JP2015048496A - Anti-carburization turbine member, and fabrication method therefor - Google Patents

Anti-carburization turbine member, and fabrication method therefor Download PDF

Info

Publication number
JP2015048496A
JP2015048496A JP2013179654A JP2013179654A JP2015048496A JP 2015048496 A JP2015048496 A JP 2015048496A JP 2013179654 A JP2013179654 A JP 2013179654A JP 2013179654 A JP2013179654 A JP 2013179654A JP 2015048496 A JP2015048496 A JP 2015048496A
Authority
JP
Japan
Prior art keywords
turbine member
turbine
carburizing
carburization
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013179654A
Other languages
Japanese (ja)
Inventor
日野 武久
Takehisa Hino
武久 日野
今井 潔
Kiyoshi Imai
潔 今井
斎藤 大蔵
Daizo Saito
大蔵 斎藤
伊東 正雄
Masao Ito
正雄 伊東
田島 嗣久
Tsuguhisa Tajima
嗣久 田島
高橋 武雄
Takeo Takahashi
武雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013179654A priority Critical patent/JP2015048496A/en
Publication of JP2015048496A publication Critical patent/JP2015048496A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anti-carburization turbine member, which is excellent in carburization resistance to carbon components in a working fluid and in toughness, and a fabrication method for the turbine member.SOLUTION: An anti-carburization turbine member 1 comprises: a backing material 2 made of an Fe-based alloy such as low-alloy steel, 12 Cr steel, CrMoV steel or CrMo steel; and a spray coating membrane 3 formed on the surface of said backing material 2 to contain 60 mass% or more of Ni by one flame coating method selected from a powder frame flame coating method, a high-speed frame spray process, a plasma spray process and a cold spray method. Said carburization resistance turbine member is a turbine rotor or a turbine casing.

Description

本発明の実施形態は耐浸炭用のタービン部材及びその製造方法に関する。   Embodiments described herein relate generally to a carburizing turbine member and a method for manufacturing the same.

近年、発電効率の向上のために、発電所で使用されるタービンにおいて作動流体の高温化が進められている。このような中、環境対策の観点から、超臨界二酸化炭素(CO)を作動流体として用いるCOタービン等が開発されている。また、エネルギー対策の観点から、石炭をガス化した燃料に用いるガスタービンの開発も進められている。 In recent years, in order to improve the power generation efficiency, the temperature of the working fluid has been increased in a turbine used in a power plant. Under such circumstances, from the viewpoint of environmental measures, a CO 2 turbine using supercritical carbon dioxide (CO 2 ) as a working fluid has been developed. In addition, from the viewpoint of energy countermeasures, development of a gas turbine that uses coal gasified fuel as fuel is also underway.

これらのタービンの構成部材の一部は、強度の観点から、ニッケル(Ni)基合金、コバルト(Co)基合金で構成されている。また、タービンの構成部材は鉄(Fe)基合金で構成されているものもある。   Some of the constituent members of these turbines are made of a nickel (Ni) base alloy or a cobalt (Co) base alloy from the viewpoint of strength. Some turbine components are made of an iron (Fe) -based alloy.

石炭をガス化した燃料を作動流体として用いるガスタービンにおける燃焼ガスには、通常のガスタービンの燃焼ガスと比べて一酸化炭素(CO)、水素(H)が多く含まれている。COタービンにおける作動流体はCO2、COおよび水(HO)の混合ガスである。これらの作動流体では、炭素(C)の反応性が高くなっているため、特にFe基合金に対して浸炭やメタルダスティングを起こしやすい。なお、浸炭とは、基材表面から基材組成中に炭素が侵入して、基材表面近傍にFeやクロム(Cr)の炭化物を生成する現象である。メタルダスティングとは、浸炭が生じた部分(浸炭部)がグラファイト、金属、炭化物、酸化物等の粉体となって基材表面から離脱する現象をいう。また、浸炭部は硬く、亀裂が生じやすくなっているため、タービン部材が脆化して、衝撃特性や疲労特性が低下することがある。さらに、メタルダスティングがピット(穴)状に進行して減肉するため、タービン部材が脆化して衝撃特性や疲労特性等が低下することもある。 Combustion gas in a gas turbine that uses coal gasified fuel as a working fluid contains more carbon monoxide (CO) and hydrogen (H 2 ) than the combustion gas of a normal gas turbine. The working fluid in the CO 2 turbine is a mixed gas of CO 2, CO and water (H 2 O). In these working fluids, since the reactivity of carbon (C) is high, carburization and metal dusting are particularly likely to occur with respect to Fe-based alloys. Carburization is a phenomenon in which carbon enters from the surface of the base material into the base material composition and generates carbides of Fe and chromium (Cr) near the base material surface. Metal dusting refers to a phenomenon in which a carburized portion (carburized portion) becomes a powder of graphite, metal, carbide, oxide or the like and is detached from the substrate surface. Further, since the carburized portion is hard and easily cracked, the turbine member may become brittle and impact characteristics and fatigue characteristics may be deteriorated. Furthermore, since metal dusting progresses in a pit (hole) shape and thins, the turbine member may become brittle and impact characteristics, fatigue characteristics, and the like may deteriorate.

ここで、浸炭やメタルダスティングが生じるかどうかは基材表面の酸化皮膜の性状に大きく依存している。例えば、基材表面に緻密な酸化皮膜が生成されていると、基材組成中に炭素(C)が浸入し難く、浸炭やメタルダスティングは発生しにくい。しかしながら、酸化皮膜が多孔質である場合や、酸化皮膜に割れや剥離が生じた場合には、この多孔質部や割れの部分から炭素が浸入することで基材表面に浸炭やメタルダスティングが生じる。   Here, whether carburization or metal dusting occurs largely depends on the properties of the oxide film on the substrate surface. For example, when a dense oxide film is generated on the surface of the base material, carbon (C) is difficult to enter into the base material composition, and carburization and metal dusting are difficult to occur. However, when the oxide film is porous, or when the oxide film is cracked or peeled off, carbon penetrates from the porous part or cracked part, so that carburization or metal dusting occurs on the substrate surface. Arise.

ここで、Fe基合金の表面改質方法として、酸化クロム(Cr)、酸化ケイ素(SiO)、アルミナ(Al)等の緻密な酸化皮膜を形成することで耐酸化性等を付与する方法が知られているが、このような皮膜を形成するために基材としてCr、Al、Si元素を添加したFe基合金材料を用いると、大型のタービン部材を鋳造する場合に元素偏析が起こりやすく製造性が低下する。 Here, as a surface modification method of the Fe-based alloy, oxidation resistance is achieved by forming a dense oxide film such as chromium oxide (Cr 2 O 3 ), silicon oxide (SiO 2 ), and alumina (Al 2 O 3 ). In order to form such a film, when using a Fe-based alloy material to which Cr, Al, Si elements are added as a base material, a large turbine member is cast. Elemental segregation is likely to occur and productivity is reduced.

また、Fe基合金表面にクロマイジング処理や、カロライジング処理(アルミナイジング処理又はシリコナイジング処理)を施してFe基合金表面のCr、Al、Si濃度を高くすることで表面に酸化皮膜を形成する方法もある。しかし、この方法ではFe基合金表面近傍にCr、Al、Siを含んだ金属化合物が生成して脆化し、衝撃特性、疲労特性の低下を生じやすい。   In addition, chromizing treatment or calorizing treatment (aluminizing treatment or siliconizing treatment) is applied to the Fe-based alloy surface to increase the Cr, Al, Si concentration on the Fe-based alloy surface, thereby forming an oxide film on the surface. There is also a way to do it. However, in this method, a metal compound containing Cr, Al, and Si is formed in the vicinity of the Fe-based alloy surface and becomes brittle, and impact characteristics and fatigue characteristics are likely to be deteriorated.

また、タービン部材にFe基合金を用いる方法として、Fe基合金の表面に電解メッキ法や非電解メッキ法によってニッケル−リン系メッキ皮膜を形成することで耐酸化性等を持たせる方法が提案されている。しかし、この方法を大型のタービン部材に適用する場合には、巨大なメッキ浴が必要となる。また、均質なメッキ皮膜を形成することが困難である。   In addition, as a method of using an Fe-based alloy for the turbine member, a method of providing oxidation resistance by forming a nickel-phosphorous plating film on the surface of the Fe-based alloy by electrolytic plating or non-electrolytic plating has been proposed. ing. However, when this method is applied to a large turbine member, a huge plating bath is required. In addition, it is difficult to form a uniform plating film.

特開2001−140095号公報Japanese Patent Laid-Open No. 2001-140095

上記したように、従来におけるFe基合金の表面改質方法では、じん性を維持しつつ耐浸炭性を向上させることは困難であった。また、メッキ処理を行う方法では、大型の部材に適用することが困難であった。   As described above, it has been difficult to improve the carburization resistance while maintaining toughness in the conventional surface modification methods for Fe-based alloys. In addition, it is difficult to apply the plating process to a large member.

本発明が解決しようとする課題は、耐浸炭性に優れ、じん性にも優れる耐浸炭用タービン部材及びその製造方法を提供することである。   The problem to be solved by the present invention is to provide a carburizing turbine member having excellent carburization resistance and toughness and a method for producing the same.

実施形態の耐浸炭用タービン部材は、Fe基合金からなる基材と、前記基材の表面に溶射によって形成された、Niを60質量%以上含有する溶射皮膜とを備えることを特徴とする。   The turbine member for carburizing resistance according to the embodiment includes a base material made of an Fe-based alloy and a thermal spray coating formed by thermal spraying on the surface of the base material and containing 60% by mass or more of Ni.

実施形態の耐浸炭用タービン部材を概略的に示す断面図である。It is sectional drawing which shows the turbine member for carburization resistance of embodiment schematically. 実施形態の耐浸炭用タービン部材の製造方法を示す図である。It is a figure which shows the manufacturing method of the turbine member for carburization resistance of embodiment. 実施形態の耐浸炭用タービン部材の製造方法を示す図である。It is a figure which shows the manufacturing method of the turbine member for carburization resistance of embodiment. 実施形態の耐浸炭用タービン部材の製造方法を示す図である。It is a figure which shows the manufacturing method of the turbine member for carburization resistance of embodiment. 実施形態の耐浸炭用タービン部材の他の製造方法を示す図である。It is a figure which shows the other manufacturing method of the turbine member for carburization resistance of embodiment. 実施例及び比較例の試験材の浸炭深さを示すグラフである。It is a graph which shows the carburizing depth of the test material of an Example and a comparative example. 実施例及び比較例の試験材の硬さを示すグラフである。It is a graph which shows the hardness of the test material of an Example and a comparative example.

以下、本発明の実施形態における耐浸炭用タービン部材及びその製造方法を、図面を用いて説明する。各図において、共通する機能を有する装置や部分には同一の符号を付して示し、重複する説明を省略する。   Hereinafter, a carburization-resistant turbine member and a method for manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings. In each figure, devices and parts having common functions are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態の耐浸炭用タービン部材1を概略的に示す断面図である。本実施形態の耐浸炭用タービン部材1は、Fe基合金からなる基材2の表面にNiを60質量%以上含有する溶射皮膜3を有している。本実施形態の耐浸炭用タービン部材1は、溶射皮膜3がNiを60質量%以上含むことで、基材2への炭素の侵入を抑えるので、優れた耐浸炭性及び耐メタルダスティング性を発揮する。溶射皮膜3は、Niを92質量%以上含むことが好ましく、99質量%以上含むことがより好ましい。また、溶射皮膜3は、Ni単体で構成されていてもよい。   FIG. 1 is a cross-sectional view schematically showing a carburizing-resistant turbine member 1 of the present embodiment. The carburizing resistant turbine member 1 of this embodiment has a thermal spray coating 3 containing 60 mass% or more of Ni on the surface of a base material 2 made of an Fe-based alloy. The carburizing resistant turbine member 1 of the present embodiment has excellent carburizing resistance and metal dusting resistance because the sprayed coating 3 contains 60 mass% or more of Ni and suppresses carbon intrusion into the base material 2. Demonstrate. The thermal spray coating 3 preferably contains 92 mass% or more of Ni, and more preferably contains 99 mass% or more. Moreover, the sprayed coating 3 may be comprised with Ni single-piece | unit.

基材2としては、Fe基合金であれば特に限定されず用いることができ、例えば、炭素鋼、低合金鋼、特殊鋼、耐熱鋼、ステンレス鋼等が挙げられる。これらのなかでも、強度や耐熱性が良好であることから低合金鋼、12Cr鋼、CrMoV鋼、2.25Cr−1Moや改良9Cr−1Mo(9Cr−1Mo−Nb−V)等のCrMo鋼が好適に用いられる。   The substrate 2 can be used without particular limitation as long as it is an Fe-based alloy. Examples thereof include carbon steel, low alloy steel, special steel, heat resistant steel, and stainless steel. Among these, CrMo steels such as low alloy steel, 12Cr steel, CrMoV steel, 2.25Cr-1Mo and modified 9Cr-1Mo (9Cr-1Mo-Nb-V) are suitable because of their good strength and heat resistance. Used for.

溶射皮膜3は、前述したようにNiを60質量%以上含み、基材2表面に溶射によって緻密に形成されている。溶射皮膜3は、自溶性Ni合金粉末や高純度Ni粉末等のNiを60質量%以上含んだ金属粉末を、粉末フレーム溶射法、高速フレーム溶射法、プラズマ溶射法(減圧プラズマ溶射法又は大気プラズマ溶射法)、コールドスプレー法等の溶射法を用いて基材表面に溶射することで形成される。なお、本明細書において、コールドスプレー法は溶射の一方法であるとする。   As described above, the thermal spray coating 3 contains 60% by mass or more of Ni, and is densely formed on the surface of the substrate 2 by thermal spraying. The thermal spray coating 3 is a powder powder spraying method, a high-speed flame spraying method, a plasma spraying method (a low pressure plasma spraying method or an atmospheric plasma). It is formed by spraying on the substrate surface using a spraying method such as a thermal spraying method or a cold spray method. In this specification, it is assumed that the cold spray method is one method of thermal spraying.

自溶性Ni合金粉末としては、Niにホウ素(B)、ケイ素(Si)、Cr、Fe等の低融点金属元素を添加したものを用いることができる。自溶性Ni合金粉末の組成範囲として、例えば、質量%でNi:67〜83%、Cr:10〜16%、B:2〜4%、Si:2.25〜4%、Fe:2.5〜4%、C:0.15〜1%等が例示される。このような自溶性Ni合金粉末として例えば、メテコ12C(スルザーメテコ社製)、コルモノイNo.4(ウォールコルモノイ社製)が好適に用いられる。   As the self-fluxing Ni alloy powder, Ni added with a low melting point metal element such as boron (B), silicon (Si), Cr, or Fe can be used. As a composition range of the self-fluxing Ni alloy powder, for example, Ni: 67 to 83% in mass%, Cr: 10 to 16%, B: 2 to 4%, Si: 2.25 to 4%, Fe: 2.5 -4%, C: 0.15 to 1%, etc. are exemplified. Examples of such self-fluxing Ni alloy powder include Meteco 12C (manufactured by Sulzer Metco), Colmonoy No. 4 (manufactured by Wall Colmonoy) is preferably used.

高純度Ni粉末としては、好ましくはNiを92質量%以上、より好ましくは99.5質量%以上含み、微量元素成分として、B、Si、Cr、Fe等を含むものを用いることができる。高純度Ni粉末の組成の好ましい範囲は、質量%で、Ni:92〜100%、B:0〜4%、Si:0〜4%である。   As the high-purity Ni powder, it is preferable to use Ni containing 92% by mass or more, more preferably 99.5% by mass or more, and containing trace elements such as B, Si, Cr, Fe and the like. The preferable range of the composition of the high-purity Ni powder is% by mass: Ni: 92 to 100%, B: 0 to 4%, Si: 0 to 4%.

溶射皮膜3は、自溶性Ni合金粉末を用いる場合には例えば次のように形成される。図2〜図4は、自溶性Ni合金粉末を用いた溶射皮膜3の形成方法を説明する図である。   The sprayed coating 3 is formed as follows, for example, when using a self-fluxing Ni alloy powder. 2-4 is a figure explaining the formation method of the sprayed coating 3 using self-fluxing Ni alloy powder.

まず、Fe基合金の表面の酸化膜4を例えばブラスト処理によって除去する。ブラスト処理では例えばアルミナ(Al)、炭化ケイ素(SiC)、Fe酸化物等の粒子を、ブラストガン5を用いて基材2表面に高速で吹き付けることで、酸化膜4を除去する(図2参照。)。 First, the oxide film 4 on the surface of the Fe-based alloy is removed by, for example, blasting. In the blast treatment, for example, particles of alumina (Al 2 O 3 ), silicon carbide (SiC), Fe oxide or the like are sprayed onto the surface of the substrate 2 at high speed using a blast gun 5 to remove the oxide film 4 ( (See FIG. 2).

次いで、ブラスト処理を施した基材2の表面に、自溶性Ni合金粉末を粉末フレーム溶射法で溶射して自溶性Ni合金層6を形成する。粉末フレーム溶射法では、溶射トーチ7から自溶性Ni合金粉末を半溶融又は溶融状態で基材2表面に衝突させて堆積させることで自溶性Ni合金層6を形成する(図3参照。)。本実施形態では、溶射を用いるので、大型のタービン部材に対しても溶射皮膜3を均質に形成することができる。   Next, a self-fluxing Ni alloy powder is sprayed on the surface of the blasted base material 2 by a powder flame spraying method to form a self-fluxing Ni alloy layer 6. In the powder flame spraying method, the self-fluxing Ni alloy powder 6 is collided and deposited on the surface of the substrate 2 in a semi-molten or molten state from the spraying torch 7 to form the self-fluxing Ni alloy layer 6 (see FIG. 3). In this embodiment, since thermal spraying is used, the thermal spray coating 3 can be uniformly formed even on a large turbine member.

続いて、自溶性Ni合金層6の表面を例えばバーナートーチ8を用いて1,000℃以上程度の火炎であぶり、フュージング処理を施す(図4参照。)。フュージング処理では、自溶性Ni合金層6中のBやSi等の低融点金属元素を溶融することで自溶性Ni合金層6中の気孔を除去する。これにより、図1に示す緻密な溶射皮膜3が形成される。また、フュージング処理を施すことで基材2と溶射皮膜3との密着強度を高める効果もある。   Subsequently, the surface of the self-fluxing Ni alloy layer 6 is exposed to a flame of about 1,000 ° C. or more using, for example, a burner torch 8 and subjected to a fusing treatment (see FIG. 4). In the fusing treatment, pores in the self-fluxing Ni alloy layer 6 are removed by melting low melting point metal elements such as B and Si in the self-fluxing Ni alloy layer 6. Thereby, the dense sprayed coating 3 shown in FIG. 1 is formed. Moreover, there exists an effect which raises the adhesive strength of the base material 2 and the sprayed coating 3 by performing a fusing process.

なお、自溶性Ni合金層6は、自溶性Ni合金粉末を材料として、自溶性Ni合金粉末の酸化や自溶性Ni合金粉末中の低融点元金属元素の揮発を抑える溶射条件下で、高速フレーム溶射法又はプラズマ溶射法により形成してもよい。高速フレーム溶射法では、溶射トーチ7から半溶融又は溶融状態の自溶性Ni合金粉末を基材2表面に高速で溶射する。プラズマ溶射法としては、減圧プラズマ溶射法及び大気プラズマ溶射法を用いることができ、これらはいずれも高温(10,000℃以上程度)のプラズマフレームを用いて溶射を行う。溶射後は必要に応じてフュージング処理を施すことで緻密な溶射皮膜3が形成される。   The self-fluxing Ni alloy layer 6 is made of a self-fluxing Ni alloy powder as a high-speed flame under a spraying condition that suppresses oxidation of the self-fluxing Ni alloy powder and volatilization of the low melting point metal element in the self-fluxing Ni alloy powder. You may form by a thermal spraying method or a plasma spraying method. In the high-speed flame spraying method, a semi-molten or molten self-fluxing Ni alloy powder is sprayed from the thermal spraying torch 7 onto the surface of the substrate 2 at a high speed. As the plasma spraying method, a low-pressure plasma spraying method and an atmospheric plasma spraying method can be used, both of which are sprayed using a plasma flame at a high temperature (about 10,000 ° C. or more). After the thermal spraying, a dense thermal spray coating 3 is formed by performing a fusing treatment as necessary.

次に、高純度Ni粉末を用いて溶射皮膜3を形成する方法について説明する。まず、上記同様に基材2の表面をブラスト処理した後、図5に示すように溶射トーチ7から高純度Ni粉末を高速フレーム溶射法又はコールドスプレー法で溶射して溶射皮膜3を形成する。これらの方法では、高純度のNi粉末を超高速で基材2表面に衝突させるため、フュージング処理を施すことなく緻密な溶射皮膜3を均質に形成することができる。特に、コールドスプレー法では溶融温度以下のNi粉末で溶射皮膜3を形成するため、材料である高純度Ni粉末への熱による影響を抑えつつ緻密な溶射皮膜3を形成することが可能である。   Next, a method for forming the thermal spray coating 3 using high purity Ni powder will be described. First, after blasting the surface of the base material 2 in the same manner as described above, a high-purity Ni powder is sprayed from the spraying torch 7 by a high-speed flame spraying method or a cold spraying method as shown in FIG. In these methods, since the high-purity Ni powder collides with the surface of the substrate 2 at an ultra-high speed, the dense sprayed coating 3 can be formed uniformly without performing a fusing treatment. In particular, in the cold spray method, since the thermal spray coating 3 is formed with Ni powder having a melting temperature or lower, it is possible to form a dense thermal spray coating 3 while suppressing the influence of heat on the high-purity Ni powder as a material.

溶射皮膜3の厚みは、20〜100μmであることが好ましい。溶射皮膜3の厚みが20μm未満である場合には耐浸炭性、耐メタルダスティング性に劣るおそれがあり、一方、100μmを超える場合には機械特性に劣るおそれがあるためである。   The thickness of the thermal spray coating 3 is preferably 20 to 100 μm. This is because when the thickness of the thermal spray coating 3 is less than 20 μm, the carburization resistance and metal dusting resistance may be inferior, while when it exceeds 100 μm, the mechanical properties may be inferior.

本実施形態の耐浸炭用タービン部材1が適用されるタービン部材としては、燃焼ガスを作動流体とするガスタービンやCOを作動流体とするCOタービンにおけるタービン部材など、浸炭性の高い作動流体と接触するタービン部材が挙げられる。このようなガスタービンやCOタービンを実施形態に係る耐浸炭用タービン部材1を用いて構成することで、長期に亘って耐浸炭性や耐メタルダスティング性を発揮する信頼性の高いガスタービンやCOタービンを得ることができる。 The turbine member carburisation turbine member 1 of this embodiment is applied, such as a turbine member in CO 2 turbine of the gas turbine and CO 2 to a combustion gas working fluid and the working fluid, high carburizing working fluid Turbine member in contact with. By configuring such a gas turbine or a CO 2 turbine using the carburizing-resistant turbine member 1 according to the embodiment, a highly reliable gas turbine that exhibits carburizing resistance and metal dusting resistance over a long period of time. and CO 2 turbine can be obtained.

また、本実施形態の耐浸炭用タービン部材1は、大型のタービン部材、例えば、ガスタービンにおける圧縮機ケーシング、圧縮機ロータ、タービンケーシング、タービンロータ等、COタービンにおけるタービンケーシング、タービンロータ等に適用することが好ましく、機械特性の特に良好であることが求められる回転体である圧縮機ロータやタービンロータ等に適用することが特に好ましい。 In addition, the carburizing-resistant turbine member 1 of the present embodiment is a large turbine member such as a compressor casing, a compressor rotor, a turbine casing, and a turbine rotor in a gas turbine, a turbine casing in a CO 2 turbine, a turbine rotor, and the like. It is preferably applied, and particularly preferably applied to a compressor rotor, a turbine rotor, or the like, which is a rotating body that is required to have particularly good mechanical properties.

ガスタービンやCOタービンを構成する部材の中でも、これら大型のタービン部材に対しては、電解メッキ法を適用することが困難であるが、実施形態によれば、溶射皮膜3を均質に形成することができるので、浸炭による疲労特性や衝撃特性の低下の懸念がなく、長期に亘って安全に使用することが可能な信頼性の高いガスタービンやCOタービンを得ることができる。 Among the members constituting the gas turbine and the CO 2 turbine, it is difficult to apply the electrolytic plating method to these large turbine members, but according to the embodiment, the sprayed coating 3 is formed uniformly. Therefore, it is possible to obtain a highly reliable gas turbine or CO 2 turbine that can be used safely for a long period of time without fear of deterioration of fatigue characteristics and impact characteristics due to carburization.

なお、本実施形態の耐浸炭用タービン部材1を適用するタービンとしてはガスタービンやCOタービンに限られず、浸炭性の高い環境下で使用されるタービンに適用すれば、本発明の効果を如何なく発揮する。 Note that the turbine to which the carburizing-resistant turbine member 1 of the present embodiment is applied is not limited to a gas turbine or a CO 2 turbine, and if applied to a turbine that is used in a highly carburizing environment, the effect of the present invention is not affected. Demonstrate.

以上のようにして得られる実施形態の耐浸炭用タービン部材1は、溶射によって形成された、Niを60質量%以上含む緻密な溶射皮膜3を備えるため、浸炭性の高い環境下であっても優れた耐浸炭性及び耐メタルダスティング性を発揮する。さらにNiと基材を構成するFeとの親和性が高いことから溶射皮膜3と基材2の界面近傍での金属間化合物の形成による耐浸炭用タービン部材1の脆化がなく、機械特性の低下がない。加えて、溶射皮膜3と基材2との硬さの違いが小さいことからも耐浸炭用タービン部材1に優れた機械特性が付与される。このように、本実施形態によれば、耐浸炭性、耐メタルダスティング性に優れる上に、じん性に優れ、疲労特性や衝撃特性等の機械特性にも優れた耐浸炭用タービン部材1を得ることができる。また、本実施形態では、溶射皮膜3を溶射により形成するため、大型のタービン部材であっても広範囲にわたって均質な溶射皮膜3を形成することができる。   Since the carburizing-resistant turbine member 1 of the embodiment obtained as described above includes the dense thermal spray coating 3 formed by thermal spraying and containing 60 mass% or more of Ni, even in an environment with high carburization properties. Excellent carburization resistance and metal dusting resistance. Further, since the affinity between Ni and Fe constituting the base material is high, there is no embrittlement of the carburizing-resistant turbine member 1 due to the formation of an intermetallic compound in the vicinity of the interface between the thermal spray coating 3 and the base material 2, and the mechanical properties are improved. There is no decline. In addition, excellent mechanical properties are imparted to the carburizing-resistant turbine member 1 because the difference in hardness between the thermal spray coating 3 and the substrate 2 is small. As described above, according to the present embodiment, the carburizing-resistant turbine member 1 having excellent carburization resistance and metal dusting resistance, excellent toughness, and excellent mechanical characteristics such as fatigue characteristics and impact characteristics is provided. Can be obtained. Moreover, in this embodiment, since the thermal spray coating 3 is formed by thermal spraying, even if it is a large sized turbine member, the uniform thermal spray coating 3 can be formed over a wide range.

次に、実施例を用いて本発明をより詳細に説明する。実施例及び比較例においては、基材としてあらかじめブラスト処理を施した改良9Cr−1Mo鋼(ASME規格A387T91、質量%で、C:0.1%、Si:0.4%、Mn:0.45%、Cr:9.0%、Mo:1.0%、V:0.2%、Nb:0.08%、N:0.05%、残部Fe。)を使用し、それぞれ以下の方法で試験材を作成した。   Next, the present invention will be described in more detail using examples. In Examples and Comparative Examples, an improved 9Cr-1Mo steel (ASME standard A387T91, mass%, C: 0.1%, Si: 0.4%, Mn: 0.45, which has been previously blasted as a base material. %, Cr: 9.0%, Mo: 1.0%, V: 0.2%, Nb: 0.08%, N: 0.05%, balance Fe.) A test material was prepared.

(実施例1)
基材表面に自溶性Ni合金粉末であるメテコ12C(スルザーメテコ社製、質量%で、Cr:10%、B:2.5%、Si:2.5%、Fe:2.5%、C:0.15%、残部Ni。)を粉末フレーム溶射法により溶射して自溶性Ni合金層を形成した。次いで、自溶性Ni合金層の表面にフュージング処理を施して、厚み100μmの溶射皮膜を形成した。
(Example 1)
Meteco 12C (manufactured by Sulzer Metco Co., Ltd., in mass%, Cr: 10%, B: 2.5%, Si: 2.5%, Fe: 2.5%, C: a self-fluxing Ni alloy powder on the substrate surface 0.15%, balance Ni.) Was sprayed by a powder flame spraying method to form a self-fluxing Ni alloy layer. Subsequently, the surface of the self-fluxing Ni alloy layer was subjected to fusing treatment to form a sprayed coating having a thickness of 100 μm.

(実施例2)
基材表面に高純度Ni粉末(NAS規格Ni201)を高速フレーム溶射法により溶射して厚み100μmの溶射皮膜を形成した。
た。
(Example 2)
A high-purity Ni powder (NAS standard Ni201) was sprayed on the surface of the substrate by a high-speed flame spraying method to form a sprayed coating having a thickness of 100 μm.
It was.

(比較例1)
FeAl粉50質量%、Al粉49質量%、塩化アンモニウム粉1質量%を含有する浸透剤中に基材を埋設し、1,000℃の電気炉内で10時間加熱保持してアルミナイジング処理を施した。
(Comparative Example 1)
A base material was embedded in a penetrant containing 50% by mass of FeAl powder, 49% by mass of Al 2 O 3 powder, and 1% by mass of ammonium chloride powder, and heated and held in an electric furnace at 1,000 ° C. for 10 hours to obtain alumina. Ising treatment was applied.

(比較例2)
Cr粉50質量%、Al粉49質量%、塩化アンモニウム粉1質量%を含有する浸透剤中に基材を埋設し、1,000℃の電気炉内で10時間加熱保持してクロマイジング処理を施した。
(Comparative Example 2)
A base material was embedded in a penetrant containing 50% by mass of Cr powder, 49% by mass of Al 2 O 3 powder, and 1% by mass of ammonium chloride powder, and heated and held in an electric furnace at 1,000 ° C. for 10 hours. Ising treatment was applied.

基材及び上記実施例、比較例で得られた試験材を600℃、99.96体積%のCO中に1,000時間保持した後、その断面を計測顕微鏡を用いて観察し、浸炭層厚さを計測した。実施例及び比較例の試験材の浸炭厚さを、溶射皮膜を形成していない基材の浸炭厚さを1とし、浸炭厚さを縦軸として図6のグラフに示す。 Substrate and the above embodiment, 600 ° C. The obtained test material in Comparative Example, was held for 1,000 hours in a CO 2 of 99.96% by volume, and its cross section was observed using a measuring microscope, carburized layer The thickness was measured. The carburizing thickness of the test materials of Examples and Comparative Examples is shown in the graph of FIG. 6 with the carburizing thickness of the base material on which the thermal spray coating is not formed being 1, and the carburizing thickness being the vertical axis.

また、基材及び上記実施例、比較例で得られた試験材の硬さをマイクロビッカース硬さ試験機を用いて測定した。実施例及び比較例の試験材の硬さを、溶射皮膜を形成していない基材の硬さを1とし、硬さを縦軸として図7のグラフに示す。   Moreover, the hardness of the test material obtained by the base material, the said Example, and the comparative example was measured using the micro Vickers hardness tester. The hardness of the test materials of Examples and Comparative Examples is shown in the graph of FIG.

図6、7に示すように、実施例の試験材は、浸炭性雰囲気下での浸炭が起こりにくく、また、溶射皮膜の硬さが基材であるFe基合金の硬さと同等であるため、耐浸炭性、耐メタルダスティング性及び機械特性に優れることが分かる。これに対し、アルミナイジング処理又はクロマイジング処理を施した比較例では、耐浸炭性に劣るのみならず、硬さが増して脆化してしまうことが分かる。   As shown in FIGS. 6 and 7, the test materials of the examples are less likely to be carburized in a carburizing atmosphere, and the hardness of the thermal spray coating is equivalent to the hardness of the Fe-based alloy as a base material. It can be seen that it is excellent in carburization resistance, metal dusting resistance and mechanical properties. On the other hand, in the comparative example which performed the aluminizing process or the chromizing process, it turns out that not only it is inferior to carburization resistance but hardness increases, and it embrittles.

以上、説明した実施形態によれば、耐浸炭性に優れ、じん性にも優れる耐浸炭用タービン部材を得ることが可能となる。   As described above, according to the embodiment described above, it is possible to obtain a carburizing-resistant turbine member that has excellent carburization resistance and excellent toughness.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…耐浸炭用タービン部材、2…基材、3…溶射皮膜、4…酸化膜、5…ブラストガン、6…自溶性Ni合金層、7…溶射トーチ、8…バーナートーチ。   DESCRIPTION OF SYMBOLS 1 ... Carburizing-resistant turbine member, 2 ... Base material, 3 ... Spray coating, 4 ... Oxide film, 5 ... Blast gun, 6 ... Self-fluxing Ni alloy layer, 7 ... Spraying torch, 8 ... Burner torch.

Claims (6)

Fe基合金からなる基材と、
前記基材の表面に溶射によって形成された、Niを60質量%以上含有する溶射皮膜と
を備えることを特徴とする耐浸炭用タービン部材。
A substrate made of an Fe-based alloy;
A carburizing-resistant turbine member comprising: a thermal spray coating containing 60% by mass or more of Ni formed by thermal spraying on the surface of the base material.
前記溶射皮膜の厚みは、20〜100μmであることを特徴とする請求項1記載の耐浸炭用タービン部材。   The turbine member for carburization resistance according to claim 1, wherein the sprayed coating has a thickness of 20 to 100 μm. 前記Fe基合金は、低合金鋼、12Cr鋼、CrMoV鋼又はCrMo鋼であることを特徴とする請求項1又は2記載の耐浸炭用タービン部材。   The turbine member for carburization resistance according to claim 1 or 2, wherein the Fe base alloy is low alloy steel, 12Cr steel, CrMoV steel or CrMo steel. 前記耐浸炭用タービン部材は、タービンロータであることを特徴とする請求項1乃至3のいずれか1項記載の耐浸炭用タービン部材。   The carburizing-resistant turbine member according to any one of claims 1 to 3, wherein the carburizing-resistant turbine member is a turbine rotor. 前記耐浸炭用タービン部材は、タービンケーシングであることを特徴とする請求項1乃至3のいずれか1項記載の耐浸炭用タービン部材。   4. The carburizing-resistant turbine member according to claim 1, wherein the carburizing-resistant turbine member is a turbine casing. Fe基合金を基材とする耐浸炭用タービン部材の製造方法であって、
前記基材の表面に、
Niを60質量%以上含有する金属粉末を、粉末フレーム溶射法、高速フレーム溶射法、プラズマ溶射法及びコールドスプレー法から選ばれる1つの方法で溶射して溶射皮膜を形成することを特徴とする耐浸炭用タービン部材の製造方法。
A method of manufacturing a carburizing-resistant turbine member based on an Fe-based alloy,
On the surface of the substrate,
A metal powder containing 60% by mass or more of Ni is sprayed by one method selected from a powder flame spraying method, a high-speed flame spraying method, a plasma spraying method, and a cold spray method to form a sprayed coating. A method for manufacturing a carburizing turbine member.
JP2013179654A 2013-08-30 2013-08-30 Anti-carburization turbine member, and fabrication method therefor Pending JP2015048496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013179654A JP2015048496A (en) 2013-08-30 2013-08-30 Anti-carburization turbine member, and fabrication method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013179654A JP2015048496A (en) 2013-08-30 2013-08-30 Anti-carburization turbine member, and fabrication method therefor

Publications (1)

Publication Number Publication Date
JP2015048496A true JP2015048496A (en) 2015-03-16

Family

ID=52698763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013179654A Pending JP2015048496A (en) 2013-08-30 2013-08-30 Anti-carburization turbine member, and fabrication method therefor

Country Status (1)

Country Link
JP (1) JP2015048496A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112909A (en) * 2015-09-22 2015-12-02 安徽工业大学 Iron-based Cr3C2 laser-cladding coating added with CeO2 and preparation method of coating
CN108546947A (en) * 2018-05-11 2018-09-18 铜陵市大成轧辊有限责任公司 A method of carrying out grain roll surface reconditioning using ultrasonic vibration auxiliary laser cladding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112909A (en) * 2015-09-22 2015-12-02 安徽工业大学 Iron-based Cr3C2 laser-cladding coating added with CeO2 and preparation method of coating
CN105112909B (en) * 2015-09-22 2018-01-30 安徽工业大学 One kind addition CeO2Iron-based Cr3C2Laser cladding coating and preparation method thereof
CN108546947A (en) * 2018-05-11 2018-09-18 铜陵市大成轧辊有限责任公司 A method of carrying out grain roll surface reconditioning using ultrasonic vibration auxiliary laser cladding

Similar Documents

Publication Publication Date Title
Mann et al. HVOF coating and surface treatment for enhancing droplet erosion resistance of steam turbine blades
TWI694156B (en) Aluminum-cobalt-chromium-iron-nickel-silicon alloy, powder and coating thereof
US7754350B2 (en) Wear-resistant coating
JP2008255487A (en) Process for forming chromium diffusion portion and article made therefrom
JP5578893B2 (en) Member having sliding portion of steam turbine
Wei et al. Ultrasonic cavitation erosion behaviors of high-velocity oxygen-fuel (HVOF) sprayed AlCoCrFeNi high-entropy alloy coating in different solutions
Nayak et al. Fe-based metallic glass coatings by thermal spraying: a focused review on corrosion properties and related degradation mechanisms
Li et al. Recent research advances in plasma spraying of bulk-like dense metal coatings with metallurgically bonded lamellae
Kusmoko et al. A comparative study for wear resistant of Stellite 6 coatings on nickel alloy substrate produced by laser cladding, HVOF and plasma spraying techniques
WO2013002973A2 (en) Method for applying a low residual stress damping coating
Alroy et al. Role of process parameters on microstructure, mechanical properties and erosion performance of HVAF sprayed Cr3C2-NiCr coatings
Singh et al. An investigation on hot corrosion behaviour of cermet coatings in simulated boiler environment
Babu et al. Thermal spray coatings for erosion–corrosion resistant applications
JP2015048496A (en) Anti-carburization turbine member, and fabrication method therefor
Matikainen et al. Advanced coatings by novel high-kinetic thermal spray processes
KR20110131687A (en) Coating method of stainless steel using high-velocity oxy-fuel thermal spraying
JP2015108175A (en) Aluminum coating, formation method of laminated film, and gas turbine member
Tripathi et al. Study on tribological behavior of HVOF developed coatings especially for hydroturbine runner application—a concise review
Pavan et al. Review of ceramic coating on mild steel methods, applications and opportunities
Itoh et al. Effect of high‐temperature protective coatings on fatigue lives of nickel‐based superalloys
CN105063539A (en) Method for preparing wear-resistant coating of ball mill lining plate
Kumar et al. Role of Thermal Spray Coatings on Erosion, Corrosion, and Oxidation in Various Applications: A Review
JP2015218379A (en) Thermal barrier coating material for steam turbine, and steam apparatus for power generation
CN106609349A (en) Bearing steel surface strengthening treatment technology
CN105803385B (en) Valve and its surface treatment method for steam ambient