageJを用いて測定した。
4.Sharpey線維
腱を束状骨まで貫通するSharpey線維の定量分析を、偏光顕微鏡でHE染色パラフィン切片でこれらの線維を観察した後に行った。偏光した画像を非偏光の画像と結合させ、1mm長さの骨表面当たりを貫通しているSharpey線維の数を骨溝の底部で数えた。
Under aseptic conditions, a 4 cm skin incision was made on the shoulders on both sides in the longitudinal anterior-lateral direction to expose the subspinous muscle tendon between the muscles of the shoulder-spine and deltoid muscles. Referring to FIG. 1C, the tendon of the subspinous muscle (2) (subspinous muscle tendon, code (3)) is completely dissected from the large humerus nodule (1) and remains on the large nodule side. The fibrocartilage was fully excised to expose the large humerus nodule (1). In order to place the OCP / Gel composite on the humerus nodule (1), a groove having a length of 10 mm, a width of 2 mm, and a depth of 2 mm was prepared using a dental bar. Create two small perforations from the lateral side of the upper arm to the bone groove and either the OCP / Gel complex (OCP + group) or only the Gel without OCP (OCP-group) in the groove of this large humeral nodule (1) (4) was placed (FIG. 1A). Nothing was placed in the bone groove of the control group. The stump of the subspinous muscle tendon was repaired into the bone groove with a horizontal mattress suture (5) using non-absorbable 2-0 nylon. Each suture end was passed through a perforation and tied at the side of the cortex. The skin was closed with 4-0 nylon. After the operation, external fixation was not performed. Rabbits were kept in individual cages before and after surgery and had free access to standard feed and water. All rabbits were confirmed postoperatively to be anorexic and not underweight, and the number of rabbits was minimized to the number required for statistical treatment. The animal experiment protocol was approved by the animal experiment committee of the institution to which the present inventors belong.
(Euthanasia and preparation of tissue specimens)
After pre-administration of ketamine (25 mg / kg), the rabbits were euthanized by injecting an excess amount of pentobarbital sodium (120 mg / kg) into the auricular vein. All shoulders were collected at 2 weeks (N = 6), 4 weeks (N = 6), and 8 weeks (N = 7 or 8) after surgery. The subspinous tendon complex adhering to the humeral head was carefully excised and observed with the naked eye, which was then cut parallel to the subspinous tendon. After fixing with 4% paraformaldehyde at 4 ° C for 1 day, demineralization was performed with 12.5% ethylenediaminetetraacetic acid solution (pH 7.0) at 4 ° C.
(Observation with the naked eye)
The presence or absence of re-tearing was determined by observing the cut surface of each specimen. If the subspinous muscle tendon was completely separated from the bone groove, the specimen was judged to have re-teared.
(Histological evaluation)
Samples judged to be re-teared with the naked eye were excluded from the following histological evaluation. After paraffin embedding, the sections were stained with hematoxylin-eosin (HE) and toluidine blue (TB). All 96 slides (HE control: 17, OCP-: 15, OCP +: 16, TB control: 17, OCP-: 15, OCP +: 16) were all examined by one researcher A. Each slide was signed with a randomly generated number to hide all information including group name and postoperative period. A histological evaluation was performed 2 weeks later so that all information was unknown to investigator A above.
In this study, the present inventors reported to Koike Y. et al, J Orthop Res 23, 1433, 2005 and Sano H., J Sholder Elbow Surg 11, 166, 2002 to evaluate the reconstruction of tendon attachment. The following four histological criteria have been used:
1. Measurement of undifferentiated mesenchymal cells was always performed at a position 200 μm proximal to the bone groove surface. In this position, all nuclei within a standardized square field (600 × 220 μm) were counted on HE stained slides using the method reported by Koike Y. et al, supra.
2. Fibrocartilage Fibrocartilage binds to basic blue dyes such as TB and changes the color of such dyes to a reddish blue (Koike Y. et al, supra). This phenomenon is known as metachromatism and is used as an indicator of proteoglycan content (Weischer CH, Histol Histopathol 1, 303, 1986). In this study, areas with strong metachromatism were measured using ImageJ 1.42 software (US National Institutes of Health, Maryland). The area of interest was set as a standardized field of view (3 × 1 mm) of the bone-tendon junction.
3. Collagen fibers Collagen orientation was assessed on HE-stained paraffin sections using a polarizing microscope. Polarized light directed to the collagen fibers in the tissue section diffracts and shines brightly against a dark background (Koike Y. et al, supra).
In this study, each slide was rotated 360 ° on the microscope tray to find the position of maximum brightness. Next, the same standardized field used to measure metachromaticity was captured. The area of brightly diffracted light within the standardized field of view was measured using ImageJ.
4). Sharpey fibers Quantitative analysis of Sharpey fibers penetrating the tendon to the bony bone was performed after observing these fibers on HE-stained paraffin sections with a polarizing microscope. The polarized image was combined with the unpolarized image and the number of Sharpey fibers penetrating per 1 mm long bone surface was counted at the bottom of the bone groove.

(免疫組織化学)
切片を脱パラフィン化し、0.03%過酸化水素のメタノール溶液で30分間ブロックした。コラーゲン1型及び3型の場合、スライドを室温で0.1%トリプシン 0.1% CaCl2/トリス緩衝液でインキュベートした。内因性の免疫グロブリンは10%正常ヤギ血清(株式会社ニチレイ)のPBS溶液でのインキュベートによりブロックされた。スライドを、コラーゲンI型の抗体(F-56, 第一ファインケミカル株式会社、日本国富山県所在)又はコラーゲンIII型の抗体(F-58, 第一ファインケミカル株式会社、日本国富山県所在)とインキュベートした。最後の検出工程は、3,3'-ジアミノベンジジン四塩酸塩(3,3'-ジアミノベンジジン(DAB)、Sigma-Aldrich社)、0.1M イミダゾール及び0.03%過酸化水素を用いて行った。各切片に対し、ヘマトキシリンで後染色を行った。陰性対象として、正常なマウスIgGを一次抗体として用いた。
(統計)
インビボでの組織学的発見の数値を決定するために、One-way ANOVAを用いた。Yateの連続補正したカイ二乗検定を使用して、肉眼観察の再断裂の数の有意差を決定した。結果を平均値及び標準偏差(SD)で示した。P<0.05の値は統計学的に有意であるとみなす。
2.結果
(OCP/Gel複合体の調製及び特徴付け)
図2(a),(b)はOCP/Gel複合体のSEM観察を示す。OCP/Gel複合体は非常に多孔性で10μmから500μmの範囲の大きな孔径分布を有していた。OCP/Gel中のOCP結晶は複合体の表面壁及び内部壁上で針状又は板状のように見えた。OCP/Gel複合体表面はざらざらしており、OCP結晶はゼラチンマトリクスに均質に分散されていた。OCP/Gel複合体の多孔率は92%を超えていた。
(肉眼による観察)
対照群、OCP−群、及びOCP+群の再断裂の総数はそれぞれ、19個の肩のうち2個(11%)、19個の肩のうち4個(21%)、及び20個の肩のうち4個(20%)であり、3つの群間に有意差はなかった(p=0.6375)(表1)。
(Immunohistochemistry)
Sections were deparaffinized and blocked with 0.03% hydrogen peroxide in methanol for 30 minutes. For collagen types 1 and 3, slides were incubated with 0.1% trypsin 0.1% CaCl 2 / Tris buffer at room temperature. Endogenous immunoglobulin was blocked by incubation with 10% normal goat serum (Nichirei Co., Ltd.) in PBS. Incubate slides with collagen type I antibody (F-56, Daiichi Fine Chemical Co., Toyama, Japan) or collagen type III antibody (F-58, Daiichi Fine Chemical Co., Toyama, Japan) did. The final detection step was performed using 3,3′-diaminobenzidine tetrahydrochloride (3,3′-diaminobenzidine (DAB), Sigma-Aldrich), 0.1M imidazole and 0.03% hydrogen peroxide. Each section was post-stained with hematoxylin. As a negative target, normal mouse IgG was used as the primary antibody.
(statistics)
One-way ANOVA was used to determine in vivo histological findings. A significant difference in the number of macroscopic re-tearings was determined using Yate's continuously corrected chi-square test. The results are shown as mean values and standard deviations (SD). A value of P <0.05 is considered statistically significant.
2. Results (preparation and characterization of OCP / Gel complex)
2A and 2B show SEM observation of the OCP / Gel complex. The OCP / Gel composite was very porous and had a large pore size distribution ranging from 10 μm to 500 μm. The OCP crystals in OCP / Gel looked like needles or plates on the surface and inner walls of the composite. The surface of the OCP / Gel composite was rough and the OCP crystals were uniformly dispersed in the gelatin matrix. The porosity of the OCP / Gel composite was over 92%.
(Observation with the naked eye)
The total number of re-tears for the control, OCP-, and OCP + groups were 2 out of 19 shoulders (11%), 4 out of 19 shoulders (21%), and 20 shoulders, respectively. Of these, 4 were (20%), and there was no significant difference between the three groups (p = 0.6375) (Table 1).

(組織学的評価)
1.未分化間葉系細胞
手術後2週目に、HE染色で、3群すべての骨溝に多数の細胞が現れた(図3a−c)。特にOCP+群ではOCP沈殿物がまだ残っており(図3c)、2週目には多くの細胞に囲まれていたが、かかる細胞はこれは4週目にはほとんど消失した(図3,図4c)。3群すべてにおいて、細胞の数は4週間から8週間の間に次第に減少した(図4a−c、h−j)。いずれの時点でも、3群の細胞数に有意差はなかった(図6A)。
この結果は以前の研究の結果と一致している(Koike Y. et al, J Orthop Res 23, 1433, 2005及びSano H., J Sholder Elbow Surg 11, 166, 2002)。
(Histological evaluation)
1. Undifferentiated mesenchymal cells At 2 weeks after surgery, a large number of cells appeared in the bone grooves of all three groups by HE staining (FIGS. 3a-c). Especially in the OCP + group, OCP precipitate still remained (Fig. 3c) and was surrounded by many cells at 2 weeks, but these cells almost disappeared at 4 weeks (Fig. 3, Fig. 3). 4c). In all three groups, the number of cells gradually decreased between 4 and 8 weeks (FIGS. 4a-c, hj). There was no significant difference in the number of cells in the three groups at any time point (FIG. 6A).
This result is consistent with previous studies (Koike Y. et al, J Orthop Res 23, 1433, 2005 and Sano H., J Sholder Elbow Surg 11, 166, 2002).

2.線維軟骨
3群すべてにおいて、TB染色で、骨溝に染色の存在が見え始め(図5)、8週目まで漸進的に増大した。この場合にも、いずれの時点でも3群の細胞数に有意差はなかった(図6B)。
3.コラーゲン線維
腱側のコラーゲン線維の配向に対応する明るく回折した偏光の領域は、3つすべての群で2週間から8週間まで次第に増大した。OCP+群では他の2群よりも8週目にコラーゲン線維が有意に増大していた(図4d−f,j−l、図6C)(OCP−群に対してp=0.017、対照群に対してp=0.017)。さらに、OCP+群のコラーゲン線維は骨溝の表面に対して垂直に配列していた。こうした線維の配向は他の2群には見られなかった。垂直に整列したコラーゲン線維は、再生される骨や接合部の強度に寄与し得る。
4.Sharpey線維
Sharpey線維は、HE染色切片で偏光下、明瞭に観察された。Sharpey線維の数は3群すべてにおいて2週目から8週目まで次第に増大したが、興味深いことに、4週目と8週目の両方ではOCP+群のみしか増大しなかった(図4a−l、4週目でOCP−群に対してp=0.017、対照群に対してp=0.035、8週目でOCP−群に対してp=0.010、対照群に対してp=0.011)。他の2群では4週目でも8週目でもSharpey線維の数は統計学的に有意なレベルに到達しなかった(図4a−l、図6D)。
2. Fibrocartilage
In all three groups, TB staining began to show the presence of staining in the bone groove (FIG. 5) and gradually increased until week 8. Again, there was no significant difference in the number of cells in group 3 at any time point (FIG. 6B).
3. Collagen fibers Brightly diffracted regions of polarized light corresponding to the orientation of collagen fibers on the tendon side gradually increased from 2 to 8 weeks in all three groups. In the OCP + group, collagen fibers were significantly increased at 8 weeks compared to the other two groups (FIGS. 4d-f, j-1, and FIG. 6C) (p = 0.017 for the OCP-group, and for the control group). P = 0.017). Furthermore, the OCP + group of collagen fibers were arranged perpendicular to the surface of the bone groove. Such fiber orientation was not found in the other two groups. Vertically aligned collagen fibers can contribute to the strength of the regenerated bone and joints.
4). Sharpey fiber
Sharpey fibers were clearly observed in HE-stained sections under polarized light. The number of Sharpey fibers gradually increased from weeks 2 to 8 in all three groups, but interestingly, only the OCP + group increased only at both weeks 4 and 8 (FIGS. 4a-l, At week 4 p = 0.017 for OCP-group, p = 0.035 for control group, at week 8 p = 0.010 for OCP-group, p = 0.011 for control group). In the other two groups, the number of Sharpey fibers did not reach a statistically significant level at week 4 or 8 (FIGS. 4a-1 and 6D).

上記の結果から、OCP沈殿物は経時的に減少しており体内に吸収されていることが確認された。また、OCP/Gel複合体を用いた場合には、腱-骨間の(tendon to bone)挿入部において、コラーゲン線維が8週目に増大すると共に骨面に対して垂直に整列し、腱と骨の間の接合部に存在するSharpey線維の数も有意なレベルに到達していた。このため、腱側のコラーゲン線維の再生及び骨との連結をも促進することで、骨のみならず骨側の腱の再生を促す効果が確認された。つまり、OCP/Gel複合体により腱の骨付着部における再生が促されていることが理解される。
(免疫組織化学)
手術後8週目に、I型コラーゲンは骨溝内で強く検出され、Sharpey線維及び腱ではわずかに検出された(図7a−c)。他方、III型コラーゲンはその大部分が、腱及びSharpey線維内に分布していた(図7d−f)。
From the above results, it was confirmed that the OCP precipitate decreased with time and was absorbed into the body. When the OCP / Gel composite is used, collagen fibers increase at the 8th week and tendon and bone are aligned perpendicular to the bone surface at the tendon-to-bone insertion. The number of Sharpey fibers present at the junction between the bones also reached a significant level. For this reason, the effect of promoting the regeneration of not only the bone but also the tendon on the bone side was confirmed by promoting the regeneration of the collagen fibers on the tendon side and the connection with the bone. That is, it is understood that the regeneration at the bone adhesion portion of the tendon is promoted by the OCP / Gel complex.
(Immunohistochemistry)
At 8 weeks post-surgery, type I collagen was strongly detected in the bone groove and slightly detected in Sharpey fibers and tendons (FIGS. 7a-c). On the other hand, most of type III collagen was distributed in tendons and Sharpey fibers (FIGS. 7d-f).

Claims (5)

第8リン酸カルシウムとゼラチンとの複合体を含む骨接合部再生材料。 A bone joint regeneration material comprising a composite of eighth calcium phosphate and gelatin. 前記骨接合部は骨と接合する結合組織の部分である請求項1に記載の骨接合部再生材料。 The osteosynthesis regenerative material according to claim 1, wherein the osteosynthesis is a portion of connective tissue to be joined to bone. 前記骨接合部は腱又は靭帯である請求項1に記載の骨接合部再生材料。 The osteosynthesis regenerated material according to claim 1, wherein the osteosynthesis is a tendon or a ligament. 骨と腱、骨と靭帯、又は骨と骨の間に適用される請求項1に記載の骨接合部再生材料。 The bone joint regeneration material according to claim 1, which is applied between bone and tendon, bone and ligament, or between bone and bone. 質量比でゼラチン1に対して第8リン酸カルシウムが0.1〜9である請求項1〜4のいずれか一項に記載の骨接合部再生材料。 The osteosynthesis regenerated material according to any one of claims 1 to 4, wherein the eighth calcium phosphate is 0.1 to 9 with respect to gelatin 1 by mass ratio.
JP2013188775A 2013-09-11 2013-09-11 Bone joint regeneration material Active JP6265665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013188775A JP6265665B2 (en) 2013-09-11 2013-09-11 Bone joint regeneration material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013188775A JP6265665B2 (en) 2013-09-11 2013-09-11 Bone joint regeneration material

Publications (3)

Publication Number Publication Date
JP2015054055A true JP2015054055A (en) 2015-03-23
JP2015054055A5 JP2015054055A5 (en) 2015-04-30
JP6265665B2 JP6265665B2 (en) 2018-01-24

Family

ID=52818874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188775A Active JP6265665B2 (en) 2013-09-11 2013-09-11 Bone joint regeneration material

Country Status (1)

Country Link
JP (1) JP6265665B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900691B1 (en) * 2015-09-08 2016-04-06 東洋紡株式会社 Porous composite and bone regeneration material
WO2017043498A1 (en) * 2015-09-08 2017-03-16 東洋紡株式会社 Porous complex and bone regeneration material
JP2021129975A (en) * 2020-02-20 2021-09-09 国立大学法人東北大学 Bone regeneration material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234799A (en) * 2010-05-06 2011-11-24 Nipro Corp Bone regeneration material
JP2013106644A (en) * 2011-11-17 2013-06-06 Nipro Corp Bone regeneration material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234799A (en) * 2010-05-06 2011-11-24 Nipro Corp Bone regeneration material
JP2013106644A (en) * 2011-11-17 2013-06-06 Nipro Corp Bone regeneration material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERNATIONAL ORTHOPAEDICS, vol. 34, no. 6, JPN6017025210, 2010, pages 917 - 924, ISSN: 0003595518 *
六崎裕高: "リン酸カルシウム複合化腱の骨孔内移植後の軟骨性付着部の再生", 県立医療大学研究報告書 平成21年度, JPN6017025209, 2009, pages 32 - 33, ISSN: 0003595517 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900691B1 (en) * 2015-09-08 2016-04-06 東洋紡株式会社 Porous composite and bone regeneration material
WO2017043498A1 (en) * 2015-09-08 2017-03-16 東洋紡株式会社 Porous complex and bone regeneration material
US10512709B2 (en) 2015-09-08 2019-12-24 Toyobo Co., Ltd. Porous composite and bone regeneration material
JP2021129975A (en) * 2020-02-20 2021-09-09 国立大学法人東北大学 Bone regeneration material

Also Published As

Publication number Publication date
JP6265665B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
US10786239B2 (en) Methods and procedures for ligament repair
Kirker-Head et al. BMP-silk composite matrices heal critically sized femoral defects
Nuss et al. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones
Rodeo et al. Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors
Kyung et al. Tendon‐to‐bone tunnel healing in a rabbit model: the effect of periosteum augmentation at the tendon‐to‐bone interface
Liu et al. Enhanced tendon-to-bone healing of chronic rotator cuff tears by bone marrow aspirate concentrate in a rabbit model
BRPI0918611B1 (en) composition comprising a biocompatible matrix and a growth factor derived from platelet and kit
US7449498B2 (en) Composite materials for bone defect filling and bone replacement
Waselau et al. Effects of a magnesium adhesive cement on bone stability and healing following a metatarsal osteotomy in horses
JP2001524937A (en) Bioceramic composition
EP3697459B1 (en) Autologous bone graft substitute
MX2007003099A (en) Multi-purpose bio-material composition.
Leng et al. Platelet-rich plasma-enhanced osseointegration of decellularized bone matrix in critical-size radial defects in rabbits
JP2023022260A (en) Dry implant composition and injectable aqueous implant formulations
JP6265665B2 (en) Bone joint regeneration material
JP6494747B2 (en) Soft tissue repair matrix and manufacturing method thereof.
Kirschner et al. Repair of the immature craniofacial skeleton with a calcium phosphate cement: quantitative assessment of craniofacial growth
Subbiah et al. Engineering of an Osteoinductive and Growth Factor‐Free Injectable Bone‐Like Microgel for Bone Regeneration
Turner et al. Restoration of large bone defects using a hard-setting, injectable putty containing demineralized bone particles compared to cancellous autograft bone
Plánka et al. Prevention of bone bridge formation using transplantation of the autogenous mesenchymal stem cells to physeal defects: An experimental study in rabbits
CN111346262B (en) Injectable calcium-phosphorus ceramic for promoting healing of tendon and bone and preparation method and application thereof
Nguyen et al. Establishment and Characterization of Rabbit Model for Alveolar Bone Regeneration
Mohan et al. Resorbable Layered Double Hydroxides‐Based Composite Implants Synergistically Accelerates Critical‐Sized Defect Closure
Liu et al. Comparison of Healing Effect Between Fibrin Gel Complex Bone Morphological Protein and Reconstituted Bone Xenograft After Reconstruction of Sports Ligament Injury
Viateau et al. Experimental animal models for tissue-engineered bone regeneration

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

R150 Certificate of patent or registration of utility model

Ref document number: 6265665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250