JP2015044159A - Method for producing palladium catalyst supported in highly dispersed manner suitable for core material for core-shell catalyst - Google Patents

Method for producing palladium catalyst supported in highly dispersed manner suitable for core material for core-shell catalyst Download PDF

Info

Publication number
JP2015044159A
JP2015044159A JP2013176736A JP2013176736A JP2015044159A JP 2015044159 A JP2015044159 A JP 2015044159A JP 2013176736 A JP2013176736 A JP 2013176736A JP 2013176736 A JP2013176736 A JP 2013176736A JP 2015044159 A JP2015044159 A JP 2015044159A
Authority
JP
Japan
Prior art keywords
palladium
catalyst
supported
core
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013176736A
Other languages
Japanese (ja)
Other versions
JP6159621B2 (en
Inventor
井上 秀男
Hideo Inoue
秀男 井上
博史 添田
Hiroshi Soeda
博史 添田
直也 青木
Naoya Aoki
直也 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2013176736A priority Critical patent/JP6159621B2/en
Publication of JP2015044159A publication Critical patent/JP2015044159A/en
Application granted granted Critical
Publication of JP6159621B2 publication Critical patent/JP6159621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a palladium catalyst supported in a highly dispersed manner which is suitable for a core material for a core-shell catalyst.SOLUTION: There is provided a method for a palladium catalyst, the method comprising: a first supporting step of impregnating and supporting a palladium raw material on a catalyst carrier to reduce into palladium particles by gas phase reduction; and a second supporting step of additionally supporting the palladium raw material to support palladium to a predetermined amount of a supported palladium by liquid phase reduction. The palladium catalyst produced by this method can be applied to a core material for a core-shell catalyst in which palladium particles having an average particle diameter of 3 nm or less and a standard deviation of 1 nm or less are supported in a highly dispersed manner.

Description

本発明はコアシェル触媒用コア材料に適用できる、カーボン担体上にパラジウムが高分散担持されたパラジウム触媒の製造方法に関する。   The present invention relates to a method for producing a palladium catalyst, which can be applied to a core material for a core-shell catalyst, in which palladium is supported in a highly dispersed manner on a carbon support.

パラジウムは酸化反応や還元反応に対して触媒作用を示すため、さまざまな用途で触媒として広く使用されている。パラジウムなどの金属粒子表面が活性点として利用される触媒の場合、その反応場である表面積を増やすために金属粒子は小粒径かつ高分散であることが望まれる。このように小粒径かつ高分散に担持されたパラジウム触媒の応用は多岐に渡っており、酸化還元反応に直接寄与する触媒としてだけではなく、近年では燃料電池触媒への適用が検討されている。   Palladium has been widely used as a catalyst in various applications because it exhibits a catalytic action for oxidation and reduction reactions. In the case of a catalyst in which the surface of a metal particle such as palladium is used as an active site, it is desired that the metal particle has a small particle size and a high dispersion in order to increase the surface area as a reaction field. The palladium catalyst supported in such a small particle size and high dispersion is various, and not only as a catalyst that directly contributes to the oxidation-reduction reaction, but in recent years, application to a fuel cell catalyst has been studied. .

燃料電池は、環境問題や資源問題を解決できる可能性のある1つの手段として注目されている。燃料電池のひとつである固体高分子形燃料電池(PEFC)は、小型で高い電流密度を出すことが可能であることから、車載用電源などへの適用が期待されている。燃料電池はエネルギー源として水素を使用しているため水のみが生成されるクリーンエネルギーデバイスであって、カソード側の触媒として白金を使用するものが知られている。   Fuel cells are attracting attention as one means that can solve environmental problems and resource problems. A polymer electrolyte fuel cell (PEFC), one of the fuel cells, is expected to be applied to in-vehicle power sources because it is small and can produce a high current density. Since a fuel cell uses hydrogen as an energy source, it is a clean energy device that produces only water, and one that uses platinum as a catalyst on the cathode side is known.

しかし、白金は資源量が少なく価格が高いという問題があり、その利用効率や耐久性を向上させて使用量を低減するために種々の検討が進められている。検討の一つとして、異種金属上に白金を被覆してなる白金コアシェル触媒が注目されている。白金コアシェル触媒は、触媒活性を発揮する白金原子は触媒粒子の最外層に露出した白金原子のみであることに着目して考案されたもので、白金原子層(シェル)で被覆された異種金属微粒子(コア)が、触媒等の担体に担持された構成を有する。   However, platinum has a problem that the amount of resources is small and the price is high, and various studies are being conducted to improve the utilization efficiency and durability and reduce the amount of use. As one of the studies, a platinum core-shell catalyst obtained by coating platinum on a different metal has attracted attention. The platinum core-shell catalyst was devised by focusing on the fact that the platinum atoms exhibiting catalytic activity are only the platinum atoms exposed in the outermost layer of the catalyst particles. The dissimilar metal fine particles covered with the platinum atomic layer (shell) (Core) has a configuration supported on a carrier such as a catalyst.

これまでさまざまな金属微粒子がコアとして用いられてきており、その一つとしてパラジウムが知られる。非特許文献1(J. Zhang et al., J. Phys. Chem. B, 108,10955 (2004)))によれば、コア金属にパラジウムを使用した場合、酸素還元活性(ORR)が向上し、パラジウム触媒をコアシェル触媒のコア材料へ適用することの有効性が記載されている。   Various metal fine particles have been used as a core, and palladium is known as one of them. According to Non-Patent Document 1 (J. Zhang et al., J. Phys. Chem. B, 108, 10955 (2004)), oxygen reduction activity (ORR) is improved when palladium is used as the core metal. The effectiveness of applying a palladium catalyst to the core material of the core-shell catalyst is described.

コアシェル触媒は、コア材料の形態に大きく影響を受けるため、コア粒子径の標準偏差が大きい(分散性が悪い)コア材料の適用により、コアシェル触媒の活性の低下が起こるなどの問題がある。   Since the core-shell catalyst is greatly influenced by the form of the core material, there is a problem that the activity of the core-shell catalyst is reduced by applying the core material having a large standard deviation of the core particle diameter (poor dispersibility).

コア粒子径の標準偏差を小さく、高分散なコア材料を得る方法として特許文献1では有機系溶媒中でパラジウム原料を一酸化炭素(CO)で還元することで微細で標準偏差1nm以下のパラジウム粒子をコアとした白金コアシェル触媒の製造方法が記載されている。   As a method for obtaining a highly dispersed core material with a small standard deviation in core particle diameter, Patent Document 1 discloses fine palladium particles having a standard deviation of 1 nm or less by reducing palladium raw material with carbon monoxide (CO) in an organic solvent. Describes a process for producing a platinum core-shell catalyst with a core of.

J.Zhang et al., J. Phys. Chem. B, 108,10955 (2004)J. Zhang et al., J. Phys. Chem. B, 108,10955 (2004)

特開2012-102345JP2012-102345

しかしながら、特許文献1に記載のパラジウム粒子製造方法では、粒子径が5nm以下での粒子を製造可能であるが、溶媒が有機溶媒であること、および還元剤としてCOガスを使用しているため、安全面に課題があった。   However, in the palladium particle production method described in Patent Document 1, particles having a particle diameter of 5 nm or less can be produced. However, since the solvent is an organic solvent and CO gas is used as a reducing agent, There were safety issues.

上記の課題に対し、本発明の目的は、安全で簡便な方法よって、微細で高分散なパラジウム粒子が担持された触媒の製造方法を提供することにある。   In view of the above problems, an object of the present invention is to provide a method for producing a catalyst on which fine and highly dispersed palladium particles are supported by a safe and simple method.

本発明者らは種々の検討の結果、上記の課題を解決するために微細かつ高分散に担持されたパラジウム触媒の製造方法を見出し、本発明を完成するに至った。   As a result of various studies, the present inventors have found a method for producing a finely and highly dispersed palladium catalyst to solve the above-described problems, and have completed the present invention.

上記の課題は、触媒担体上へパラジウム原料を含浸担持して、気相還元にてパラジウム粒子に還元する第1担持工程と、パラジウム原料を追加含浸担持して、液相還元にて所定のパラジウム担持量までパラジウムを担持する第2担持工程とを有する高分散担持されたパラジウム触媒の製造方法によって解決される。   The above-mentioned problems include a first supporting step of impregnating and supporting a palladium raw material on a catalyst carrier and reducing it to palladium particles by gas phase reduction, and further impregnating and supporting a palladium raw material and liquid phase reduction to obtain a predetermined palladium. This is solved by a method for producing a highly dispersed supported palladium catalyst having a second supporting step of supporting palladium up to the supported amount.

本発明によるパラジウム触媒は、平均粒子径が3nm以下と小さいことおよび標準偏差が1nm以下ときわめて小さいことを特徴とする。コアシェル触媒はコア粒子の形態をそのまま引き継ぐので、コア材料である本発明によるパラジウム触媒を利用することで標準偏差が小さいコアシェル触媒を製造することが可能となる。
以下、本発明の実施形態について具体的に説明する。
The palladium catalyst according to the present invention is characterized in that the average particle size is as small as 3 nm or less and the standard deviation is as small as 1 nm or less. Since the core-shell catalyst inherits the form of the core particles as it is, it is possible to produce a core-shell catalyst with a small standard deviation by using the palladium catalyst according to the present invention as the core material.
Hereinafter, embodiments of the present invention will be specifically described.

実施例1のTEM画像TEM image of Example 1 実施例2のTEM画像TEM image of Example 2 実施例3のTEM画像TEM image of Example 3 実施例4のTEM画像TEM image of Example 4 比較例2のTEM画像TEM image of Comparative Example 2

本発明は、平均粒子径3nm以下、標準偏差1nm以下のパラジウム粒子を触媒担体に担持したパラジウム触媒の製造方法である。   The present invention is a method for producing a palladium catalyst in which palladium particles having an average particle diameter of 3 nm or less and a standard deviation of 1 nm or less are supported on a catalyst carrier.

上記パラジウム粒子の触媒担体への第1担持工程および第2担持工程の総担持量は1〜60mass%であり、望ましくは10〜30mass%である。担持量が1mass%未満では触媒量が不足して十分な性能を得ることができず、60mass%を超えるとパラジウム粒子の凝集が発生し、粒度分布が大きくなることが考えられる。   The total loading amount of the palladium particles on the catalyst carrier in the first loading step and the second loading step is 1 to 60 mass%, preferably 10 to 30 mass%. If the supported amount is less than 1 mass%, the catalyst amount is insufficient and sufficient performance cannot be obtained, and if it exceeds 60 mass%, the aggregation of palladium particles occurs and the particle size distribution is considered to increase.

第1担持工程でのパラジウム担持量は総担持量の5〜95%、望ましくは50%以上であって、第2担持工程でのパラジウム担持量は総担持量の5〜95%、望ましくは50%以下である。   The supported amount of palladium in the first supporting step is 5 to 95% of the total supported amount, preferably 50% or more, and the supported amount of palladium in the second supporting step is 5 to 95%, preferably 50% of the total supported amount. % Or less.

触媒担体としては、粒子の凝集を抑制するために、高比表面積を持つカーボンブラックが望ましい。一例としてケッチェンブラックEC300J、ケッチェンブラックEC600JDがあげられる。   As the catalyst carrier, carbon black having a high specific surface area is desirable in order to suppress aggregation of particles. Examples include Ketjen Black EC300J and Ketjen Black EC600JD.

上記触媒担体へ含浸担持させるパラジウム原料としては、第1担持工程においては非塩素系のパラジウム化合物を含む酸性溶液が望ましく、第2担持工程においては非塩素系のパラジウム化合物を含む塩基性溶液が望ましい。第1担持工程で用いるパラジウム原料の具体例としては、ジニトロジアンミンパラジウム硝酸溶液が挙げられ、また、第2担持工程で用いるパラジウム原料の具体例としては、ジニトロジアンミンパラジウムアンモニア溶液が挙げられる。   As the palladium raw material impregnated and supported on the catalyst carrier, an acidic solution containing a non-chlorine-based palladium compound is desirable in the first loading step, and a basic solution containing a non-chlorine-based palladium compound is desirable in the second loading step. . A specific example of the palladium raw material used in the first supporting step is a dinitrodiammine palladium nitric acid solution, and a specific example of the palladium raw material used in the second supporting step is a dinitrodiammine palladium ammonia solution.

上記のパラジウム触媒は、以下の工程によって製造される。
Said palladium catalyst is manufactured by the following processes.

各工程の実施方法に制限はないが、望ましい例を挙げて説明すると以下の通りである。   Although there is no restriction | limiting in the implementation method of each process, It is as follows when a preferable example is given and demonstrated.

本発明の高分散パラジウム触媒は、パラジウム粒子の第1担持工程において、パラジウム原料と触媒担体を混合、乾固させたものを所定の温度で熱分解させることで得られる。例えば非塩素系のパラジウム化合物水溶液とカーボンブラックを混合、乾固させたパラジウム化合物吸着カーボンを、一酸化炭素、水素を含む還元雰囲気、あるいは窒素、ヘリウム、アルゴンなどの不活性雰囲気下で200〜500℃、望ましくは200〜300℃で加熱処理する。これによってパラジウム化合物は還元あるいは熱分解してパラジウム粒子となる。   The highly dispersed palladium catalyst of the present invention can be obtained by thermally decomposing a palladium raw material and a catalyst carrier mixed and dried at a predetermined temperature in the first supporting step of palladium particles. For example, a palladium compound adsorbed carbon obtained by mixing and drying a non-chlorine palladium compound aqueous solution and carbon black is reduced to 200 to 500 in a reducing atmosphere containing carbon monoxide and hydrogen, or in an inert atmosphere such as nitrogen, helium, and argon. It heat-processes at 200 degreeC, desirably 200-300 degreeC. As a result, the palladium compound is reduced or thermally decomposed into palladium particles.

上記第1担持工程後の第2担持工程において、パラジウム原料と触媒担体を混合、乾固させたものを液相還元によって還元することで得られる。例えば非塩素系のパラジウム化合物水溶液とカーボンブラックを混合、乾固させたパラジウム化合物吸着カーボンを、アルコール還流還元、あるいは水素化ホウ素ナトリウム、ヒドラジン、シュウ酸、クエン酸などの還元剤を使用する液相還元にてパラジウム粒子を得ることができる。   In the second supporting step after the first supporting step, the palladium raw material and the catalyst carrier are mixed and dried to obtain a product that is reduced by liquid phase reduction. For example, a palladium compound-adsorbed carbon obtained by mixing and drying a non-chlorine palladium compound aqueous solution and carbon black is reduced to alcohol reflux, or a liquid phase using a reducing agent such as sodium borohydride, hydrazine, oxalic acid, citric acid Palladium particles can be obtained by reduction.

本発明を以下の実施例にて説明するが、実施の形態で限定されるものではない。   The present invention will be described in the following examples, but is not limited to the embodiments.

(実施例1)
パラジウムを0.19g含むジニトロジアンミンパラジウム硝酸溶液中に、ケッチェンブラックEC600JDを0.8g分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、窒素雰囲気下、300℃で気相還元して第1担持工程を完了したパラジウム担持カーボンを得た。第1担持工程を完了したパラジウム担持カーボンを、パラジウムを0.01g含むジニトロジアンミンパラジウムアンモニア溶液中に分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、エタノールでの還流還元を行い、パラジウム触媒を得た。
Example 1
In a dinitrodiammine palladium nitric acid solution containing 0.19 g of palladium, 0.8 g of Ketjen Black EC600JD is dispersed, mixed with a rotary evaporator, and dried to adsorb the palladium compound on the surface of the carbon support at 300 ° C. in a nitrogen atmosphere. Palladium-carrying carbon having completed the first carrying process by gas phase reduction was obtained. The palladium-supported carbon that has completed the first support step is dispersed in a dinitrodiammine palladium-ammonia solution containing 0.01 g of palladium, mixed and dried by a rotary evaporator to adsorb the palladium compound on the surface of the carbon support. Reflux reduction was performed to obtain a palladium catalyst.

(実施例2)
パラジウムを0.19g含むジニトロジアンミンパラジウム硝酸溶液中に、ケッチェンブラックEC300Jを0.8g分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、窒素雰囲気下、300℃で気相還元して第1担持工程を完了したパラジウム担持カーボンを得た。第1担持工程を完了したパラジウム担持カーボンを、パラジウムを0.01g含むジニトロジアンミンパラジウムアンモニア溶液中に分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、エタノールでの還流還元を行い、パラジウム触媒を得た。
(Example 2)
In a dinitrodiammine palladium nitrate solution containing 0.19 g of palladium, 0.8 g of Ketjen Black EC300J is dispersed, mixed with a rotary evaporator and dried to adsorb the palladium compound on the surface of the carbon support, and at 300 ° C. in a nitrogen atmosphere. Palladium-carrying carbon having completed the first carrying process by gas phase reduction was obtained. The palladium-supported carbon that has completed the first support step is dispersed in a dinitrodiammine palladium-ammonia solution containing 0.01 g of palladium, mixed and dried by a rotary evaporator to adsorb the palladium compound on the surface of the carbon support. Reflux reduction was performed to obtain a palladium catalyst.

(実施例3)
パラジウムを0.1g含むジニトロジアンミンパラジウム硝酸溶液中に、ケッチェンブラックEC600JDを0.8g分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、窒素雰囲気下、300℃で気相還元して第1担持工程を完了したパラジウム担持カーボンを得た。第1担持工程を完了したパラジウム担持カーボンを、パラジウムを0.1g含むジニトロジアンミンパラジウムアンモニア溶液中に分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、エタノールでの還流還元を行い、パラジウム触媒を得た。
Example 3
In a dinitrodiammine palladium nitrate solution containing 0.1 g of palladium, 0.8 g of Ketjen Black EC600JD is dispersed, mixed with a rotary evaporator and dried to adsorb the palladium compound on the surface of the carbon support, and at 300 ° C. in a nitrogen atmosphere. Palladium-carrying carbon having completed the first carrying process by gas phase reduction was obtained. The palladium-supported carbon that has completed the first supporting step is dispersed in a dinitrodiammine palladium ammonia solution containing 0.1 g of palladium, mixed and dried by a rotary evaporator, so that the palladium compound is adsorbed on the surface of the carbon support. Reflux reduction was performed to obtain a palladium catalyst.

(実施例4)
パラジウムを0.15g含むジニトロジアンミンパラジウム硝酸溶液中に、ケッチェンブラックEC600JDを0.8g分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、窒素雰囲気下、300℃で気相還元して第1担持工程を完了したパラジウム担持カーボンを得た。第1担持工程を完了したパラジウム担持カーボンを、パラジウムを0.05g含むジニトロジアンミンパラジウムアンモニア溶液中に分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、エタノールでの還流還元を行い、パラジウム触媒を得た。
Example 4
In a dinitrodiammine palladium nitric acid solution containing 0.15 g of palladium, 0.8 g of Ketjen Black EC600JD is dispersed, mixed with a rotary evaporator, and dried to adsorb the palladium compound on the surface of the carbon support at 300 ° C. in a nitrogen atmosphere. Palladium-carrying carbon having completed the first carrying process by gas phase reduction was obtained. The palladium-supported carbon that has completed the first support step is dispersed in a dinitrodiammine palladium ammonia solution containing 0.05 g of palladium, mixed and dried by a rotary evaporator, to adsorb the palladium compound on the surface of the carbon support, and with ethanol. Reflux reduction was performed to obtain a palladium catalyst.

(比較例1)
パラジウムを0.2g含むジニトロジアンミンパラジウム硝酸溶液中に、ケッチェンブラックEC600JDを0.8g分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、窒素雰囲気下、300℃で気相還元して担持工程を完了したパラジウム担持カーボンを得た。
(Comparative Example 1)
In a dinitrodiammine palladium nitrate solution containing 0.2 g of palladium, 0.8 g of Ketjen Black EC600JD is dispersed, mixed with a rotary evaporator and dried to adsorb the palladium compound on the surface of the carbon support, and at 300 ° C. in a nitrogen atmosphere. A palladium-supported carbon was obtained by gas phase reduction to complete the supporting process.

(比較例2)
パラジウムを0.05g含むジニトロジアンミンパラジウム硝酸溶液中に、ケッチェンブラックEC600JDを0.8g分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、窒素雰囲気下、300℃で気相還元して第1担持工程を完了したパラジウム担持カーボンを得た。第1担持工程を完了したパラジウム担持カーボンを、パラジウムを0.15g含むジニトロジアンミンパラジウムアンモニア溶液中に分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、エタノールでの還流還元を行い、パラジウム触媒を得た。
(Comparative Example 2)
In a dinitrodiammine palladium nitrate solution containing 0.05 g of palladium, 0.8 g of Ketjen Black EC600JD is dispersed, mixed with a rotary evaporator, and dried to adsorb the palladium compound on the surface of the carbon support, and at 300 ° C. in a nitrogen atmosphere. Palladium-carrying carbon having completed the first carrying process by gas phase reduction was obtained. The palladium-supported carbon that has completed the first support step is dispersed in a dinitrodiammine palladium ammonia solution containing 0.15 g of palladium, mixed and dried by a rotary evaporator, so that the palladium compound is adsorbed on the surface of the carbon support. Reflux reduction was performed to obtain a palladium catalyst.

(比較例3)
パラジウムを0.19g含むジニトロジアンミンパラジウム硝酸溶液中に、ケッチェンブラックEC600JDを0.8g分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、窒素雰囲気下、300℃で気相還元して第1担持工程を完了したパラジウム担持カーボンを得た。第1担持工程を完了したパラジウム担持カーボンを、パラジウムを0.01g含むジニトロジアンミンパラジウム硝酸溶液中に分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、エタノールでの還流還元を行い、パラジウム触媒を得た。
(Comparative Example 3)
In a dinitrodiammine palladium nitric acid solution containing 0.19 g of palladium, 0.8 g of Ketjen Black EC600JD is dispersed, mixed with a rotary evaporator, and dried to adsorb the palladium compound on the surface of the carbon support at 300 ° C. in a nitrogen atmosphere. Palladium-carrying carbon having completed the first carrying process by gas phase reduction was obtained. The palladium-supported carbon that has completed the first supporting step is dispersed in a dinitrodiammine palladium nitric acid solution containing 0.01 g of palladium, mixed and dried by a rotary evaporator to adsorb the palladium compound on the surface of the carbon support, and with ethanol. Reflux reduction was performed to obtain a palladium catalyst.

(比較例4)
パラジウムを0.19g含むジニトロジアンミンパラジウムアンモニア溶液中に、ケッチェンブラックEC600JDを0.8g分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、窒素雰囲気下、300℃で気相還元して第1担持工程を完了したパラジウム担持カーボンを得た。第1担持工程を完了したパラジウム担持カーボンを、パラジウムを0.01g含むジニトロジアンミンパラジウム硝酸溶液中に分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、エタノールでの還流還元を行い、パラジウム触媒を得た。
(Comparative Example 4)
In a dinitrodiammine palladium ammonia solution containing 0.19 g of palladium, 0.8 g of Ketjen Black EC600JD is dispersed, mixed with a rotary evaporator and dried to adsorb the palladium compound on the surface of the carbon support, and at 300 ° C. in a nitrogen atmosphere. Palladium-carrying carbon having completed the first carrying process by gas phase reduction was obtained. The palladium-supported carbon that has completed the first supporting step is dispersed in a dinitrodiammine palladium nitric acid solution containing 0.01 g of palladium, mixed and dried by a rotary evaporator to adsorb the palladium compound on the surface of the carbon support, and with ethanol. Reflux reduction was performed to obtain a palladium catalyst.

(比較例5)
パラジウムを0.19g含むジニトロジアンミンパラジウムアンモニア溶液中に、ケッチェンブラックEC600JDを0.8g分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、窒素雰囲気下、300℃で気相還元して第1担持工程を完了したパラジウム担持カーボンを得た。第1担持工程を完了したパラジウム担持カーボンを、パラジウムを0.01g含むジニトロジアンミンパラジウムアンモニア溶液中に分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面にパラジウム化合物を吸着させ、エタノールでの還流還元を行い、パラジウム触媒を得た。
(Comparative Example 5)
In a dinitrodiammine palladium ammonia solution containing 0.19 g of palladium, 0.8 g of Ketjen Black EC600JD is dispersed, mixed with a rotary evaporator and dried to adsorb the palladium compound on the surface of the carbon support, and at 300 ° C. in a nitrogen atmosphere. Palladium-carrying carbon having completed the first carrying process by gas phase reduction was obtained. The palladium-supported carbon that has completed the first support step is dispersed in a dinitrodiammine palladium-ammonia solution containing 0.01 g of palladium, mixed and dried by a rotary evaporator to adsorb the palladium compound on the surface of the carbon support. Reflux reduction was performed to obtain a palladium catalyst.

本発明の実施例1〜4のTEM画像を図1〜4に、比較例2のTEM画像を図5に示す。   1 to 4 show TEM images of Examples 1 to 4 of the present invention, and FIG. 5 shows a TEM image of Comparative Example 2.

実施例1〜4および比較例1〜5の平均、最大、最小粒子径および標準偏差を表1に示す。   Table 1 shows the average, maximum, minimum particle diameter, and standard deviation of Examples 1 to 4 and Comparative Examples 1 to 5.

表の粒子径算出はTEM観察による。測定点数は100点である。   The particle size calculation in the table is based on TEM observation. The number of measurement points is 100 points.

実施例1、実施例2の結果は、本発明によってカーボン担体の表面積によらず高分散パラジウム担持カーボンを作製可能であることを表している。   The results of Example 1 and Example 2 show that highly dispersed palladium-carrying carbon can be produced by the present invention regardless of the surface area of the carbon support.

実施例3の結果は、第1担持工程の担持率を総担持率の50%、第2担持工程の担持率を総担持率の50%とした結果である。TEM観察から粒子の凝集体が存在せず、本発明の担持率配分範囲が有効あることを表している。   The results of Example 3 are results in which the loading rate in the first loading process is 50% of the total loading rate, and the loading rate in the second loading process is 50% of the total loading rate. From the TEM observation, there is no aggregate of particles, which indicates that the supporting rate distribution range of the present invention is effective.

実施例4の結果は、第1担持工程の担持率を総担持率の75%、第2担持工程の担持率を総担持率の25%とした結果である。TEM観察から粒子の凝集体が存在せず、本発明の担持率配分範囲が有効あることを表している。   The results of Example 4 are the results in which the supporting rate in the first supporting step is 75% of the total supporting rate and the supporting rate in the second supporting step is 25% of the total supporting rate. From the TEM observation, there is no aggregate of particles, which indicates that the supporting rate distribution range of the present invention is effective.

比較例1の結果は、1段でパラジウムを担持した結果である。平均粒径は2段での担持と同じだが標準偏差が大きく、標準偏差を小さくするために本発明の2段階での担持が有効であることを表している。   The result of Comparative Example 1 is a result of supporting palladium in one stage. Although the average particle size is the same as that in the two-stage loading, the standard deviation is large, which indicates that the two-stage loading of the present invention is effective in order to reduce the standard deviation.

比較例2の結果は、第1担持工程の担持率を総担持率の25%、第2担持工程の担持率を総担持率の75%とした本発明の担持率範囲外での結果である。TEM観察から粒子の凝集体が存在し、標準偏差も大きいことから本発明の担持率配分範囲が有効であることを表している。   The result of Comparative Example 2 is a result outside the support rate range of the present invention in which the support rate in the first support step is 25% of the total support rate and the support rate in the second support step is 75% of the total support rate. . From the TEM observation, there is an aggregate of particles, and the standard deviation is large, which indicates that the supporting rate distribution range of the present invention is effective.

比較例3の結果は、第1担持工程および第2担持工程のパラジウム原料を共にジニトロジアンミンパラジウム硝酸溶液を適用した結果である。平均粒径、標準偏差ともに大きいことから、本発明のパラジウム原料選定が有効であることを表している。   The result of Comparative Example 3 is a result of applying a dinitrodiammine palladium nitrate solution to both the palladium raw materials in the first supporting step and the second supporting step. Since both the average particle size and the standard deviation are large, it indicates that the palladium raw material selection of the present invention is effective.

比較例4の結果は、第1担持工程のパラジウム原料をジニトロジアンミンパラジウムアンモニア溶液、第2担持工程のパラジウム原料をジニトロジアンミンパラジウム硝酸溶液を適用した結果である。平均粒径、標準偏差ともに大きいことから、本発明のパラジウム原料選定が有効であることを表している。   The result of Comparative Example 4 is the result of applying the dinitrodiammine palladium ammonia solution as the palladium raw material in the first supporting step and the dinitrodiammine palladium nitrate solution as the palladium raw material in the second supporting step. Since both the average particle size and the standard deviation are large, it indicates that the palladium raw material selection of the present invention is effective.

比較例5の結果は、第1担持工程および第2担持工程のパラジウム原料を共にジニトロジアンミンパラジウムアンモニア溶液を適用した結果である。平均粒径、標準偏差ともに大きいことから、本発明のパラジウム原料選定が有効であることを表している。   The result of Comparative Example 5 is a result of applying a dinitrodiammine palladium ammonia solution to both the palladium raw materials in the first supporting step and the second supporting step. Since both the average particle size and the standard deviation are large, it indicates that the palladium raw material selection of the present invention is effective.

Claims (4)

触媒担体上へパラジウム原料を含浸担持して気相還元にてパラジウム粒子に還元する第1担持工程と、パラジウム原料を追加担持して液相還元にて所定のパラジウム担持量までパラジウムを担持させる第2担持工程と、を含むことを特徴とするパラジウム触媒の製造方法。   A first supporting step of impregnating and supporting a palladium raw material on a catalyst carrier and reducing it to palladium particles by gas phase reduction; and a first supporting step of supporting a palladium raw material by a liquid phase reduction and supporting palladium to a predetermined amount of palladium supported by liquid phase reduction. A method for producing a palladium catalyst, comprising: a supporting step. パラジウム総担持量のうち、第1担持工程でのパラジウム担持量が総担持量の50〜95%、第2担持工程でのパラジウム担持量が総担持量の5〜50%であることを特徴とする請求項1に記載のパラジウム触媒の製造方法。   Of the total supported amount of palladium, the supported amount of palladium in the first supporting step is 50 to 95% of the total supported amount, and the supported amount of palladium in the second supporting step is 5 to 50% of the total supported amount. The method for producing a palladium catalyst according to claim 1. 第1担持工程で担持されるパラジウムとして非塩素系のパラジウム化合物酸性溶液を適用し、第2担持工程で担持されるパラジウムとして非塩素系のパラジウム化合物塩基性溶液を適用することを特徴とする請求項1に記載のパラジウム触媒の製造方法。   A non-chlorine-based palladium compound acidic solution is applied as palladium supported in the first supporting step, and a non-chlorine-based palladium compound basic solution is applied as palladium supported in the second supporting step. Item 2. A method for producing a palladium catalyst according to Item 1. 請求項1〜3に記載の方法で製造され、粒子サイズの平均が3nm以下、標準偏差が1nm以下のパラジウム触媒。   A palladium catalyst produced by the method according to claims 1 to 3, having an average particle size of 3 nm or less and a standard deviation of 1 nm or less.
JP2013176736A 2013-08-28 2013-08-28 Method for producing highly dispersed supported palladium catalyst suitable for core material for core-shell catalyst Active JP6159621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013176736A JP6159621B2 (en) 2013-08-28 2013-08-28 Method for producing highly dispersed supported palladium catalyst suitable for core material for core-shell catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013176736A JP6159621B2 (en) 2013-08-28 2013-08-28 Method for producing highly dispersed supported palladium catalyst suitable for core material for core-shell catalyst

Publications (2)

Publication Number Publication Date
JP2015044159A true JP2015044159A (en) 2015-03-12
JP6159621B2 JP6159621B2 (en) 2017-07-05

Family

ID=52670178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176736A Active JP6159621B2 (en) 2013-08-28 2013-08-28 Method for producing highly dispersed supported palladium catalyst suitable for core material for core-shell catalyst

Country Status (1)

Country Link
JP (1) JP6159621B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059570A1 (en) 2017-09-19 2019-03-28 주식회사 엘지화학 Method for producing fuel cell catalyst, and fuel cell catalyst produced thereby

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147720A (en) * 1997-11-11 1999-06-02 Katsuhiko Wakabayashi Production of metal oxide including platinum or palladium in supperfine particles state
JP2005095873A (en) * 2003-08-25 2005-04-14 Showa Denko Kk Process for producing catalyst for production of acetic acid
JP2006205088A (en) * 2005-01-28 2006-08-10 Cataler Corp Electrode catalyst, its manufacturing method and fuel cell
JP2006289213A (en) * 2005-04-07 2006-10-26 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and its manufacturing method
JP2007029778A (en) * 2005-07-22 2007-02-08 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and its production method
JP2007239054A (en) * 2006-03-09 2007-09-20 Osaka Univ Tetrahedral palladium particulate and method for producing metal particulate
JP2008093606A (en) * 2006-10-13 2008-04-24 Kurita Water Ind Ltd Method and apparatus for removing oxygen dissolved in water and catalyst for remvoing oxygen dissolved in water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147720A (en) * 1997-11-11 1999-06-02 Katsuhiko Wakabayashi Production of metal oxide including platinum or palladium in supperfine particles state
JP2005095873A (en) * 2003-08-25 2005-04-14 Showa Denko Kk Process for producing catalyst for production of acetic acid
JP2006205088A (en) * 2005-01-28 2006-08-10 Cataler Corp Electrode catalyst, its manufacturing method and fuel cell
JP2006289213A (en) * 2005-04-07 2006-10-26 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and its manufacturing method
JP2007029778A (en) * 2005-07-22 2007-02-08 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and its production method
JP2007239054A (en) * 2006-03-09 2007-09-20 Osaka Univ Tetrahedral palladium particulate and method for producing metal particulate
JP2008093606A (en) * 2006-10-13 2008-04-24 Kurita Water Ind Ltd Method and apparatus for removing oxygen dissolved in water and catalyst for remvoing oxygen dissolved in water

Also Published As

Publication number Publication date
JP6159621B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
Miao et al. Polyoxometalate‐derived hexagonal molybdenum nitrides (MXenes) supported by boron, nitrogen codoped carbon nanotubes for efficient electrochemical hydrogen evolution from seawater
Tan et al. Preparation and characterization of palladium-nickel on graphene oxide support as anode catalyst for alkaline direct ethanol fuel cell
Xu et al. Geometric engineering of porous PtCu nanotubes with ultrahigh methanol oxidation and oxygen reduction capability
Mahmood et al. Fe2N/S/N codecorated hierarchical porous carbon nanosheets for trifunctional electrocatalysis
Cui et al. High-performance Pd3Pb intermetallic catalyst for electrochemical oxygen reduction
Zheng et al. In situ one-step method for preparing carbon nanotubes and Pt composite catalysts and their performance for methanol oxidation
Koenigsmann et al. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction
Wu et al. Nitrogen-doped graphene supported highly dispersed palladium-lead nanoparticles for synergetic enhancement of ethanol electrooxidation in alkaline medium
Sa et al. Carbon nanotubes/heteroatom‐doped carbon core–sheath nanostructures as highly active, metal‐free oxygen reduction electrocatalysts for alkaline fuel cells
Li et al. Photocatalytic synthesis of highly dispersed Pd nanoparticles on reduced graphene oxide and their application in methanol electro-oxidation
Serov et al. Palladium supported on 3D graphene as an active catalyst for alcohols electrooxidation
Hyun et al. Effect of NaBH4 concentration on the characteristics of PtRu/C catalyst for the anode of DMFC prepared by the impregnation method
Du et al. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells
Shi et al. Enhanced stability of immobilized platinum nanoparticles through nitrogen heteroatoms on doped carbon supports
Alia et al. Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base
Zhang et al. Novel synthesis of PtPd nanoparticles with good electrocatalytic activity and durability
Nandenha et al. Preparation of PdAu/C-Sb 2 O 5· SnO 2 electrocatalysts by borohydride reduction process for direct formic acid fuel cell
Rahsepar et al. Synthesis and electrocatalytic performance of high loading active PtRu multiwalled carbon nanotube catalyst for methanol oxidation
Jiang et al. A highly active and alcohol-tolerant cathode electrocatalyst containing Ag nanoparticles supported on graphene
Shen et al. Ultralong PtPd alloyed nanowires anchored on graphene for efficient methanol oxidation reaction
Lu et al. Ultrasmall rhodium nanoclusters anchored on nitrogen-doped carbon nanotubes with embedded nickel nanoparticles as magnetically recyclable catalysts for efficient ammonia-borane hydrolysis
Yi et al. A novel membraneless direct hydrazine/air fuel cell
Zhu et al. Titanium dioxide encapsulated in nitrogen-doped carbon enhances the activity and durability of platinum catalyst for Methanol electro-oxidation reaction
Liu et al. Well-dispersed palladium nanoparticles on three-dimensional hollow N-doped graphene frameworks for enhancement of methanol electro-oxidation
Wang et al. Facile Synthesis of cobalt and nitrogen coordinated carbon nanotube as a high-Performance electrocatalyst for oxygen reduction reaction in both acidic and alkaline media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6159621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250