JP2015048302A - Method for synthesizing graphene-based nano composite material, and graphene-based nano composite material synthesized using the method - Google Patents

Method for synthesizing graphene-based nano composite material, and graphene-based nano composite material synthesized using the method Download PDF

Info

Publication number
JP2015048302A
JP2015048302A JP2014174305A JP2014174305A JP2015048302A JP 2015048302 A JP2015048302 A JP 2015048302A JP 2014174305 A JP2014174305 A JP 2014174305A JP 2014174305 A JP2014174305 A JP 2014174305A JP 2015048302 A JP2015048302 A JP 2015048302A
Authority
JP
Japan
Prior art keywords
graphene
metal oxide
oxide
fepo
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014174305A
Other languages
Japanese (ja)
Inventor
キム、カン−ボム
Kwangbum Kim
チェガル、チョン−ピル
Jongpil Jegal
キム、ヒョン−ギョン
Hyunkyung Kim
ユン、スン−ボム
Seungbum Yoon
キム、ミョン−ソン
Myeongseong Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry Academic Cooperation Foundation of Yonsei University
Original Assignee
Industry Academic Cooperation Foundation of Yonsei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry Academic Cooperation Foundation of Yonsei University filed Critical Industry Academic Cooperation Foundation of Yonsei University
Publication of JP2015048302A publication Critical patent/JP2015048302A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/28Solid content in solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of easily forming a nano composite material from a metal oxide and a graphene material in a short time.SOLUTION: The method comprises: a step in which a solution into which graphene oxide is dispersed is provided; a step in which a raw material substance for forming a metal oxide is added to the solution; and a step in which a nano composite material in which the metal oxide is formed on at least one side of the graphene surface reduced using an oxidation-reduction reaction between the graphene oxide and the raw material substance for forming a metal oxide is formed, and the reduction potential of the metal oxide is 1.0 V or lower, where the metal oxide includes one selected from the group consisting of FePO, FeOand SnO.

Description

本発明は、グラフェン系ナノ複合材料の合成方法、より詳しくは、酸化還元反応を用いてグラフェン系ナノ複合材料を高速で合成する方法、及び該方法を用いて合成されたグラフェン系ナノ複合材料に関する。   The present invention relates to a method for synthesizing a graphene-based nanocomposite material, and more particularly, to a method for synthesizing a graphene-based nanocomposite material at high speed using an oxidation-reduction reaction, and a graphene-based nanocomposite material synthesized using the method .

グラフェンは、高い電気伝導度(〜106Scm-1)及び広い比表面積(2630m2-1)などの既存の炭材料料に比べて遥かに優れた固有の物性のため、未来産業の根幹になる材料として学界や産業界などの多岐にわたる分野において注目を集めている。また、グラフェン系ナノ複合材料は、グラフェンの優れた物性によって既存の材料に比べて遥かに優れた特性を示し、触媒、電子材料、エネルギー材料、生体医学材料などの多岐にわたる分野において既存の材料に代わる未来の材料として大いに注目を集めている。したがって、全世界の多くの研究グループが優れた性能を示すグラフェン系ナノ複合材料の合成技術の確保に熱をあげている。 Graphene is the foundation of the future industry because of its inherent properties far superior to existing charcoal materials such as high electrical conductivity (~ 10 6 Scm -1 ) and large specific surface area (2630 m 2 g -1 ). As a material to become, has attracted attention in various fields such as academia and industry. In addition, graphene-based nanocomposites exhibit far superior properties compared to existing materials due to the excellent physical properties of graphene, making them an existing material in a wide range of fields such as catalysts, electronic materials, energy materials, and biomedical materials. It has attracted much attention as an alternative material for the future. Therefore, many research groups around the world are eager to secure the synthesis technology of graphene-based nanocomposites with excellent performance.

ナノ複合材料のうちのグラフェンの優れた物性を利用するためには、グラフェンと活物質間の均一な分布が何より重要であるが、このためにグラフェンの表面に活物質の不均質核生成(heterogeneous nucleation)を導入した方法が最も確実な方法として台頭されており、これを実現するための多くの研究が鋭意進められてきた。既存に報告された研究では、均一な分布を有するグラフェン系ナノ複合材料の合成のために、有毒性添加物の使用、多段階の複雑な工程、数時間から数日にわたる長い合成時間や多くのエネルギーを消費する工程を適用している。   In order to utilize the excellent physical properties of graphene among the nanocomposites, the uniform distribution between graphene and the active material is most important. For this reason, the heterogeneous nucleation of the active material on the surface of the graphene (heterogeneous) Nucleation) has emerged as the most reliable method, and many studies have been conducted to achieve this. Existing studies have shown that for the synthesis of graphene-based nanocomposites with a uniform distribution, the use of toxic additives, multi-step complex processes, long synthesis times ranging from hours to days and many A process that consumes energy is applied.

しかしながら、これでは材料独自の優れた特性にもかかわらず、高い工程コストや環境的負担のため商用化され難いという短所がある。したがって、優れた特性を示すグラフェン系ナノ複合材料を環境にやさしく且つ低い工程コストで合成することができる技術の開発が求められている。   However, this has the disadvantage that it is difficult to commercialize due to high process costs and environmental burdens despite the excellent properties unique to the material. Therefore, development of a technology capable of synthesizing a graphene-based nanocomposite material exhibiting excellent characteristics that is environmentally friendly and at low process costs is required.

そこで、本発明は、従来の多くのエネルギー消費を伴い且つ手間がかかるグラフェン系ナノ複合材料の合成方法の短所を解決して、金属リン酸塩を含む多様な種類の金属酸化物とグラフェンがナノ複合化されたグラフェン系ナノ複合材料を、合成のためのさらなるエネルギーの投入を行うことなく常温で短時間で実現することができる方法及び装置を提供することを目的とする。   Accordingly, the present invention solves the disadvantages of the conventional method of synthesizing graphene-based nanocomposites that require a lot of energy consumption and is troublesome. It is an object of the present invention to provide a method and an apparatus capable of realizing a composite graphene-based nanocomposite material at room temperature in a short time without further energy input for synthesis.

また、本発明は、簡易且つ短時間で金属酸化物とグラフェン材料からナノ複合材料を形成することができる方法及び装置を提供することを他の目的とする。   Another object of the present invention is to provide a method and an apparatus capable of forming a nanocomposite material from a metal oxide and a graphene material in a simple and short time.

前記目的を達成するための本発明は、グラフェンと該グラフェンの一方の面に形成された金属酸化物を含むグラフェン系ナノ複合材料の製造方法であって、
酸化グラフェンが分散された溶液を提供する工程と、
前記酸化グラフェンが分散された溶液に金属酸化物形成用原料物質を添加する工程、及び
前記酸化グラフェンと前記金属酸化物形成用原料物質との酸化還元反応を用いて還元されたグラフェン表面の少なくとも一方の面に前記金属酸化物が形成されたナノ複合材料を形成する工程と、を含み、
前記金属酸化物形成用原料物質の還元電位は1.0V以下であることを特徴とする。
The present invention for achieving the above object is a method for producing a graphene-based nanocomposite material including graphene and a metal oxide formed on one surface of the graphene,
Providing a solution in which graphene oxide is dispersed;
A step of adding a metal oxide forming raw material to the solution in which the graphene oxide is dispersed, and at least one of graphene surfaces reduced using a redox reaction between the graphene oxide and the metal oxide forming raw material Forming a nanocomposite material having the metal oxide formed on the surface thereof,
The reduction potential of the metal oxide forming raw material is 1.0 V or less.

また、前記金属酸化物形成用原料物質の還元電位は0.8V以下であることが好ましい。   The reduction potential of the metal oxide forming raw material is preferably 0.8 V or less.

また、前記金属酸化物は、金属リン酸塩、酸化鉄、または酸化スズであってよい。   The metal oxide may be a metal phosphate, iron oxide, or tin oxide.

この場合、前記金属酸化物は、FePO4、Fe34、及びSnO2から選ばれた少なくとも1種であってよい。 In this case, the metal oxide may be at least one selected from FePO 4 , Fe 3 O 4 , and SnO 2 .

また、前記グラフェン系ナノ複合材料は、10μm以下の直径を有することが好ましい。   The graphene nanocomposite material preferably has a diameter of 10 μm or less.

また、本発明は、グラフェン系ナノ複合材料であって、
酸化グラフェンが分散された溶液を提供する工程と、
前記酸化グラフェンが分散された溶液に金属酸化物形成用原料物質を添加する工程、及び
前記酸化グラフェンと前記金属酸化物形成用原料物質との酸化還元反応を用いて還元されたグラフェン表面の少なくとも一方の面に前記金属酸化物が形成されたナノ複合材料を形成する工程と、を実施して調製され、前記金属酸化物形成用原料物質の還元電位は1.0V以下であることを特徴とする。
Further, the present invention is a graphene-based nanocomposite material,
Providing a solution in which graphene oxide is dispersed;
A step of adding a metal oxide forming raw material to the solution in which the graphene oxide is dispersed, and at least one of graphene surfaces reduced using a redox reaction between the graphene oxide and the metal oxide forming raw material Forming a nanocomposite material in which the metal oxide is formed on the surface thereof, and the reduction potential of the metal oxide-forming raw material is 1.0 V or less .

また、前記金属酸化物形成用原料物質の還元電位は0.8V以下であることが好ましい。   The reduction potential of the metal oxide forming raw material is preferably 0.8 V or less.

また、前記金属酸化物は、金属リン酸塩、酸化鉄、または酸化スズであってよい。   The metal oxide may be a metal phosphate, iron oxide, or tin oxide.

この場合、前記金属酸化物は、FePO4、Fe34、及びSnO2から選ばれる少なくとも1種であってよい。 In this case, the metal oxide may be at least one selected from FePO 4 , Fe 3 O 4 , and SnO 2 .

本発明に係るナノ複合材料の製造方法によれば、簡易な方法で短時間で金属酸化物/グラフェンナノ複合材料を調製することができる。   According to the method for producing a nanocomposite material of the present invention, a metal oxide / graphene nanocomposite material can be prepared in a short time by a simple method.

本発明の好適な実施例に従ってグラフェン系ナノ複合材料を調製する工程を概略的に示す図である。FIG. 4 schematically illustrates a process for preparing a graphene-based nanocomposite material according to a preferred embodiment of the present invention. 本発明の好適な実施例に従って調製されたFePO4・nH2O/グラフェンナノ複合材料のTEM写真である。 2 is a TEM photograph of FePO 4 .nH 2 O / graphene nanocomposite prepared according to a preferred embodiment of the present invention. 本発明の好適な実施例に従って調製されたFePO4・nH2O/グラフェンナノ複合材料のXANESを示す図である。FIG. 6 shows XANES of FePO 4 .nH 2 O / graphene nanocomposite prepared according to a preferred embodiment of the present invention. 酸化グラフェンとFePO4・nH2O/グラフェンナノ複合材料のXPSデータを示す図である。Is a diagram showing XPS data graphene oxide and FePO 4 · nH 2 O / graphene composite. 酸化グラフェンとFePO4・nH2O/グラフェンナノ複合材料のXPSデータを示す図である。Is a diagram showing XPS data graphene oxide and FePO 4 · nH 2 O / graphene composite. 酸化グラフェンとFePO4・nH2O/グラフェンナノ複合材料のFT−IRデータを示す図である。It is a diagram showing the FT-IR data of the graphene oxide and FePO 4 · nH 2 O / graphene composite. FePO4・nH2O/グラフェンナノ複合材料の電流密度による容量の変化を示す図である。It is a graph showing changes in capacitance due to the current density of the FePO 4 · nH 2 O / graphene composite. FePO4・nH2Oの担持量によるFePO4・nH2O/グラフェンナノ複合材料のXPSデータを示す図である。FePO shows the XPS data of the FePO 4 · nH 2 O / graphene composite material according to 4 · nH 2 O loading amount. FePO4・nH2Oの担持量によるFePO4・nH2O/グラフェンナノ複合材料のXPSデータを示す図である。FePO shows the XPS data of the FePO 4 · nH 2 O / graphene composite material according to 4 · nH 2 O loading amount. FePO4・nH2Oの担持量によるFePO4・nH2O/グラフェンナノ複合材料のXPSデータを示す図である。FePO shows the XPS data of the FePO 4 · nH 2 O / graphene composite material according to 4 · nH 2 O loading amount. 本発明の好適な実施例に係る酸化還元反応を用いて合成されたFe34/グラフェンナノ複合材料のXRDデータである。 3 is XRD data of an Fe 3 O 4 / graphene nanocomposite synthesized using a redox reaction according to a preferred embodiment of the present invention. 本発明の好適な実施例に係る酸化還元反応を用いて合成されたFe34/グラフェンナノ複合材料のTEM写真である。 3 is a TEM photograph of an Fe 3 O 4 / graphene nanocomposite synthesized using a redox reaction according to a preferred embodiment of the present invention. 本発明の好適な実施例に係る酸化還元反応を用いて合成されたFe34/グラフェンナノ複合材料のTEM写真である。 3 is a TEM photograph of an Fe 3 O 4 / graphene nanocomposite synthesized using a redox reaction according to a preferred embodiment of the present invention. 本発明の好適な実施例に係る酸化還元反応を用いて合成されたSnO2/グラフェンナノ複合材料のXRDデータである。3 is XRD data of a SnO 2 / graphene nanocomposite synthesized using a redox reaction according to a preferred embodiment of the present invention. 本発明の好適な実施例に係る酸化還元反応を用いて合成されたSnO2/グラフェンナノ複合材料のTEM写真である。3 is a TEM photograph of a SnO 2 / graphene nanocomposite synthesized using a redox reaction according to a preferred embodiment of the present invention. 本発明の好適な実施例に係る酸化還元反応を用いて合成されたSnO2/グラフェンナノ複合材料のTEM写真である。3 is a TEM photograph of a SnO 2 / graphene nanocomposite synthesized using a redox reaction according to a preferred embodiment of the present invention.

以下、本発明の好適な実施例に係るグラフェンと該グラフェンの一方の面に形成された金属酸化物を含むグラフェン系ナノ複合材料及びその製造方法について説明する。   Hereinafter, a graphene-based nanocomposite material including graphene according to a preferred embodiment of the present invention, a metal oxide formed on one surface of the graphene, and a manufacturing method thereof will be described.

図1は、本発明の好適な実施例に従ってグラフェン系ナノ複合材料を調製する工程を概略的に示す図である。   FIG. 1 schematically illustrates a process for preparing a graphene-based nanocomposite material according to a preferred embodiment of the present invention.

図1に示すように、先ず、酸化グラフェン(Graphene Oxide)試片を溶媒に分散させてなる酸化グラフェンが分散された溶液を準備する。前記酸化グラフェン試片はグラフェンナノ複合材料を形成したい大きさで提供することが好ましい。また、特にその大きさを限定するものではないが、グラフェン系ナノ複合材料の大きさはグラフェンの大きさによって決められ、グラフェンは通常、数μm程度の大きさを有する。   As shown in FIG. 1, first, a solution in which graphene oxide is dispersed by preparing a graphene oxide specimen in a solvent is prepared. The graphene oxide specimen is preferably provided in a size in which a graphene nanocomposite material is desired to be formed. Although the size is not particularly limited, the size of the graphene nanocomposite material is determined by the size of the graphene, and the graphene usually has a size of about several μm.

次いで、前記酸化グラフェンが分散された溶液にグラフェン上に形成したい金属酸化物形成用原料物質を投入する。本発明の好適な実施例では、金属リン酸塩をグラフェン表面に形成するためにリン酸(PO4 3-)溶液及び鉄イオン(Fe2+)が含まれた溶液をそれぞれ酸化グラフェンが分散された溶液に投入した。 Next, a raw material material for forming a metal oxide to be formed on the graphene is introduced into the solution in which the graphene oxide is dispersed. In a preferred embodiment of the present invention, graphene oxide is dispersed in a phosphoric acid (PO 4 3− ) solution and a solution containing iron ions (Fe 2+ ), respectively, in order to form a metal phosphate on the graphene surface. Into the solution.

そうすると、酸化グラフェンが分散された溶液中の酸化グラフェンは還元反応を起こして還元されたグラフェン薄膜を形成し、金属イオン(Fe2+)は酸化反応を起こしてFe3+イオンに酸化されてFePO4・nH2Oを形成し、前記FePO4・nH2Oは還元されたグラフェンの少なくとも一方の面に蒸着される。すなわち、本発明の好適な実施例に係る方法によれば、別途の加熱やエージング(Aging)工程を行うことなく、金属酸化物/グラフェンナノ複合材料を形成することができる。 Then, the graphene oxide in the solution in which graphene oxide is dispersed causes a reduction reaction to form a reduced graphene thin film, and the metal ion (Fe 2+ ) undergoes an oxidation reaction and is oxidized to Fe 3+ ions to form FePO +. 4 · nH 2 O is formed, and the FePO 4 · nH 2 O is deposited on at least one surface of the reduced graphene. That is, according to the method according to a preferred embodiment of the present invention, a metal oxide / graphene nanocomposite can be formed without performing a separate heating or aging process.

一方、本発明によれば、金属酸化物形成用原料物質と酸化グラフェンとは酸化還元反応を起こす必要があるため、金属酸化物形成用原料物質の還元電位は1.0V以下である必要があり、なお、円滑且つ迅速な反応のために金属酸化物形成用原料物質の還元電位は0.8V以下であることがより好ましい。   On the other hand, according to the present invention, since the metal oxide forming raw material and graphene oxide need to undergo a redox reaction, the reduction potential of the metal oxide forming raw material needs to be 1.0 V or less. In addition, it is more preferable that the reduction potential of the metal oxide forming raw material is 0.8 V or less for a smooth and rapid reaction.

また、前記金属酸化物粒子の粒径は小さいほど活用度がアップするため、本発明の好適な実施例に係る金属酸化物粒子は10nm以下であることが好ましく、5nm以下であることがより好ましい。   In addition, since the degree of utilization increases as the particle size of the metal oxide particles is smaller, the metal oxide particles according to a preferred embodiment of the present invention is preferably 10 nm or less, more preferably 5 nm or less. .

図2は、本発明の好適な実施例に従って調製されたFePO4・nH2O/グラフェンナノ複合材料のTEM写真である。同図中の上図を参考すると、FePO4・nH2Oナノ粒子がグラフェン表面に均一に分布されたことを確認することができ、本実施例で析出されたFePO4・nH2O粒子は約5nmの大きさを有する。また、同図の左下図を参考すると、長範囲にわたってナノ複合材料が均一に合成されたことを確認することができる。また、同図の右下図を参考すると、ナノ複合材料においてFe、P、O、Cが均一に分布されていることを確認することができる。 FIG. 2 is a TEM photograph of an FePO 4 .nH 2 O / graphene nanocomposite prepared according to a preferred embodiment of the present invention. Referring to the upper figure in the figure, it can be confirmed that the FePO 4 .nH 2 O nanoparticles are uniformly distributed on the graphene surface, and the FePO 4 .nH 2 O particles precipitated in this example are It has a size of about 5 nm. In addition, referring to the lower left diagram of the figure, it can be confirmed that the nanocomposite material was uniformly synthesized over a long range. In addition, referring to the lower right diagram of the figure, it can be confirmed that Fe, P, O, and C are uniformly distributed in the nanocomposite material.

図3は、本発明の好適な実施例に従って調製されたFePO4・nH2O/グラフェンナノ複合材料のXANES(X−ray Absorption Near Edge Structure)を示す図である。XANESは、物質の酸価を確認することができる分析方法であって、物質の酸価に応じてピークの位置が変わるため、定性的に酸価を分析することができる。同図に示すように、FePO4・nH2Oは、酸価が2+であるFeSO4・7H2Oから合成され、合成されたFePO4・nH2Oは商用のFePO4のような3+の酸価を示すことを確認することができる。これより、本発明の好適な実施例に係る酸化還元反応によってFeイオンが酸化されたことを確認することができる。 FIG. 3 is a diagram illustrating XANES (X-ray Absorption Near Edge Structure) of FePO 4 .nH 2 O / graphene nanocomposite prepared according to a preferred embodiment of the present invention. XANES is an analysis method capable of confirming the acid value of a substance, and the position of the peak changes according to the acid value of the substance, so that the acid value can be analyzed qualitatively. As shown in the figure, FePO 4 · nH 2 O is synthesized from FeSO 4 · 7H 2 O having an acid value of 2+, and the synthesized FePO 4 · nH 2 O is 3+ like commercial FePO 4. It can be confirmed that the acid value is shown. From this, it can be confirmed that Fe ions were oxidized by the oxidation-reduction reaction according to the preferred embodiment of the present invention.

図4(a)は、酸化グラフェンのXPSデータを示す図である。図4(a)に示すようにグラフェンの酸化のために適用されたハマー法(Hummers method)によって表面にC−O、C=O、C(O)Oなど多数の官能基が存在することを確認することができる。また、図4(b)は、FePO4・nH2O/グラフェンナノ複合材料のXPSデータを示す図である。図4(b)に示すように酸化グラフェンの還元反応後、C−O官能基の数が大きく減少したことを確認することができ、これは、酸化グラフェンと金属酸化物原料物質との酸化還元反応によって酸化グラフェンがグラフェン(RGO;Reduced Graphene Oxide)に還元されたことを示す。 FIG. 4A shows XPS data of graphene oxide. As shown in FIG. 4A, the presence of a large number of functional groups such as C—O, C═O, and C (O) O on the surface by the Hummers method applied for graphene oxidation. Can be confirmed. FIG. 4B is a diagram showing XPS data of the FePO 4 · nH 2 O / graphene nanocomposite. As shown in FIG. 4B, after the reduction reaction of graphene oxide, it can be confirmed that the number of CO functional groups is greatly reduced. This is due to the oxidation-reduction between graphene oxide and the metal oxide raw material. It shows that graphene oxide was reduced to graphene (RGO; Reduced Graphene Oxide) by the reaction.

図5は、酸化グラフェンとFePO4・nH2O/グラフェンナノ複合材料のFT−IR(Fourier Transform InfraRed spectroscopy)データを示す図である。酸化グラフェンとFePO4・nH2O/グラフェンナノ複合材料のデータを比べると、ナノ複合材料の合成後、酸化グラフェンの表面に存在する官能基が除去されたことを確認することができ、これは、酸化還元反応後に酸化グラフェン(GO)がグラフェン(RGO)に還元されたことを示す。 FIG. 5 is a diagram showing FT-IR (Fourier Transform InfraRed spectroscopy) data of graphene oxide and FePO 4 .nH 2 O / graphene nanocomposite. Comparing the data of graphene oxide and FePO 4 · nH 2 O / graphene nanocomposite, we can confirm that the functional groups present on the surface of graphene oxide were removed after the synthesis of the nanocomposite. , Graphene oxide (GO) is reduced to graphene (RGO) after the redox reaction.

図6は、FePO4・nH2O/グラフェンナノ複合材料の電流密度による容量の変化を示す図である。一般に、ナノ複合材料中の活物質の担持量が増加すれば高率放電特性が低下するのに対し、図6に示すように本発明の好適な実施例に係るナノ複合材料では、活物質の担持量が増加しているにもかかわらず、高率放電特性が低下しないことを確認することができる。 FIG. 6 is a diagram showing a change in capacity depending on the current density of the FePO 4 .nH 2 O / graphene nanocomposite. In general, as the amount of active material supported in the nanocomposite increases, the high rate discharge characteristic decreases, whereas in the nanocomposite according to the preferred embodiment of the present invention, as shown in FIG. It can be confirmed that the high-rate discharge characteristics do not deteriorate despite the increase in the loading amount.

図7は、FePO4・nH2Oの担持量によるFePO4・nH2O/グラフェンナノ複合材料のXPSデータを示す図であって、図7(a)はFePO4・nH2Oが91%、図7(b)は84%、図7(c)は73%がそれぞれ担持された場合を示す。同図に示すように、活物質の担持量の増加に伴い、C−O官能基が減少することを確認することができ、これにより、酸化還元反応で合成されたFePO4・nH2O/グラフェンナノ複合材料は、グラフェン(RGO)の活物質担持量が高いほど、より優れた電気伝導度を示すことを予測することができる。したがって、FePO4・nH2O/グラフェンナノ複合材料は、グラフェン(RGO)の活物質担持量を調節することで電気伝導度を容易に調節することができる。 Figure 7 is a diagram showing XPS data of FePO 4 · nH 2 O / graphene composite material according to the loading amount of FePO 4 · nH 2 O, 7 (a) is FePO 4 · nH 2 O 91% FIG. 7B shows a case where 84% is carried and FIG. 7C shows a case where 73% is carried. As shown in the figure, it can be confirmed that the CO functional group decreases with an increase in the amount of the active material supported. As a result, FePO 4 .nH 2 O / synthesized by the oxidation-reduction reaction can be confirmed. It can be predicted that the graphene nanocomposite material exhibits better electrical conductivity as the amount of graphene (RGO) active material supported is higher. Therefore, the electric conductivity of the FePO 4 .nH 2 O / graphene nanocomposite can be easily adjusted by adjusting the amount of graphene (RGO) active material supported.

図8(a)は、本発明の好適な実施例に係る酸化還元反応を用いて合成されたFe34/グラフェンナノ複合材料のXRDデータ、図8(b)及び図8(c)は、本発明の好適な実施例に係る酸化還元反応を用いて合成されたFe34/グラフェンナノ複合材料のTEM写真である。また、図9(a)は、本発明の好適な実施例に係る酸化還元反応を用いて合成されたSnO2/グラフェンナノ複合材料のXRDデータ、図9(b)及び図9(c)は、本発明の好適な実施例に係る酸化還元反応を用いて合成されたSnO2/グラフェンナノ複合材料のTEM写真である。図8及び図9に示すように、先に説明したFePO4・nH2O/グラフェンナノ複合材料の他にも、本発明の好適な実施例に係る方法を用いれば、Fe34/グラフェンナノ複合材料、SnO2/グラフェンナノ複合材料など、金属酸化物形成用原料物質の還元電位が1V以下の他の金属酸化物が合成されたナノ複合材料を容易に得られることを確認することができる。 FIG. 8A is an XRD data of Fe 3 O 4 / graphene nanocomposite synthesized using a redox reaction according to a preferred embodiment of the present invention, FIG. 8B and FIG. 4 is a TEM photograph of an Fe 3 O 4 / graphene nanocomposite synthesized using a redox reaction according to a preferred embodiment of the present invention. FIG. 9A shows XRD data of a SnO 2 / graphene nanocomposite synthesized using a redox reaction according to a preferred embodiment of the present invention. FIG. 9B and FIG. 3 is a TEM photograph of a SnO 2 / graphene nanocomposite synthesized using a redox reaction according to a preferred embodiment of the present invention. As shown in FIGS. 8 and 9, in addition to the FePO 4 .nH 2 O / graphene nanocomposite described above, if the method according to the preferred embodiment of the present invention is used, Fe 3 O 4 / graphene It can be confirmed that nanocomposites such as nanocomposites and SnO 2 / graphene nanocomposites can be easily obtained by synthesizing other metal oxides having a reduction potential of 1 V or less of the raw material for forming metal oxides. it can.

以上、本発明の好適な実施例に係る金属酸化物を含むグラフェン系ナノ複合材料及びその製造方法を詳細に説明した。しかし、本発明の属する技術分野における通常の知識を有する者であれば前記構成に対する種々の修正及び変形が可能であることが理解できるであろう。したがって、本発明の範囲は特許請求の範囲によってのみ限定される。   As described above, the graphene-based nanocomposite material including the metal oxide according to the preferred embodiment of the present invention and the manufacturing method thereof have been described in detail. However, those skilled in the art to which the present invention pertains can understand that various modifications and variations can be made to the above configuration. Accordingly, the scope of the invention is limited only by the claims.

Claims (10)

グラフェンと該グラフェンの一方の面に形成された金属酸化物を含むグラフェン系ナノ複合材料の製造方法であって、
酸化グラフェンが分散された溶液を調製する工程と、
前記酸化グラフェンが分散された溶液に金属酸化物形成用原料物質を添加する工程、及び
前記酸化グラフェンと前記金属酸化物形成用原料物質との酸化還元反応を用いて還元されたグラフェン表面の少なくとも一方の面に前記金属酸化物を形成することによりナノ複合材料を形成する工程と、を含み、
前記金属酸化物形成用原料物質の還元電位は1.0V以下であることを特徴とするグラフェン系ナノ複合材料の製造方法。
A method for producing a graphene-based nanocomposite material including graphene and a metal oxide formed on one surface of the graphene,
Preparing a solution in which graphene oxide is dispersed;
A step of adding a metal oxide forming raw material to the solution in which the graphene oxide is dispersed, and at least one of graphene surfaces reduced using a redox reaction between the graphene oxide and the metal oxide forming raw material Forming a nanocomposite material by forming the metal oxide on the surface of
The method for producing a graphene-based nanocomposite, wherein the metal oxide-forming raw material has a reduction potential of 1.0 V or less.
前記金属酸化物形成用原料物質の還元電位は、0.8V以下である請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the reduction potential of the metal oxide forming raw material is 0.8 V or less. 前記金属酸化物は、金属リン酸塩、酸化鉄及び酸化スズからなる群から選択された1つを含む請求項2に記載の製造方法。   The manufacturing method according to claim 2, wherein the metal oxide includes one selected from the group consisting of metal phosphate, iron oxide, and tin oxide. 前記金属酸化物は、FePO4、Fe34及びSnO2からなる群から選択された1つを含む請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the metal oxide includes one selected from the group consisting of FePO 4 , Fe 3 O 4, and SnO 2 . 前記グラフェン系ナノ複合材料は、10μm以下の直径を有するナノ材料を含む請求項1〜4の何れかに記載の製造方法。   The manufacturing method according to claim 1, wherein the graphene-based nanocomposite material includes a nanomaterial having a diameter of 10 μm or less. グラフェンと該グラフェンの一方の面に形成された金属酸化物を含むグラフェン系ナノ複合材料であって、
酸化グラフェンが分散された溶液を調製する工程と、
前記酸化グラフェンが分散された溶液に金属酸化物形成用原料物質を添加する工程、及び
前記酸化グラフェンと前記金属酸化物形成用原料物質との酸化還元反応を用いて還元されたグラフェン表面の少なくとも一方の面に前記金属酸化物を形成することによりナノ複合材料を形成する工程を含み、
前記金属酸化物形成用原料物質の還元電位は1.0V以下である方法により調製された、グラフェン系ナノ複合材料。
A graphene-based nanocomposite material including graphene and a metal oxide formed on one surface of the graphene,
Preparing a solution in which graphene oxide is dispersed;
A step of adding a metal oxide forming raw material to the solution in which the graphene oxide is dispersed, and at least one of graphene surfaces reduced using a redox reaction between the graphene oxide and the metal oxide forming raw material Forming a nanocomposite by forming the metal oxide on the surface of
A graphene-based nanocomposite material prepared by a method in which the metal oxide-forming raw material has a reduction potential of 1.0 V or less.
前記金属酸化物形成用原料物質の還元電位は、0.8V以下である請求項6に記載のグラフェン系ナノ複合材料。   The graphene-based nanocomposite material according to claim 6, wherein the reduction potential of the metal oxide forming raw material is 0.8 V or less. 前記金属酸化物は、金属リン酸塩、酸化鉄及び酸化スズからなる群から選択される1つを含む請求項7に記載のグラフェン系ナノ複合材料。   The graphene-based nanocomposite material according to claim 7, wherein the metal oxide includes one selected from the group consisting of metal phosphate, iron oxide, and tin oxide. 前記金属酸化物は、FePO4、Fe34及びSnO2からなる群から選択された1つを含む請求項8に記載のグラフェン系ナノ複合材料。 The graphene-based nanocomposite material according to claim 8, wherein the metal oxide includes one selected from the group consisting of FePO 4 , Fe 3 O 4, and SnO 2 . 前記グラフェン系ナノ複合材料は、10μm以下の直径を有するナノ材料を含む請求項6〜9の何れかに記載のグラフェン系ナノ複合材料。   The graphene-based nanocomposite material according to claim 6, wherein the graphene-based nanocomposite material includes a nanomaterial having a diameter of 10 μm or less.
JP2014174305A 2013-08-29 2014-08-28 Method for synthesizing graphene-based nano composite material, and graphene-based nano composite material synthesized using the method Pending JP2015048302A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0102981 2013-08-29
KR20130102981A KR20150027870A (en) 2013-08-29 2013-08-29 Method for synthesizing graphene-based nanocomposite and graphene-based nanocomposite synthesized using the method

Publications (1)

Publication Number Publication Date
JP2015048302A true JP2015048302A (en) 2015-03-16

Family

ID=52583643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174305A Pending JP2015048302A (en) 2013-08-29 2014-08-28 Method for synthesizing graphene-based nano composite material, and graphene-based nano composite material synthesized using the method

Country Status (3)

Country Link
US (1) US20150064442A1 (en)
JP (1) JP2015048302A (en)
KR (1) KR20150027870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130036639A (en) * 2011-10-04 2013-04-12 성균관대학교산학협력단 Composite containing metal component supported on graphene, preparing method of the same, and uses of the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483464B1 (en) 2018-05-31 2019-11-19 Uchicago Argonne, Llc Resistive switching memory device
CN110216279B (en) * 2019-03-09 2021-07-09 深圳市中科墨磷科技有限公司 Preparation method of transition metal doped two-dimensional sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718209A (en) * 2012-06-11 2012-10-10 电子科技大学 Method for preparing graphene based on reduction of divalent iron ion
US20130099153A1 (en) * 2011-10-23 2013-04-25 Postech Academy-Industry Foundation Hybrid material comprising graphene and iron oxide, method for manufacturing the same, and apparatus for treating waste water using the same
US20130105400A1 (en) * 2011-10-04 2013-05-02 Hyoyoung Lee Composite containing metal component supported on graphene, preparing method of the same, and uses of the same
JP2013151398A (en) * 2012-01-26 2013-08-08 Dowa Electronics Materials Co Ltd Method for reducing graphene oxide, and method for producing electrode material using the method
WO2014047930A1 (en) * 2012-09-29 2014-04-03 East China University Of Science And Technology Methods and compositions for making metal oxide-graphene composites
JP2014123564A (en) * 2012-12-21 2014-07-03 Belenos Clean Power Holding Ag Self-assembled composite of graphene oxide and tetravalent vanadium oxohydroxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008314512B2 (en) * 2007-10-19 2014-07-24 University Of Wollongong Process for the preparation of graphene
US20150166348A1 (en) * 2013-12-18 2015-06-18 Semiconductor Energy Laboratory Co., Ltd. Graphene, graphene-including layer, electrode, and power storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130105400A1 (en) * 2011-10-04 2013-05-02 Hyoyoung Lee Composite containing metal component supported on graphene, preparing method of the same, and uses of the same
US20130099153A1 (en) * 2011-10-23 2013-04-25 Postech Academy-Industry Foundation Hybrid material comprising graphene and iron oxide, method for manufacturing the same, and apparatus for treating waste water using the same
JP2013151398A (en) * 2012-01-26 2013-08-08 Dowa Electronics Materials Co Ltd Method for reducing graphene oxide, and method for producing electrode material using the method
CN102718209A (en) * 2012-06-11 2012-10-10 电子科技大学 Method for preparing graphene based on reduction of divalent iron ion
WO2014047930A1 (en) * 2012-09-29 2014-04-03 East China University Of Science And Technology Methods and compositions for making metal oxide-graphene composites
JP2014123564A (en) * 2012-12-21 2014-07-03 Belenos Clean Power Holding Ag Self-assembled composite of graphene oxide and tetravalent vanadium oxohydroxide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015030273; P. S. TEO et al.: 'Room temperature in situ chemical synthesis of Fe3O4/graphene' Ceramics International 38, 2012, 6411-6416. *
JPN6015030274; J. ZHANG et al.: 'Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation' Journal of Materials Chemistry 21, 2011, 3634-3640. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130036639A (en) * 2011-10-04 2013-04-12 성균관대학교산학협력단 Composite containing metal component supported on graphene, preparing method of the same, and uses of the same
KR101945818B1 (en) 2011-10-04 2019-02-08 성균관대학교산학협력단 Composite containing metal component supported on graphene, preparing method of the same, and uses of the same

Also Published As

Publication number Publication date
US20150064442A1 (en) 2015-03-05
KR20150027870A (en) 2015-03-13

Similar Documents

Publication Publication Date Title
Majumdar et al. Recent advancements of copper oxide based nanomaterials for supercapacitor applications
Lin et al. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes
Natu et al. Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes
Song et al. Core-shell Ag@ C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption
Sengottaiyan et al. Cobalt oxide/reduced graphene oxide composite with enhanced electrochemical supercapacitance performance
Patil et al. A facile synthesis of hierarchical α-MnO2 nanofibers on 3D-graphene foam for supercapacitor application
Zeng et al. Iron‐based supercapacitor electrodes: advances and challenges
Ci et al. NiO-microflower formed by nanowire-weaving nanosheets with interconnected Ni-network decoration as supercapacitor electrode
Jeong et al. Metal oxide/graphene composites for supercapacitive electrode materials
Zhang et al. One-step facile solvothermal synthesis of copper ferrite–graphene composite as a high-performance supercapacitor material
Yang et al. Heating-rate-induced porous α-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors
Jiang et al. Optimizing hybridization of 1T and 2H phases in MoS2 monolayers to improve capacitances of supercapacitors
Zhang et al. One-step hydrothermal synthesis of 3D petal-like Co9S8/RGO/Ni3S2 composite on nickel foam for high-performance supercapacitors
Rusi et al. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors
Mashtalir et al. Intercalation and delamination of layered carbides and carbonitrides
Wang et al. The MIL-88A-derived Fe3O4-carbon hierarchical nanocomposites for electrochemical sensing
Zhang et al. “Butterfly effect” in CuO/graphene composite nanosheets: a small interfacial adjustment triggers big changes in electronic structure and Li-ion storage performance
Wei et al. Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition: implications for high-rate capability electrochemical supercapacitors
Zhou et al. Fabrication, structure, and magnetic properties of highly ordered Prussian blue nanowire arrays
Hsieh et al. Electrochemical capacitors fabricated with tin oxide/graphene oxide nanocomposites
Zhou et al. Surfactant-assisted hydrothermal synthesis and magnetic properties of urchin-like MnWO4 microspheres
Mohd Zaid et al. Enhanced capacitance of hybrid layered graphene/nickel nanocomposite for supercapacitors
Yu et al. Electroless fabrication and supercapacitor performance of CNT@ NiO-nanosheet composite nanotubes
Vadivel et al. Supercapacitors studies on BiPO4 nanoparticles synthesized via a simple microwave approach
Takenaka et al. Preparation of metal oxide nanofilms using graphene oxide as a template

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160324