JP2015048683A - Mesh shade - Google Patents

Mesh shade Download PDF

Info

Publication number
JP2015048683A
JP2015048683A JP2013182820A JP2013182820A JP2015048683A JP 2015048683 A JP2015048683 A JP 2015048683A JP 2013182820 A JP2013182820 A JP 2013182820A JP 2013182820 A JP2013182820 A JP 2013182820A JP 2015048683 A JP2015048683 A JP 2015048683A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin layer
mesh
surface thermoplastic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013182820A
Other languages
Japanese (ja)
Other versions
JP6171155B2 (en
Inventor
狩野 俊也
Toshiya Karino
俊也 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP2013182820A priority Critical patent/JP6171155B2/en
Publication of JP2015048683A publication Critical patent/JP2015048683A/en
Application granted granted Critical
Publication of JP6171155B2 publication Critical patent/JP6171155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Building Awnings And Sunshades (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mesh shade suitable for crawlingly attaching a plant to a surface for further heat shielding, and easily tearing off the plant after use, in the mesh shade for revealing the higher heat shielding effect, by having water screen formability, while holding drip-proof performance to a rainfall, by using by being installed on a veranda such as a condominium.SOLUTION: The mesh shade having a large number of cavity parts is constituted of an obverse surface thermoplastic resin layer and a reverse surface thermoplastic resin layer for covering its obverse-reverse surfaces with a coarse textile as base cloth, the individual area of the cavity part is set to 0.25 mm-12 mm, wettability of the obverse surface thermoplastic resin layer indicates a stationary contact angle with water of 90-135°, and wettability of the reverse surface thermoplastic resin layer also indicates the stationary contact angle with the water of 3-45°.

Description

本発明は採光性と遮熱性を有する日除けメッシュに関する。より詳しくは、本発明のメッシュシェードは、戸建住宅、店舗、マンションなどのガラス窓やベランダに設置して夏季に使用するブラインドであって、適度な採光性、通気性及び降雨に対する防滴性とを保持しながら水膜形成性を有し、メッシュ空隙部に形成された水膜の蒸発による遮熱効果を有するメッシュシェードと、さらに植物緑化外観のメッシュシェードに関する。   The present invention relates to a sunshade mesh having daylighting and heat shielding properties. More specifically, the mesh shade of the present invention is a blind used in summer by installing it on a glass window or a veranda of a detached house, a store, an apartment, etc., and it is suitable for daylighting, air permeability, and drip-proofing against rain. It is related with the mesh shade which has water film formation property, and has the heat-shielding effect by evaporation of the water film formed in the mesh space | gap part, and also the mesh shade of the plant greening appearance.

家屋の玄関先や軒先に簾や葦簀を垂れ掛けることによって、夏季の強い日射しを遮りながら適度に風通しのある日陰空間を作り出すことができ、更にこれらを水で濡らせば、簾や葦簀を抜ける風が気化熱を奪い、涼風を室内に呼び込めることが生活の知恵で知られている。また簾や葦簀は屋内の様子を人目に触れないようにする目隠衝立としても機能するので、エアコンの普及以前には人目を気にせず肌着1枚で夏を過ごすこともできた。   You can create a shaded space that is moderately ventilated while blocking strong sunlight in the summer by hanging ridges and folds at the entrance and eaves of your house. It is known from the wisdom of life that the wind that escapes takes heat of vaporization and calls cool air into the room. In addition, cocoons and cocoons also function as blindfold screens to prevent the indoors from being seen by the public, so before the spread of air conditioners, it was possible to spend the summer with one piece of underwear without worrying about the eyes.

近年はエアコン普及率が高くなり、夏季に供給電力不足が心配される中、企業や家庭では節電意識が広く浸透して、冷房温度を控える動向にある。例えば家庭での工夫として、ベランダや軒先にメッシュシートやテント生地を設営すること(特許文献1〜3)が提案されているが、用途的に日除けであって、特定の遮熱機能を有するものではない。また、効果的に遮熱性を得る手段として、アサガオ、ゴーヤ、ヘチマなどの夏型蔓植物を平面状に棚基材に這わせて緑のカーテンを繁茂させることで、エアコンの消費電力を少なくする試み(電気代の節約)が提案されている(特許文献4)。このような植物カーテンは植物の保水効果で遮熱効果に優れ、適度な採光性(葉の光半透過性)を有しているが、基本的に移動できないため曇天時には経屋の中を薄暗くする不自由を生じ、使用後は複雑強固に絡み付いた大量の枯蔓の剥ぎ取り除去が重労働となる。   In recent years, the air-conditioner penetration rate has increased, and there is a concern about power supply shortages in the summer. For example, it has been proposed to install mesh sheets and tent fabrics on the veranda and eaves as a device at home (Patent Documents 1 to 3), but it is an awning for specific purposes and has a specific heat shielding function. is not. In addition, as a means of effectively obtaining heat insulation, summer type vines such as morning glory, bitter gourd, loofah, etc. are flattened on a shelf base material to increase the green curtain, thereby reducing the power consumption of air conditioners An attempt (saving of electricity bill) has been proposed (Patent Document 4). Such a plant curtain has excellent water shielding effect due to the water retention effect of the plant, and has an appropriate daylighting property (light translucency of the leaf), but basically it cannot move, so it is dimmed in the sky during the cloudy weather After use, it is a heavy labor to remove and remove a large number of dead vines that are complex and entangled.

一方、水幕を家屋の断熱に応用したものとして、水の接触角が10度以下である光触媒含有層を含む親水性メッシュシート(特許文献5)が考案され、この親水性メッシュシートを屋根やビルの屋上に敷設し、それに水を流下させて水のベールで覆い包むことで断熱効果を向上させる試みが提案されている。しかしこのような水のベールを維持するための水の循環システムが大掛かりとなるため一般家庭向きではなかった。以上より、戸建住宅やマンションなどの外窓やベランダに設置して夏季に使用するブラインドで、適度な採光性、通気性及び降雨に対する防滴性とを保持しながら、良好な遮熱効果を有するメッシュシェードと、さらにメッシュシェード上に、ひげ根または巻きひげを有する植物を這い付かせるのに適していて、しかも植物の剥ぎ取り除去が容易であるメッシュシェードが望まれていた。   On the other hand, a hydrophilic mesh sheet (Patent Document 5) including a photocatalyst-containing layer having a water contact angle of 10 degrees or less has been devised as an application of water curtains to heat insulation of houses. Attempts have been made to improve the heat insulation effect by laying on the roof of a building, allowing water to flow down and wrapping it with a bale of water. However, since the water circulation system for maintaining such a water bale becomes large, it was not suitable for general households. As mentioned above, it is a blind used in the summer by installing it on the outside windows and verandas of detached houses and condominiums, etc., and it has a good heat shielding effect while maintaining appropriate lighting, breathability and rainproofing. There has been a demand for a mesh shade that is suitable for scrubbing a plant having a root of a whisk or a whiskers on the mesh shade, and that can be easily removed by stripping the plant.

特開平10−266502号公報JP-A-10-266502 特開平10−054187号公報JP-A-10-054187 特開2003−041727号公報JP 2003-041727 A 特開平5−306553号公報JP-A-5-306553 特開2003−340978号公報JP 2003-340978 A

本発明は、戸建住宅、店舗、マンションなどのガラス窓やベランダに設置して夏季に使用するブラインドであって、適度な採光性、通気性及び降雨に対する防滴性とを保持しながら水膜形成性を有し、メッシュ空隙部に形成された水膜の蒸発による遮熱効果を有するメッシュシェードと、さらにメッシュシェード上に、ひげ根または巻きひげを有する植物を這い付かせるのに適していて、しかも植物の剥ぎ取り除去が容易であるメッシュシェードを提供しようとするものである。   The present invention is a blind used in the summer by installing it on a glass window or a veranda of a detached house, a store, an apartment, etc., and a water film while maintaining appropriate daylighting, air permeability and drip-proofing against rain A mesh shade that has formability and has a heat shielding effect due to evaporation of a water film formed in the mesh voids, and is suitable for scrubbing a plant having a hair root or a tendril on the mesh shade. Moreover, an object of the present invention is to provide a mesh shade that is easy to remove and remove plants.

上記課題を解決するためには、粗目織物を基布として、その表裏面を被覆する表面熱可塑性樹脂層及び裏面熱可塑性樹脂層とで構成された、多数の空隙部を有するメッシュシートにおいて、空隙部個々の面積を0.25mm〜12mmの範囲とし、表面熱可塑性樹脂層の濡れ性を特定の疎水性とし、かつ、裏面熱可塑性樹脂層の濡れ性を特定の親水性となるようにすることにより、適度な採光性、通気性及び降雨に対する防滴性とを保持しながら、良好な遮熱効果を有するメッシュシェードが得られ、さらにメッシュシェード上に、ひげ根または巻きひげを有する植物を這い付かせるのに適していて、しかも植物の剥ぎ取り除去が容易であることを見出して本発明を完成するに至った。 In order to solve the above-mentioned problem, a mesh sheet having a large number of voids, which is composed of a coarse woven fabric as a base fabric, a front surface thermoplastic resin layer covering the front and back surfaces, and a back surface thermoplastic resin layer, the Department individual area in the range of 0.25mm 2 ~12mm 2, the wettability of the surface thermoplastic resin layer and a specific hydrophobic, and as the wettability of the back thermoplastic layer comprising a specific hydrophilic By doing so, a mesh shade having a good heat-shielding effect can be obtained while maintaining appropriate daylighting, air permeability, and drip-proof properties against rain, and a plant having a root or a tendril on the mesh shade is obtained. The present invention has been completed by finding that it is suitable for scrubbing, and that it is easy to remove and remove plants.

すなわち本発明のメッシュシェードは、粗目織物を基布として、その表裏面を被覆する表面熱可塑性樹脂層及び裏面熱可塑性樹脂層とで構成された、多数の空隙部を有するメッシュシートであって、前記空隙部個々の面積が0.25mm〜12mmを有し、前記表面熱可塑性樹脂層の濡れ性が水との静止接触角90〜135°を示し、かつ、前記裏面熱可塑性樹脂層の濡れ性が水との静止接触角3〜45°を示すことが好ましい。これによって適度な採光性、通気性及び降雨に対する防滴性とを保持しながら水膜形成性を有し、良好な遮熱効果を有するメッシュシェードを得ることができる。特に空隙部個々の面積1mm〜10mmを有することで、ひげ根または巻きひげを有する植物を這い付かせるのに適したものとし、しかも植物の剥ぎ取り除去を容易とするのに最適な空隙面積を得る。 That is, the mesh shade of the present invention is a mesh sheet having a large number of voids, comprising a coarse woven fabric as a base fabric, a front surface thermoplastic resin layer covering the front and back surfaces, and a back surface thermoplastic resin layer, the gap portion each area has a 0.25mm 2 ~12mm 2, wettability of the surface thermoplastic resin layer exhibits a static contact angle 90 to 135 ° with water, and the back side thermoplastic resin layer It is preferable that the wettability exhibits a static contact angle of 3 to 45 ° with water. Accordingly, it is possible to obtain a mesh shade having a water film forming property while maintaining a suitable daylighting property, air permeability, and drip-proof property against rainfall, and having a good heat shielding effect. In particular, it has a gap portion each area 1 mm 2 to 10 mm 2, and those suitable for adhere crawl plants with fibrous root or tendrils, yet optimal gap to facilitate stripping removal plant Get the area.

本発明のメッシュシェードは、前記表面熱可塑性樹脂層にシリコーンオイルを含み、かつ前記裏面熱可塑性樹脂層に界面活性剤を含むことが好ましい。表面熱可塑性樹脂層にシリコーンオイルを含むことにより、表面熱可塑性樹脂層の濡れ性を、水との静止接触角において90〜135°の疎水性とし、一方、裏面熱可塑性樹脂層に界面活性剤を含むことによって、裏面熱可塑性樹脂層の濡れ性を、水との静止接触角において3〜45°の親水性とすることが好ましい。この表裏の異なる特性により、表面熱可塑性樹脂層に対しては降雨に対する疎水性を発現することで雨漏れの防滴性を発揮しながら、一方、その裏面熱可塑性樹脂層が親水性を有することでメッシュ空隙部に水膜形成性を有し、この水膜形成によって気化熱奪取による冷却効果を附帯することができる。また、表面熱可塑性樹脂層側面に、ひげ根または巻きひげを有する植物を這い付かせた場合、その使用後の植物の剥ぎ取り除去を容易とし、同時に裏面熱可塑性樹脂層における空隙部には水膜を形成することで、ひげ根または巻きひげを有する植物の水分補給源とすることができる。   In the mesh shade of the present invention, it is preferable that the surface thermoplastic resin layer contains silicone oil and the back thermoplastic resin layer contains a surfactant. By including silicone oil in the surface thermoplastic resin layer, the wettability of the surface thermoplastic resin layer is made hydrophobic by 90 to 135 ° at a static contact angle with water, while the back surface thermoplastic resin layer has a surfactant. It is preferable that the wettability of the back surface thermoplastic resin layer is made hydrophilic by 3 to 45 ° at a static contact angle with water. Due to the different properties of the front and back surfaces, the surface thermoplastic resin layer exhibits hydrophobicity against rain and exhibits rain-proof drip-proof properties, while the back surface thermoplastic resin layer has hydrophilicity. Thus, the mesh gap has a water film-forming property, and this water film formation can be accompanied by a cooling effect by taking vaporized heat. In addition, when a plant having a hair root or a beard is rubbed on the side surface of the surface thermoplastic resin layer, it is easy to peel off the plant after use, and at the same time, water is not contained in the void portion in the back surface thermoplastic resin layer. By forming a film, it can be used as a hydration source for plants having a root or a whiskers.

本発明のメッシュシェードは、前記表面熱可塑性樹脂層が、酸化ケイ素で薄膜被覆された粒子径0.6〜1.5μmの酸化チタン粒子を1〜10質量%含有することが好ましい。このような酸化チタン粒子を含むことによって太陽光の熱線を効果的に反射して、より優れた遮熱効果を得ることができるようになる。   In the mesh shade of the present invention, the surface thermoplastic resin layer preferably contains 1 to 10% by mass of titanium oxide particles having a particle diameter of 0.6 to 1.5 μm coated with a thin film of silicon oxide. By including such titanium oxide particles, it is possible to effectively reflect the heat rays of sunlight and obtain a more excellent heat shielding effect.

本発明のメッシュシェードは、前記表面熱可塑性樹脂層が内層/外層の2層構造を成し、内層には酸化ケイ素で薄膜被覆された粒子径0.6〜1.5μmの酸化チタン粒子を1〜10質量%含有し、かつ、外層には雲母を酸化金属多層薄膜で被覆してなる粒子径5〜50μmの干渉雲母粒子を1〜10質量%含有することが好ましい。このような2層構造を取ることによって、太陽光の熱線を効果的に反射して、より優れた遮熱効果を得ることができるようになる。   In the mesh shade of the present invention, the surface thermoplastic resin layer has a two-layer structure of inner layer / outer layer, and the inner layer is made of titanium oxide particles having a particle diameter of 0.6 to 1.5 μm coated with a thin film of silicon oxide. The outer layer preferably contains 1 to 10% by mass of interference mica particles having a particle diameter of 5 to 50 μm formed by coating mica with a metal oxide multilayer thin film. By taking such a two-layer structure, it is possible to effectively reflect the heat rays of sunlight and obtain a more excellent heat shielding effect.

本発明のメッシュシェードは、前記空隙部に、空隙部を充実する水膜が形成されていることが好ましい。この水膜は裏面熱可塑性樹脂層の濡れ性により、0.25mm〜12mmの空隙部に表面張力で形成されるもので、この水膜が時間を掛けながら自然蒸散する際に相応の気化熱を奪うことにより冷却効果が得られ、しかもメッシュシェードの表面に植物を這い付かせた場合、植物の水分補給源とすることができる。この水分は植物内部に蓄積され、植物の蒸散作用で気化熱を奪うことにより水膜同様の冷却効果を発現させる。 In the mesh shade of the present invention, it is preferable that a water film that enhances the gap is formed in the gap. The water film by wettability of the back thermoplastic layer, intended to be formed by the surface tension in the gap portion of 0.25mm 2 ~12mm 2, vaporization corresponding to the time of the water film is naturally evaporate while applying time When the heat is taken away, a cooling effect is obtained, and when the plant is rubbed against the surface of the mesh shade, it can be used as a hydration source for the plant. This moisture is accumulated inside the plant, and the cooling effect similar to that of the water film is developed by taking the heat of vaporization by the transpiration of the plant.

本発明のメッシュシェードは、前記表面熱可塑性樹脂層側に、ひげ根(気根・付着根・付着盤)または巻きひげを有する植物が這付き、緑化層が形成されていることが好ましい。植物のひげ根または巻きひげが0.25mm〜12mmの空隙部に絡み付いて定着するが、裏面熱可塑性樹脂層側には届かず、また絡み付いた植物のひげ根または巻きひげは、水との静止接触角90〜135°の疎水性を有する表面熱可塑性樹脂層に定着するので、植物のひげ根との密着性は比較的弱く、それによって使用後の植物の剥ぎ取り除去を容易とすることができる。 In the mesh shade of the present invention, it is preferable that a plant having beard roots (air roots / adhesive roots / adhesive discs) or beards bearded on the surface thermoplastic resin layer side to form a greening layer. Although fibrous root or tendrils of the plant is fixed entangled in the gap portion of 0.25mm 2 ~12mm 2, fibrous root or tendrils of not reach the back side thermoplastic resin layer side, also tangled plants, and water Since it adheres to the surface thermoplastic resin layer having a hydrophobicity of 90 to 135 ° of static contact angle, the adhesion to the root of the plant is relatively weak, thereby facilitating the removal of the plant after use. be able to.

本発明によると、適度な採光性、通気性及び降雨に対する防滴性とを保持しながら水膜形成性を有し、メッシュ空隙部に形成された水膜の蒸発による遮熱効果を発現するメッシュシェードが得られ、さらにこれらのメッシュシェード上に、ひげ根または巻きひげを有する植物を這い付かせるのに適しているので、植物緑化したさらに遮熱効果に優れたメッシュシェードを得ることができ、しかも夏季の使用後に不要となった植物の剥ぎ取り除去も容易であるので、本発明によるメッシュシェードは、戸建住宅、店舗、マンションなどのガラス窓やベランダに設置して夏季に使用するブラインドとして極めて有用である。   According to the present invention, a mesh that has water film forming properties while maintaining appropriate daylighting properties, air permeability, and drip-proof properties against rain, and that exhibits a heat shielding effect due to evaporation of the water film formed in the mesh voids. Since shades are obtained, and furthermore, it is suitable for scrubbing plants having a whiskers or tendrils on these mesh shades, it is possible to obtain a mesh shade that is plant green and has a further excellent heat shielding effect, Moreover, since it is easy to peel off and remove plants that are no longer needed after summer use, the mesh shade according to the present invention is installed in glass windows and verandas of detached houses, stores, condominiums, etc. as blinds used in summer. Very useful.

本発明のメッシュシェードの正面と断面の一部を示す図The figure which shows a part of front and cross section of the mesh shade of this invention 本発明のメッシュシェードの正面の一部を示す図The figure which shows a part of front of the mesh shade of this invention 本発明のメッシュシェードの断面の一部を示す図The figure which shows a part of cross section of the mesh shade of this invention 本発明のメッシュシェードの使用例を示す図The figure which shows the usage example of the mesh shade of this invention

本発明のメッシュシェードは、粗目織物を基布として、その表裏面を被覆する表面熱可塑性樹脂層及び裏面熱可塑性樹脂層とで構成された、多数の空隙部を有するメッシュシートであって、空隙部個々の面積が0.25mm〜12mmを有し、表面熱可塑性樹脂層の濡れ性は、例えば表面熱可塑性樹脂層にシリコーンオイルを含むことによって、水との静止接触角90〜135°程度の疎水性を示し、また同時に、裏面熱可塑性樹脂層の濡れ性は、例えば裏面熱可塑性樹脂層に界面活性剤を含むことによって、水との静止接触角3〜45°程度の親水性を示すものである。また表面熱可塑性樹脂層に金属酸化物により表面薄膜被覆された酸化チタン粒子を含有するもの、あるいは表面熱可塑性樹脂層が内層/外層の2層構造を成して、内層に金属酸化物により表面薄膜被覆された酸化チタン粒子を含有し、外層には金属酸化物により表面薄膜被覆された干渉雲母粒子を含有するものである。 The mesh shade of the present invention is a mesh sheet having a large number of voids, comprising a coarse woven fabric as a base fabric, a front surface thermoplastic resin layer covering the front and back surfaces, and a back surface thermoplastic resin layer. part individual area has a 0.25mm 2 ~12mm 2, wettability of the surface thermoplastic resin layer, for example by including a silicone oil to the surface thermoplastic resin layer, the static contact angle 90 to 135 ° with water At the same time, the wettability of the back surface thermoplastic resin layer has a hydrophilicity with a static contact angle of about 3 to 45 ° with water by including a surfactant in the back surface thermoplastic resin layer, for example. It is shown. Also, the surface thermoplastic resin layer contains titanium oxide particles coated with a thin film of metal oxide, or the surface thermoplastic resin layer has a two-layer structure of inner layer / outer layer, and the inner layer is coated with the metal oxide surface. It contains titanium oxide particles coated with a thin film, and the outer layer contains interference mica particles coated with a surface thin film with a metal oxide.

本発明のメッシュシェードにおいて、粗目織物を基布として、その表裏面を被覆する表面熱可塑性樹脂層及び裏面熱可塑性樹脂層を構成する熱可塑性樹脂としては、軟質塩化ビニル樹脂(特に塩化ビニル樹脂ペーストゾル)、塩化ビニル系共重合体樹脂、オレフィン樹脂、オレフィン系共重合体樹脂、ウレタン樹脂、ウレタン系共重合体樹脂、アクリル樹脂、アクリル系共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル系共重合体樹脂、スチレン樹脂、スチレン系共重合体樹脂、ポリエステル樹脂、およびポリエステル系共重合体樹脂、フッ素樹脂、フッ素系共重合体樹脂、シリコン樹脂、シリコン系共重合体樹脂など、特に液状のもの(エマルジョンや塗料)が使用でき、これらは単独もしくは、2種以上の併用としてもよい。表面熱可塑性樹脂層と裏面熱可塑性樹脂層とを同一の熱可塑性樹脂で構成してもよく、また互いに異なる熱可塑性樹脂で構成してもよい。何れの場合においても、表面熱可塑性樹脂層を構成する熱可塑性樹脂にシリコーンオイルを適量配合して疎水性(水との静止接触角90〜135°)とし、裏面熱可塑性樹脂層を構成する熱可塑性樹脂に界面活性剤を適量配合して親水性(水との静止接触角3〜45°)とする。このとき表面熱可塑性樹脂層と裏面熱可塑性樹脂層は、粗目織物の表面のみに形成されるものではなく、粗目織物の厚み内部に及んで含浸形成された部分を有する。   In the mesh shade of the present invention, a soft vinyl chloride resin (particularly a vinyl chloride resin paste) is used as the thermoplastic resin constituting the surface thermoplastic resin layer covering the front and back surfaces of the coarse woven fabric as the base fabric and the back surface thermoplastic resin layer. Sol), vinyl chloride copolymer resin, olefin resin, olefin copolymer resin, urethane resin, urethane copolymer resin, acrylic resin, acrylic copolymer resin, vinyl acetate resin, vinyl acetate copolymer Polymeric resins, styrene resins, styrene copolymer resins, polyester resins, and polyester copolymer resins, fluororesins, fluorocopolymer resins, silicone resins, silicone copolymer resins, etc. Emulsions and paints) can be used, and these may be used alone or in combination of two or more. The front surface thermoplastic resin layer and the back surface thermoplastic resin layer may be composed of the same thermoplastic resin, or may be composed of different thermoplastic resins. In any case, an appropriate amount of silicone oil is added to the thermoplastic resin constituting the surface thermoplastic resin layer to make it hydrophobic (static contact angle with water is 90 to 135 °), and the heat constituting the back thermoplastic resin layer. An appropriate amount of a surfactant is added to the plastic resin to make it hydrophilic (static contact angle with water is 3 to 45 °). At this time, the front surface thermoplastic resin layer and the back surface thermoplastic resin layer are not formed only on the surface of the coarse woven fabric, but have a portion that is impregnated into the thickness of the coarse woven fabric.

シリコーンオイルとしては、ジメチルシリコーンオイル、ポリジメチルシロキサンジオール、メチルハイドロジェンシリコーンオイル、メチルフェニルシリコーンオイルなどのストレートシリコーンオイル、アルキル変性シリコーンオイル、高級脂肪酸変性シリコーンオイル、ポリエーテル変性シリコーンオイル、フルオロアルキル変性シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、アルコール変性シリコーンオイル、アルキル・ポリエーテル変性シリコーンオイル、メタクリル酸変性シリコーンオイルなどの変性シリコーンオイルが挙げられ、なかでもアルキル変性シリコーンオイル、高級脂肪酸変性シリコーンオイルが好ましい。これらのシリコーンオイルの配合量は、熱可塑性樹脂100質量部に対して、0.1〜5質量部、好ましくは0.3〜2.5質量部である。この実質的有効量を維持する範囲で、これらシリコーンオイルは、ボイドまたは空孔を有する無機化合物粒子、これらは例えば、ゼオライト、シリカゲル、シリカなどに吸着担持されたもの、あるいはボイドまたは空孔を有する有機化合物粒子、これらは例えばシクロデキストリン、セルロースパウダー、プロテインパウダーなどに吸着担持されたものを用いることができ、このような用例によれば、シリコーンオイルによる表面熱可塑性樹脂層の水との静止接触角90〜135°の性状をより長期間安定して維持することができる。本発明のメッシュシェードの表面側を表面緑化した場合、メッシュシェードの表面側の熱可塑性樹脂層にシリコーンオイルを含むことで、表面熱可塑性樹脂層の濡れ性が、水との静止接触角において90〜135°の疎水性となり、植物が這い付いてもメッシュシェードとの密着性が本質的に弱く、植物の剥ぎ取り除去が容易となる。シリコーンオイルの配合量が0.1質量部未満だと表面熱可塑性樹脂層の濡れ性が疎水性(水との静止接触角90〜135°)とならないことがあり、その結果、植物を這付けてグリーンカーテンとして使用したときに、その後不要となった植物の引き剥がし性を困難とし、千切れた蔓茎やひげ根が多量に残存することがある。また配合量が5質量部を超えると、表面熱可塑性樹脂層の表面にシリコーンオイルがブリードして植物の這付を悪くすることがある。   Silicone oils include dimethyl silicone oil, polydimethylsiloxane diol, methyl hydrogen silicone oil, straight silicone oil such as methylphenyl silicone oil, alkyl-modified silicone oil, higher fatty acid-modified silicone oil, polyether-modified silicone oil, fluoroalkyl-modified. Examples include silicone oils, amino-modified silicone oils, epoxy-modified silicone oils, carboxyl-modified silicone oils, alcohol-modified silicone oils, alkyl / polyether-modified silicone oils, and methacrylic acid-modified silicone oils. Oils and higher fatty acid-modified silicone oils are preferred. The compounding quantity of these silicone oils is 0.1-5 mass parts with respect to 100 mass parts of thermoplastic resins, Preferably it is 0.3-2.5 mass parts. To the extent that this substantially effective amount is maintained, these silicone oils are inorganic compound particles having voids or pores, such as those adsorbed on, for example, zeolite, silica gel, silica, etc., or having voids or pores. Organic compound particles, such as those adsorbed and supported on cyclodextrin, cellulose powder, protein powder, etc., can be used. According to such an example, the surface thermoplastic resin layer with silicone oil is in static contact with water The property having an angle of 90 to 135 ° can be stably maintained for a longer period. When the surface side of the mesh shade of the present invention is greened, by including silicone oil in the thermoplastic resin layer on the surface side of the mesh shade, the wettability of the surface thermoplastic resin layer is 90 at a static contact angle with water. It becomes hydrophobic at ˜135 °, and even if a plant crawls, its adhesion to the mesh shade is essentially weak, and it becomes easy to remove and remove the plant. If the amount of silicone oil is less than 0.1 parts by mass, the wettability of the surface thermoplastic resin layer may not be hydrophobic (stationary contact angle with water is 90 to 135 °). When used as a green curtain, it is difficult to peel off plants that are no longer needed, and a large amount of broken vines and roots may remain. Moreover, when a compounding quantity exceeds 5 mass parts, a silicone oil may bleed on the surface of a surface thermoplastic resin layer, and it may worsen the plant glaze.

また、上記シリコーンオイルに滑剤を、最大でシリコーンオイルと同量程度(最大5質量部)を併用することができる。併用した滑剤は熱可塑性樹脂と非相溶である(非相溶であるから滑剤として作用する)ため、経時的に滑剤成分(主としてワックス類)が表面に移行して析出(ブルーム)することで表面の疎水性を高くする。滑剤としては、炭化水素系(低分子ポリエチレン、パラフィン)、脂肪酸系(ステアリン酸、ヒドロキシステアリン酸、複合型ステアリン酸、オレイン酸)、脂肪族アルコール系、脂肪族アマイド系(ステアロアミド、オキシステアロアミド、オレイルアミド、エルシルアミド、リシノールアミド、ベヘンアミド、メチロールアミド、メチレンビスステアロアミド、メチレンビスステアロベヘンアミド、高級脂肪酸のビスアミド酸、ステアロアミド、複合型アミド)、脂肪族エステル系(n−ブチルステアレート、メチルヒドロキシステアレート、多価アルコール脂肪酸エステル、飽和脂肪酸エステル、エステル系ワックス)、脂肪酸金属石鹸系族などを用いることができる。   In addition, the silicone oil can be used in combination with a lubricant in the same amount as the silicone oil (up to 5 parts by mass). Since the lubricant used in combination is incompatible with the thermoplastic resin (because it is incompatible, it acts as a lubricant), the lubricant components (mainly waxes) migrate to the surface and precipitate (bloom) over time. Increase surface hydrophobicity. Lubricants include hydrocarbons (low molecular polyethylene, paraffin), fatty acids (stearic acid, hydroxystearic acid, complex stearic acid, oleic acid), aliphatic alcohols, aliphatic amides (stearamide, oxystearamide) Oleylamide, erucylamide, ricinolamide, behenamide, methylolamide, methylene bisstearamide, methylene bisstearobehenamide, higher fatty acid bisamidic acid, stearamide, complex amide), aliphatic ester (n-butyl stearate) Methyl hydroxy stearate, polyhydric alcohol fatty acid ester, saturated fatty acid ester, ester wax), fatty acid metal soap group, and the like can be used.

裏面熱可塑性樹脂層に配合する界面活性剤としては、アニオン界面活性剤(カルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩)、カチオン界面活性剤(アミン塩型、第4級アンモニウム型)、両性界面活性剤(アミノ酸型、ベタイン型)、非イオン界面活性剤(ポリエチレングリコール型、多価アルコール型)などが挙げられ、特に非イオン界面活性剤が好ましく、ポリエチレングリコール型として:高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、脂肪酸アミドエチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物、油脂のエチレンオキサイド付加物、また多価アルコール型として:グリセロールの脂肪酸エステル、ペンタエリスリトールの脂肪酸エステル、ソルビトール及びソルビタンの脂肪酸エステル、ショ糖の脂肪酸エステル、多価アルコールのアルキルエーテル、アルカノールアミン類の脂肪酸アミドなどが挙げられる。これらの界面活性剤の配合量は、熱可塑性樹脂100質量部に対して、0.1〜5質量部、好ましくは0.3〜2.5質量部である。配合量が0.1質量部未満だと裏面熱可塑性樹脂層の濡れ性が親水性(水との静止接触角3〜45°)とならないことがあり、その結果、本発明のメッシュシェードの裏面に水を噴霧したときに、メッシュ空隙部に水膜を形成し難くなり、充分な気化熱効果(冷却効果)が得られないことがある。この実質的有効量を維持する範囲で、これら界面活性剤は、ボイドまたは空孔を有する無機化合物粒子、これらは例えば、ゼオライト、シリカゲル、シリカなどに吸着担持されたもの、あるいはボイドまたは空孔を有する有機化合物粒子、これらは例えばシクロデキストリン、セルロースパウダー、プロテインパウダーなどに吸着担持されたものを用いることができ、このような用例によれば、界面活性剤による裏面熱可塑性樹脂層の水との静止接触角3〜45°の性状をより長期間安定して維持することができる。   Surfactants to be blended in the back surface thermoplastic resin layer include anionic surfactants (carboxylates, sulfate esters, sulfonates, phosphate ester salts), cationic surfactants (amine salt type, quaternary ammonium). Type), amphoteric surfactants (amino acid type, betaine type), nonionic surfactants (polyethylene glycol type, polyhydric alcohol type) and the like. Nonionic surfactants are particularly preferred, and polyethylene glycol types are: Alcohol ethylene oxide adduct, alkylphenol ethylene oxide adduct, fatty acid ethylene oxide adduct, polyhydric alcohol fatty acid ester ethylene oxide adduct, higher alkylamine ethylene oxide adduct, fatty acid amide ethylene oxide adduct, polypropylene glycol ethylene oxide Addition products, ethylene oxide addition products of fats and oils, and polyhydric alcohol types: fatty acid esters of glycerol, fatty acid esters of pentaerythritol, fatty acid esters of sorbitol and sorbitan, fatty acid esters of sucrose, alkyl ethers of polyhydric alcohols, alkanols Examples thereof include fatty acid amides of amines. The compounding quantity of these surfactant is 0.1-5 mass parts with respect to 100 mass parts of thermoplastic resins, Preferably it is 0.3-2.5 mass parts. If the blending amount is less than 0.1 parts by mass, the wettability of the back surface thermoplastic resin layer may not be hydrophilic (static contact angle with water is 3 to 45 °), and as a result, the back surface of the mesh shade of the present invention. When water is sprayed onto the mesh, it is difficult to form a water film in the mesh voids, and a sufficient vaporization heat effect (cooling effect) may not be obtained. To the extent that this substantially effective amount is maintained, these surfactants contain inorganic compound particles having voids or pores, such as those adsorbed on zeolite, silica gel, silica, etc., or voids or pores. Organic compound particles having, for example, those adsorbed and supported on cyclodextrin, cellulose powder, protein powder, etc. can be used, and according to such an example, the back surface thermoplastic resin layer with a surfactant is used with water. The properties with a static contact angle of 3 to 45 ° can be stably maintained for a longer period of time.

また、表面熱可塑性樹脂層には、より遮熱効果を向上させるために、酸化ケイ素で薄膜被覆された粒子径0.6〜1.5μmの酸化チタン粒子を1〜10質量%含有することが好ましい。粒子径が0.1μm程度の顔料用の酸化チタンと異なり、このような粗粒子の酸化チタンは熱線反射特性が増大する。酸化ケイ素で薄膜被覆された酸化チタン粒子を用いることで、酸化チタン粒子が直接熱可塑性樹脂と接触することを防止するので、酸化チタンによる光触媒作用(表面熱可塑性樹脂層の分解)の発現を防ぐことができる。酸化ケイ素の被覆率は、薄膜被覆粒子全体に対して3〜12質量%、特に5〜8質量%が好ましい。   Further, the surface thermoplastic resin layer may contain 1 to 10% by mass of titanium oxide particles having a particle diameter of 0.6 to 1.5 μm coated with silicon oxide in a thin film in order to further improve the heat shielding effect. preferable. Unlike titanium oxide for pigments having a particle size of about 0.1 μm, such coarse particle titanium oxide has increased heat ray reflection characteristics. By using titanium oxide particles coated with silicon oxide in a thin film, the titanium oxide particles are prevented from coming into direct contact with the thermoplastic resin, thereby preventing the photocatalytic action (decomposition of the surface thermoplastic resin layer) due to titanium oxide. be able to. The coverage of silicon oxide is preferably 3 to 12% by mass, particularly 5 to 8% by mass, based on the entire thin film-coated particle.

また、表面熱可塑性樹脂層は、内層(白着色)/外層(無着色)の2層構造を成し、外層には雲母を酸化金属多層薄膜で被覆してなる粒子径5〜50μmの干渉雲母粒子を1〜10質量%含有するもの(無着色の熱可塑性樹脂中に干渉雲母粒子が分散した状態)とすることより熱線を第一反射させ、内層には酸化ケイ素で薄膜被覆された粒子径0.6〜1.5μmの酸化チタン粒子(白色)を1〜10質量%含有することで熱線を第二反射させるような2段構造の熱線反射とすることで、より熱線反射特性を増大させることができる。雲母を被覆する多層薄膜は、酸化チタン、酸化ケイ素、酸化亜鉛、酸化鉄、酸化ジルコニウム、酸化アルミニウムなどの金属酸化物から選ばれた2種以上の金属酸化物による複数の積層構造を有し、これらは例えば、酸化チタン/酸化ケイ素、酸化チタン/酸化ケイ素/酸化チタン、酸化鉄/酸化ケイ素、酸化亜鉛/酸化ケイ素などの組み合わせであり、干渉雲母粒子全体に対する多層薄膜の被覆率は30〜70質量%である。   The surface thermoplastic resin layer has a two-layer structure of an inner layer (white coloring) / outer layer (no coloring), and the outer layer is an interference mica having a particle diameter of 5 to 50 μm formed by coating mica with a metal oxide multilayer thin film. The diameter of the particles is 1 to 10% by mass containing particles (in a state where interference mica particles are dispersed in an uncolored thermoplastic resin), and the heat rays are first reflected, and the inner layer is coated with a thin film of silicon oxide. Heat ray reflection characteristics are further increased by providing a heat ray reflection of a two-stage structure in which the heat ray is second reflected by containing 1 to 10% by mass of 0.6 to 1.5 μm titanium oxide particles (white). be able to. The multilayer thin film covering mica has a plurality of laminated structures of two or more metal oxides selected from metal oxides such as titanium oxide, silicon oxide, zinc oxide, iron oxide, zirconium oxide, and aluminum oxide, These are, for example, a combination of titanium oxide / silicon oxide, titanium oxide / silicon oxide / titanium oxide, iron oxide / silicon oxide, zinc oxide / silicon oxide, and the coverage of the multilayer thin film with respect to the entire interference mica particles is 30 to 70. % By mass.

本発明において、粗目織物を構成する繊維は、ポリプロピレン繊維、ポリエチレン繊維、ポリエステル繊維、ナイロン繊維、ビニロン繊維、芳香族ヘテロ環ポリマー繊維などの合成繊維、木綿、麻、ケナフなどの天然繊維、アセテートなどの半合成繊維、ガラス繊維、シリカ繊維、アルミナ繊維、炭素繊維などの無機繊維など、何れの種類でも使用でき、これらは単独で、或いは2種以上の混用で用いることができる。特にポリプロピレン繊維、ポリエステル繊維、ナイロン繊維、ビニロン繊維などの合成繊維は、繊維紡糸時に任意の着色を施した原着繊維をすることもできる。   In the present invention, the fibers constituting the coarse woven fabric are polypropylene fibers, polyethylene fibers, polyester fibers, nylon fibers, vinylon fibers, synthetic fibers such as aromatic heterocyclic polymer fibers, natural fibers such as cotton, hemp, kenaf, acetate, etc. These can be used in any kind such as semi-synthetic fiber, glass fiber, silica fiber, alumina fiber, carbon fiber and the like, and these can be used alone or in combination of two or more. In particular, synthetic fibers such as polypropylene fibers, polyester fibers, nylon fibers, and vinylon fibers can be original fibers that are colored arbitrarily during fiber spinning.

粗目織物を構成する繊維糸条の形態は、マルチフィラメント、短繊維紡績、モノフィラメント、スプリットヤーン、テープヤーンなどいずれであってもよいが、特にマルチフィラメントだと得られるメッシュシェードの風合いが柔らかくなり、メッシュシェードの張り出しや巻き取りなどの支持安定性が格段に向上する。マルチフィラメント糸条の繊度は、250(278dtex)〜2000(2222dtex)デニールの範囲が好ましい。大型シェード、もしくは重量のある植物這い付け用には1000(1111dtex)〜2000(2222dtex)デニールの糸条を用いた粗目織物、またはこれら糸条による粗目3本模紗織物が適している。250デニールの糸条の場合、粗目織物を構成する打ち込み密度は10〜22本/1インチ間隔、同様に500デニールの糸条の場合、8〜18本/1インチ間隔、1000デニールの糸条の場合、6〜14本/1インチ間隔、2000デニールの糸条の場合、4〜10本/1インチ間隔である。また小型シェード、もしくは軽量の植物這い付け用には250(278dtex)〜1000(1111dtex)デニールの糸条を用いた平織粗目織物が適している。特にマルチフィラメント糸条は、撚りが掛けられるなどしてその断面形状が円形または楕円形の略円弧状の糸条が好ましく、このようなマルチフィラメント糸条の表裏に熱可塑性樹脂層を設けたメッシュシェードによれば、表面熱可塑性樹脂層と、裏面熱可塑性樹脂層の各々の断面形状が、粗目織物への含浸を含む略半円弧状となる。このような略半円弧状とすることで、這い付けした植物の引き剥がし性が向上し、引き剥がした跡に蔓の残片やひげ根などが残っても、これらの除去が容易となる。   The form of the fiber yarn constituting the coarse woven fabric may be any of multifilament, short fiber spinning, monofilament, split yarn, tape yarn, etc., but the texture of the mesh shade obtained with multifilament is particularly soft, Support stability such as overhang and winding of the mesh shade is greatly improved. The fineness of the multifilament yarn is preferably in the range of 250 (278 dtex) to 2000 (2222 dtex) denier. A coarse woven fabric using yarns of 1000 (1111 dtex) to 2000 (2222 dtex) denier or a coarse three-patterned woven fabric using these yarns is suitable for planting large shades or heavy plants. In the case of 250 denier yarn, the driving density constituting the coarse woven fabric is 10 to 22 yarns per inch, similarly, in the case of 500 denier yarn, 8 to 18 yarns per inch, and 1000 denier yarn. In the case of 6 to 14 yarns per inch, and in the case of 2000 denier yarn, the spacing is 4 to 10 yarns per inch. In addition, a plain weave coarse woven fabric using yarns of 250 (278 dtex) to 1000 (1111 dtex) denier is suitable for small shades or light plant planting. In particular, the multifilament yarn is preferably a substantially arc-shaped yarn having a circular or oval cross-sectional shape by being twisted or the like, and a mesh in which a thermoplastic resin layer is provided on the front and back of such a multifilament yarn. According to the shade, each of the cross-sectional shapes of the front surface thermoplastic resin layer and the back surface thermoplastic resin layer has a substantially semicircular arc shape including impregnation of the coarse fabric. Such a substantially semicircular arc shape improves the peelability of the plant that has been planted, and even if vine fragments or hair roots remain on the peeled trace, these can be easily removed.

本発明の基布に使用する粗目織物は、マルチフィラメント経糸束と緯糸束とが交絡してなる多数の空隙部を有する織物であって、空隙部個々の面積は0.25mm〜12mm、特に1mm〜9mmを有し、空隙部合計の基布面積全体に占める割合である空隙率は8〜46%、特に16〜38%が好ましい。空隙率は粗目織物の任意の単位面積領域に占める空隙部の総和面積率である。空隙部の総和面積は、単位面積領域に存在する糸条実体部の総和面積を求め、単位面積から差し引いた値で求められる。具体的には1インチ四方の粗目織物のデジタル画像をコンピューターに取り込み、糸条実体部と空隙部分との面積を画像計算する方法が挙げられる。また糸条の幅と、糸条の配置密度の設計から理論値として計算した値であってもよい。空隙部の面積は0.25mm未満だと空隙部に形成する水膜量が全体的に少なくなるため、水の蒸発による冷却効果(気化熱を奪う効果)が不十分となることがある。また空隙部の面積が12mmを越えると、空隙部に水膜を形成することが表面張力的に困難となることがあり、それによって充分な気化熱効果を得ることができないこと、さらに植物緑化をオプションした場合、植物の伸び蔓が空隙部から裏回りして植物の絡み付きを必要以上に強固とし、それによって使用後の植物の引き剥がし性を悪化させることなどの不具合がある。また空隙率が8%未満だと、採光性と通気性を悪くすると同時に水膜形成量が不足して水の蒸発による冷却効果(気化熱を奪う効果)を得られないことがあり、さらに植物緑化をオプションした場合に、ひげ根または巻きひげを有する植物の這い付き性が悪く、自重で垂れ落ちることがある。また空隙率が46%を越えると、日除け効果が本質的に不足すると同時に、植物緑化をオプションした場合に、植物とメッシュシェードとの密着性が強固なものとなり、それによって使用後の植物の引き剥がし性を悪化させ、千切れた蔓茎やひげ根を多量に残存させる不都合がある。従って本発明によるメッシュシェードに用いる粗目織物は、空隙率面積1mm〜9mmの集合面積として、空隙率12〜38%を構成するものが最適である。 The coarse woven fabric used for the base fabric of the present invention is a woven fabric having a large number of voids formed by interlacing a multifilament warp bundle and a weft bundle, and the area of each void portion is 0.25 mm 2 to 12 mm 2 , particular a 1mm 2 ~9mm 2, the porosity is a percentage of the total base fabric area of the void portion total 8-46%, in particular 16 to 38% are preferred. The porosity is the total area ratio of the voids in an arbitrary unit area of the coarse fabric. The total area of the voids is obtained by a value obtained by subtracting the total area of the yarn entity portions existing in the unit area region. Specifically, there is a method in which a digital image of a 1-inch square coarse woven fabric is taken into a computer and the areas of the yarn body portion and the gap portion are image-calculated. Further, it may be a value calculated as a theoretical value from the design of the width of the yarn and the arrangement density of the yarn. If the area of the gap is less than 0.25 mm 2 , the amount of water film formed in the gap is reduced as a whole, and the cooling effect (the effect of depriving the heat of vaporization) due to the evaporation of water may be insufficient. If the area of the void exceeds 12 mm 2 , it may be difficult to form a water film in the void due to surface tension, thereby making it impossible to obtain a sufficient vaporization heat effect. When the option is selected, there is a problem that the growing vine of the plant turns around from the void portion to strengthen the tangling of the plant more than necessary, thereby deteriorating the peelability of the plant after use. If the porosity is less than 8%, the daylighting and air permeability may be deteriorated, and at the same time, the amount of water film formation may be insufficient to obtain a cooling effect by water evaporation (an effect of depriving heat of vaporization). When greening is an option, plants with roots or tendrils have poor scuffing characteristics and may fall under their own weight. In addition, if the porosity exceeds 46%, the sunshade effect is essentially insufficient, and at the same time, when planting is optional, the adhesion between the plant and the mesh shade becomes strong, thereby pulling the plant after use. It has the disadvantage of exacerbating the peelability and leaving a large amount of broken stems and roots. Therefore Coarse fabrics used in the mesh shade according to the present invention, as a set area of the porosity area of 1mm 2 ~9mm 2, and optimally constitute a porosity from 12 to 38%.

表面及び裏面の熱可塑性樹脂層の厚さは0.01〜0.5mm、特に0.1〜0.35mmが好ましい。本発明において、粗目織物に熱可塑性樹脂層(表面側、裏面側各々粗目織物への含浸を含む略半円弧状断面)を設けたメッシュシェードは、粗目織物に対して液状の熱可塑性樹脂によるディッピングやコーティングによる含浸被覆によって形成される。液状の熱可塑性樹脂としては、エマルジョン樹脂、デイスパージョン樹脂などの水分散形態、熱可塑性樹脂を有機溶媒中に可溶化した塗料形態、及び塩化ビニル樹脂ペーストゾルなどの使用が好ましい。得られたメッシュシェードの空隙率は、空隙部個々の面積は0.25mm〜12mm、特に1mm〜9mmを有し、空隙部合計のメッシュシェード面積全体に占める割合である空隙率は8〜46%、特に16〜38%が好ましい。空隙率はメッシュシェードの任意の単位面積領域に占める空隙部の総和面積率である。空隙部の総和面積は、単位面積領域に存在する糸条実体部の総和面積を求め、単位面積から差し引いた値で求められる。具体的には1インチ四方のメッシュシートのデジタル画像をコンピューターに取り込み、糸条実体部と空隙部分との面積を画像計算する方法が挙げられる。また樹脂被覆糸条の幅と、樹脂被覆糸条の配置密度の設計から理論値として計算した値であってもよい。空隙部の面積は0.25mm未満だと空隙部に形成する水膜量が少なくなるため水の蒸発による冷却効果(気化熱を奪う効果)が不十分となることがある。また空隙部の面積が12mmを越えると、空隙部に水膜を形成することが表面張力的に困難となることがあり、それによって充分な気化熱効果(水の蒸発による冷却効果)を得ることができないこと、さらに植物緑化をオプションした場合、植物の伸び蔓が空隙部から裏回りして植物の絡み付きを必要以上に強固とし、それによって使用後の植物の引き剥がし性を悪化させ、千切れた蔓茎やひげ根を多量に残存させる不都合がある。また空隙率が8%未満だと、採光性と通気性を悪くすると同時に水膜形成量が不足して十分な気化熱効果(蒸発による冷却効果)を得られないことがあり、さらに植物緑化をオプションした場合に、ひげ根または巻きひげを有する植物の這い付き性が悪く、自重で垂れ落ちることがある。また空隙率が46%を越えると、日除け効果が本質的に不足すると同時に、植物緑化をオプションした場合に、植物とメッシュシェードとの密着性が強固なものとなり、それによって使用後の植物の引き剥がし性を悪化させ、千切れた蔓茎やひげ根を多量に残存させる問題がある。従って本発明によるメッシュシェードは、空隙率面積1mm〜9mmの集合面積として、空隙率12〜38%を構成するものが最適である。 The thickness of the front and back thermoplastic resin layers is preferably 0.01 to 0.5 mm, particularly preferably 0.1 to 0.35 mm. In the present invention, the mesh shade provided with a thermoplastic resin layer (substantially semicircular cross section including impregnation of the coarse fabric on each of the front and back sides) on the coarse fabric is dipped with a liquid thermoplastic resin to the coarse fabric. Or by impregnating with a coating. As the liquid thermoplastic resin, it is preferable to use an aqueous dispersion form such as an emulsion resin or a dispersion resin, a paint form obtained by solubilizing a thermoplastic resin in an organic solvent, and a vinyl chloride resin paste sol. The resulting porosity of the mesh shade air gap individual area 0.25mm 2 ~12mm 2, in particular has a 1mm 2 ~9mm 2, the porosity is a percentage of the total mesh shade area of the void portion Total 8 to 46%, particularly 16 to 38% is preferable. The porosity is the total area ratio of the voids in an arbitrary unit area of the mesh shade. The total area of the voids is obtained by a value obtained by subtracting the total area of the yarn entity portions existing in the unit area region. Specifically, a method of taking a digital image of a 1-inch square mesh sheet into a computer and calculating an image of the area between the yarn entity part and the gap part can be mentioned. Further, it may be a value calculated as a theoretical value from the design of the width of the resin-coated yarn and the arrangement density of the resin-coated yarn. If the area of the gap is less than 0.25 mm 2 , the amount of water film formed in the gap is reduced, so that the cooling effect (the effect of depriving heat of vaporization) due to water evaporation may be insufficient. If the area of the void exceeds 12 mm 2 , it may be difficult to form a water film in the void due to surface tension, thereby obtaining a sufficient vaporization heat effect (cooling effect due to water evaporation). In addition, when plant greening is an option, the growing vines of the plant turn around from the voids, strengthening the tangling of the plant more than necessary, thereby deteriorating the peelability of the plant after use, and There is an inconvenience that a large amount of broken vines and roots remain. On the other hand, if the porosity is less than 8%, the daylighting and air permeability may be deteriorated, and at the same time, the amount of water film formation may be insufficient to obtain a sufficient vaporization heat effect (cooling effect due to evaporation). When optioned, plants with roots or tendrils have poor scuffing characteristics and may sag under their own weight. In addition, if the porosity exceeds 46%, the sunshade effect is essentially insufficient, and at the same time, when planting is optional, the adhesion between the plant and the mesh shade becomes strong, thereby pulling the plant after use. There is a problem that the peelability is deteriorated and a large amount of broken stems and roots remain. Therefore mesh shade according to the present invention, as a set area of the porosity area of 1mm 2 ~9mm 2, and optimally constitute a porosity from 12 to 38%.

本発明によるメッシュシェードは、主にマンションや戸建住居のベランダに設置され、窓サッシ部を庇覆いするようにして角度40〜90°で固定して使用される。設置方向は表面熱可塑性樹脂層側を太陽に向け、裏面熱可塑性樹脂層を住居側とする。使用形態は、専用フックやロープの固定装備により一夏常設するタイプ、巻取式シェードの形態で日照時間や日照の強弱に合わせて、メッシュシェードを引き出し手摺フレームなどにフック固定したり、フック固定を外して巻取収納したりするタイプの何れであってもよいが、植物による表面緑化を附帯させる場合は一夏常設タイプが好ましい。メッシュシェードの設置は窓サッシフレームを基礎固定(フック式またはロープ式)とし、伸長方向先端部をベランダの手摺や物干し台などのフレームにデッキ固定(フック式またはロープ式)する。メッシュシェードは幅方向1m〜2.5m×長手方向1.5m〜2.5m程度のサイズがマンションのベランダ設置に適し、特に幅方向2m前後×長手方向2m前後のサイズが取り扱い性に優れ好ましい。本発明のメッシュシェード周側部には折り畳み縫製、芯補強縫製、熱可塑性樹脂シート、プラスチックフレームなどによる縁取補強加工が施され、これら縁取補強加工部分に装着フックやデッキ固定金具、ロープ固定のためのハトメ穴が設けられていることが好ましい。   The mesh shade according to the present invention is mainly installed on a veranda of a condominium or a detached house, and is used by being fixed at an angle of 40 to 90 ° so as to cover the window sash portion. The installation direction is such that the surface thermoplastic resin layer side faces the sun and the back thermoplastic resin layer is the dwelling side. The type of use is a permanent installation type with special hooks and rope fixing equipment, and a wind-up type shade that can be hooked to the handrail frame or the mesh shade by pulling out the mesh shade according to the sunshine hours and the intensity of sunlight. It may be any of the types that take off and take up and store, but when summer planting is accompanied by greening of the surface, the summer permanent type is preferred. The mesh shade is installed with the window sash frame fixed to the foundation (hook type or rope type), and the front end of the extension direction is fixed to the deck frame (hand hook type or rope type) on a handrail or clothes rack. As for the mesh shade, a size of about 1 m to 2.5 m in the width direction and about 1.5 m to 2.5 m in the longitudinal direction is suitable for installing a veranda in an apartment. The periphery of the mesh shade of the present invention is subjected to edge reinforcement processing by folding sewing, core reinforcement sewing, thermoplastic resin sheet, plastic frame, etc., and these edge reinforcement processing portions are attached with hooks, deck fixing brackets, rope fixing It is preferable that an eyelet hole is provided.

本発明のメッシュシェードの表面側には、その一部または全面に植物を這い付かせて表面緑化を図ることで、植物の保水及び蒸散作用による気化熱効果(蒸発による冷却効果)でよりいっそう遮熱性を向上させることができる。表面緑化に使用する植物はひげ根(気根・付着根・付着盤)または巻きひげを有する這い登り型の蔓植物であれば特に限定はなく、開花や結実の有無にとらわれない。これらはひげ根植物として例えば、キヅタ、ナツヅタ、ヘデラ、ムベ、クズ、テイカカズラ、イタビカズラ、ノウゼンガズラ、スイカズラ、オウゴンカズラ、ヘクソカズラなど、巻きひげ植物として例えば、ヘチマ、ゴーヤ、キュウリ、カラスウリ、アサガオ、ブドウ、フジ、ヤブガラシ、ガガイモなどがある。表面緑化を附帯させる場合、ベランダには植物用プランター設置を要するので、メッシュシェードは少なくとも一夏常設する必要がある。このように本発明のメッシュシェードの表面側を表面緑化した場合、メッシュシェードの表面側の熱可塑性樹脂層にはシリコーンオイルを含むことにより、表面熱可塑性樹脂層の濡れ性が、水との静止接触角において90〜135°の疎水性となり、植物が這い付いてもメッシュシェードとの密着性が本質的に弱く、植物の剥ぎ取り除去が容易となる。   On the surface side of the mesh shade of the present invention, a plant is planted on a part or the entire surface of the mesh shade for surface greening, so that the heat retention effect of the plant and the vaporization heat effect (transpiration effect by evaporation) due to transpiration are further blocked. Thermal property can be improved. The plant used for the surface greening is not particularly limited as long as it is a vine plant of a climbing type having a whiskers root (aerial roots / adhesive roots / adhesion discs) or a beard, and is not limited by flowering or fruiting. These are, for example, ivy, nuts, hedera, mube, kudzu, taikakazura, itabikazura, nozengazura, honeysuckle, ogonkazura, hexakazura, etc. There are Fuji, Yabugarashi, Gaigamo, etc. When planting green surfaces, the planter must be installed on the veranda, so the mesh shade must be permanently installed for at least one summer. As described above, when the surface side of the mesh shade of the present invention is greened, the wetness of the surface thermoplastic resin layer can be kept stationary with water by including silicone oil in the thermoplastic resin layer on the surface side of the mesh shade. The contact angle becomes hydrophobic at 90 to 135 °, and even if a plant crawls, the adhesion with the mesh shade is essentially weak, and the stripping and removal of the plant becomes easy.

本発明のメッシュシェード(1)について図1〜4により説明する。図1は、粗目織物(2)を基布として、粗目織物(2)の表裏を被覆する表面熱可塑性樹脂層(3)及び裏面熱可塑性樹脂層(4)とで構成され、表面熱可塑性樹脂層(3)のみにシリコーンオイル(5)を含有し、また裏面熱可塑性樹脂層(4)のみに界面活性剤(6)を含有するメッシュシェード(1)の正面と断面の一部を示す図である。同様に図2は図1のメッシュシェード(1)の空隙部(1−1)に水膜(1−2)が形成されている状態を示す正面の一部を示す図である。同様に図3は図1のメッシュシェード(1)の表面熱可塑性樹脂層(3)の上に植物緑化層(7)が附帯された状態を示す断面の一部を示す図である。図4は本発明のメッシュシェードの窓サッシ(9)への使用例を示す図で、メッシュシェード(1)の周縁には補強部(1−3)が形成され、ハトメ(1−4)が設けられ、ハトメにロープ(1−5)が通されて、ロープがベランダ(8)に固定された状態を示す図である。   The mesh shade (1) of the present invention will be described with reference to FIGS. FIG. 1 shows a surface thermoplastic resin composed of a surface thermoplastic resin layer (3) and a back surface thermoplastic resin layer (4) covering the front and back of the coarse fabric (2) using the coarse fabric (2) as a base fabric. The figure which shows a part of front and cross section of the mesh shade (1) which contains a silicone oil (5) only in a layer (3), and contains a surfactant (6) only in a back surface thermoplastic resin layer (4). It is. Similarly, FIG. 2 is a view showing a part of the front showing a state in which a water film (1-2) is formed in the gap (1-1) of the mesh shade (1) of FIG. Similarly, FIG. 3 is a diagram showing a part of a cross section showing a state in which a plant greening layer (7) is attached on the surface thermoplastic resin layer (3) of the mesh shade (1) of FIG. FIG. 4 is a view showing an example of use of the mesh shade of the present invention for a window sash (9). A reinforcing portion (1-3) is formed on the periphery of the mesh shade (1), and an eyelet (1-4) is provided. It is a figure which shows the state which was provided, the rope (1-5) was passed through the eyelet, and the rope was fixed to the veranda (8).

以下、本発明について実施例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。下記実施例及び比較例において、試験メッシュの遮熱効果、植物の這い付き性、植物の剥ぎ取り除去性は下記の試験方法により測定し、評価した。
1)降雨の防滴性
水を入れたバットを用意し、10cm×10cmサイズのメッシュ試験片(空隙率Aとする)の表面熱可塑性樹脂層側面を水面に向けて浮かべ、5秒静置した後ゆっくり水面と平行を保った状態で引き上げ、表面熱可塑性樹脂層側面の空隙部に形成した水膜の形成率を求めた。引き上げた直後の試験片の写真撮影を行い、試験後の空隙率Bを求め、空隙率Aに対する空隙率Bの比を求め、0.01〜1.0の間で数値が1に近いほど疎水性に優れ、それにより降雨の防滴性を有するものと判断した。
2)水膜形成性
水を入れたバットを用意し、10cm×10cmサイズのメッシュ試験片(空隙率Aとする)の裏面熱可塑性樹脂層側面を水面に向けて浮かべ、5秒静置した後ゆっくり水面と平行を保った状態で引き上げ、裏面熱可塑性樹脂層側面の空隙部に形成した水膜の形成率を求めた。引き上げた直後の試験片の写真撮影を行い、試験後の空隙率Cを求め、空隙率Aに対する空隙率Cの比を求め、0.01〜1.0の間で数値が0.01に近いほど親水性に優れ、それにより水膜形成性を有するものと判断した。
※本発明のメッシュシェードは表面が「降雨の防滴性」を有し、同時に裏面が「水膜形成性」を有することが不可欠である。
3)遮熱効果
幅100cm×(奥の高さ103.5cm・正面高さ3.5cm)×奥ゆき100cmの立体(45°の傾斜面を有する)の骨組みをアルミ製L型アングル(幅35mm)で組み立て、立体骨組の底面を除く全面にメッシュシェードを貼付固定し試験箱体を作製した。この試験箱体を正午〜13時の太陽光が直射された環境(埼玉県草加市8月:晴天:気温30〜31℃)での試験箱体内部温度を温度センサー(試験箱体内部中心に温度センサーを25cm高さで宙吊り固定)で測定した。
遮熱効果は、a)メッシュ試験片、b)メッシュ試験片(空隙に水膜形成)、c)メッシュ試験片表面に植物を這い付かせたものの3種の態様にて測定を実施した。
4)植物の這い付き性
100cm×100cmサイズのメッシュ試験片を、野性のヤブガラシ(Cayratia japonica Gagnep:蔓性巻きひげ植物)生育群(埼玉県草加市内)に、傾斜75°の状態で5月〜7月の60日間展張放置し、ヤブガラシの這い付き状態を観察した。試験片に対する這い付き占有面積率を写真撮影によりコンピューター画像解析し、占有面積率70〜100%を良好、占有面積率40〜69%をやや不十分、占有面積率0〜39%を不良と判定した。
5)植物の引き剥がし性
上記4)の試験で這い付いたヤブガラシを手作業で引き剥がした後のメッシュ試験片の表面状態を観察し、千切れた蔓茎やひげ根の残存量を目視で評価した。
1:引き剥がしが容易で、蔓茎の千切れはほとんど見られず、若干の千切れた
ひげ根が残存したレベル
2:蔓茎の千切れが若干見られ、千切れたひげ根が多く残存したレベル
3:引き剥がしが困難で、蔓茎の千切れが顕著で、千切れたひげ根が多く残存
したレベル。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these. In the following examples and comparative examples, the heat shielding effect of the test mesh, the scooping properties of the plants, and the stripping and removing properties of the plants were measured and evaluated by the following test methods.
1) Rain drip-proof A bat filled with water was prepared, and the surface thermoplastic resin layer side surface of a 10 cm × 10 cm mesh test piece (with porosity A) was floated toward the water surface and allowed to stand for 5 seconds. Thereafter, the film was slowly pulled up in parallel with the water surface, and the rate of formation of the water film formed in the void on the side surface of the surface thermoplastic resin layer was determined. The test piece immediately after being pulled up is photographed, the porosity B after the test is determined, the ratio of the porosity B to the porosity A is determined, and the value closer to 1 between 0.01 and 1.0 is more hydrophobic Therefore, it was judged that it had rain-proof and drip-proof properties.
2) Water film formation After preparing a bat containing water and floating the side surface of the thermoplastic resin layer of a 10 cm × 10 cm mesh test piece (with a porosity of A) toward the water surface and allowing to stand for 5 seconds The water film was slowly pulled up in parallel with the water surface, and the formation rate of the water film formed in the voids on the side surface of the back surface thermoplastic resin layer was determined. The test piece immediately after being pulled up is photographed, the porosity C after the test is determined, the ratio of the porosity C to the porosity A is determined, and the numerical value is close to 0.01 between 0.01 and 1.0. It was judged that it was excellent in hydrophilicity, thereby having water film forming property.
* It is essential that the mesh shade of the present invention has “rainproof and drip-proof” on the front surface and “water film formation” on the back surface.
3) Heat shielding effect Aluminum L-shaped angle (width 35mm) with a solid structure (having a 45 ° inclined surface) of width 100cm x (depth 103.5cm, front height 3.5cm) x depth 100cm And a test shade was prepared by attaching and fixing a mesh shade on the entire surface except the bottom of the three-dimensional frame. The temperature inside the test box (in the center of the test box in the center of the test box) in the environment where sunlight from noon to 13:00 was directly applied to this test box (Soka City, Saitama, August: fine weather: temperature 30-31 ° C) The temperature sensor was measured at a height of 25 cm and suspended in air.
The heat shielding effect was measured in three modes: a) a mesh test piece, b) a mesh test piece (formation of a water film in the gap), and c) a plant sprinkled on the surface of the mesh test piece.
4) Plant craving property A 100cm x 100cm size mesh test piece was placed on a wild cabbage (Cayratia japonica Gagnep) growing group (Soka City, Saitama Prefecture) in May at an inclination of 75 °. 〜July 60 days was left unattended and observed the crawling state of the gargle. Occupied area ratio with respect to the test piece is analyzed by computer image by photography, and the occupied area ratio 70-100% is judged good, the occupied area ratio 40-69% is slightly insufficient, and the occupied area ratio 0-39% is judged as bad. did.
5) Peeling property of the plant Observe the surface condition of the mesh specimen after manually peeling off the pebbled seeds in the test of 4) above, and visually check the remaining amount of shredded vines and roots. evaluated.
1: Easy to peel off, almost no shreds of vines, some shredded
Level at which the roots remain
2: Level at which a few strips of vines are seen and a lot of strips of beard remain
3: Difficult to peel off, severely chopped vines, many broken roots remaining
Level.

[実施例1]
1)ポリエステルのマルチフィラメント糸条750d/3本模紗(833dtex/3本模紗:円弧状断面)を経緯糸条として、経糸条8本/インチ、緯糸条8本/インチの打ち込みで製織した粗目模紗織物(質量175g/m:空隙率20%:空隙部面積0.4mm)を基布に用いた。〈基布1〉
2)次に基布1を被覆する表面熱可塑性樹脂層形成用に下記配合1の軟質ポリ塩化ビニル樹脂ゾルを配合調整した。
<配合1;表面熱可塑性樹脂層形成用軟質ポリ塩化ビニル樹脂ゾル組成>
ポリ塩化ビニル樹脂 100質量部
DOP(可塑剤) 65質量部
エポキシ化大豆油 2質量部
Ba−Zn系複合安定剤 1.5質量部
炭酸カルシウム(充填材) 15質量部
三酸化アンチモン(難燃剤) 10質量部
ベンゾトリアゾール系紫外線吸収剤 0.3質量部
シリコーンオイル(アルキル・ポリエーテル変性) 2.5質量部
ベヘンアミド(滑剤) 0.5質量部
酸化チタン(酸化ケイ素被覆率8%:粒子径1.1μm:熱線反射性) 8質量部
3)配合1の軟質ポリ塩化ビニル樹脂ゾルをロータリースクリーン式塗工機を用いて基布1の片面に付着させた後、180℃の熱風炉でゲル化処理して表面熱可塑性樹脂層を形成した。
4)次に基布1を被覆する裏面熱可塑性樹脂層形成用に下記配合2の軟質ポリ塩化ビニル樹脂ゾルを配合調整した。
<配合2;裏面熱可塑性樹脂層形成用軟質ポリ塩化ビニル樹脂ゾル組成>
ポリ塩化ビニル樹脂 100質量部
DOP(可塑剤) 65質量部
エポキシ化大豆油 2質量部
Ba−Zn系複合安定剤 1.5質量部
炭酸カルシウム(充填材) 15質量部
三酸化アンチモン(難燃剤) 10質量部
ベンゾトリアゾール系紫外線吸収剤 0.3質量部
ペンタエリスリトールの脂肪酸エステル(界面活性剤) 2質量部
酸化チタン(顔料) 5質量部
5)3)で得た表面熱可塑性樹脂層を形成した基布1の反対面に配合2の軟質ポリ塩化ビニル樹脂ゾルをロータリースクリーン式塗工機を用いて付着させた後、180℃の熱風炉でゲル化処理して裏面熱可塑性樹脂層を形成し、質量425g/m:空隙率19%:空隙部面積0.36mmのメッシュシェードを得た。得られたメッシュシェードの表面熱可塑性樹脂層の濡れ性は水との静止接触角115°、裏面熱可塑性樹脂層の濡れ性は水との静止接触角15°であった。
[Example 1]
1) Polyester multifilament yarns 750d / 3 yarns (833dtex / 3 yarns: arc-shaped cross section) were used as warp yarns and weaved with 8 warps / inch and 8 weft yarns / inch. A coarse woven fabric (mass 175 g / m 2 : porosity 20%: void area 0.4 mm 2 ) was used as the base fabric. <Base fabric 1>
2) Next, a soft polyvinyl chloride resin sol having the following composition 1 was blended for forming a surface thermoplastic resin layer covering the base fabric 1.
<Formulation 1; soft polyvinyl chloride resin sol composition for forming surface thermoplastic resin layer>
Polyvinyl chloride resin 100 parts by weight DOP (plasticizer) 65 parts by weight Epoxidized soybean oil 2 parts by weight Ba-Zn composite stabilizer 1.5 parts by weight Calcium carbonate (filler) 15 parts by weight Antimony trioxide (flame retardant) 10 parts by mass Benzotriazole UV absorber 0.3 parts by mass Silicone oil (alkyl / polyether modified) 2.5 parts by mass Behenamide (lubricant) 0.5 parts by mass Titanium oxide (silicon oxide coverage 8%: particle size 1 .1 μm: heat ray reflectivity) 8 parts by mass 3) A soft polyvinyl chloride resin sol of Formulation 1 was attached to one side of the base fabric 1 using a rotary screen coater and then gelled in a hot air oven at 180 ° C. The surface thermoplastic resin layer was formed by processing.
4) Next, a soft polyvinyl chloride resin sol having the following composition 2 was blended for forming the back surface thermoplastic resin layer covering the base fabric 1.
<Formulation 2: Soft polyvinyl chloride resin sol composition for forming the back surface thermoplastic resin layer>
Polyvinyl chloride resin 100 parts by weight DOP (plasticizer) 65 parts by weight Epoxidized soybean oil 2 parts by weight Ba-Zn composite stabilizer 1.5 parts by weight Calcium carbonate (filler) 15 parts by weight Antimony trioxide (flame retardant) 10 parts by mass Benzotriazole-based ultraviolet absorber 0.3 parts by mass Fatty ester of pentaerythritol (surfactant) 2 parts by mass Titanium oxide (pigment) 5 parts by mass 5) 3) A surface thermoplastic resin layer obtained from 3) was formed. After the soft polyvinyl chloride resin sol of Formulation 2 was adhered to the opposite surface of the base fabric 1 using a rotary screen coater, it was gelled in a hot air oven at 180 ° C. to form a back surface thermoplastic resin layer. , Mass 425 g / m 2 : porosity 19%: void area 0.36 mm 2 mesh shade was obtained. The wetness of the surface thermoplastic resin layer of the obtained mesh shade was 115 ° with respect to water, and the wettability of the back surface thermoplastic resin layer was 15 ° with respect to water.

[実施例2]
実施例1で用いた基布1を下記基布2に変更した以外は実施例1と同様にして、配合1による表面熱可塑性樹脂層、及び配合2による裏面熱可塑性樹脂層を設け、質量218g/m:空隙率37%:空隙部面積5.5mmのメッシュシェードを得た。得られたメッシュシェードの表面熱可塑性樹脂層の濡れ性は水との静止接触角115°、裏面熱可塑性樹脂層の濡れ性は水との静止接触角15°であった。
〈基布2〉
ポリエステルのマルチフィラメント糸条750d/3本模紗(833dtex/3本模紗:円弧状断面)を経緯糸条として、経糸条4本/インチ、緯糸条4本/インチの打ち込みで製織した粗目模紗織物(質量90g/m:空隙率38%:空隙部面積5.8mm)を基布に用いた。
[Example 2]
Except that the base fabric 1 used in Example 1 was changed to the following base fabric 2, a surface thermoplastic resin layer according to Formulation 1 and a back surface thermoplastic resin layer according to Formulation 2 were provided in the same manner as Example 1, and a mass of 218 g. / M 2 : Porosity 37%: A mesh shade having a void area of 5.5 mm 2 was obtained. The wetness of the surface thermoplastic resin layer of the obtained mesh shade was 115 ° with respect to water, and the wettability of the back surface thermoplastic resin layer was 15 ° with respect to water.
<Base fabric 2>
Coarse grain model woven with 4 warp yarns / inch and 4 weft yarns / inch driven using polyester multifilament yarns 750d / 3 yarns (833 dtex / 3 yarns: arc-shaped cross section). A woven fabric (mass 90 g / m 2 : porosity 38%: void area 5.8 mm 2 ) was used as the base fabric.

[実施例3]
実施例1で用いた基布1を下記基布3に変更した以外は実施例1と同様にして、配合1による表面熱可塑性樹脂層、及び配合2による裏面熱可塑性樹脂層を設け、質量421g/m:空隙率28%:空隙部面積0.3mmのメッシュシェードを得た。得られたメッシュシェードの表面熱可塑性樹脂層の濡れ性は水との静止接触角115°、裏面熱可塑性樹脂層の濡れ性は水との静止接触角15°であった。
〈基布3〉
ポリエステルのマルチフィラメント糸条1000d(1111dtex/円弧状断面)を経緯糸条として、経糸条13本/インチ、緯糸条13本/インチの打ち込みで製織した粗目模紗織物(質量185g/m:空隙率30%:空隙部面積0.34mm)を基布に用いた。
[Example 3]
Except that the base fabric 1 used in Example 1 was changed to the following base fabric 3, a surface thermoplastic resin layer according to Formulation 1 and a back surface thermoplastic resin layer according to Formulation 2 were provided in the same manner as Example 1, and a mass of 421 g / M 2 : Porosity 28%: A mesh shade having a void area of 0.3 mm 2 was obtained. The wetness of the surface thermoplastic resin layer of the obtained mesh shade was 115 ° with respect to water, and the wettability of the back surface thermoplastic resin layer was 15 ° with respect to water.
<Base fabric 3>
Coarse-patterned woven fabric (mass 185 g / m 2 : void) using polyester multifilament yarn 1000d (1111 dtex / arc-shaped cross section) as warp yarn and woven with 13 warps / inch and 13 weft yarns / inch. Rate 30%: void area 0.34 mm 2 ) was used for the base fabric.

[実施例4]
実施例1の表面熱可塑性樹脂層上に、さらに下記配合3の軟質ポリ塩化ビニル樹脂ゾルをロータリースクリーン式塗工機を用いて付着させた後、180℃の熱風炉でゲル化処理して裏面熱可塑性樹脂層を形成し、質量488g/m:空隙率19%:空隙部面積0.36mmの表面熱可塑性樹脂層が2層構造を有するメッシュシェードを得た。得られたメッシュシェードの表面熱可塑性樹脂層の濡れ性は水との静止接触角115°、裏面熱可塑性樹脂層の濡れ性は水との静止接触角15°であった。
<配合3;表面熱可塑性樹脂層形成用軟質ポリ塩化ビニル樹脂ゾル組成>
ポリ塩化ビニル樹脂 100質量部
DOP(可塑剤) 35質量部
芳香族リン酸エステル 30質量部
エポキシ化大豆油 2質量部
Ba−Zn系複合安定剤 1.5質量部
ベンゾトリアゾール系紫外線吸収剤 0.3質量部
シリコーンオイル(アルキル・ポリエーテル変性) 2.5質量部
ベヘンアミド(滑剤) 0.5質量部
干渉雲母粒子(熱線反射性)
(酸化チタン/酸化ケイ素/酸化チタン被覆率25%:粒子径8μm) 3質量部
[Example 4]
A soft polyvinyl chloride resin sol having the following composition 3 was further adhered on the surface thermoplastic resin layer of Example 1 using a rotary screen coater, and then gelled in a hot air oven at 180 ° C. A thermoplastic resin layer was formed, and a mesh shade having a two-layer structure of a surface thermoplastic resin layer having a mass of 488 g / m 2 : porosity 19%: void area 0.36 mm 2 was obtained. The wetness of the surface thermoplastic resin layer of the obtained mesh shade was 115 ° with respect to water, and the wettability of the back surface thermoplastic resin layer was 15 ° with respect to water.
<Formulation 3; soft polyvinyl chloride resin sol composition for forming surface thermoplastic resin layer>
Polyvinyl chloride resin 100 parts by weight DOP (plasticizer) 35 parts by weight Aromatic phosphate ester 30 parts by weight Epoxidized soybean oil 2 parts by weight Ba-Zn composite stabilizer 1.5 parts by weight Benzotriazole UV absorber 0. 3 parts by weight Silicone oil (modified with alkyl / polyether) 2.5 parts by weight Behenamide (lubricant) 0.5 parts by weight Interference mica particles (heat-reflective)
(Titanium oxide / silicon oxide / titanium oxide coverage 25%: particle diameter 8 μm) 3 parts by mass

[実施例5]
実施例2の表面熱可塑性樹脂層上に、さらに配合3の軟質ポリ塩化ビニル樹脂ゾルをロータリースクリーン式塗工機を用いて付着させた後、180℃の熱風炉でゲル化処理して裏面熱可塑性樹脂層を形成し、質量252g/m:空隙率37%:空隙部面積5.5mmの表面熱可塑性樹脂層が2層構造を有するメッシュシェードを得た。得られたメッシュシェードの表面熱可塑性樹脂層の濡れ性は水との静止接触角115°、裏面熱可塑性樹脂層の濡れ性は水との静止接触角15°であった。
[Example 5]
A soft polyvinyl chloride resin sol of Formulation 3 was further adhered on the surface thermoplastic resin layer of Example 2 using a rotary screen coater, and then gelled in a hot air oven at 180 ° C. to heat the back surface. A plastic resin layer was formed, and a mesh shade having a two-layer structure of a surface thermoplastic resin layer having a mass of 252 g / m 2 : porosity of 37% and a void area of 5.5 mm 2 was obtained. The wetness of the surface thermoplastic resin layer of the obtained mesh shade was 115 ° with respect to water, and the wettability of the back surface thermoplastic resin layer was 15 ° with respect to water.

[実施例6]
実施例3の表面熱可塑性樹脂層上に、さらに配合3の軟質ポリ塩化ビニル樹脂ゾルをロータリースクリーン式塗工機を用いて付着させた後、180℃の熱風炉でゲル化処理して裏面熱可塑性樹脂層を形成し、質量477g/m:空隙率28%:空隙部面積0.3mmの表面熱可塑性樹脂層が2層構造を有するメッシュシェードを得た。得られたメッシュシェードの表面熱可塑性樹脂層の濡れ性は水との静止接触角115°、裏面熱可塑性樹脂層の濡れ性は水との静止接触角15°であった。
[Example 6]
A soft polyvinyl chloride resin sol of Formulation 3 was further adhered on the surface thermoplastic resin layer of Example 3 using a rotary screen coater, and then gelled in a hot air oven at 180 ° C. to heat the back surface. A plastic resin layer was formed, and a mesh shade having a two-layer structure of a surface thermoplastic resin layer having a mass of 477 g / m 2 : porosity 28%: void area 0.3 mm 2 was obtained. The wetness of the surface thermoplastic resin layer of the obtained mesh shade was 115 ° with respect to water, and the wettability of the back surface thermoplastic resin layer was 15 ° with respect to water.

[実施例7]
実施例1の配合1のシリコーンオイル(アルキル・ポリエーテル変性)2.5質量部をシリコーンオイル(高級脂肪酸変性シリコーンオイル)2.5質量部に変更し、さらに配合2のペンタエリスリトールの脂肪酸エステル(界面活性剤)2質量部を、グリセロールの脂肪酸エステル(界面活性剤)2質量部に変更した以外は実施例1と同様として、質量425g/m:空隙率19%:空隙部面積0.36mmのメッシュシェードを得た。得られたメッシュシェードの表面熱可塑性樹脂層の濡れ性は水との静止接触角116°、裏面熱可塑性樹脂層の濡れ性は水との静止接触角12°であった。
[Example 7]
The silicone oil (alkyl / polyether-modified) 2.5 parts by mass of Formulation 1 in Example 1 was changed to 2.5 parts by mass of silicone oil (higher fatty acid-modified silicone oil), and the pentaerythritol fatty acid ester (Formula 2) ( (Surfactant) 2 parts by mass was changed to 2 parts by mass of glycerol fatty acid ester (surfactant), as in Example 1, mass 425 g / m 2 : porosity 19%: void area 0.36 mm 2 mesh shades were obtained. The wetness of the surface thermoplastic resin layer of the mesh shade obtained was a static contact angle with water of 116 °, and the wettability of the back surface thermoplastic resin layer was 12 ° with a static contact angle with water.

[実施例8]
実施例1の配合1のシリコーンオイル(アルキル・ポリエーテル変性)2.5質量部をシリコーンオイル(メチルハイドロジェンシリコーンオイル)2.5質量部に変更し、さらに配合2のペンタエリスリトールの脂肪酸エステル(界面活性剤)2質量部を、ポリプロピレングリコールエチレンオキサイド付加物(界面活性剤)2質量部に変更した以外は実施例1と同様として、質量425g/m:空隙率19%:空隙部面積0.36mmのメッシュシェードを得た。得られたメッシュシェードの表面熱可塑性樹脂層の濡れ性は水との静止接触角120°、裏面熱可塑性樹脂層の濡れ性は水との静止接触角13°であった。
[Example 8]
The silicone oil (alkyl / polyether-modified) 2.5 parts by mass of Formulation 1 in Example 1 was changed to 2.5 parts by mass of silicone oil (methyl hydrogen silicone oil), and the pentaerythritol fatty acid ester of Formula 2 ( (Surfactant) 2 mass parts was changed to 2 mass parts of polypropylene glycol ethylene oxide adduct (surfactant), and the mass was 425 g / m 2 : porosity 19%: void area 0 A mesh shade of 36 mm 2 was obtained. The wetness of the surface thermoplastic resin layer of the obtained mesh shade was 120 ° for the static contact angle with water, and the wettability of the back surface thermoplastic resin layer was 13 ° for the static contact angle with water.

実施例1〜8のメッシュシェードは、空隙部の面積0.25mm〜12mmを有し、表面熱可塑性樹脂層にシリコーンオイルを含有することで表面熱可塑性樹脂層が90〜135°の濡れ性を示し、同時に裏面熱可塑性樹脂層に界面活性剤を含有することで裏面熱可塑性樹脂層が3〜45°の濡れ性を示すことによって、降雨に対する防滴性を発現しながら水膜形成性を有し、その形成水膜の蒸発による気化熱冷却効果で優れた遮熱効果が得られ、さらに表面熱可塑性樹脂層に酸化ケイ素で薄膜被覆された特定粒子径の酸化チタン粒子または雲母を酸化金属多層薄膜で被覆してなる干渉雲母粒子などの熱線反射性粒子を含むことによって、より優れた遮熱効果が得られることが明らかとなった。また、特に実施例1〜8のメッシュシェードの表面に蔓植物を這い付かせたものでは、さらに一段と遮熱効果に優れ、夏季の使用後に不要となった蔓植物の引き剥がしも容易で千切れた蔓茎やひげ根などの存在はごく僅かであった。 Mesh shade Examples 1-8, has an area 0.25mm 2 ~12mm 2 air-gap portion, the surface thermoplastic resin layer by containing a silicone oil to the surface thermoplastic resin layer is 90 to 135 ° wetting At the same time, by containing a surfactant in the back surface thermoplastic resin layer, the back surface thermoplastic resin layer exhibits a wettability of 3 to 45 °, thereby forming a water film while exhibiting drip-proof properties against rainfall. It has excellent thermal barrier effect due to vaporization heat cooling effect due to evaporation of the water film formed, and also oxidizes titanium oxide particles or mica with a specific particle diameter coated with a thin film of silicon oxide on the surface thermoplastic resin layer It has been clarified that a better heat shielding effect can be obtained by including heat ray reflective particles such as interference mica particles coated with a metal multilayer thin film. In particular, the vines on the surface of the mesh shades of Examples 1 to 8 are more excellent in heat-shielding effect, and the vines that became unnecessary after summer use can be easily peeled off. There were very few vine stems and roots.

[比較例1]
実施例1の基布1を下記基布4に変更した以外は実施例1と同様にして、配合1による表面熱可塑性樹脂層、及び配合2による裏面熱可塑性樹脂層を設け、質量395g/m:空隙率11%:空隙部面積0.024mmのメッシュシェードを得た。得られたメッシュシェードの表面熱可塑性樹脂層の濡れ性は水との静止接触角115°、裏面熱可塑性樹脂層の濡れ性は水との静止接触角15°で、裏面の空隙部より水膜形成が可能なものであったが、空隙率が小さい上に、空隙部面積が小さ過ぎて水の補給量が全体的に不足し、水の蒸発による冷却効果(気化熱を奪う効果による遮熱性)が不十分なものであった。また、空隙部の面積が小さ過ぎることで、植物(ヤブガラシ)を這い付かせでも、ひげ根や巻きひげの定着が不安定で脆弱となり剥がれ落ち易くなり、従って植物による表面緑化には適さないものであった。
〈基布4〉
ポリエステルのマルチフィラメント糸条1000d/(1111dtex/円弧状断面)を経緯糸条として、経糸条18本/インチ、緯糸条18本/インチの打ち込みで製織した粗目模紗織物(質量265g/m:空隙率12%:空隙部面積0.028mm)を基布に用いた。
[Comparative Example 1]
A surface thermoplastic resin layer according to Formulation 1 and a back surface thermoplastic resin layer according to Formulation 2 were provided in the same manner as in Example 1 except that the base fabric 1 of Example 1 was changed to the following base fabric 4, and a mass of 395 g / m. 2 : A porosity of 11%: A mesh shade having a void area of 0.024 mm 2 was obtained. The wetness of the surface thermoplastic resin layer of the mesh shade obtained was a static contact angle of 115 ° with water, the wettability of the back surface thermoplastic resin layer was 15 ° with water, and a water film was formed from the gap on the back surface. Although it was possible to form, the porosity was small, the void area was too small and the amount of water replenished as a whole was insufficient, and the cooling effect due to the evaporation of water (the heat shielding effect due to the effect of depriving the heat of vaporization) ) Was insufficient. In addition, because the area of the void is too small, the root of the whiskers and tendrils become unstable, brittle and easy to peel off even when planting (pebbles), so it is not suitable for surface greening by plants Met.
<Fabric 4>
Coarse-patterned woven fabric (mass 265 g / m 2) woven with a multifilament yarn 1000d / (1111 dtex / arc-shaped cross section) of polyester as warp and weaving with 18 warps / inch and 18 wefts / inch The porosity was 12%: the void area was 0.028 mm 2 ).

[比較例2]
実施例1の基布1を下記基布5に変更した以外は実施例1と同様にして、配合1による表面熱可塑性樹脂層、及び配合2による裏面熱可塑性樹脂層を設け、質量98g/m:空隙率69%:空隙部面積19.19mmのメッシュシェードを得た。得られたメッシュシェードの表面熱可塑性樹脂層の濡れ性は水との静止接触角115°、裏面熱可塑性樹脂層の濡れ性は水との静止接触角15°で、裏面の空隙部より水膜形成が可能で、空隙率が大きく、空隙部面積も大きいことで水の補給量は充分であったが、降雨が空隙部より降り抜け、雨除け効果を成さないものであった。また、空隙部の面積が大き過ぎることで、植物(ヤブガラシ)の這い付きは良好であったが、ひげ根や巻きひげが裏回りするなどし定着が必要以上に強固となって、引き剥がした時にメッシュシェード表面に多数の千切れた蔓茎やひげ根などの残痕が発生し、その除去作業が面倒なものとなった。
〈基布5〉
ポリエステルのマルチフィラメント糸条1000d/(1111dtex/円弧状断面)を経緯糸条として、経糸条4本/インチ、緯糸条4本/インチの打ち込みで製織した粗目模紗織物(質量57g/m:空隙率70%:空隙部面積19.75mm)を基布に用いた。
[Comparative Example 2]
A surface thermoplastic resin layer according to Formulation 1 and a back surface thermoplastic resin layer according to Formulation 2 were provided in the same manner as in Example 1 except that the base fabric 1 of Example 1 was changed to the following base fabric 5, and a mass of 98 g / m. 2 : A porosity of 69%: A mesh shade having a void area of 19.19 mm 2 was obtained. The wetness of the surface thermoplastic resin layer of the mesh shade obtained was a static contact angle of 115 ° with water, the wettability of the back surface thermoplastic resin layer was 15 ° with water, and a water film was formed from the gap on the back surface. Although it was possible to form, the porosity was large, and the gap area was large, the amount of water supply was sufficient. However, the rain fell from the gap and did not have a rain-preventing effect. In addition, because the area of the void was too large, the plant (crab) scooped up well, but the roots and whiskers turned around and the fixing became stronger than necessary and peeled off. Occasionally, a large number of broken stems and roots were generated on the surface of the mesh shade, and the removal work was troublesome.
<Fabric 5>
Coarse patterned woven fabric (mass: 57 g / m 2) woven with a multifilament yarn of 1000 d / (1111 dtex / arc-shaped cross section) as a warp yarn and driven with 4 warps / inch and 4 weft yarns / inch. The porosity was 70%: the void area was 19.75 mm 2 ).

[比較例3]
実施例1の配合1からシリコーンオイル(アルキル・ポリエーテル変性)2.5質量部を省略し、また実施例1の配合2からペンタエリスリトールの脂肪酸エステル(界面活性剤)2質量部を省略した以外は実施例1と同様として、質量425g/m:空隙率19%:空隙部面積0.36mmのメッシュシェードを得た。得られたメッシュシェードの表面熱可塑性樹脂層の濡れ性は水との静止接触角75°で降雨の防滴性に劣り、裏面熱可塑性樹脂層の濡れ性は水との静止接触角75°と水膜形成性に劣るものであった。また植物(ヤブガラシ)の這い付きは良好であったが、シリコーンオイルを含まず、疎水性とならないメッシュシェード表面にはひげ根や巻きひげ根の定着が強固となって、引き剥がした時にメッシュシェード表面に多数の千切れた蔓茎やひげ根などの残痕が発生し、その除去作業が面倒なものとなった。
[Comparative Example 3]
Except omitting 2.5 parts by mass of silicone oil (alkyl / polyether-modified) from Formulation 1 of Example 1 and omitting 2 parts by mass of fatty acid ester (surfactant) of pentaerythritol from Formulation 2 of Example 1. As in Example 1, a mesh shade having a mass of 425 g / m 2, a porosity of 19%, and a void area of 0.36 mm 2 was obtained. The wetness of the surface thermoplastic resin layer of the obtained mesh shade is inferior in rainproof drip at a static contact angle of 75 ° with water, and the wettability of the back surface thermoplastic resin layer is 75 ° with a static contact angle with water. The water film formation was inferior. In addition, the scrubbing of the plants (butterfly) was good, but the mesh shade surface, which does not contain silicone oil and does not become hydrophobic, has a strong root root and curly root root anchorage, and the mesh shade when peeled off A large number of broken leaves such as vines and roots were generated on the surface, and the removal work became troublesome.

[比較例4]
実施例1のメッシュシェード(質量425g/m:空隙率19%:空隙部面積0.36mm)の表裏を反対にして用いた。この使用状態で水膜形成性は良好であったが、裏面の親水性の熱可塑性樹脂層を太陽側に向けたことで、降雨の防滴性に劣り、また植物(ヤブガラシ)の這い付きは良好であったが、シリコーンオイルを含まず、疎水性とならない親水性の熱可塑性樹脂層面にはひげ根や巻きひげ根の定着が強固となって、引き剥がした時にメッシュシェード表面に多数の千切れた蔓茎やひげ根などの残痕が発生し、その除去作業が面倒なものとなった。
[Comparative Example 4]
The mesh shade of Example 1 (mass: 425 g / m 2 : porosity 19%: void area 0.36 mm 2 ) was used with the front and back reversed. Water film formation was good in this state of use, but because the hydrophilic thermoplastic resin layer on the back side was directed to the sun side, it was inferior in drip-proof property for rain, and the plant (yabgarashi) was not It was good, but the surface of the hydrophilic thermoplastic resin layer that does not contain silicone oil and becomes non-hydrophobic has a strong root root and curly root root anchorage. Remains such as broken vines and roots were generated, and the removal work became troublesome.

本発明により得られるメッシュシェードは、適度な採光性、通気性及び降雨に対する防滴性とを保持しながら水膜形成性を有し、メッシュ空隙部に形成された水膜の蒸発による遮熱効果を発現するメッシュシェードが得られ、さらにこれらのメッシュシェード上に、ひげ根または巻きひげを有する植物を這い付かせるのに適しているので、植物緑化したさらに遮熱効果に優れたメッシュシェードを得ることができ、しかも夏季の使用後に不要となった植物の剥ぎ取り除去も容易であるので、本発明によるメッシュシェードは、戸建住宅、店舗、マンションなどのガラス窓やベランダに設置して夏季に使用するブラインドとして極めて有用である。   The mesh shade obtained by the present invention has a water film forming property while maintaining a suitable daylighting property, air permeability, and drip-proof property against rainfall, and a heat shielding effect by evaporation of the water film formed in the mesh gap. It is suitable for scrubbing a plant having a root of a whisk or a whiskers on these mesh shades, and thus obtaining a mesh shade that is planted green and has an excellent heat shielding effect. The mesh shade according to the present invention can be installed on a glass window or a veranda of a detached house, a store, an apartment, etc. It is extremely useful as a blind for use.

1:メッシュシェード
1−1:空隙部
1−2:水膜
1−3:補強部
1−4:ハトメ
1−5:ロープ
2:粗目織物(基布)
3:表面熱可塑性樹脂層
4:裏面熱可塑性樹脂層
5:シリコーンオイル
6:界面活性剤
7:植物緑化層
8:ベランダ
9:窓サッシ
1: Mesh Shade 1-1: Cavity 1-2: Water Film 1-3: Reinforcement 1-4: Eyelet 1-5: Rope 2: Coarse Woven Fabric (Base Fabric)
3: Front surface thermoplastic resin layer 4: Back surface thermoplastic resin layer 5: Silicone oil 6: Surfactant 7: Plant greening layer 8: Veranda 9: Window sash

Claims (6)

粗目織物を基布として、その表裏面を被覆する表面熱可塑性樹脂層及び裏面熱可塑性樹脂層とで構成された、多数の空隙部を有するメッシュシートであって、前記空隙部個々の面積が0.25mm〜12mmを有し、前記表面熱可塑性樹脂層の濡れ性が水との静止接触角90〜135°を示し、かつ、前記裏面熱可塑性樹脂層の濡れ性が水との静止接触角3〜45°を示すことを特徴とするメッシュシェード。 A mesh sheet having a large number of voids, which is composed of a coarse woven fabric as a base fabric, a front surface thermoplastic resin layer covering the front and back surfaces, and a back surface thermoplastic resin layer, each of the voids having an area of 0 has a .25mm 2 ~12mm 2, wettability of the surface thermoplastic resin layer exhibits a static contact angle 90 to 135 ° with water, and wettability of the back thermoplastic layer is still in contact with water A mesh shade characterized by an angle of 3 to 45 °. 前記表面熱可塑性樹脂層にシリコーンオイルを含み、かつ前記裏面熱可塑性樹脂層に界面活性剤を含む請求項1に記載のメッシュシェード。   The mesh shade according to claim 1, wherein the front surface thermoplastic resin layer contains silicone oil, and the back surface thermoplastic resin layer contains a surfactant. 前記表面熱可塑性樹脂層が、酸化ケイ素で薄膜被覆された粒子径0.6〜1.5μmの酸化チタン粒子を1〜10質量%含有する請求項1または2に記載のメッシュシェード。   The mesh shade according to claim 1 or 2, wherein the surface thermoplastic resin layer contains 1 to 10% by mass of titanium oxide particles having a particle diameter of 0.6 to 1.5 µm coated with a thin film of silicon oxide. 前記表面熱可塑性樹脂層が内層/外層の2層構造を成し、内層には酸化ケイ素で薄膜被覆された粒子径0.6〜1.5μmの酸化チタン粒子を1〜10質量%含有し、かつ、外層には雲母を酸化金属多層薄膜で被覆してなる、粒子径5〜50μmの干渉雲母粒子を1〜10質量%含有する請求項1または2に記載のメッシュシェード。   The surface thermoplastic resin layer has a two-layer structure of inner layer / outer layer, and the inner layer contains 1 to 10% by mass of titanium oxide particles having a particle diameter of 0.6 to 1.5 μm coated with a thin film of silicon oxide, The mesh shade according to claim 1, wherein the outer layer contains 1 to 10 mass% of interference mica particles having a particle diameter of 5 to 50 μm formed by coating mica with a metal oxide multilayer thin film. 前記空隙部に、空隙部を充実する水膜が形成されている請求項1〜4の何れか1項に記載のメッシュシェード。   The mesh shade according to any one of claims 1 to 4, wherein a water film that enhances the void is formed in the void. 前記表面熱可塑性樹脂層側に、ひげ根または巻きひげを有する植物が這付き、緑化層が形成されている請求項1〜5の何れか1項に記載のメッシュシェード。   The mesh shade according to any one of claims 1 to 5, wherein a plant having a whisker root or a whisker is wrinkled and a greening layer is formed on the surface thermoplastic resin layer side.
JP2013182820A 2013-09-04 2013-09-04 Mesh shade Active JP6171155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182820A JP6171155B2 (en) 2013-09-04 2013-09-04 Mesh shade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182820A JP6171155B2 (en) 2013-09-04 2013-09-04 Mesh shade

Publications (2)

Publication Number Publication Date
JP2015048683A true JP2015048683A (en) 2015-03-16
JP6171155B2 JP6171155B2 (en) 2017-08-02

Family

ID=52698921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182820A Active JP6171155B2 (en) 2013-09-04 2013-09-04 Mesh shade

Country Status (1)

Country Link
JP (1) JP6171155B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107484586A (en) * 2017-10-11 2017-12-19 邢志强 Cool the water supply installation netted
CN107494072A (en) * 2017-10-11 2017-12-22 邢志强 Cool net

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051480A1 (en) * 1998-05-29 2001-12-13 Konrad Eysel Translucent sheets
JP2003340978A (en) * 2002-05-27 2003-12-02 Kazuhito Hashimoto Hydrophilic mesh sheet
JP2007138464A (en) * 2005-11-16 2007-06-07 Lonseal Corp Non-slip building sheet
JP2010268738A (en) * 2009-05-22 2010-12-02 Sumitomo Forestry Co Ltd Wall surface greening structure
JP2013031929A (en) * 2011-07-30 2013-02-14 Hiraoka & Co Ltd Tarpaulin and jointed body manufactured by heat-fusing the same
JP2013166313A (en) * 2012-02-16 2013-08-29 Hiraoka & Co Ltd Heat-shielding sheet for window

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051480A1 (en) * 1998-05-29 2001-12-13 Konrad Eysel Translucent sheets
JP2003340978A (en) * 2002-05-27 2003-12-02 Kazuhito Hashimoto Hydrophilic mesh sheet
JP2007138464A (en) * 2005-11-16 2007-06-07 Lonseal Corp Non-slip building sheet
JP2010268738A (en) * 2009-05-22 2010-12-02 Sumitomo Forestry Co Ltd Wall surface greening structure
JP2013031929A (en) * 2011-07-30 2013-02-14 Hiraoka & Co Ltd Tarpaulin and jointed body manufactured by heat-fusing the same
JP2013166313A (en) * 2012-02-16 2013-08-29 Hiraoka & Co Ltd Heat-shielding sheet for window

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107484586A (en) * 2017-10-11 2017-12-19 邢志强 Cool the water supply installation netted
CN107494072A (en) * 2017-10-11 2017-12-22 邢志强 Cool net

Also Published As

Publication number Publication date
JP6171155B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP2015093392A (en) Heat shield mesh shade
JP5126792B2 (en) High translucent film material
CN101694033A (en) Method for weaving coating terylene industrial yarn doup structure sunshade screen
JP6171155B2 (en) Mesh shade
JP5062615B2 (en) Natural fiber-like mesh sheet with excellent heat insulation
JP6171156B2 (en) Insect repellent mesh sheet
JP6683432B2 (en) Grass sheet
JP6212822B2 (en) Thermal barrier film material with excellent daylighting
JP6368913B2 (en) Highly translucent film material with heat insulation and heat retention
KR20060092100A (en) Sunshade cover structure for keeping warm and sunshade
JP2012217363A (en) Wire material, and product made up of the same
JP3169867U (en) Awning device
EP1854346A1 (en) Biodegradable textile
JP2015047147A (en) Green curtain
CN201519033U (en) No-wash antiflaming reflection energy-saving curtain
WO2016039266A1 (en) Weed control mat
JP2010189983A (en) Wall surface temperature rising prevention sheet and wall surface temperature rising prevention method
JP3099709U (en) Screen door with excellent filtration function
JPH05202642A (en) Insect proofing device for tent or the like
JP4823879B2 (en) Water retention sheet
JP2013104185A (en) Sun-shading net
CN205053693U (en) Warp knitting (window) curtain
CN214646339U (en) Terylene full-shading jacquard curtain fabric
CN214056776U (en) Heat-absorbing shading antifouling curtain fabric
JP3241946U (en) Fibers containing hydrophobic substances, woven fabrics and nets comprising such fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170601

R150 Certificate of patent or registration of utility model

Ref document number: 6171155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250