JP2015029005A - Dielectric film and film capacitor - Google Patents

Dielectric film and film capacitor Download PDF

Info

Publication number
JP2015029005A
JP2015029005A JP2013157863A JP2013157863A JP2015029005A JP 2015029005 A JP2015029005 A JP 2015029005A JP 2013157863 A JP2013157863 A JP 2013157863A JP 2013157863 A JP2013157863 A JP 2013157863A JP 2015029005 A JP2015029005 A JP 2015029005A
Authority
JP
Japan
Prior art keywords
film
dielectric film
organic resin
resin sheet
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013157863A
Other languages
Japanese (ja)
Inventor
謙一 伊藤
Kenichi Ito
謙一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013157863A priority Critical patent/JP2015029005A/en
Publication of JP2015029005A publication Critical patent/JP2015029005A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric film which has high adhesion with a metal film, and a film capacitor arranged by use of such a dielectric film.SOLUTION: A dielectric film 1 comprises an organic resin sheet 3, and particle groups 5 of ceramic particles 5a ranged substantially in line and distributed on a surface of the organic resin sheet 3; the particle groups 5 are spaced apart from each other by a distance within 500 μm. Forming a metal film 11 on the surface, a large adhesion force with the metal film 11 can be achieved even with the dielectric film 1 having a small thickness. In addition, the dielectric film 1 is improved in slippage and therefore, the dielectric film is suitable for a winding type capacitor.

Description

本発明は、誘電体フィルムおよびこれを用いたフィルムコンデンサに関する。   The present invention relates to a dielectric film and a film capacitor using the dielectric film.

フィルムコンデンサは、例えば、ポリプロピレン樹脂をフィルム化した誘電体フィルムの表面に蒸着によって形成された金属膜を電極として有している。このような構成により、誘電体フィルムの絶縁欠陥部で短絡が生じた場合にも、短絡のエネルギーで欠陥部周辺の金属膜が蒸発、飛散して絶縁化し、フィルムコンデンサの絶縁破壊を防止できるという利点を有している(例えば、特許文献1を参照)。   The film capacitor has, for example, a metal film formed by vapor deposition on the surface of a dielectric film obtained by filming a polypropylene resin as an electrode. With such a configuration, even when a short-circuit occurs in an insulation defect portion of the dielectric film, the metal film around the defect portion is evaporated and scattered by the short-circuit energy to insulate and prevent dielectric breakdown of the film capacitor. It has an advantage (see, for example, Patent Document 1).

このため、フィルムコンデンサは電気回路が短絡した際の発火や感電を防止することができるという点が注目され、近年、LED(Light Emitting Diode)照明等の電源回路への適用を始め、用途が拡大しつつある(例えば、特許文献2を参照)。   For this reason, film capacitors are attracting attention because they can prevent ignition and electric shock when electrical circuits are short-circuited, and in recent years, they have been applied to power supply circuits such as LED (Light Emitting Diode) lighting, and their use has expanded. (For example, see Patent Document 2).

また、フィルムコンデンサについても、他の電子部品と同様、小型化の要求がますます高まってきており、誘電体フィルムを薄層化する試みが行われている。ところが、誘電体フィルムを薄層化すると、誘電体フィルムの表面の凹凸が小さくなり、より平滑になってくるために、誘電体フィルムの表面に電極層として形成される金属膜との密着性が低下してしまうという問題がある。   In addition, as with other electronic components, there is an increasing demand for miniaturization of film capacitors, and attempts have been made to make dielectric films thinner. However, when the dielectric film is thinned, the unevenness of the surface of the dielectric film becomes smaller and smoother, so that the adhesion with the metal film formed as an electrode layer on the surface of the dielectric film is improved. There is a problem that it falls.

特開平9−129475号公報JP 9-129475 A 特開2010−178571号公報JP 2010-178571 A

本発明は上記課題に鑑みなされたものであり、金属膜との密着性の高い誘電体フィルムと、それを用いたフィルムコンデンサを提供することを目的とする。   This invention is made | formed in view of the said subject, and aims at providing a dielectric film with high adhesiveness with a metal film, and a film capacitor using the same.

本発明の誘電体フィルムは、有機樹脂シートの表面に、セラミック粒子が略線状に連なった粒子群が500μm以内の間隔で点在していることを特徴とする。   The dielectric film of the present invention is characterized in that a group of particles in which ceramic particles are connected in a substantially linear manner are scattered on the surface of an organic resin sheet at intervals of 500 μm or less.

本発明のフィルムコンデンサは、上記誘電体フィルムの表面に導体層を有していることを特徴とする。   The film capacitor of the present invention is characterized by having a conductor layer on the surface of the dielectric film.

本発明によれば、金属膜との密着性の高い誘電体フィルムと、それを用いたフィルムコンデンサを得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, a dielectric film with high adhesiveness with a metal film and a film capacitor using the same can be obtained.

(a)は、本発明の誘電体フィルムの一実施形態を部分的に示す外観斜視図であり、(b)は、(a)のA−A断面図である。(A) is an external appearance perspective view which partially shows one Embodiment of the dielectric film of this invention, (b) is AA sectional drawing of (a). (a)は、誘電体フィルムの両面に電極層を有する構造を模式的に示す断面図であり、(b)は、本発明のフィルムコンデンサの一実施形態を示す外観斜視図である。(A) is sectional drawing which shows typically the structure which has an electrode layer on both surfaces of a dielectric film, (b) is an external appearance perspective view which shows one Embodiment of the film capacitor of this invention.

図1(a)は、本発明の誘電体フィルムの一実施形態を部分的に示す外観斜視図であり、(b)は、(a)のA−A断面図である。   Fig.1 (a) is an external appearance perspective view which partially shows one Embodiment of the dielectric film of this invention, (b) is AA sectional drawing of (a).

本実施形態の誘電体フィルム1は、有機樹脂シート3の表面に、セラミック粒子5aが略線状に連なった粒子群5が500μm以内の間隔で点在している構成となっている。   The dielectric film 1 of the present embodiment has a configuration in which the particle groups 5 in which the ceramic particles 5a are connected in a substantially linear shape are scattered on the surface of the organic resin sheet 3 at intervals of 500 μm or less.

本実施形態の誘電体フィルム1によれば、有機樹脂シート3の表面に、セラミック粒子5aが略線状に連なった粒子群5が500μm以内の間隔で点在しているため、有機樹脂シート3と、その表面に電極層として形成される金属膜との密着性を高めることができる。これは金属膜とセラミック粒子5aとの間の密着力の方が金属膜と有機樹脂シート3との間の密着力よりも高いことによる。   According to the dielectric film 1 of the present embodiment, the organic resin sheet 3 is scattered on the surface of the organic resin sheet 3 at intervals of 500 μm or less in which the particle groups 5 in which the ceramic particles 5a are connected in a substantially linear shape. And the adhesiveness with the metal film formed as an electrode layer on the surface can be improved. This is because the adhesion between the metal film and the ceramic particles 5 a is higher than the adhesion between the metal film and the organic resin sheet 3.

これに対し、有機樹脂シート3の表面における、粒子群5の間隔(この場合、セラミック粒子5aの最近接距離)が500μmを超えるような場合には、強固に接着する箇所の間隔が広くなることから、金属膜と有機樹脂シート3との間に隙間が形成されやすくなるため、有機樹脂シート3と金属膜との間の密着力が低下してしまう。   On the other hand, when the distance between the particle groups 5 on the surface of the organic resin sheet 3 (in this case, the closest distance of the ceramic particles 5a) exceeds 500 μm, the distance between the places to be firmly bonded becomes wide. Therefore, a gap is easily formed between the metal film and the organic resin sheet 3, so that the adhesion between the organic resin sheet 3 and the metal film is reduced.

また、セラミック粒子5aが略線状に連なった状態ではなく、例えば、面状に広がったような形状の場合には、有機樹脂シート3がセラミック粒子5aの粒子群5に拘束され、変形しにくくなり、このような場合にも金属膜が剥がれやすくなる。   In addition, when the ceramic particles 5a are not in a substantially linear state, for example, in a shape that spreads in a planar shape, the organic resin sheet 3 is restrained by the particle groups 5 of the ceramic particles 5a and is not easily deformed. In such a case, the metal film is easily peeled off.

このためにも有機樹脂シート3の表面に形成されるセラミック粒子5aの粒子群5は略線状に連なった状態であるのが良い。   For this purpose, the particle group 5 of the ceramic particles 5a formed on the surface of the organic resin sheet 3 is preferably in a substantially linear state.

なお、粒子群5の間隔は、粒子群5が密に配置されたときの有機樹脂シート3への拘束力を低く抑えることができという理由から50μm以上離れていることが望ましい。   The interval between the particle groups 5 is desirably 50 μm or more because the binding force to the organic resin sheet 3 when the particle groups 5 are densely arranged can be kept low.

とりわけ、本実施形態の誘電体フィルム1においては、粒子群5を平面視したときに、その形状がY字状であり、該Y字状の粒子群5が多角形状を形成するように配置されていることが望ましい。   In particular, in the dielectric film 1 of the present embodiment, when the particle group 5 is viewed in plan, the shape is Y-shaped, and the Y-shaped particle group 5 is arranged to form a polygonal shape. It is desirable that

略線状の粒子群が多角形状など所定の平面形状を為す配置になっていると、多角形状の内側領域にセラミック粒子3が存在しないため、粒子群5が密に配置されたときにも有機樹脂シート3への拘束力を低く抑えることができ、これにより有機樹脂シート3の巻回を可能にできる。また、金属膜と強力に接着する部分が周期的となるため、局部的に密着力の低い部分が形成されにくくなり、有機樹脂シート3と金属膜の密着力を安定化させることが可能になる。このような粒子群5の形状としては、形状の対称性が高く、異方性が小さいという点で、四角形状または六角形状であることが望ましい。   When the substantially linear particle groups are arranged to form a predetermined planar shape such as a polygonal shape, the ceramic particles 3 do not exist in the inner region of the polygonal shape, so that even when the particle groups 5 are densely arranged, the organic particles are organic. The restraining force on the resin sheet 3 can be kept low, whereby the organic resin sheet 3 can be wound. In addition, since the portion that strongly adheres to the metal film becomes periodic, it becomes difficult to form a portion having a low adhesion force locally, and the adhesion force between the organic resin sheet 3 and the metal film can be stabilized. . The shape of the particle group 5 is preferably a quadrangular shape or a hexagonal shape in that the shape is highly symmetric and the anisotropy is small.

この場合、粒子群5を平面視したときの形状は、Y字状だけに限らず、V字状であっても良く、その平面形状が四角形状であってもよい。   In this case, the shape of the particle group 5 when viewed in plan is not limited to the Y shape, but may be a V shape, and the planar shape may be a square shape.

この場合、本実施形態の誘電体フィルム1を構成するセラミック粒子5aの粒子群5を形成するのに好適なセラミック粒子3のサイズ(平均粒径)としては、セラミック粒子5aの凝集の低減やセラミック粒子5a同士が当接したときに変形しやすくなるという理由から10〜200nmであることが望ましい。   In this case, as the size (average particle diameter) of the ceramic particles 3 suitable for forming the particle group 5 of the ceramic particles 5a constituting the dielectric film 1 of the present embodiment, reduction of aggregation of the ceramic particles 5a or ceramic It is desirable that the thickness is 10 to 200 nm because the particles 5a are easily deformed when they are in contact with each other.

また、本実施形態の誘電体フィルムでは、セラミック粒子3の割合は1〜10体積%、
特に、2〜7体積%であることが望ましい。
Moreover, in the dielectric film of this embodiment, the ratio of the ceramic particles 3 is 1 to 10% by volume,
In particular, the content is desirably 2 to 7% by volume.

上記した構成を有する誘電体フィルム1としては、その平均厚みが3μm、特には、2μmといった薄層化したものに好適であり、また、有機樹脂シート3の表面粗さ(Ra)についても50nm以下、特に、10nm以下と平滑な表面を有するものに好適である。   The dielectric film 1 having the above configuration is suitable for a thin film having an average thickness of 3 μm, particularly 2 μm, and the surface roughness (Ra) of the organic resin sheet 3 is also 50 nm or less. In particular, it is suitable for those having a smooth surface of 10 nm or less.

ここで、略線状とは、セラミック粒子5aがネック部を介してほぼ直線状に並んでいる状態のことを言う。この場合、略線状の粒子群5がY字状やV字状となっているものも含む意味である。なお、セラミック粒子5aが当接したネック部にも有機樹脂シート3の成分が存在していてもよい。   Here, the term “substantially linear” means a state in which the ceramic particles 5a are arranged in a substantially straight line through the neck portion. In this case, it is meant to include those in which the substantially linear particle group 5 is Y-shaped or V-shaped. In addition, the component of the organic resin sheet 3 may exist also in the neck part which the ceramic particle 5a contact | abutted.

本実施形態の誘電体フィルム1において、有機樹脂シート3の表面に存在しているセラミック粒子3は、その一部が露出していれば良い。セラミック粒子5aの露出した部分以外の部分が有機樹脂シート3に埋設された状態であると、セラミック粒子5aの有機樹脂シート3からの欠落を抑制することができる。この場合、金属膜とセラミック粒子3との間の密着力を高められるという理由から、有機樹脂シート3の表面に露出したセラミック粒子5aの表面には表面改質剤などが塗られていない方が望ましい。   In the dielectric film 1 of the present embodiment, the ceramic particles 3 present on the surface of the organic resin sheet 3 may be partially exposed. When the portion other than the exposed portion of the ceramic particles 5a is embedded in the organic resin sheet 3, the lack of the ceramic particles 5a from the organic resin sheet 3 can be suppressed. In this case, the surface of the ceramic particles 5a exposed on the surface of the organic resin sheet 3 is not coated with a surface modifier or the like because the adhesion between the metal film and the ceramic particles 3 can be increased. desirable.

有機樹脂シート3の表面に露出したセラミック粒子5aの粒子群5の状態の確認は、例えば、フィルムコンデンサの誘電体フィルム1から化学的方法あるいは物理的方法によって電極層を除いた後の表面を走査型電子顕微鏡などの分析装置を用いて行う。   The state of the particle group 5 of the ceramic particles 5a exposed on the surface of the organic resin sheet 3 is confirmed by, for example, scanning the surface after removing the electrode layer from the dielectric film 1 of the film capacitor by a chemical method or a physical method. Using an analyzer such as a scanning electron microscope.

図2は、(a)は、誘電体フィルムの両面に電極層(金属膜)を有する構造を模式的に示す断面図であり、(b)は、本発明のフィルムコンデンサの一実施形態を示す外観斜視図である。   2A is a cross-sectional view schematically showing a structure having electrode layers (metal films) on both surfaces of a dielectric film, and FIG. 2B shows an embodiment of the film capacitor of the present invention. It is an external perspective view.

上述した誘電体フィルム1を具備する本実施形態のフィルムコンデンサは、誘電体フィルム1の両面に電極層11を備えている構成を基本構造とする本体部13により構成されている。この本体部13は、矩形状の誘電体フィルム1と電極層11とが交互に積層された積層型のフィルムコンデンサの他に、長尺状の誘電体フィルム1と電極層11とが巻回された構造の巻回型のフィルムコンデンサにも適用することができる。これらのフィルムコンデンサは外部電極14に端子としてさらにリード線15を有していても良いが、フィルムコンデンサの小型化という点でリード線15を有しない構造が望ましい。また、コンデンサ本体13、外部電極14およびリード線15の一部は絶縁性および耐環境の点から外装部材16に覆われていてもよい。   The film capacitor of the present embodiment including the dielectric film 1 described above is constituted by a main body 13 having a basic structure in which the electrode layers 11 are provided on both surfaces of the dielectric film 1. The main body 13 is formed by winding the long dielectric film 1 and the electrode layer 11 in addition to the laminated film capacitor in which the rectangular dielectric films 1 and the electrode layers 11 are alternately laminated. The present invention can also be applied to a wound film capacitor having a different structure. These film capacitors may further have a lead wire 15 as a terminal on the external electrode 14, but a structure without the lead wire 15 is desirable in terms of miniaturization of the film capacitor. Further, a part of the capacitor body 13, the external electrode 14, and the lead wire 15 may be covered with the exterior member 16 in terms of insulation and environment resistance.

次に、本実施形態のフィルムコンデンサは、例えば、以下に示すような製造方法によって得ることができる。まず、誘電体フィルム1の母材となる有機樹脂を用意する。   Next, the film capacitor of this embodiment can be obtained, for example, by a manufacturing method as shown below. First, an organic resin that serves as a base material for the dielectric film 1 is prepared.

有機樹脂としては、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、ポリエチレンナフタレート(PEN)およびシクロオレフィンポリマー(COP)、などが好適である。   As the organic resin, polyethylene terephthalate (PET), polypropylene (PP), polyphenylene sulfide (PPS), polyethylene naphthalate (PEN), cycloolefin polymer (COP), and the like are suitable.

これらの有機樹脂の室温(約25℃)における比誘電率(ε)は、例えば、ポリエチレンテレフタレート(PET)が3.3、ポリプロピレン(PP)が2.3、ポリフェニレンサルファイド(PPS)が3.0、シクロオレフィンポリマー(COP)が2.2〜3.0である。   The relative dielectric constant (ε) of these organic resins at room temperature (about 25 ° C.) is, for example, 3.3 for polyethylene terephthalate (PET), 2.3 for polypropylene (PP), and 3.0 for polyphenylene sulfide (PPS). The cycloolefin polymer (COP) is 2.2 to 3.0.

また、これらの有機樹脂の室温(約25℃)における破壊電界強度(E)は、例えば、ポリエチレンテレフタレート(PET)が310(V/μm)、ポリプロピレン(PP)
が380(V/μm)、ポリフェニレンサルファイド(PPS)が210(V/μm)、シクロオレフィンポリマー(COP)が370〜510(V/μm)である。
The breakdown electric field strength (E) of these organic resins at room temperature (about 25 ° C.) is, for example, 310 (V / μm) for polyethylene terephthalate (PET), polypropylene (PP)
Is 380 (V / μm), polyphenylene sulfide (PPS) is 210 (V / μm), and cycloolefin polymer (COP) is 370 to 510 (V / μm).

セラミック粒子3としては、アルミナ、酸化チタン、酸化珪素などの他にペロブスカイト型構造の複合酸化物などを適用できる。セラミック粒子3と有機樹脂5との相溶性を高める上で、セラミック粒子3にシランカップリング処理やチタネートカップリング処理等の表面処理を行っても良い。   As the ceramic particles 3, a composite oxide having a perovskite structure can be applied in addition to alumina, titanium oxide, silicon oxide, and the like. In order to enhance the compatibility between the ceramic particles 3 and the organic resin 5, the ceramic particles 3 may be subjected to a surface treatment such as a silane coupling treatment or a titanate coupling treatment.

誘電体フィルム1を形成する場合、例えば、基材としてPET製のフィルムを適用し、この表面に、セラミック粒子5aを含む有機樹脂シート3を形成することにより、誘電体フィルム1を得ることができる。この場合、誘電体フィルム1となるスラリーの粘度および膜厚を調整し、マランゴニ対流を発生させることにより本実施形態の誘電体フィルム1を得ることができる。この場合、マランゴニ数を80以上とすることで、誘電体フィルムの製膜時に、対流が発生し、セラミック粒子5aが集合して、セラミック粒子5aが略線状に連なった粒子群が500μm以内の間隔で点在している構成とすることができる。   When forming the dielectric film 1, for example, a film made of PET is applied as a base material, and the dielectric film 1 can be obtained by forming the organic resin sheet 3 including the ceramic particles 5a on the surface. . In this case, the dielectric film 1 of this embodiment can be obtained by adjusting the viscosity and film thickness of the slurry to be the dielectric film 1 and generating Marangoni convection. In this case, by setting the Marangoni number to 80 or more, convection occurs during the formation of the dielectric film, and the ceramic particles 5a are aggregated, and the particle group in which the ceramic particles 5a are connected in a substantially linear shape is within 500 μm. It can be set as the structure scattered at intervals.

成膜には、ドクターブレード法、ダイコータ法およびナイフコータ法等から選ばれる一種の成形法を用いる。なお、マランゴニ数は、以下の式によって定義される値である。M=t/(μk)*(|dσ/dT|)*ΔT、{M:マランゴニ数、t:膜厚(m)、μ(粘度(N・s/m)、k:熱伝導率(W/m・K)、(|dσ/dT|):表面張力の
温度勾配(N/m・K)、ΔT:塗膜の表面と裏面の温度差(K)}ここで、熱伝導率は便宜上、有機樹脂の熱伝導率(0.1〜0.5W/m・K)を適用し、他に、表面張力の温度勾配(N/m・K)、ΔT:塗膜の表面と裏面の温度差(K)は適宜規定する。
For film formation, a kind of molding method selected from a doctor blade method, a die coater method, a knife coater method and the like is used. The Marangoni number is a value defined by the following equation. M = t / (μk) * (| dσ / dT |) * ΔT, {M: Marangoni number, t: film thickness (m), μ (viscosity (N · s / m 2 ), k: thermal conductivity ( W / m · K), (| dσ / dT |): temperature gradient of surface tension (N / m · K), ΔT: temperature difference between the front surface and the back surface of the coating film (K)} where the thermal conductivity is For convenience, the thermal conductivity (0.1 to 0.5 W / m · K) of the organic resin is applied, and in addition, the temperature gradient of the surface tension (N / m · K), ΔT: between the surface and the back surface of the coating film The temperature difference (K) is appropriately defined.

成膜に使用する溶剤としては、例えば、メタノール、イソプロパノール、n-ブタノール、エチレングリコール、エチレングリコールモノプロピルエーテル、メチルエチルケトン、メチルイソブチルケトン、キシレン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジメチルアセトアミド、シクロヘキサン、又は、これらから選択された2種以上の混合物を含んだ有機溶剤を用いるのがよい。   Examples of the solvent used for film formation include methanol, isopropanol, n-butanol, ethylene glycol, ethylene glycol monopropyl ether, methyl ethyl ketone, methyl isobutyl ketone, xylene, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dimethylacetamide, It is preferable to use an organic solvent containing cyclohexane or a mixture of two or more selected from these.

次に、誘電体フィルム1の表面にAl(アルミニウム)などの金属成分を蒸着することによって電極層11を形成し、次いで、電極層11を形成した誘電体フィルム10を巻回させてフィルムコンデンサの本体部13を得る。   Next, the electrode layer 11 is formed by vapor-depositing a metal component such as Al (aluminum) on the surface of the dielectric film 1, and then the dielectric film 10 on which the electrode layer 11 is formed is wound to form a film capacitor. A main body 13 is obtained.

次に、本体部13の電極層11が露出した端面に外部電極14を形成する。外部電極14の形成には、例えば、金属の溶射、スパッタ法、メッキ法などが好適である。また、ここで、外部電極14にリード線15を形成しても良い。次いで、外部電極14(リード線15を含む)を形成した本体部13の表面に外装樹脂16を形成することによって本実施形態のフィルムコンデンサを得ることができる。   Next, the external electrode 14 is formed on the end surface of the main body 13 where the electrode layer 11 is exposed. For forming the external electrode 14, for example, metal spraying, sputtering, plating, or the like is suitable. Here, the lead wire 15 may be formed on the external electrode 14. Next, the film capacitor of the present embodiment can be obtained by forming the exterior resin 16 on the surface of the main body 13 on which the external electrodes 14 (including the lead wires 15) are formed.

具体的な材料の選択を行って誘電体フィルムを作製し、以下の評価を行った。   A specific material was selected to produce a dielectric film, and the following evaluation was performed.

まず平均粒径が100nmのアルミナ粒子(比誘電率:9)と、樹脂としてポリシクロオレフィンポリマー(分子量:Mw=20000、比誘電率2.2)を準備した。アルミナには樹脂との相溶性を向上させるためにシランカップリング処理を行った。   First, alumina particles having an average particle diameter of 100 nm (relative dielectric constant: 9) and a polycycloolefin polymer (molecular weight: Mw = 20000, relative dielectric constant: 2.2) as a resin were prepared. Alumina was subjected to silane coupling treatment in order to improve compatibility with the resin.

次に、上記のアルミナ粒子をシクロオレフィンポリマー中に分散させてスラリーを調製した。このときシクロヘキサンを希釈剤として加えた。   Next, a slurry was prepared by dispersing the alumina particles in a cycloolefin polymer. At this time, cyclohexane was added as a diluent.

この後、上記スラリーをコーターを用いてポリエチレンテレフタレート(PET)フィルム上に塗布してシート状に成形した。この時、セラミック凝集部がフィルム内部で連結されるような成膜条件で製膜を行った(例えば、マランゴニ数80以上)。   Thereafter, the slurry was applied onto a polyethylene terephthalate (PET) film using a coater and formed into a sheet. At this time, the film was formed under film forming conditions such that the ceramic agglomerates were connected inside the film (for example, Marangoni number 80 or more).

作製した誘電体フィルムは、180℃で脱溶剤を行った後の平均厚みが2.5μmであった。   The produced dielectric film had an average thickness of 2.5 μm after solvent removal at 180 ° C.

次に、真空蒸着法により誘電体フィルムの両面に平均厚みが75nmのAlの電極層を形成した。   Next, an Al electrode layer having an average thickness of 75 nm was formed on both surfaces of the dielectric film by vacuum deposition.

スラリの粘度は回転円板型粘度計を用いて室温(25℃)にて測定した。膜厚は作製した誘電体フィルムの一部を切り取り、10等分した領域を測定した平均値より求めた。マランゴニ数は測定したスラリ粘度および膜厚を用いて表1に示した式に代入して求めた。このとき熱伝導率、表面張力の温度勾配および塗膜の表面と裏面の温度差は基本的な物性値を用いた。   The viscosity of the slurry was measured at room temperature (25 ° C.) using a rotating disk viscometer. The film thickness was obtained from an average value obtained by measuring a region obtained by cutting out a part of the produced dielectric film and dividing it into 10 equal parts. The Marangoni number was obtained by substituting into the equation shown in Table 1 using the measured slurry viscosity and film thickness. At this time, basic physical property values were used for the thermal conductivity, the temperature gradient of the surface tension, and the temperature difference between the front surface and the back surface of the coating film.

金属膜の密着強度は、クロスカット法(JISK5600−5−6)を用いて評価した。カッターを用いて金属膜の表面に2mm間隔で6本切り込みを入れ、90°方向を変えて直行する6本の切込みをさらに入れ、格子状とした。75mmの長さに切り出したセロハンテープを金属膜の格子にカットした部分に貼り、強く圧着させ、その後、テープの端を約60°の角度で一気に引き剥がした。金属膜の剥離状態をJISK5600−5−6の0〜5段階の評価方法で評価した。測定試料数は10個とした。   The adhesion strength of the metal film was evaluated using a cross-cut method (JISK5600-5-6). Using a cutter, 6 cuts were made at intervals of 2 mm on the surface of the metal film, and 6 cuts that were changed perpendicularly by changing the 90 ° direction were made into a lattice shape. A cellophane tape cut out to a length of 75 mm was attached to the cut portion of the metal film lattice and pressed firmly, and then the end of the tape was peeled off at an angle of about 60 °. The peeled state of the metal film was evaluated by the 0-5 grade evaluation method of JISK5600-5-6. The number of measurement samples was 10.

表1の結果より、スラリー粘度および膜厚を調整してマランゴニ数を80以上とした試料No.1、2は、有機樹脂シートの表面に、セラミック粒子が略線状に連なった粒子群が500μm以内の間隔で点在した状態となり、クロスカット法を用いて剥離処理したときの金属膜の剥がれはほとんど見られなかった(0〜1段階)。特に、粒子群を平面視したときに、その形状がY字状あり、該Y字状の粒子群が六角形状を形成するように配置した構造の試料(試料No.2)では、金属膜の剥がれは全く見られなかった(0段階)。 From the results in Table 1, the sample No. 1 was adjusted so that the Marangoni number was 80 or more by adjusting the slurry viscosity and the film thickness. 1 and 2, the surface of the organic resin sheet is a state in which a group of particles in which ceramic particles are connected in a substantially linear manner is scattered at intervals of 500 μm or less, and the metal film is peeled off when the peeling process is performed using the cross-cut method. Was hardly seen (0 to 1 stage). In particular, when the particle group is viewed in plan, the shape is Y-shaped, and in the sample (sample No. 2) having a structure in which the Y-shaped particle group is arranged to form a hexagonal shape, No peeling was observed (Step 0).

これに対し、マランゴニ数が80以下の試料(試料No.4)では、有機樹脂シートの
表面にセラミック粒子が略線状に連なった粒子群は形成されず、クロスカット法を用いて剥離処理した時に金属膜に剥がれが見られた(3段階)。また、セラミック粒子を含ませなかった試料(試料No.3)についてもクロスカット法を用いて剥離処理した時に金属膜に剥がれが見られた(5段階)。
On the other hand, in the sample (sample No. 4) having a Marangoni number of 80 or less, a particle group in which ceramic particles are connected in a substantially linear shape is not formed on the surface of the organic resin sheet, and is peeled using a cross-cut method. Sometimes the metal film was peeled off (3 steps). In addition, the sample that did not contain ceramic particles (sample No. 3) was also peeled off when peeled using the cross-cut method (five steps).

1・・・・・・・誘電体フィルム
3・・・・・・・有機樹脂シート
5・・・・・・・粒子群
5a・・・・・・セラミック粒子
11・・・・・・金属膜
13・・・・・・本体部
14・・・・・・外部電極
15・・・・・・リード
16・・・・・・外装部材
DESCRIPTION OF SYMBOLS 1 ..... Dielectric film 3 .... Organic resin sheet 5 .... Particle group 5a ... Ceramic particles 11 ... Metal film 13 ... Body 14 ... External electrode 15 ... Lead 16 ... Exterior member

Claims (3)

有機樹脂シートの表面に、セラミック粒子が略線状に連なった粒子群が500μm以内の間隔で点在していることを特徴とする誘電体フィルム。   A dielectric film, characterized in that a group of particles in which ceramic particles are connected in a substantially linear manner are scattered on the surface of an organic resin sheet at intervals of 500 μm or less. 前記粒子群を平面視したときに、その形状がY字状であり、該Y字状の前記粒子群が多角形状を形成するように配置されていることを特徴とする請求項1に記載の誘電体フィルム。   The shape of the particle group is Y-shaped when viewed in plan, and the Y-shaped particle group is arranged to form a polygonal shape. Dielectric film. 請求項1または2に記載の誘電体フィルムの表面に導体層を有していることを特徴とするフィルムコンデンサ。   A film capacitor comprising a conductor layer on a surface of the dielectric film according to claim 1.
JP2013157863A 2013-07-30 2013-07-30 Dielectric film and film capacitor Pending JP2015029005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013157863A JP2015029005A (en) 2013-07-30 2013-07-30 Dielectric film and film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013157863A JP2015029005A (en) 2013-07-30 2013-07-30 Dielectric film and film capacitor

Publications (1)

Publication Number Publication Date
JP2015029005A true JP2015029005A (en) 2015-02-12

Family

ID=52492560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013157863A Pending JP2015029005A (en) 2013-07-30 2013-07-30 Dielectric film and film capacitor

Country Status (1)

Country Link
JP (1) JP2015029005A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152800A1 (en) * 2015-03-26 2016-09-29 京セラ株式会社 Film capacitor, connected capacitor, inverter and electric vehicle
JPWO2020039638A1 (en) * 2018-08-20 2021-08-10 株式会社村田製作所 Manufacturing method of film capacitors, films for film capacitors, and films for film capacitors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006968A (en) * 1999-06-18 2001-01-12 Mitsubishi Polyester Film Copp Laminated film for capacitor
JP2007332224A (en) * 2006-06-13 2007-12-27 Nitto Denko Corp Sheetlike composite material and method for producing the same
JP2013175579A (en) * 2012-02-24 2013-09-05 Kyocera Corp Capacitor
JP2013175658A (en) * 2012-02-27 2013-09-05 Kyocera Corp Capacitor
JP2013182908A (en) * 2012-02-29 2013-09-12 Kyocera Corp Capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006968A (en) * 1999-06-18 2001-01-12 Mitsubishi Polyester Film Copp Laminated film for capacitor
JP2007332224A (en) * 2006-06-13 2007-12-27 Nitto Denko Corp Sheetlike composite material and method for producing the same
JP2013175579A (en) * 2012-02-24 2013-09-05 Kyocera Corp Capacitor
JP2013175658A (en) * 2012-02-27 2013-09-05 Kyocera Corp Capacitor
JP2013182908A (en) * 2012-02-29 2013-09-12 Kyocera Corp Capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152800A1 (en) * 2015-03-26 2016-09-29 京セラ株式会社 Film capacitor, connected capacitor, inverter and electric vehicle
JPWO2016152800A1 (en) * 2015-03-26 2017-11-30 京セラ株式会社 Film capacitors and connected capacitors, inverters, and electric vehicles
JPWO2020039638A1 (en) * 2018-08-20 2021-08-10 株式会社村田製作所 Manufacturing method of film capacitors, films for film capacitors, and films for film capacitors
JP7200997B2 (en) 2018-08-20 2023-01-10 株式会社村田製作所 Film capacitor, film for film capacitor, and method for manufacturing film for film capacitor
US11710602B2 (en) 2018-08-20 2023-07-25 Murata Manufacturing Co., Ltd. Film capacitor, film-capacitor film, and method for manufacturing film-capacitor film

Similar Documents

Publication Publication Date Title
US20100302707A1 (en) Composite structures for high energy-density capacitors and other devices
JP6192724B2 (en) Dielectric film, film capacitor, and electrical device
JP5516034B2 (en) Highly insulating heat conductive sheet and heat dissipation device using the same
JP2022504830A (en) Discrete Metal-Insulator-Metal (MIM) Energy Storage Parts and Their Manufacturing Methods
JP2008229849A (en) Dielectric film and electronic component using the film
JP2015029005A (en) Dielectric film and film capacitor
JP2015012076A (en) Film capacitor
CN103797552B (en) Polytetrafluoroethylene thin film capacitor
JP6373200B2 (en) High capacitance capacitor winding laminate and multilayer winding capacitor using the same
JP2015103700A (en) Film capacitor
JP6215635B2 (en) Laminate and film capacitor
JP2015023174A (en) Film capacitor
JP6235291B2 (en) Laminate and film capacitor
JP2015183181A (en) High insulation film and film capacitor using the same
JP6219637B2 (en) Dielectric film and film capacitor
JP6199711B2 (en) Dielectric film and film capacitor
JP6441583B2 (en) Dielectric film and film capacitor
JP6339344B2 (en) Film capacitor
JP6258663B2 (en) Film capacitor
JP5299863B2 (en) Metal vapor deposited film and method for producing the same
JP2014107394A (en) Metalized film capacitor
JP2015216312A (en) Film capacitor
CN111383842B (en) Capacitor with a capacitor element
CN114746265B (en) Metallized film and film capacitor using the same
JP2017010978A (en) Insulating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170926