JP2015040649A - Water-cooled air conditioning system - Google Patents

Water-cooled air conditioning system Download PDF

Info

Publication number
JP2015040649A
JP2015040649A JP2013170874A JP2013170874A JP2015040649A JP 2015040649 A JP2015040649 A JP 2015040649A JP 2013170874 A JP2013170874 A JP 2013170874A JP 2013170874 A JP2013170874 A JP 2013170874A JP 2015040649 A JP2015040649 A JP 2015040649A
Authority
JP
Japan
Prior art keywords
cooling
air
air conditioner
margin
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013170874A
Other languages
Japanese (ja)
Other versions
JP6114143B2 (en
Inventor
達也 中田
Tatsuya Nakata
達也 中田
圭輔 関口
Keisuke Sekiguchi
圭輔 関口
存 吉井
Tamotsu Yoshii
存 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2013170874A priority Critical patent/JP6114143B2/en
Publication of JP2015040649A publication Critical patent/JP2015040649A/en
Application granted granted Critical
Publication of JP6114143B2 publication Critical patent/JP6114143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operation control technique that is suitable for a water-cooled air conditioning system of a central heat source type in a data center, etc.SOLUTION: Concerning an air conditioner 5j in which a preset temperature change rate (ΔTrs/Trs) or a preset air volume change rate (ΔQs/Qs) is a threshold value of α%, β % or more, a group cooling margin Rg is calculated at the point by excluding an air conditioner 5j, when a predetermined time τx does not elapses from the change. When the predetermined time τx elapses, the group cooling margin Rg is calculated for all air conditioners including the air conditioner 5j. When the group cooling margin Rg reaches a critical value Rc or less, it is determined that the current cold water supply has a risk incompatible with an air conditioning load, and cautioned by alarm reporting. Furthermore, all secondary pumps are made to run in the maximum capacity until coming back to the critical value Rc or more as an emergency operation mode.

Description

本発明は水冷式空調システムに係り、特に、中央熱源式の水冷式空調システムに関する。   The present invention relates to a water-cooled air conditioning system, and more particularly, to a central heat source type water-cooled air conditioning system.

従来、データセンター等における中央熱源式の水冷式空調システム100は、図7に示すように熱源機104、往水ヘッダー101及び還水ヘッダー102間を結ぶ一次冷水回路105と、往水ヘッダー101、二次ポンプ109、各空調機(AHU)104及び還水ヘッダー102間を結ぶ二次冷水回路106と、により構成され、熱源機104で製造した冷水を二次ポンプ109により二次冷水回路106側に供給して、空調対象室を冷却するシステムである。空調機104側では流量制御弁(二方弁)108により冷水流量を調整して、送風ファン(図示せず)により空調対象室に冷風を循環供給する。   Conventionally, a central heat source type water-cooled air conditioning system 100 in a data center or the like includes a primary chilled water circuit 105 that connects between a heat source unit 104, a forward water header 101, and a return water header 102, as shown in FIG. A secondary chilled water circuit 106 that connects between the secondary pump 109, each air conditioner (AHU) 104 and the return water header 102, and the chilled water produced by the heat source device 104 is transferred to the secondary chilled water circuit 106 side by the secondary pump 109. This is a system for cooling the air-conditioning target room. On the air conditioner 104 side, the flow rate of chilled water is adjusted by a flow control valve (two-way valve) 108, and cold air is circulated and supplied to the air-conditioning target room by a blower fan (not shown).

通常、熱源機104は出口温度一定(例えば7℃)で運転され、空調機104側の冷房負荷が小さいときはバイパス配管103側循環量を増加させる制御としている。
また、二次側の冷水流量制御方式としては、二次ポンプ109から吐出される冷水の圧力を所定の設定値に制御する方法や、往水主管106aと還水主管106b間の往還温度差が一定となるように二次ポンプ109の流量を制御する方法が公知である(特許文献1、2)。
さらに、いずれかの空調機の熱負荷が増加したときに。空調機の冷却不足による室温上昇を回避するためアラーム発報し、二次ポンプ109の流量を増やす制御が公知である(特許文献3)。
Usually, the heat source device 104 is operated at a constant outlet temperature (for example, 7 ° C.), and when the cooling load on the air conditioner 104 side is small, the circulation amount on the bypass pipe 103 side is increased.
Further, as the secondary-side chilled water flow rate control method, there is a method of controlling the pressure of the chilled water discharged from the secondary pump 109 to a predetermined set value, or a difference in the return temperature between the return water main pipe 106a and the return water main pipe 106b. A method of controlling the flow rate of the secondary pump 109 so as to be constant is known (Patent Documents 1 and 2).
In addition, when the thermal load of any air conditioner increases. In order to avoid an increase in room temperature due to insufficient cooling of the air conditioner, an alarm is issued to increase the flow rate of the secondary pump 109 (Patent Document 3).

特許第4406778号公報Japanese Patent No. 4406778 特許第4333818号公報Japanese Patent No. 4333818 特許第4748175号公報Japanese Patent No. 4748175

通常、中央熱源式の水冷式空調システムでは、冷水供給側の熱源機、二次ポンプの運転制御と、冷風供給側の空調機の制御と、がそれぞれ独立して行われることが多く、省エネ効果が限定的となる。さらなる省エネ性向上のためには、冷熱供給側である二次ポンプ流量制御、熱源機出口温度制御と、冷風供給側である空調機の流量制御弁、送風ファン制御とを連係させることが求められる。このためには、空調機側の冷却余裕度を流量制御弁開度等により把握し、これに対応して二次ポンプ又は熱源機による冷熱供給量を調整することが有効手段として挙げられる。   Normally, in a water-cooled air conditioning system of the central heat source type, the operation control of the heat source unit on the chilled water supply side, the secondary pump, and the control of the air conditioner on the chilled air supply side are often performed independently, and the energy saving effect Is limited. In order to further improve energy efficiency, it is required to link the secondary pump flow rate control and heat source outlet temperature control on the cold heat supply side with the flow control valve and blower fan control on the air conditioner on the cold air supply side. . For this purpose, as an effective means, the cooling margin on the air conditioner side is grasped from the flow control valve opening degree and the like, and the cooling heat supply amount by the secondary pump or the heat source device is adjusted accordingly.

しかしながら、流量制御弁は送風ファンと比較して応答性が遅いため、例えば空調機風量や吹出し温度設定が変更された場合に、吹出設定温度と計測温度との乖離が過渡的に大きくなり、必要以上の流量制御弁の開弁等の現象が発生するケースがある。
さらに、冷却余裕度が閾値以下のときにアラーム発報とした場合、アラーム頻発の問題がある。
さらに、室内環境とずれた流量制御弁動作に伴って、さらに実態と乖離した余裕度演算がされ、演算結果に連係して稼働する二次ポンプの運転制御に齟齬が生じるという問題ががある。
However, since the flow control valve is slower in response than the blower fan, for example, when the air volume of the air conditioner or the blowout temperature setting is changed, the difference between the blowout set temperature and the measured temperature becomes transiently large and necessary. There are cases in which the above phenomenon such as opening of the flow control valve occurs.
Furthermore, when the alarm is issued when the cooling margin is less than or equal to the threshold, there is a problem of frequent alarms.
Further, with the operation of the flow rate control valve deviating from the indoor environment, there is a problem that margin calculation is further performed which is different from the actual situation, and there is a problem in operation control of the secondary pump operating in conjunction with the calculation result.

本発明は上記課題を解決するためのものであって、冷水供給側の二次ポンプ流量制御、熱源機の出口温度制御と、空調機側の流量制御弁開度制御と、を連係させるとともに、流量制御弁の応答遅れに伴う上記問題を解決する技術を提供する。
本発明は以下の内容をその要旨とする。すなわち、本発明に係る水冷式空調システムの運転制御方法は、
The present invention is for solving the above-described problem, and the secondary pump flow rate control on the cold water supply side, the outlet temperature control of the heat source unit, and the flow rate control valve opening control on the air conditioner side are linked, Provided is a technique for solving the above-mentioned problem associated with a response delay of a flow control valve.
The gist of the present invention is as follows. That is, the operation control method of the water-cooled air conditioning system according to the present invention is:

(1)一次側回路に配設した熱源機で製造した冷水を、往水ヘッダー及び還水ヘッダーを介して、二次側回路に配設した二次ポンプにより複数の空調機に循環供給し、
各空調機は、冷水導入量を制御可能とする流量制御弁と、導入した冷水と戻り空気との熱交換により冷房対象空間に冷風を供給する送風ファンと、を備え、
て成る水冷式空調システムにおいて、
(a1)各空調機の定格冷却能力に対するその時点における冷却余裕度(Ri)に基づいて、複数の空調機により構成される空調機群の群冷却余裕度(Rg)を演算するステップと、
(a2)群冷却余裕度(Rg)が所定の下限閾値(Rc)以下に至ったときは、非常時運転モードとして、二次ポンプ又は/及び熱源機の出力アップにより冷熱供給量を増加させ、かつ、アラーム発報するステップと、
(a3)但し、いずれかの空調機について、所定値以上の冷房出力設定変更があったときは、所定時間(τc)経過するまでは、(a1)に関らず当該空調機を除外して群冷却余裕度(Rg)を演算するステップと、を含むことを特徴とする。
(1) The cold water produced by the heat source device arranged in the primary side circuit is circulated and supplied to a plurality of air conditioners by the secondary pump arranged in the secondary side circuit via the outgoing water header and the return water header,
Each air conditioner includes a flow rate control valve that can control the amount of cold water introduced, and a blower fan that supplies cold air to the cooling target space by heat exchange between the introduced cold water and return air,
In a water-cooled air conditioning system consisting of
(A1) calculating a group cooling margin (Rg) of an air conditioner group composed of a plurality of air conditioners based on the cooling margin (Ri) at that time with respect to the rated cooling capacity of each air conditioner;
(A2) When the group cooling margin (Rg) reaches a predetermined lower threshold (Rc) or less, as an emergency operation mode, increase the output of the cooling heat by increasing the output of the secondary pump or / and the heat source unit, And an alarm issuance step,
(A3) However, for any air conditioner, if there is a change in the cooling output setting greater than or equal to a predetermined value, the air conditioner is excluded regardless of (a1) until the predetermined time (τc) elapses. Calculating a group cooling margin (Rg).

本発明において「空調機群」とは、同一室内、同一冷却エリア、設置者が任意に設定したグルーピング、又は、外部の空調自動制御システムにより定義されるグルーピング 等に属する1又は複数の空調機をいう。   In the present invention, the “air conditioner group” means one or a plurality of air conditioners belonging to the same room, the same cooling area, a grouping arbitrarily set by the installer, or a grouping defined by an external air conditioning automatic control system. Say.

群冷却余裕度(Rg)について、「所定の下限閾値(Rc)」の設定に際しては、室としての許容温度逸脱の可能性の度合いに基づき行い、例えば、同一冷却エリアの常用空調機台数と予備機台数の関係性等を考慮して設定することができる。さらに、学習機能により閾値を随時更新可能とすることにより、最適化を図ることもできる。以下の各閾値、所定値等の設定についても同様である。   Regarding the group cooling margin (Rg), the “predetermined lower limit threshold (Rc)” is set based on the degree of possibility of deviation from the allowable temperature of the room. It can be set in consideration of the relationship between the number of aircraft. Furthermore, optimization can be achieved by making it possible to update the threshold at any time by the learning function. The same applies to the settings of the following threshold values, predetermined values, and the like.

また、冷房出力設定変更について、「所定値」の設定に際しては、各空調機の特性、例えば、風量や吹出し温度設定変更の際の吹出設定温度と計測温度との過渡的な乖離や、過渡的な流量制御弁の過剰開度、等の実績データを考慮して行うことができる。   Also, regarding the cooling output setting change, when setting the “predetermined value”, the characteristics of each air conditioner, for example, the transient divergence between the blowout set temperature and the measured temperature when changing the air volume or the blowout temperature setting, This can be done in consideration of actual data such as the excessive opening of the flow control valve.

(2)上記(1)の発明において、前記群冷却余裕度(Rg)が、各空調機の前記冷却余裕度(Ri)の平均値(ΣRi/n、n:空調機群に属する空調機台数)であることを特徴とする。 (2) In the invention of (1), the group cooling margin (Rg) is an average value of the cooling margin (Ri) of each air conditioner (ΣRi / n, n: the number of air conditioners belonging to the air conditioner group ).

(3)上記各発明において、前記冷却余裕度(Ri)が、
前記流量制御弁の全開開度(θmax)と、当該時点における開度(θ(t))と、により求めた開度余裕率[(Ri=1−(θ(t)/θmax)]、
前記送風ファンの最大周波数(fmax)と、当該時点における周波数(f(t))と、により求めた周波数余裕率[(Ri=1−(f(t)/fmax)]、又は、
空調機の吹出温度計測値(Tb)と吹出温度設定値(Tbs)との乖離度(ΔTb=Tb−Tbs)について、所定の上限乖離度(ΔTb)と、前記冷房出力設定変更のあった当該空調機の当該時点における乖離度(ΔTb(t))と、により求めた乖離度余裕率[(Ri=1−(ΔTb(t)/ΔTb)]、
のいずれか、又は、これらの組み合わせであることを特徴とする。
(3) In each of the above inventions, the cooling margin (Ri) is
Opening margin rate [(Ri = 1− (θ (t) / θmax)] obtained from the fully opened opening (θmax) of the flow control valve and the opening (θ (t)) at the time point,
The frequency margin [(Ri = 1− (f (t) / fmax)] obtained from the maximum frequency (fmax) of the blower fan and the frequency (f (t)) at the time point, or
Regarding the degree of divergence (ΔTb = Tb−Tbs) between the air temperature blown temperature measurement value (Tb) and the blown temperature set value (Tbs), there was a predetermined upper limit divergence (ΔTb * ) and the cooling output setting change. The degree of divergence (ΔTb (t)) at the time of the air conditioner and the degree of divergence margin obtained by [[Ri = 1− (ΔTb (t) / ΔTb * )],
Or a combination thereof.

「上限乖離度(ΔTb)」については、吹出温度の現設定値に対応して定義することができ、また、空調機運転実績に基づく所与の室内温度条件を考慮して設定してもよい。
なお、上限を超えた検知(ΔTb(t)>ΔTb)をした場合は、一律にRi=0とする。
「これらの組み合わせ」とは、例えば開度余裕率、周波数余裕率、乖離度余裕率の平均値を以て、当該空調機の冷却余裕度(Ri)とすることをいう。
The “upper limit divergence (ΔTb * )” can be defined corresponding to the current set value of the blowing temperature, and can be set in consideration of a given indoor temperature condition based on the air conditioner operation results. Good.
If detection exceeding the upper limit (ΔTb (t)> ΔTb * ) is performed, Ri = 0 is set uniformly.
“Combination of these” refers to, for example, the cooling margin (Ri) of the air conditioner using the average value of the opening margin rate, frequency margin rate, and deviation degree margin rate.

(4) 上記各発明において、前記冷房出力設定変更が、室温設定(Trs)変更、又は、送風ファン風量設定(Qs)変更のいずれか一方、又は、両方であることを特徴とする。 (4) In each of the above inventions, the cooling output setting change is one or both of a room temperature setting (Trs) change and a blower fan air volume setting (Qs) change.

(5) 上記各発明において、所定値以上の冷房出力設定変更があったときに、
前記流量制御弁の当該時点における開度比(Φi(t)=θ(t)/θmax)が、上限開度比(Φi)以上、
前記乖離度(ΔTb)が上限乖離度(ΔTb)以上、又は、
前記冷房対象空間温度(Tr)が上限空間温度(ΔTr)以上、
のいずれかに該当する場合には、前記(a3)のステップを実行しないことを特徴とする。
各上限閾値については、サーバ許容温度から逆算して求める当該冷房対象空間の許容上限温度、運転実績により定められた所与の室内温度条件 等に基づき設定する。その際、同一冷却エリアの常用空調機台数、予備機台数の関係 等を考慮に入れることができる。
(5) In each of the above inventions, when there is a cooling output setting change greater than a predetermined value,
The opening ratio (Φi (t) = θ (t) / θmax) at the time point of the flow control valve is not less than the upper limit opening ratio (Φi * ),
The degree of divergence (ΔTb) is greater than or equal to the upper limit divergence (ΔTb * ), or
The cooling target space temperature (Tr) is not less than the upper limit space temperature (ΔTr * ),
If any of the above is true, the step (a3) is not executed.
Each upper threshold value is set based on the allowable upper limit temperature of the cooling target space obtained by calculating back from the server allowable temperature, the given indoor temperature condition determined by the operation results, and the like. In doing so, the relationship between the number of regular air conditioners and spare units in the same cooling area can be taken into consideration.

(6) 上記各発明において、前記(a3)において、
「(a1)に関らず当該空調機を除外して群冷却余裕度(Rg)を演算する」に替えて、
「当該空調機については、設定変更率に対応する緩和係数(k)を乗じた冷却余裕度(Ri’=k*Ri)として、群冷却余裕度(Rg)を演算する」
であることを特徴とする。
なお、緩和係数(k)については、同一冷却エリアの空調機台数や、室の総冷却負荷量、等を考慮して設定することができる。
(6) In the above inventions, in (a3),
Instead of “calculate the group cooling margin (Rg) excluding the air conditioner regardless of (a1)”,
“For the air conditioner, the group cooling margin (Rg) is calculated as the cooling margin (Ri ′ = k * Ri) multiplied by the relaxation coefficient (k) corresponding to the setting change rate.”
It is characterized by being.
The relaxation coefficient (k) can be set in consideration of the number of air conditioners in the same cooling area, the total cooling load of the room, and the like.

(7) 上記各発明において、前記アラーム発報の有無に応じて、発報回数累計を加算又は減算するステップと、
回数累計が所定の上限閾値(Na)以上の場合には、室温設定(Trs)変更速度(ΔTrs/Δt)、又は、送風ファン風量設定(Qs)変更速度(ΔQs/Δt)を1段階遅延化させるステップと、
その後、群冷却余裕度(Rg)が所定の下限閾値(Rc)を下回ったときは、室温設定変更速度又は送風ファン風量変更速度を1段階迅速化させるステップと、
をさらに含むことを特徴とする。
(7) In each of the above inventions, the step of adding or subtracting the total number of times of alarms depending on the presence or absence of the alarm alarms;
When the cumulative number of times is equal to or greater than a predetermined upper threshold (Na * ), the room temperature setting (Trs) change speed (ΔTrs / Δt) or the blower fan air volume setting (Qs) change speed (ΔQs / Δt) is delayed by one step. Step
Thereafter, when the group cooling margin (Rg) falls below a predetermined lower threshold (Rc), the step of speeding up the room temperature setting change speed or the blower fan air volume change speed by one step;
Is further included.

「上限閾値(Na)」については、対象建物の安全性の要求グレード、アラーム発生時における対応者の常駐有無、対象建物の規模や空調機総台数、等を考慮して設定することができる。 The “upper threshold (Na * )” can be set in consideration of the required grade of safety of the target building, presence / absence of a responder when an alarm occurs, the size of the target building, the total number of air conditioners, etc. .

本発明によれば、室温設定(Trs)、送風ファン風量設定(Qs)等、冷房出力設定変更の際に、流量制御弁の応答遅れにより過渡的に生じる、吹出設定温度と計測温度の乖離や、流量制御弁の過度の開弁等の問題を防止できるという効果がある。   According to the present invention, when changing the cooling output setting such as the room temperature setting (Trs) and the blower fan air volume setting (Qs), the difference between the blowout set temperature and the measured temperature that occurs transiently due to the response delay of the flow control valve, There is an effect that problems such as excessive opening of the flow control valve can be prevented.

また、緊急性を要しないアラームの頻発を回避できるため、空調信頼性を維持しつつ、本来目的である冷水の搬送動力の低減や熱源効率の向上が可能となり、高い省エネ制御が実現できるという効果がある。。   In addition, frequent occurrence of alarms that do not require urgency can be avoided, and while maintaining air conditioning reliability, it is possible to reduce the original chilled water conveyance power and improve heat source efficiency, thereby realizing high energy-saving control. There is. .

本発明の一実施形態に係る水冷式空調システム1の全体構成を示す図である。It is a figure showing the whole water-cooling type air-conditioning system 1 composition concerning one embodiment of the present invention. 空調機群に属する空調機5の構成を示す図である。It is a figure which shows the structure of the air conditioner 5 which belongs to an air conditioner group. 第一の実施形態に係る連係制御フローを示す図である。It is a figure which shows the linkage control flow which concerns on 1st embodiment. 第二の実施形態に係る連係制御フローの一部(群冷却余裕度Rg演算部分)を示す図である。It is a figure which shows a part (group cooling allowance Rg calculation part) of the linkage control flow which concerns on 2nd embodiment. 第三の実施形態に係る連係制御フローを示す図である。It is a figure which shows the linkage control flow which concerns on 3rd embodiment. 第四の実施形態に係る連係制御フローを示す図である。It is a figure which shows the linkage control flow which concerns on 4th embodiment. 室温及び二方弁開度設定変更時における到達時間を比較した図である(設定変化速度遅延化なし)。It is the figure which compared the arrival time at the time of room temperature and the two-way valve opening setting change (no setting change speed delay). 同上において設定変化速度を遅延化した場合の到達時間を比較した図である。It is the figure which compared the arrival time at the time of delaying a setting change speed in the same as the above. 従来の水冷式空調システム100の構成を示す図である。It is a figure which shows the structure of the conventional water cooling type air conditioning system.

以下、本発明に係る空調システムの実施形態について、図1乃至6を参照してさらに詳細に説明する。各図において同一構成には同一符号を用いて示し、重複説明を省略する。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。   Hereinafter, an embodiment of an air-conditioning system according to the present invention will be described in more detail with reference to FIGS. In the drawings, the same components are denoted by the same reference numerals, and redundant description is omitted. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.

<第一の実施形態>
図1(a)、1(b)を参照して空調システム1は、往水ヘッダー2eと還水ヘッダー2fを介在させて、一次側の熱源機冷水系統2と、二次側の空調機系統3と、の2つの冷水系統により構成されている。熱源機冷水系統2は、冷水発生源である複数の熱源機2aと、各熱源機2aで作られた冷水を往水ヘッダー2eに供給する熱源機出口配管2cと、出口配管2c経路中に介装した一次ポンプ2bと、還水ヘッダー2fに集められた還水を熱源機2aに戻す熱源機入口配管2dと、両ヘッダー間を直接結ぶバイパス配管2gと、を備えて構成されている。
<First embodiment>
Referring to FIGS. 1 (a) and 1 (b), an air conditioning system 1 is provided with a primary side heat source unit chilled water system 2 and a secondary side air conditioner system with an outgoing header 2e and a return water header 2f interposed therebetween. 3 and two cold water systems. The heat source machine cold water system 2 includes a plurality of heat source machines 2a that are cold water generation sources, a heat source machine outlet pipe 2c that supplies cold water produced by each heat source machine 2a to the incoming water header 2e, and an outlet pipe 2c route. The primary pump 2b is equipped, a heat source unit inlet pipe 2d for returning the return water collected in the return water header 2f to the heat source unit 2a, and a bypass pipe 2g directly connecting both headers.

空調機系統3は、往水ヘッダー2e、3cとの間に介装される複数の二次ポンプ8と、往水ヘッダー3cと複数の入側支管4aとを結び、空調機5に冷水を供給する往水主管3aと、出側支管4bに集められた空調機5からの還水を還水ヘッダー2fに戻す還水主管3bと、を備えて構成されている。また、同一主管系統に属する複数の空調機5により、空調機群5Aを構成している。往水主管3a、還水主管3bの経路中にはそれぞれ温度センサS1、S2が配設されており、後述するように両温度センサの計測値及び空調機側の冷却余裕度に基づいて二次ポンプ8の流量を調整可能に構成されている。
なお、本実施形態では主管系統が1系統(往水主管3a、還水主管3b)の例を示しているが、これに限らず複数の主管系統を備えたシステムであってもよい。
The air conditioner system 3 connects the plurality of secondary pumps 8 interposed between the outgoing water headers 2e and 3c, the incoming water header 3c and the plurality of inlet side branch pipes 4a, and supplies cold air to the air conditioner 5. And a return water main pipe 3b for returning the return water from the air conditioner 5 collected in the outlet branch pipe 4b to the return water header 2f. Moreover, the air conditioner group 5A is configured by a plurality of air conditioners 5 belonging to the same main pipe system. Temperature sensors S1 and S2 are disposed in the path of the outgoing water main pipe 3a and the return water main pipe 3b, respectively. As will be described later, the secondary sensors are based on the measured values of both temperature sensors and the cooling margin on the air conditioner side. The flow rate of the pump 8 is configured to be adjustable.
In this embodiment, an example in which the main pipe system is one system (the outgoing water main pipe 3a and the return water main pipe 3b) is shown, but the present invention is not limited thereto, and a system including a plurality of main pipe systems may be used.

空調機(AHU)5は、熱交換器5a、送風ファン5bを主要構成として備えている。熱交換器5aにおいて、入側支管4a及び分岐入管6aを経由して供給される冷水と室内空気とを熱交換させて、送風ファン5bにより冷風を空調対象室7内に供給可能に構成されている。
分岐入管6aには二方弁(請求項の流量制御弁に該当)6aが介装されている。また、空調機5には出口吹出温度(Tb)を計測する温度センサS3と、空調対象室7内に配設され室内温度を計測する温度センサS4と、が付設されている。
さらに、空調システム1は制御部9を備えており、各温度センサS1〜S4、二方弁6開度等の情報を入力して、冷却余裕度(Rg)の演算を行い、熱源機2a、二次ポンプ8に対して必要な稼働指令を行うように構成されている。なお、制御部9は、CPU、ROM、RAM、入出力IF等を備えたマイコンにより実装可能である。
The air conditioner (AHU) 5 includes a heat exchanger 5a and a blower fan 5b as main components. In the heat exchanger 5a, heat is exchanged between the cold water supplied through the inlet branch pipe 4a and the branch inlet pipe 6a and the room air, and cold air can be supplied into the air conditioning target room 7 by the blower fan 5b. Yes.
A two-way valve (corresponding to a flow control valve in claims) 6a is interposed in the branch inlet pipe 6a. Further, the air conditioner 5 is provided with a temperature sensor S3 for measuring the outlet blowing temperature (Tb) and a temperature sensor S4 that is disposed in the air conditioning target room 7 and measures the room temperature.
Furthermore, the air conditioning system 1 includes a control unit 9 and inputs information such as each of the temperature sensors S1 to S4 and the two-way valve 6 opening degree, calculates a cooling margin (Rg), and heat source unit 2a, A necessary operation command is given to the secondary pump 8. The control unit 9 can be implemented by a microcomputer provided with a CPU, ROM, RAM, input / output IF, and the like.

水冷式空調システム1は以上のように構成されており、次に図2乃至4も参照して、制御部9の指令により熱源機2a、二次ポンプ8と空調機5間の間で行われる連係制御の内容について説明する。なお、以下のフローでは制御の安定化を考慮して、各ステップは所定の時間間隔で行われるものとする。 The water-cooled air conditioning system 1 is configured as described above. Next, referring also to FIGS. 2 to 4, it is performed between the heat source device 2 a, the secondary pump 8, and the air conditioner 5 according to a command from the control unit 9. The contents of linkage control will be described. In the following flow, each step is performed at a predetermined time interval in consideration of stabilization of control.

冷却余裕度(Rg)の取得は、空調機5(i=1〜n、以下、適宜、空調機5iという場合がある)ごとに付設されるn台の二方弁6の弁開度に基づいて、次式で示される各空調機5iの冷却余裕度Riに基づいて行われる。
Ri=1−Φi(t) ・・・・(1)
但し、Φi(t)は弁全開時の開度(θmax)と時刻tにおける弁開度(θ(t))との開度比として示される。
Φi(t)=θ(t)/θmax ・・・・(2)
さらにRiの平均値(ΣRi/n)に基づいて、(3)式により空調機群の群冷却余裕度Rgを演算する。
Rg=ΣRi/n ・・・・(3)
Acquisition of the cooling margin (Rg) is based on the valve opening degree of n two-way valves 6 provided for each air conditioner 5 (i = 1 to n, hereinafter may be appropriately referred to as air conditioner 5i). Then, it is performed based on the cooling margin Ri of each air conditioner 5i shown by the following equation.
Ri = 1−Φi (t) (1)
However, Φi (t) is expressed as an opening ratio between the opening (θmax) when the valve is fully opened and the valve opening (θ (t)) at time t.
Φi (t) = θ (t) / θmax (2)
Further, based on the average value of Ri (ΣRi / n), the group cooling margin Rg of the air conditioner group is calculated by the equation (3).
Rg = ΣRi / n (3)

次に、図2を参照して連系制御の具体的フローについて説明する。制御開始時において各空調機5は吹出温度Tb一定(例えば20℃)となるように、二方弁6により冷水流量制御が行われている。また、各二次ポンプ8は温度センサS1、S2による往還温度差ΔT=T2−T1が一定(例えば7℃)となるように周波数制御及び台数制御が行われている。さらに、各熱源機2aは出口温度一定(例えば7℃)となるように能力制御が行われている(S101)。   Next, a specific flow of interconnection control will be described with reference to FIG. The chilled water flow rate is controlled by the two-way valve 6 so that each air conditioner 5 has a constant blowout temperature Tb (for example, 20 ° C.) at the start of control. Further, the frequency control and the number control of each secondary pump 8 are performed so that the return temperature difference ΔT = T2−T1 by the temperature sensors S1 and S2 is constant (for example, 7 ° C.). Furthermore, capacity control is performed so that each heat-source equipment 2a becomes constant exit temperature (for example, 7 degreeC) (S101).

制御中は、各空調機5iの設定温度(室温設定)Trs、又は設定風量Qsが、自動又は手動により変更されたか否かを監視している(S102)。いずれかの空調機5jについて設定変更があった場合には(S102においてY)、温度変化率(ΔTrs/Trs)、又は、風量変化率(ΔQs/Qs)がそれぞれ、閾値α%、β%以上か否かが判定される(S107)。
S107においてY、すなわち当該空調機5jについて設定温度変化率又は風量変化率が閾値以上の場合には、さらに当該変更から所定時間τx経過しているか否かが判定される(S108)。τxに達していない場合には(S108においてN)、当該空調機5jを除外してその時点における群冷却余裕度Rgの演算が行われる(S109)。
S102においてN(設定変更なし)、S107においてN(所定の閾値α%、β%未満)、及び、S108においてY(変更後τx経過)の場合には、当該空調機5jを含めて全空調機を対象としてその時点における群冷却余裕度Rgの演算が行われる(S103)。
During the control, it is monitored whether the set temperature (room temperature setting) Trs or the set air volume Qs of each air conditioner 5i has been changed automatically or manually (S102). If there is a setting change for any of the air conditioners 5j (Y in S102), the temperature change rate (ΔTrs / Trs) or the air flow rate change rate (ΔQs / Qs) is greater than or equal to the threshold values α% and β%, respectively. It is determined whether or not (S107).
If Y in S107, that is, if the set temperature change rate or the air volume change rate for the air conditioner 5j is equal to or greater than the threshold value, it is further determined whether or not a predetermined time τx has elapsed since the change (S108). If τx has not been reached (N in S108), the air conditioner 5j is excluded, and the group cooling margin Rg at that time is calculated (S109).
If N (no setting change) in S102, N (predetermined threshold value α%, β% less) in S107, and Y (elapsed τx after change) in S108, all air conditioners including the air conditioner 5j are included. Is calculated for the group cooling margin Rg at that time (S103).

さらに、S103又はS109により求めた群冷却余裕度Rgが、臨界値Rc以下に至っているか否かが判定される(S104)。臨界値Rc以下に至っていない場合には(S104においてN)、S101以下の制御が継続して行われる。   Further, it is determined whether or not the group cooling margin Rg obtained in S103 or S109 has reached the critical value Rc or less (S104). When the critical value Rc is not reached or below (N in S104), the control after S101 is continuously performed.

一方、S104においてY、すなわち群冷却余裕度Rgが臨界値Rc以下に至っている場合には、現状冷水供給量では空調負荷に対応不可のおそれありと判定され、アラーム発報により注意喚起する(S105)。
さらに、非常時運転モードとして臨界値Rc以上に戻るまで全ての二次ポンプを最大能力で運転させる(S106、S110)。なお、非常時運転モードとしては、熱源機温度を1℃上昇させる態様とすることもできる。さらに、二次ポンプの最大能力運転及び熱源機温度の段階的上昇、又は、両者を同時に行う態様としてもよい。
その後、群冷却余裕度Rgが臨界値Rc以上に戻ったときは(S104においてN)、通常の運転モード(S101)に戻すことができる。
On the other hand, if Y in S104, that is, if the group cooling margin Rg has reached the critical value Rc or less, it is determined that the current amount of chilled water supply may not be compatible with the air conditioning load, and an alarm is issued to alert (S105). ).
Further, all the secondary pumps are operated at the maximum capacity until the emergency operation mode returns to the critical value Rc or more (S106, S110). In addition, as an emergency operation mode, it can also be set as the aspect which raises heat source machine temperature 1 degreeC. Furthermore, it is good also as an aspect which performs the maximum capacity | capacitance driving | operation of a secondary pump, and a heat source apparatus temperature in steps, or performing both simultaneously.
Thereafter, when the group cooling margin Rg returns to the critical value Rc or more (N in S104), the normal operation mode (S101) can be restored.

なお、本実施形態では各空調機5iの冷却余裕度Riを二方弁6の弁開度に基づいて演算する例を示したが、吹出温度計測値(Tb)と吹出温度設定値(Tbs)との乖離度(ΔTb=Tb−Tbs)に基づいて、次式を用いて演算する態様とすることもできる。なお、ΔTbは所定の上限乖離度である。
Ri=1−(ΔTb(t)/ΔTb) ・・・・(1')
さらに、送風ファンの最大周波数(fmax)に対する当該時点における周波数(f(t))との比に基づいて、次式を用いて演算する態様とすることもできる。
Ri=1−f(t)/fmax ・・・・(1")
In the present embodiment, the cooling margin Ri of each air conditioner 5i is calculated based on the valve opening degree of the two-way valve 6, but the blowout temperature measurement value (Tb) and the blowout temperature set value (Tbs) are shown. Based on the degree of divergence (ΔTb = Tb−Tbs), it is also possible to calculate using the following equation. Note that ΔTb * is a predetermined upper limit deviation.
Ri = 1− (ΔTb (t) / ΔTb * ) (1 ′)
Furthermore, it can also be set as the aspect calculated using following Formula based on ratio with the frequency (f (t)) in the said time with respect to the maximum frequency (fmax) of a ventilation fan.
Ri = 1-f (t) / fmax (1 ")

また、本実施形態では空調対象室7内に1台の空調機5を配置する例を示したが、複数台の空調機を配置する態様であってもよい。
また、単一の温度センサS4の計測値を以て室内温度とする例を示したが、複数の温度センサを用いて計測し、その代表温度(例えば最高温度、平均温度)を以て室内温度とする態様とすることもできる。
Moreover, although the example which arrange | positions one air conditioner 5 in the air-conditioning object room 7 was shown in this embodiment, the aspect which arrange | positions several air conditioners may be sufficient.
Moreover, although the example which uses the measured value of single temperature sensor S4 as room temperature was shown, it measured using several temperature sensors, and the aspect which uses the representative temperature (for example, maximum temperature, average temperature) as room temperature, You can also

<第二の実施形態>
次に、本発明の他の実施形態について説明する。本実施形態は上述の実施形態において、冷房出力設定変更のあった空調機5jを冷却余裕度の演算から除外することによる、空調信頼性の過度の低下を回避するための制御形態である。本実施形態の構成は第一の実施形態の空調システム1と同様であるので、重複説明を省略する。
<Second Embodiment>
Next, another embodiment of the present invention will be described. This embodiment is a control mode for avoiding an excessive decrease in air-conditioning reliability by excluding the air conditioner 5j whose cooling output setting has been changed from the calculation of the cooling margin in the above-described embodiment. Since the structure of this embodiment is the same as that of the air conditioning system 1 of 1st embodiment, duplication description is abbreviate | omitted.

本実施形態では、閾値以上の冷房出力設定変更があった空調機5jについても、一定の条件下で除外することなく演算対象とする。具体的には図3を参照して、上述の図2のS107において設定温度変化率又は風量変化率が閾値以上で、かつ、S108において当該変更から所定時間τx経過していない場合(S1080)であっても、以下の(a)乃至(c)の条件に該当する場合には(S1081、S1082、S1083のいずれかにおいてY)、空調信頼性を優先して当該空調機5jを含めて全空調機を対象としてその時点における群冷却余裕度Rgの演算を行う(図2のS103)。上記各ステップにおいて該当しない場合には、当該空調機5jを除いて群冷却余裕度Rgの演算を行う(図2のS109)。   In the present embodiment, the air conditioner 5j in which the cooling output setting change is equal to or greater than the threshold is also subject to calculation without being excluded under certain conditions. Specifically, referring to FIG. 3, when the set temperature change rate or the air flow rate change rate is equal to or greater than the threshold value in S107 of FIG. 2 and the predetermined time τx has not elapsed since the change in S108 (S1080). Even if there is any of the following conditions (a) to (c) (Y in any of S1081, S1082, and S1083), all air conditioning including the air conditioner 5j is given priority to air conditioning reliability. The group cooling margin Rg at that time is calculated for the machine (S103 in FIG. 2). When the above steps do not apply, the group cooling margin Rg is calculated except for the air conditioner 5j (S109 in FIG. 2).

(a)Φi(t−1)≧Φi(S1081)
設定温度又は風量変更が行われた時(時刻t)より以前(t−1)から、二方弁開度比Φi(t−1)が閾値(Φi)以上に至っている場合。
(b)Tb−Tbs≧ΔT(S1082)
空調機吹出温度について、計測温度(Tb)と設定温度(Tbs)との乖離が閾値(ΔT)以上に至っている場合。
(c)Tr≧Tr(S1083)
室温(Tr)が閾値(Tr)以上に至っている場合。
(A) Φi (t−1) ≧ Φi * (S1081)
When the two-way valve opening ratio Φi (t−1) is equal to or greater than the threshold (Φi * ) from (t−1) before the time when the set temperature or air flow is changed (time t).
(B) Tb−Tbs ≧ ΔT * (S1082)
When the temperature difference between the measured temperature (Tb) and the set temperature (Tbs) reaches or exceeds the threshold (ΔT * ) for the air conditioner outlet temperature.
(C) Tr ≧ Tr * (S1083)
When the room temperature (Tr) reaches or exceeds the threshold value (Tr * ).

上記(a)乃至(c)の場合に演算対象としたのは、これらが空調対象空間の許容温度逸脱度合いに与える影響が大と判断されるからである。演算対象に含めることにより、空調信頼性が必要以上に低下することを回避することができる。
なお、上記(a)乃至(c)以外であっても、許容温度逸脱に与える影響大の因子があれば、これについては同様の処理フローとすることが適当である。
The reason for calculating in the cases (a) to (c) is that the influence of these on the allowable temperature deviation degree of the air-conditioning target space is judged to be large. By including it in the calculation target, it is possible to avoid a decrease in air conditioning reliability more than necessary.
It should be noted that, if there is a factor that has a large influence on the deviation from the allowable temperature even in cases other than the above (a) to (c), it is appropriate to use the same processing flow for this.

<第三の実施形態>
さらに、本発明の他の実施形態について説明する。本実施形態は、群冷却余裕度Rgの演算に際して、冷房出力設定変更閾値超えの空調機による影響度を小さくすることにより、アラーム頻発を回避する形態に係る。
<Third embodiment>
Furthermore, another embodiment of the present invention will be described. The present embodiment relates to a form that avoids frequent alarms by reducing the degree of influence of an air conditioner that exceeds the cooling output setting change threshold when calculating the group cooling margin Rg.

図3を参照して、本実施形態による制御フローは、S301〜S307、S310(設定温度変化率が閾値以下の場合)については、第一の実施形態のS101〜S107、S110と同様である。
S107においてY、すなわちいずれかの空調機について設定温度変化率(ΔTb/Tb)が閾値α%以上の場合、当該空調機の余裕度Ri’については、(1)式に所定の緩和係数k(但し、k<1)を乗じて、
Ri’=k*(1−Φi(t)) ・・・・・(4)
として、その時点における群冷却余裕度Rgの演算が行われる(S112)。
その後のフローについては第一の実施形態と同様であるので重複説明を省略する。
当該空調機のRiに緩和係数kを乗じることにより、Ri’<Riとなるため、群冷却余裕度Rgへの寄与度が小さくなり、その分、非常時運転モード移行回避の可能性が高まる。
なお、緩和係数kの値については、同一冷却エリア内の空調機台数、室の総冷却負荷量 等を考慮して設定することができる。
Referring to FIG. 3, the control flow according to the present embodiment is the same as S101 to S107 and S110 of the first embodiment with respect to S301 to S307 and S310 (when the set temperature change rate is equal to or less than the threshold).
In S107, when Y, that is, when the set temperature change rate (ΔTb / Tb) is greater than or equal to the threshold value α% for any one of the air conditioners, the margin Ri ′ of the air conditioner is expressed by a predetermined relaxation coefficient k ( However, multiply by k <1)
Ri ′ = k * (1−Φi (t)) (4)
Then, the group cooling margin Rg at that time is calculated (S112).
Since the subsequent flow is the same as that of the first embodiment, a duplicate description is omitted.
By multiplying Ri of the air conditioner by the relaxation coefficient k, Ri ′ <Ri is satisfied, so that the contribution to the group cooling margin Rg is reduced, and the possibility of avoiding the emergency operation mode is increased accordingly.
The value of the relaxation coefficient k can be set in consideration of the number of air conditioners in the same cooling area, the total cooling load of the room, and the like.

<第四の実施形態>
さらに、本発明の他の実施形態について説明する。本実施形態は、群冷却余裕度に関するアラーム頻度に対応して、冷房出力設定変更に際してその変化速度(ΔQs/Δt、ΔTrs/Δt)を調整する形態に関する。
図6(a)は、変化速度遅延化なし条件で、時刻t1において風量設定をQ0→Q1に変更した場合の、風量及び二方弁開度の設定値までの到達時間を比較した図である。両者の間に大きな時間差が生じるため、室温制御に支障をきたすことが容易に予測できる。
また、図6(b)は変化速度を遅延化した場合の同上比較図である。このように、風量設定を段階的にすることにより、両者の設定値到達時間を同調させることができる。
<Fourth embodiment>
Furthermore, another embodiment of the present invention will be described. The present embodiment relates to a mode in which the change speed (ΔQs / Δt, ΔTrs / Δt) is adjusted when the cooling output setting is changed in response to the alarm frequency related to the group cooling margin.
FIG. 6A is a diagram comparing the air flow and the arrival time to the set value of the two-way valve opening when the air flow setting is changed from Q0 to Q1 at time t1 under the condition that there is no change speed delay. . Since a large time difference occurs between them, it can be easily predicted that the room temperature control will be hindered.
FIG. 6B is a comparative view of the above when the change rate is delayed. Thus, by setting the air volume stepwise, it is possible to synchronize both set value arrival times.

以下、図5を参照して本実施形態の連係制御フローについて説明する。制御開始に伴い初期設定としてアラーム回数累計ΣNa=0とする(S401)。制御開始後、いずれかの空調機について風量又は室温の設定変更があった場合を想定する(S402)。設定変更により伴い上述の各実施形態のフローにしたがい群冷却余裕度Rg≧Rcとなり、アラーム対象か否かが判定される(S403)。   Hereinafter, the linkage control flow of this embodiment will be described with reference to FIG. With the start of control, the alarm count cumulative ΣNa = 0 is set as an initial setting (S401). A case is assumed where there is a change in the air volume or room temperature setting for any of the air conditioners after the start of control (S402). With the setting change, the group cooling margin Rg ≧ Rc is satisfied according to the flow of each of the above-described embodiments, and it is determined whether or not the alarm is targeted (S403).

アラーム対象の場合には(S403においてY)、アラーム回数を加算する(ΣNa=ΣNa+1)(S404)。
加算後のアラーム累計が閾値(Na)以上に至っっていない場合には(S405においてN)、設定変更速度は変化させない(S408)。
In the case of an alarm target (Y in S403), the number of alarms is added (ΣNa = ΣNa + 1) (S404).
If the cumulative number of alarms after the addition has not reached the threshold (Na * ) or more (N in S405), the setting change speed is not changed (S408).

S405においてY、すなわち加算後のアラーム累計が閾値(Na)以上に至っている場合には、さらに室温(Tr)が上限値(Th)に至っているか否かを判定する(S406)。
上限値(Th)に至っていない場合には(S406においてN)、設定変更速度を1段階遅延化させる(S127)。これにより、変更後の設定室温(又は設定風量)に到達するまでの時間が遅くなり、二方弁の開閉速度との差異を縮小化させることができる。
S406においてY、すなわち室温(Tr)が上限値(Th)に至っている場合には、非常時として風量を急速に上げる必要があるため、設定変更速度は変化させない(S408)。
In S405, if Y, that is, if the cumulative number of alarms after the addition has reached the threshold (Na * ) or more, it is further determined whether or not the room temperature (Tr) has reached the upper limit (Th) (S406).
If the upper limit (Th) has not been reached (N in S406), the setting change speed is delayed by one step (S127). Thereby, the time until reaching the set room temperature (or set air volume) after the change is delayed, and the difference from the opening / closing speed of the two-way valve can be reduced.
In S406, when Y, that is, when the room temperature (Tr) has reached the upper limit (Th), it is necessary to increase the air volume rapidly in an emergency, so the setting change speed is not changed (S408).

S403においてN、すなわち設定変更がアラーム対象に該当しない場合には、アラーム累計を減算し、設定変更速度を1段階アップさせる(S127)。これにより、変更後の設定室温(又は設定風量)への到達時間迅速化が図られる。アラーム累計が上限値に達していない場合には(S124においてN)、現状の設定温度変更速度を維持する(S127)。   If N in S403, that is, if the setting change does not correspond to the alarm target, the alarm total is subtracted to increase the setting change speed by one level (S127). Thereby, the arrival time to the set room temperature (or set air volume) after change is speeded up. If the accumulated alarm has not reached the upper limit (N in S124), the current set temperature changing speed is maintained (S127).

以上の制御により冷房出力設定変更時にアラームが頻発する場合に、風量設定等変更後の目標値に到達するまでの時間を遅延化させることができ、同さの遅い二方弁の開度変更速度と同調させることが可能となる。これにより、事後のアラーム回数減少化が可能となり、空調管理作業の効率化を図ることができる。   If the alarm occurs frequently when the cooling output setting is changed by the above control, the time to reach the target value after changing the airflow setting etc. can be delayed and the opening change speed of the slow two-way valve It becomes possible to synchronize with. As a result, the number of subsequent alarms can be reduced, and the efficiency of air conditioning management work can be improved.

1・・・・水冷式空調システム
2・・・・熱源機冷水系統
2a・・・熱源機
2b・・・一次ポンプ
3・・・・空調機系統
3d・・・流量制御弁
5・・・・空調機(AHU)
5b・・・送風ファン
6・・・・二方弁
7・・・・空調対象室
8・・・・二次ポンプ
9・・・・制御部
Rc・・・群冷却余裕度臨界値
Rg・・・群冷却余裕度
Ri・・・空調機冷却余裕度
S1〜S4・・・・温度センサ
DESCRIPTION OF SYMBOLS 1 ... Water cooling type air conditioning system 2 ... Heat source machine cold water system 2a ... Heat source machine 2b ... Primary pump 3 ... Air conditioner system 3d ... Flow control valve 5 ... Air conditioner (AHU)
5b: Blower fan 6 ... Two-way valve 7 ... Air-conditioning target chamber 8 ... Secondary pump 9 ... Control unit Rc ... Group cooling margin critical value Rg ...・ Group cooling margin Ri ・ ・ ・ Air conditioner cooling margin S1 to S4 ・ ・ ・ ・ Temperature sensor

Claims (7)

一次側回路に配設した熱源機で製造した冷水を、往水ヘッダー及び還水ヘッダーを介して、二次側回路に配設した二次ポンプにより複数の空調機に循環供給し、
各空調機は、冷水導入量を制御可能とする流量制御弁と、導入した冷水と戻り空気との熱交換により冷房対象空間に冷風を供給する送風ファンと、を備え、て成る水冷式空調システムにおいて、
(a1)各空調機の定格冷却能力に対するその時点における冷却余裕度(Ri)に基づいて、複数の空調機により構成される空調機群の群冷却余裕度(Rg)を演算するステップと、
(a2)群冷却余裕度(Rg)が所定の下限閾値(Rc)以下に至ったときは、非常時運転モードとして、二次ポンプ又は/及び熱源機の出力アップにより冷熱供給量を増加させ、かつ、アラーム発報するステップと、
(a3)但し、いずれかの空調機について、所定値以上の冷房出力設定変更があったときは、所定時間(τc)経過するまでは、(a1)に関らず当該空調機を除外して群冷却余裕度(Rg)を演算するステップと、
を含むことを特徴とする水冷式空調システムの運転制御方法。
Chilled water produced by a heat source device arranged in the primary side circuit is circulated and supplied to a plurality of air conditioners by a secondary pump arranged in the secondary side circuit via the outgoing water header and the return water header,
Each air conditioner includes a flow control valve that can control the amount of cold water introduced and a blower fan that supplies cold air to the cooling target space by heat exchange between the introduced cold water and return air. In
(A1) calculating a group cooling margin (Rg) of an air conditioner group composed of a plurality of air conditioners based on the cooling margin (Ri) at that time with respect to the rated cooling capacity of each air conditioner;
(A2) When the group cooling margin (Rg) reaches a predetermined lower threshold (Rc) or less, as an emergency operation mode, increase the output of the cooling heat by increasing the output of the secondary pump or / and the heat source unit, And an alarm issuance step,
(A3) However, for any air conditioner, if there is a change in the cooling output setting greater than or equal to a predetermined value, the air conditioner is excluded regardless of (a1) until the predetermined time (τc) elapses. Calculating a group cooling margin (Rg);
An operation control method for a water-cooled air conditioning system, comprising:
前記群冷却余裕度(Rg)が、各空調機の前記冷却余裕度(Ri)の平均値
(ΣRi/n、n:空調機群に属する空調機台数)であることを特徴とする請求項1に記載の水冷式空調システムの運転制御方法。
The group cooling margin (Rg) is an average value of the cooling margin (Ri) of each air conditioner (ΣRi / n, n: the number of air conditioners belonging to the air conditioner group). The operation control method of the water cooling type air conditioning system as described in 2.
前記冷却余裕度(Ri)が、
前記流量制御弁の全開開度(θmax)と、当該時点における開度(θ(t))と、により求めた開度余裕率[(Ri=1−(θ(t)/θmax)]、
前記送風ファンの最大周波数(fmax)と、当該時点における周波数(f(t))と、により求めた周波数余裕率[(Ri=1−(f(t)/fmax)]、又は、
空調機の吹出温度計測値(Tb)と吹出温度設定値(Tbs)との乖離度(ΔTb=Tb−Tbs)について、所定の上限乖離度(ΔTb)と、前記冷房出力設定変更のあった当該空調機の当該時点における乖離度(ΔTb(t))と、により求めた乖離度余裕率[(Ri=1−(ΔTb(t)/ΔTb)]、

のいずれか、又は、これらの組み合わせであることを特徴とする請求項1又は2に記載の水冷式空調システムの運転制御方法。
The cooling margin (Ri) is
Opening margin rate [(Ri = 1− (θ (t) / θmax)] obtained from the fully opened opening (θmax) of the flow control valve and the opening (θ (t)) at the time point,
The frequency margin [(Ri = 1− (f (t) / fmax)] obtained from the maximum frequency (fmax) of the blower fan and the frequency (f (t)) at the time point, or
Regarding the degree of divergence (ΔTb = Tb−Tbs) between the air temperature blown temperature measurement value (Tb) and the blown temperature set value (Tbs), there was a predetermined upper limit divergence (ΔTb * ) and the cooling output setting change. The degree of divergence (ΔTb (t)) at the time of the air conditioner and the degree of divergence margin obtained by [[Ri = 1− (ΔTb (t) / ΔTb * )],

The operation control method for a water-cooled air conditioning system according to claim 1 or 2, wherein any one of the above or a combination thereof.
前記冷房出力設定変更が、室温設定(Trs)変更、又は、送風ファン設定風量(Qs)変更のいずれか一方、又は、両方であることを特徴とする請求項1乃至3のいずれかに記載の水冷式空調システムの運転制御方法。   The said cooling output setting change is any one of a room temperature setting (Trs) change, a ventilation fan setting air volume (Qs) change, or both, The Claim 1 thru | or 3 characterized by the above-mentioned. Operation control method for water-cooled air conditioning system. 請求項3又は4において、所定値以上の冷房出力設定変更があったときに、
前記流量制御弁の当該時点における開度比(Φi(t)=θ(t)/θmax)が、上限開度比(Φi)以上、
前記乖離度(ΔTb)が上限乖離度(ΔTb)以上、又は、
前記冷房対象空間温度(Tr)が上限空間温度(ΔTr)以上、
のいずれかに該当する場合には、前記(a3)のステップを実行しないことを特徴とする水冷式空調システムの運転制御方法。
In claim 3 or 4, when there is a cooling output setting change more than a predetermined value,
The opening ratio (Φi (t) = θ (t) / θmax) at the time point of the flow control valve is not less than the upper limit opening ratio (Φi * ),
The degree of divergence (ΔTb) is greater than or equal to the upper limit divergence (ΔTb * ), or
The cooling target space temperature (Tr) is not less than the upper limit space temperature (ΔTr * ),
In the case of any of the above, the operation control method of the water-cooled air conditioning system, wherein the step (a3) is not executed.
前記(a3)において、
「(a1)に関らず当該空調機を除外して群冷却余裕度(Rg)を演算する」に替えて、
「当該空調機については、設定変更率に対応する緩和係数(k)を乗じた冷却余裕度(Ri’=k*Ri)として、群冷却余裕度(Rg)を演算する」
であることを特徴とする請求項1乃至5のいずれかに記載の水冷式空調システムの運転制御方法。
In the above (a3),
Instead of “calculate the group cooling margin (Rg) excluding the air conditioner regardless of (a1)”,
“For the air conditioner, the group cooling margin (Rg) is calculated as the cooling margin (Ri ′ = k * Ri) multiplied by the relaxation coefficient (k) corresponding to the setting change rate.”
The operation control method for a water-cooled air conditioning system according to any one of claims 1 to 5, wherein
前記アラーム発報の有無に応じて、発報回数累計を加算又は減算するステップと、
回数累計が所定の上限閾値(Na)以上の場合には、室温設定(Trs)変更速度(ΔTrs/Δt)、又は、送風ファン設定風量(Qs)変更速度(ΔQs/Δt)を1段階遅延化させるステップと、
その後、群冷却余裕度(Rg)が所定の下限閾値(Rc)を下回ったときは、室温設定変更速度又は送風ファン風量変更速度を1段階迅速化させるステップと、
をさらに含むことを特徴とする請求項4乃至6のいずれかに記載の水冷式空調システムの運転制御方法。
Adding or subtracting the total number of alarms depending on the presence or absence of the alarm alarm; and
When the accumulated number of times is equal to or greater than a predetermined upper threshold (Na * ), the room temperature setting (Trs) change speed (ΔTrs / Δt) or the blower fan set air volume (Qs) change speed (ΔQs / Δt) is delayed by one step. Step
Thereafter, when the group cooling margin (Rg) falls below a predetermined lower threshold (Rc), the step of speeding up the room temperature setting change speed or the blower fan air volume change speed by one step;
The operation control method for a water-cooled air conditioning system according to any one of claims 4 to 6, further comprising:
JP2013170874A 2013-08-21 2013-08-21 Water-cooled air conditioning system Active JP6114143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013170874A JP6114143B2 (en) 2013-08-21 2013-08-21 Water-cooled air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013170874A JP6114143B2 (en) 2013-08-21 2013-08-21 Water-cooled air conditioning system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017043875A Division JP6339715B2 (en) 2017-03-08 2017-03-08 Water cooling type air conditioning system and operation control method of water cooling type air conditioning system

Publications (2)

Publication Number Publication Date
JP2015040649A true JP2015040649A (en) 2015-03-02
JP6114143B2 JP6114143B2 (en) 2017-04-12

Family

ID=52694915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013170874A Active JP6114143B2 (en) 2013-08-21 2013-08-21 Water-cooled air conditioning system

Country Status (1)

Country Link
JP (1) JP6114143B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546772A (en) * 2016-03-04 2016-05-04 丽水学院 Energy-saving control method of central air conditioner
JP2016211825A (en) * 2015-05-13 2016-12-15 三菱電機ビルテクノサービス株式会社 Air conditioning system
CN107940672A (en) * 2017-07-24 2018-04-20 江苏永钢集团有限公司 A kind of central air-conditioning alarm method based on PLC
CN109186018A (en) * 2018-08-23 2019-01-11 重庆美的通用制冷设备有限公司 Water cooler and the method, apparatus for controlling water cooler
JP2019211121A (en) * 2018-05-31 2019-12-12 三機工業株式会社 Air conditioning system
CN111678248A (en) * 2020-06-19 2020-09-18 广东美的暖通设备有限公司 Operation control method for air conditioning equipment, air conditioning equipment and storage medium
CN112149957A (en) * 2020-08-20 2020-12-29 汉威科技集团股份有限公司 Risk trend deduction and grading early warning method based on online monitoring data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156966A (en) * 1986-12-22 1988-06-30 Nippon Telegr & Teleph Corp <Ntt> Air-conditioner alarming device
JP2003207190A (en) * 2002-01-16 2003-07-25 Hitachi Plant Eng & Constr Co Ltd Air conditioning system
JP2009063231A (en) * 2007-09-06 2009-03-26 Yamatake Corp Heat source control device and heat source control method
JP2011064438A (en) * 2009-09-18 2011-03-31 Hitachi Cable Ltd Cold water circulating system
JP2013096657A (en) * 2011-11-02 2013-05-20 Ntt Facilities Inc Method of group complementary control in air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156966A (en) * 1986-12-22 1988-06-30 Nippon Telegr & Teleph Corp <Ntt> Air-conditioner alarming device
JP2003207190A (en) * 2002-01-16 2003-07-25 Hitachi Plant Eng & Constr Co Ltd Air conditioning system
JP2009063231A (en) * 2007-09-06 2009-03-26 Yamatake Corp Heat source control device and heat source control method
JP2011064438A (en) * 2009-09-18 2011-03-31 Hitachi Cable Ltd Cold water circulating system
JP2013096657A (en) * 2011-11-02 2013-05-20 Ntt Facilities Inc Method of group complementary control in air conditioning system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211825A (en) * 2015-05-13 2016-12-15 三菱電機ビルテクノサービス株式会社 Air conditioning system
CN105546772A (en) * 2016-03-04 2016-05-04 丽水学院 Energy-saving control method of central air conditioner
CN107940672A (en) * 2017-07-24 2018-04-20 江苏永钢集团有限公司 A kind of central air-conditioning alarm method based on PLC
JP2019211121A (en) * 2018-05-31 2019-12-12 三機工業株式会社 Air conditioning system
CN109186018A (en) * 2018-08-23 2019-01-11 重庆美的通用制冷设备有限公司 Water cooler and the method, apparatus for controlling water cooler
CN111678248A (en) * 2020-06-19 2020-09-18 广东美的暖通设备有限公司 Operation control method for air conditioning equipment, air conditioning equipment and storage medium
CN111678248B (en) * 2020-06-19 2021-12-07 广东美的暖通设备有限公司 Operation control method for air conditioning equipment, air conditioning equipment and storage medium
CN112149957A (en) * 2020-08-20 2020-12-29 汉威科技集团股份有限公司 Risk trend deduction and grading early warning method based on online monitoring data

Also Published As

Publication number Publication date
JP6114143B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6114143B2 (en) Water-cooled air conditioning system
JP6339715B2 (en) Water cooling type air conditioning system and operation control method of water cooling type air conditioning system
US10203128B2 (en) Cold water circulation system with control of supply of cold water based on degree of air handler surplus
US10098264B2 (en) Air-conditioning apparatus
JP2011257116A (en) Computer room air conditioning system, control unit thereof, and program
EP2837898B1 (en) Air-conditioning system
US11543148B2 (en) Air conditioning system and control method therof
US9885489B2 (en) HVAC systems
WO2017026054A1 (en) Air conditioning system
WO2014157347A1 (en) Cold water circulation system
CN112413809A (en) Method, device and system for evaluating operation of cold station of central air conditioner
JP2017129340A (en) Heat source control system, control method and control device
JP2009276004A (en) Free cooling effectiveness-determining method for free cooling system
JP2012145263A (en) Heat source system, control method therefor, and program therefor
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP2010216771A (en) Local cooling system, and device for controlling the same and program
JP6125836B2 (en) Cold water circulation system
US20200064010A1 (en) Temperature control device, control method for temperature control device, and non-transitory storage medium storing control program for temperature control device
JP2011226680A (en) Cooling water producing facility
JP5415201B2 (en) Air conditioning system and its control device
JP6024726B2 (en) External control device
JP6213781B2 (en) External controller control method
JP6417155B2 (en) Heat source equipment with heat storage tank and operation control method thereof
JP6115079B2 (en) Local air conditioning system
JP2016048533A (en) Cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170316

R150 Certificate of patent or registration of utility model

Ref document number: 6114143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250