JP2015026780A - Insulating heat dissipating substrate - Google Patents

Insulating heat dissipating substrate Download PDF

Info

Publication number
JP2015026780A
JP2015026780A JP2013156784A JP2013156784A JP2015026780A JP 2015026780 A JP2015026780 A JP 2015026780A JP 2013156784 A JP2013156784 A JP 2013156784A JP 2013156784 A JP2013156784 A JP 2013156784A JP 2015026780 A JP2015026780 A JP 2015026780A
Authority
JP
Japan
Prior art keywords
metal layer
insulating
particles
resin substrate
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013156784A
Other languages
Japanese (ja)
Inventor
郡山 慎一
Shinichi Koriyama
慎一 郡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013156784A priority Critical patent/JP2015026780A/en
Publication of JP2015026780A publication Critical patent/JP2015026780A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an insulating heat dissipation substrate reduced in thermal resistance and high in heat dissipation efficiency.SOLUTION: An insulating heat dissipation substrate 1 includes: an insulating resin substrate 2; a first metal layer 3 and a second metal layer 4 laminated on the upper and lower surfaces of the insulating resin substrate 2, respectively; and a plurality of highly thermally conductive insulating particles 5 disposed in the insulating resin substrate 2. The insulating resin substrate contains the highly thermally conductive insulating particles 5, the upper part of which is in point-contact with the first metal layer 3, and the lower part of which is in point-contact with the second metal layer 4. With the configuration, a heat transfer path through which only the highly thermally conductive insulating particles 5 pass can be formed since a resin material is not interposed between the first metal layer 3 and the second metal layer 4 in a thickness direction thereof in the insulating resin substrate 2. Accordingly, the thermal resistance between the first metal layer 3 and the second metal layer 4 can be easily reduced.

Description

本発明は、電気・電子機器等の発熱部から放熱部材へ熱を伝達させるのに用いる絶縁放熱基板に関するものである。   The present invention relates to an insulating heat radiating substrate used for transferring heat from a heat generating part such as an electric / electronic device to a heat radiating member.

従来、電気・電子機器の発熱部から放熱部材へ熱を伝達させる絶縁放熱基板としては、絶縁樹脂基板を介して、第1金属層および第2金属層を貼り合わせたものが用いられてきた。絶縁樹脂基板は、高熱伝導性と絶縁性との要求から、高熱伝導絶縁粒子を含有していた(例えば、特許文献1参照)。   Conventionally, as an insulating heat radiating substrate for transferring heat from a heat generating portion of an electric / electronic device to a heat radiating member, a substrate in which a first metal layer and a second metal layer are bonded via an insulating resin substrate has been used. The insulating resin substrate contains high thermal conductive insulating particles because of demands for high thermal conductivity and insulation (see, for example, Patent Document 1).

特開2001−196495号公報JP 2001-196495 A

特許文献1に開示された絶縁樹脂基板は、その厚み方向における第1金属層と第2金属層との間に、樹脂基板を構成する樹脂材料が介在する。樹脂材料が介在する分、第1金属層および第2金属層間での熱抵抗が増加しやすくなる。従って、絶縁放熱基板に発熱部となる電子部品が搭載された場合、絶縁放熱基板を介して良好に放熱を行うことが難しかった。   In the insulating resin substrate disclosed in Patent Document 1, a resin material constituting the resin substrate is interposed between the first metal layer and the second metal layer in the thickness direction. Since the resin material is interposed, the thermal resistance between the first metal layer and the second metal layer is likely to increase. Therefore, when an electronic component serving as a heat generating portion is mounted on the insulating heat dissipation board, it is difficult to perform heat dissipation well through the insulating heat dissipation board.

本発明の目的は、熱抵抗を低減し、放熱効率の高い絶縁放熱基板を提供することにある。   An object of the present invention is to provide an insulating heat dissipation substrate with reduced thermal resistance and high heat dissipation efficiency.

本発明の一態様に係る絶縁放熱基板は、絶縁樹脂基板と、該絶縁樹脂基板の上下面のそれぞれに積層された第1金属層および第2金属層と、前記絶縁樹脂基板中に配置された複数の高熱伝導絶縁粒子とを有し、上部が前記第1金属層と点接触しており、下部が前記第2金属層と点接触している前記高熱伝導絶縁粒子を含んでいる。   An insulating heat dissipation substrate according to an aspect of the present invention is disposed in an insulating resin substrate, a first metal layer and a second metal layer stacked on each of the upper and lower surfaces of the insulating resin substrate, and the insulating resin substrate. A plurality of high thermal conductive insulating particles, wherein the upper part includes the high thermal conductive insulating particles in point contact with the first metal layer and the lower part includes point contact with the second metal layer.

上記の絶縁放熱基板の構成によれば、上部が前記第1金属層と点接触しており、下部が前記第2金属層と点接触している前記高熱伝導絶縁粒子を含んでいるので、絶縁樹脂基板は、その厚み方向における第1金属層と第2金属層との間に樹脂材料が介在しなくなる分、高熱伝導絶縁粒子のみを通過する伝熱経路ができるので第1金属層および第2金属層間における熱抵抗を低減しやすくなる。従って、絶縁放熱基板に発熱部となる電子部品が搭載された場合であっても、絶縁放熱基板を介して良好に放熱しやすくなる。   According to the structure of the insulating heat dissipation substrate, the upper part includes the high thermal conductive insulating particles that are in point contact with the first metal layer and the lower part is in point contact with the second metal layer. Since the resin substrate does not intervene between the first metal layer and the second metal layer in the thickness direction, the resin substrate has a heat transfer path that passes only through the high thermal conductive insulating particles, so the first metal layer and the second metal layer It becomes easy to reduce the thermal resistance between metal layers. Therefore, even when an electronic component serving as a heat generating portion is mounted on the insulating heat dissipation substrate, it is easy to radiate heat well through the insulating heat dissipation substrate.

本発明の実施形態における絶縁放熱基板を示す断面図である。It is sectional drawing which shows the insulation thermal radiation board | substrate in embodiment of this invention. 本発明の実施形態における複数の高熱伝導絶縁粒子の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the several high heat conductive insulating particle in embodiment of this invention. (a)は本発明の他の実施形態における絶縁放熱基板を示す上面図であり、(b)は(a)のX−X線における縦断面を示す断面図である。(A) is a top view which shows the insulation thermal radiation board | substrate in other embodiment of this invention, (b) is sectional drawing which shows the longitudinal cross-section in the XX line of (a).

以下、本発明の実施形態に係る絶縁放熱基板について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的なものであり、図面上の寸法比率等は現実のものとは必ずしも一致していない。   Hereinafter, an insulating heat dissipation substrate according to an embodiment of the present invention will be described with reference to the drawings. Note that the drawings used in the following description are schematic, and the dimensional ratios and the like on the drawings do not necessarily match the actual ones.

なお、絶縁放熱基板1は、便宜的に、その厚み方向を上下方向と定義し、上面、下面、上部、下部等の語を用いるものとする。   For the sake of convenience, the thickness direction of the insulating heat dissipation substrate 1 is defined as the vertical direction, and terms such as upper surface, lower surface, upper portion, and lower portion are used.

図1を参照して、本発明の絶縁放熱基板1について説明する。図1に示す例の絶縁放熱基板1は、絶縁樹脂基板2、第1金属層3、第2金属層4と、複数の高熱伝導絶縁粒子5とを有する。   With reference to FIG. 1, the insulated heat dissipation board 1 of this invention is demonstrated. 1 has an insulating resin substrate 2, a first metal layer 3, a second metal layer 4, and a plurality of high thermal conductive insulating particles 5.

絶縁樹脂基板2の厚みは、例えば、50μm〜100μm程度である。絶縁樹脂基板2のマトリックスとなる熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ポリイミド樹脂などの組成物を用いることができるが、エポキシ樹脂は、絶縁樹脂基板2の製造が容易であるので、特に好ましい。   The thickness of the insulating resin substrate 2 is, for example, about 50 μm to 100 μm. As the thermosetting resin that becomes the matrix of the insulating resin substrate 2, a composition such as an epoxy resin, an unsaturated polyester resin, a phenol resin, a melamine resin, a silicone resin, or a polyimide resin can be used. The resin substrate 2 is particularly preferable because it is easy to manufacture.

エポキシ樹脂組成物の主剤としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環脂肪族エポキシ樹脂、グリシジルーアミノフェノール系エポキシ樹脂が挙げられる。これらのエポキシ樹脂は2種以上を併用しても良い。   As the main component of the epoxy resin composition, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, orthocresol novolac type epoxy resin, phenol novolac type epoxy resin, alicyclic aliphatic epoxy resin, glycidyl aminophenol type epoxy resin Is mentioned. Two or more of these epoxy resins may be used in combination.

エポキシ樹脂組成物の硬化剤としては、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ハイミック酸などの脂環式酸無水物、ドデセニル無水コハク酸などの脂肪族酸無水物、無水フタル酸、無水トリメリット酸などの芳香族酸無水物、ジシアンジアミド、アジピン酸ジヒドラジドなどの有機ジヒドラジド、トリス(ジメチルアミノメチル)フェノール、ジメチルベンジルアミン、1,8-ジアザビシクロ(
5,4,0)ウンデセン、およびその誘導体、2−メチルイミダゾール、2−エチルー4−メチルイミダゾール、2−フェニルイミダゾールなどのイミダゾール類が挙げられる。これらの硬化剤は2種以上を併用しても良い。
Examples of the curing agent for the epoxy resin composition include alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and hymic anhydride, aliphatic acid anhydrides such as dodecenyl succinic anhydride, and anhydride. Aromatic acid anhydrides such as phthalic acid and trimellitic anhydride, organic dihydrazides such as dicyandiamide and adipic acid dihydrazide, tris (dimethylaminomethyl) phenol, dimethylbenzylamine, 1,8-diazabicyclo (
5,4,0) undecene, and derivatives thereof, imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole and the like. Two or more of these curing agents may be used in combination.

絶縁樹脂基板2には、必要に応じてカップリング剤を含有させても良い。用いられるカップリング剤としては、例えばγ―グリシドキシプロピルトリメトキシシラン、N−β(アミノエチル)γ―アミノプロピルトリエトキシシラン、N−フェニル−γ―アミノプロピルトリメトキシシラン、γ―メルカプトプロピルトリメトキシシランなどが挙げられる。上記カップリング剤は2種類以上併用しても良い。絶縁樹脂基板2に上記のようなカップリング剤を含有させると、第1金属層3および第2金属層4に対する接着力が向上する。   The insulating resin substrate 2 may contain a coupling agent as necessary. Examples of coupling agents used include γ-glycidoxypropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and γ-mercaptopropyl. Examples include trimethoxysilane. Two or more of the above coupling agents may be used in combination. When the insulating resin substrate 2 contains the coupling agent as described above, the adhesion to the first metal layer 3 and the second metal layer 4 is improved.

また、絶縁樹脂基板2のマトリックスとなる熱硬化性樹脂にエポキシ樹脂組成物を用いた場合、主剤の一部として数平均分子量3000以上のエポキシ樹脂を併用すると、絶縁樹脂基板2の柔軟性が向上し、第1金属層3および第2金属層4に対する密着性が増して、好ましい。数平均分子量3000以上のエポキシ樹脂の配合割合は、主剤の液状エポキシ樹脂100重量部に対して10〜40重量部である。この配合割合が10重量部未満では、上記の密着性の向上が認められない。この配合割合が40重量部より大きいと、絶縁樹脂基板2の耐熱性が低下する。   Moreover, when an epoxy resin composition is used for the thermosetting resin that becomes the matrix of the insulating resin substrate 2, the flexibility of the insulating resin substrate 2 is improved by using an epoxy resin having a number average molecular weight of 3000 or more as a part of the main agent. And the adhesiveness with respect to the 1st metal layer 3 and the 2nd metal layer 4 increases, and it is preferable. The compounding ratio of the epoxy resin having a number average molecular weight of 3000 or more is 10 to 40 parts by weight with respect to 100 parts by weight of the liquid epoxy resin as the main agent. When the blending ratio is less than 10 parts by weight, the above-described improvement in adhesion is not recognized. When this blending ratio is larger than 40 parts by weight, the heat resistance of the insulating resin substrate 2 is lowered.

図1に示す例のように、第1金属層3、第2金属層4は、絶縁樹脂基板の表裏に積層されている。第1金属層3、第2金属層4の材料としては、熱伝導性や電気特性などを考慮した場合、例えば、CuやAl等が使用される。第1金属層3、第2金属層4の厚みは、
例えば、150μm〜300μm程度である。
As in the example shown in FIG. 1, the first metal layer 3 and the second metal layer 4 are laminated on the front and back of the insulating resin substrate. As materials for the first metal layer 3 and the second metal layer 4, for example, Cu or Al is used in consideration of thermal conductivity, electrical characteristics, and the like. The thicknesses of the first metal layer 3 and the second metal layer 4 are as follows:
For example, it is about 150 μm to 300 μm.

図1に示す例のように、複数の高熱伝導絶縁粒子5は、絶縁樹脂基板2中に配置されており、絶縁樹脂基板2は、上部が第1金属層3と点接触しており、下部が第2金属層4と点接触している高熱伝導絶縁粒子5を含んでいる。これにより、絶縁樹脂基板2は、その厚み方向における第1金属層3と第2金属層4との間に樹脂材料が介在しなくなる分、高熱伝導絶縁粒子5のみを通過する伝熱経路ができるので第1金属層3および第2金属層4間における熱抵抗を低減しやすくなる。従って、絶縁放熱基板1に発熱部となる電子部品が搭載された場合であっても、絶縁放熱基板1を介して良好に放熱しやすくなる。   As in the example shown in FIG. 1, the plurality of high thermal conductive insulating particles 5 are arranged in the insulating resin substrate 2, and the upper portion of the insulating resin substrate 2 is in point contact with the first metal layer 3, and the lower portion Includes high thermal conductivity insulating particles 5 that are in point contact with the second metal layer 4. As a result, the insulating resin substrate 2 has a heat transfer path that passes only the high thermal conductive insulating particles 5 because the resin material does not intervene between the first metal layer 3 and the second metal layer 4 in the thickness direction. Therefore, it becomes easy to reduce the thermal resistance between the first metal layer 3 and the second metal layer 4. Therefore, even when an electronic component serving as a heat generating portion is mounted on the insulating heat radiating substrate 1, heat can be easily radiated through the insulating heat radiating substrate 1.

なお、この放熱の観点からいえば、単位面積当たりの第1金属層3(第2金属層4)との点接触数が5〜500個/mmであることが好ましい。 From the viewpoint of heat dissipation, the number of point contacts with the first metal layer 3 (second metal layer 4) per unit area is preferably 5 to 500 / mm 2 .

また、図1に示す例のように、絶縁樹脂基板2中において、その厚み方向において第1金属層3と第2金属層4との間に高熱伝導絶縁粒子5が複数でなく、1つのみ存在している。絶縁樹脂基板2中に、複数の高熱伝導絶縁粒子が互いに接するように厚み方向に粒子を配列する場合、絶縁樹脂基板2中における高熱伝導絶縁粒子の含有比率を極端に増加させる必要がある。そのような場合、絶縁樹脂基板中の樹脂材料比率が極端に低下することから絶縁樹脂基板の強度が低下することが予想される。従って、図1に示す例のように、第1金属層3と第2金属層4との間に、厚み方向において、1つのみの高熱伝導絶縁粒子5が配置されていることが、絶縁樹脂基板2の強度の観点から好ましい。   Further, as in the example shown in FIG. 1, in the insulating resin substrate 2, there is not a plurality of high thermal conductive insulating particles 5 between the first metal layer 3 and the second metal layer 4 in the thickness direction, but only one. Existing. When the particles are arranged in the thickness direction in the insulating resin substrate 2 so that the plurality of high heat conductive insulating particles are in contact with each other, the content ratio of the high heat conductive insulating particles in the insulating resin substrate 2 needs to be extremely increased. In such a case, since the resin material ratio in the insulating resin substrate is extremely reduced, it is expected that the strength of the insulating resin substrate is reduced. Therefore, as in the example shown in FIG. 1, the insulating resin is that only one high thermal conductive insulating particle 5 is arranged in the thickness direction between the first metal layer 3 and the second metal layer 4. It is preferable from the viewpoint of the strength of the substrate 2.

また、図1に示されるように、高熱伝導絶縁粒子5が第1金属層3および第2金属層4と点接触していることから、高熱伝導絶縁粒子5と、第1金属層3および第2金属層4との点接触部の周辺に、絶縁樹脂基板2の樹脂材料が入り込む構成となっている。この入り込んだ樹脂材料によって、絶縁放熱基板1全体が撓んだ場合であっても、高熱伝導絶縁粒子5と、第1金属層3および第2金属層4とが剥離するのを抑制できる。   Further, as shown in FIG. 1, since the high heat conductive insulating particles 5 are in point contact with the first metal layer 3 and the second metal layer 4, the high heat conductive insulating particles 5, the first metal layer 3 and the first metal layer 3 The resin material of the insulating resin substrate 2 enters the periphery of the point contact portion with the two metal layers 4. Even if the insulating heat-radiating substrate 1 as a whole is bent by the resin material that has entered, it is possible to suppress separation of the high thermal conductive insulating particles 5 from the first metal layer 3 and the second metal layer 4.

また、例えば、高熱伝導絶縁粒子5としてAl23等のセラミックスを用い、第1金属層3および第2金属層4としてCu等を用い、絶縁樹脂基板2の樹脂材料としてエポキシ樹脂等を選択した場合、一般的に、高熱伝導絶縁粒子5と金属層3、4との熱膨張率の差は、樹脂材料と金属層3、4との熱膨張率の差よりも大きい。よって、本願のように、高熱伝導絶縁粒子5と金属層3、4との接触を点接触とした場合、金属層3、4と比較的熱膨張率が近似した樹脂材料を、より金属層3、4に接触させることができる。従って、熱膨張差の大きい高熱伝導絶縁粒子5と金属層3、4との接触面積を低減し、両者が剥離することを抑制することができる。 Further, for example, ceramics such as Al 2 O 3 are used as the high thermal conductive insulating particles 5, Cu is used as the first metal layer 3 and the second metal layer 4, and an epoxy resin or the like is selected as the resin material of the insulating resin substrate 2. In general, the difference in thermal expansion coefficient between the high thermal conductive insulating particles 5 and the metal layers 3 and 4 is larger than the difference in thermal expansion coefficient between the resin material and the metal layers 3 and 4. Therefore, as in the present application, when the contact between the high thermal conductive insulating particle 5 and the metal layers 3 and 4 is a point contact, a resin material having a coefficient of thermal expansion that is relatively similar to that of the metal layers 3 and 4 is more preferably the metal layer 3. 4 can be contacted. Therefore, it is possible to reduce the contact area between the high thermal conductive insulating particles 5 having a large thermal expansion difference and the metal layers 3 and 4 and to prevent them from peeling off.

また、高熱伝導絶縁粒子5の材料としては、絶縁性と比較的高い熱伝導率を兼ね備えたセラミックスが使用でき、例えば、Al23(熱伝導率:20W/mk)、SiC、SiN(熱伝導率:70W/mk)、AlN(熱伝導率:170W/mk)等が挙げられるが、必要とする放熱性能に応じて選択することができる。複数の高熱伝導絶縁粒子5の直径は、例えば、50μm〜100μm程度である。 Further, as the material of the high thermal conductivity insulating particles 5, ceramics having both insulating properties and relatively high thermal conductivity can be used. For example, Al 2 O 3 (thermal conductivity: 20 W / mk), SiC, SiN (thermal Conductivity: 70 W / mk), AlN (thermal conductivity: 170 W / mk), and the like can be mentioned, but can be selected according to the required heat dissipation performance. The diameter of the plurality of high thermal conductive insulating particles 5 is, for example, about 50 μm to 100 μm.

次に、図2を用いて本願に示す例の粒度分布について説明する。粒度分布とは、粉体粒子の粒子径ごとの存在比率の分布をいい、存在比率は体積基準であるものとし、レーザー回折散乱法、画像解析等によって測定する。また、以下で、モード径とは、出現比率がもっとも大きい粒子径チャンネル、または分布の極大値の粒子径をいう。   Next, the particle size distribution of the example shown in the present application will be described with reference to FIG. The particle size distribution refers to the distribution of the abundance ratio for each particle diameter of the powder particles, the abundance ratio is based on volume, and is measured by a laser diffraction scattering method, image analysis, or the like. In the following, the mode diameter refers to the particle diameter channel having the largest appearance ratio or the particle diameter at the maximum value of the distribution.

図2に示す例においては、複数の高熱伝導絶縁粒子5は、直径が50μm〜100μm程度の粒子が絶縁樹脂基板2中に分布しており、モード径は100μm程度となっている
。なお、複数の高熱伝導絶縁粒子5のモード径は、絶縁樹脂基板2の厚さと略一致していることが好ましい。従って、図2に示す例においては、絶縁樹脂基板2の厚さは100μm程度であることが好ましい。このような場合には、上部が第1金属層3と点接触し、下部が第2金属層4と点接触するような高熱伝導絶縁粒子5の比率を増加させることができ、単位面積当たりの第1金属層3(第2金属層4)との点接触数を5〜500個/mmとする上で好ましい。
In the example shown in FIG. 2, the plurality of high thermal conductive insulating particles 5 have particles having a diameter of about 50 μm to 100 μm distributed in the insulating resin substrate 2 and have a mode diameter of about 100 μm. In addition, it is preferable that the mode diameters of the plurality of high thermal conductive insulating particles 5 substantially coincide with the thickness of the insulating resin substrate 2. Therefore, in the example shown in FIG. 2, the thickness of the insulating resin substrate 2 is preferably about 100 μm. In such a case, it is possible to increase the ratio of the high thermal conductive insulating particles 5 in which the upper part is in point contact with the first metal layer 3 and the lower part is in point contact with the second metal layer 4, and the unit per unit area can be increased. It is preferable when the number of point contacts with the first metal layer 3 (second metal layer 4) is 5 to 500 pieces / mm 2 .

また、図2に示す例のように、複数の高熱伝導絶縁粒子5は、モード径の粒子の存在比率に対し、モード径の1.5倍以上の粒子径を有する粒子の存在比率が30%以下であることが好ましい。この場合、モード径の粒子の存在比率がそれ以外の粒子径の存在比率に対して相対的に大きくなるので、上部が第1金属層3と点接触し、下部が第2金属層4と点接触するような高熱伝導絶縁粒子5の比率を増加させることができ、単位面積当たりの第1金属層3(第2金属層4)との点接触数を5〜500個/mmとする上で好ましい。 In addition, as in the example shown in FIG. 2, the plurality of high thermal conductive insulating particles 5 have an abundance ratio of particles having a particle diameter of 1.5 times or more the mode diameter with respect to the abundance ratio of the mode diameter particles of 30%. The following is preferable. In this case, since the abundance ratio of the mode diameter particles is relatively larger than the abundance ratio of the other particle diameters, the upper portion is in point contact with the first metal layer 3 and the lower portion is in contact with the second metal layer 4. The ratio of the high thermal conductive insulating particles 5 that can come into contact can be increased, and the number of point contacts with the first metal layer 3 (second metal layer 4) per unit area is set to 5 to 500 / mm 2. Is preferable.

また、図2に示す例のように、複数の高熱伝導絶縁粒子5は、モード径の粒子の存在比率に対し、モード径の0.5倍以下の粒子径を有する粒子の存在比率が30%以下であることが好ましい。この場合、モード径の粒子の存在比率がそれ以外の粒子径の存在比率に対して更に相対的に大きくなるので、上部が第1金属層3と点接触し、下部が第2金属層4と点接触するような高熱伝導絶縁粒子5の比率を更に増加させることができ、単位面積当たりの第1金属層3(第2金属層4)との点接触数を5〜500個/mmとする上で好ましい。 In addition, as in the example shown in FIG. 2, the plurality of high thermal conductive insulating particles 5 have an abundance ratio of particles having a particle diameter of 0.5 times or less the mode diameter with respect to the abundance ratio of the mode diameter particles. The following is preferable. In this case, since the abundance ratio of the mode diameter particles is further relatively larger than the abundance ratio of the other particle diameters, the upper portion is in point contact with the first metal layer 3 and the lower portion is in contact with the second metal layer 4. The ratio of the high thermal conductive insulating particles 5 that make point contact can be further increased, and the number of point contacts with the first metal layer 3 (second metal layer 4) per unit area is 5 to 500 / mm 2 . This is preferable.

なお、以下に、図2示す例のような粒度分布の測定方法の具体的な方法として、レーザー回折散乱法と、画像解析法とに分けて説明する。   In the following, as a specific method for measuring the particle size distribution as in the example shown in FIG. 2, a laser diffraction scattering method and an image analysis method will be described separately.

(レーザー回折散乱法)
(1)まず、絶縁放熱基板1の第1金属層3および第2金属層4を溶解させる。例えば、第1金属層3および第2金属層4がCu又はAlであった場合には、絶縁放熱基板1を40℃〜50℃程度に加熱した塩化第2鉄溶液に浸漬し揺動する。これにより、第1金属層3および第2金属層4が溶解し、絶縁樹脂基板2単体を取り出すことができる。
(Laser diffraction scattering method)
(1) First, the first metal layer 3 and the second metal layer 4 of the insulating heat dissipation substrate 1 are dissolved. For example, when the first metal layer 3 and the second metal layer 4 are Cu or Al, the insulating heat radiating substrate 1 is immersed and shaken in a ferric chloride solution heated to about 40 ° C. to 50 ° C. Thereby, the 1st metal layer 3 and the 2nd metal layer 4 melt | dissolve, and the insulated resin board | substrate 2 single-piece | unit can be taken out.

(2)次に、絶縁樹脂基板2の樹脂部分を溶解する。この工程においては、例えば、絶縁樹脂基板2単体をダイナソルブ(エア・ブラウン社)、またはeソルブ21(カネコ化学)等の樹脂溶解剤に浸漬する。これにより、絶縁樹脂基板2から樹脂部分を溶解することができる。なお、この状態においては、樹脂溶解剤中に高熱伝導絶縁粒子5が沈殿しており、溶解した樹脂成分は上澄みとなって存在している。   (2) Next, the resin portion of the insulating resin substrate 2 is dissolved. In this step, for example, the insulating resin substrate 2 alone is immersed in a resin dissolving agent such as Dynasolv (Air Brown) or esolv 21 (Kaneko Chemical). Thereby, the resin portion can be dissolved from the insulating resin substrate 2. In this state, the high thermal conductive insulating particles 5 are precipitated in the resin solubilizer, and the dissolved resin component exists as a supernatant.

(3)次に、樹脂溶解剤から溶解した樹脂成分を分離する。この工程においては、まず、上述した樹脂溶解剤を遠心分離し、上澄みとしての溶解樹脂成分を廃棄する。続いて、IPA等の有機溶剤を容器に入れ、超音波等で撹拌した後再度遠心分離し、1回目の廃棄後も残存していた樹脂成分が溶解した有機溶剤を、上澄みとして再度廃棄する。有機溶剤の注入、撹拌と遠心分離による分離、廃棄のサイクルを、例えば、2〜3回程度繰り返すことが好ましい。その後、容器に残った高熱伝導絶縁粒子5を乾燥させることによって高熱伝導絶縁粒子5のみを取り出すことができる。   (3) Next, the dissolved resin component is separated from the resin dissolving agent. In this step, first, the resin solubilizer described above is centrifuged, and the dissolved resin component as the supernatant is discarded. Subsequently, an organic solvent such as IPA is put in a container, stirred with ultrasonic waves and then centrifuged again, and the organic solvent in which the resin component remaining after the first disposal is dissolved is discarded as a supernatant again. It is preferable to repeat the cycle of injection of organic solvent, separation by stirring and centrifugation, and disposal, for example, about 2 to 3 times. Then, only the high heat conductive insulating particles 5 can be taken out by drying the high heat conductive insulating particles 5 remaining in the container.

(4)次に、高熱伝導絶縁粒子5の濃度が0.1wt%程度になるよう、容器に分散媒と
して蒸留水を入れて、それを超音波撹拌する。ここで、蒸留水の代わりにIPA等の有機溶剤を用いても良い。なお、必要に応じて中性洗剤やヘキサメタリン酸ナトリウムのような分散剤を添加しても良い。
(4) Next, distilled water is added as a dispersion medium to the container so that the concentration of the high thermal conductive insulating particles 5 is about 0.1 wt%, and the mixture is ultrasonically stirred. Here, an organic solvent such as IPA may be used instead of distilled water. If necessary, a neutral detergent or a dispersant such as sodium hexametaphosphate may be added.

(5)次に、得られた高熱伝導絶縁粒子5入りの分散媒を、粒度分布測定用の測定器であるマイクロトラック(日機装)、またはSALD-3100(島津製作所)などにセットして、
レーザー回折散乱法によって粒度分布を測定する。
(5) Next, the obtained dispersion medium containing the high thermal conductive insulating particles 5 is set on a microtrack (Nikkiso) which is a measuring instrument for particle size distribution measurement, or SALD-3100 (Shimadzu Corporation), etc.
The particle size distribution is measured by the laser diffraction scattering method.

(画像解析法)
(1)まず、レーザー回折散乱法における工程(1)と同様に、第1金属層3および第2金属層4を溶解させ、絶縁樹脂基板2単体を取り出す。なお、X線透過を用いた画像解析法においては、第1金属層3および第2金属層4の溶解は必須ではないが、これらを除去した方が、より鮮明な画像を得ることができるので好ましい。
(Image analysis method)
(1) First, similarly to the step (1) in the laser diffraction scattering method, the first metal layer 3 and the second metal layer 4 are dissolved, and the insulating resin substrate 2 alone is taken out. In the image analysis method using X-ray transmission, the dissolution of the first metal layer 3 and the second metal layer 4 is not essential, but a clearer image can be obtained by removing them. preferable.

(2)次に、絶縁樹脂基板2の上面側からX線透過画像を撮像する。X線撮像装置としては、SMX-1000(島津製作所)、またはTOSMICRON-S400(東芝)などを用いることができる。撮像した画像を画像解析することによって、粒度分布を得ることができる。   (2) Next, an X-ray transmission image is taken from the upper surface side of the insulating resin substrate 2. As the X-ray imaging apparatus, SMX-1000 (Shimadzu Corporation), TOSMICRON-S400 (Toshiba) or the like can be used. A particle size distribution can be obtained by image analysis of the captured image.

次に、図3を用いて、本発明の絶縁放熱基板1の他の例について説明する。図3(a)に示す例においては、絶縁樹脂基板2の上面に3枚の第1金属層3が設けられている。図3に示す例においては、そのうちの1つの第1金属層3に、素子が実装される素子実装部7が設けられている。実装される素子の例としては、パワー系半導体素子などが挙げられる。素子実装においては例えばダイボンディングが行われる。   Next, another example of the insulated heat dissipation substrate 1 of the present invention will be described with reference to FIG. In the example shown in FIG. 3A, three first metal layers 3 are provided on the upper surface of the insulating resin substrate 2. In the example shown in FIG. 3, an element mounting portion 7 on which an element is mounted is provided on one of the first metal layers 3. Examples of mounted elements include power semiconductor elements. In element mounting, for example, die bonding is performed.

また、図3に示すように、この絶縁樹脂基板2には、点接触している粒子の密度が高くなっている高密度点接触領域6が設けられており、かつ、この高密度点接触領域6では、モード径の粒子の存在比率に対し、モード径の1.5倍以上の粒子径を有する粒子の存在比率が10%以下であっても良い。   Further, as shown in FIG. 3, the insulating resin substrate 2 is provided with a high-density point contact region 6 in which the density of particles in point contact is high, and the high-density point contact region. 6, the abundance ratio of particles having a particle diameter of 1.5 times or more the mode diameter relative to the abundance ratio of the mode diameter particles may be 10% or less.

また、図3に示すように、高密度点接触領域6は、絶縁樹脂基板2の素子実装部7に存在することが好ましい。このような場合には、素子で発生した熱を、伝熱効率の高い高密度点接触領域6を介して第2金属層4側に効率的に放熱することができる。なお、図3に示す例においては、上面視した際に、高密度点接触領域6が素子実装部7と同様の形状になっているが、高密度点接触領域6と素子実装部7とは、その形状に多少の誤差があっても良い。   In addition, as shown in FIG. 3, the high-density point contact region 6 is preferably present in the element mounting portion 7 of the insulating resin substrate 2. In such a case, the heat generated in the element can be efficiently radiated to the second metal layer 4 side through the high-density point contact region 6 with high heat transfer efficiency. In the example shown in FIG. 3, when viewed from above, the high-density point contact region 6 has the same shape as the element mounting portion 7, but the high-density point contact region 6 and the element mounting portion 7 are different from each other. The shape may have some errors.

本発明の絶縁放熱基板1は、以下に示す方法により製造する。   The insulated heat dissipation board 1 of the present invention is manufactured by the following method.

(1)まず、絶縁樹脂基板2を準備する。この工程では、所定量の熱硬化性樹脂の主剤とこの主剤を硬化させるのに必要な量の硬化剤とからなる熱硬化性樹脂組成物と、例えばこの熱硬化性樹脂組成物と同重量の溶剤とを混合し、上記熱硬化性樹脂組成物の溶液とする。   (1) First, the insulating resin substrate 2 is prepared. In this step, a thermosetting resin composition comprising a predetermined amount of a main component of a thermosetting resin and an amount of a curing agent necessary to cure the main component, for example, the same weight as the thermosetting resin composition. A solvent is mixed to obtain a solution of the thermosetting resin composition.

次に、上記熱硬化性樹脂組成物の溶液に、高熱伝導絶縁粒子5を添加して予備混合する。この予備混合物を例えば3本ロールやニーダなどで混練し、絶縁樹脂基板用コンパウンドとする。ここで、溶液に添加する高熱伝導絶縁粒子5として、例えば図2に示すような所望の粒度分布の粉体を得るためには、量産型スピンエアーシーブ SAR-500(セイシン企業)、マイクロン・クラッシファイアー(セイシン企業)などの分級器を用いると良い。   Next, the high heat conductive insulating particles 5 are added to the solution of the thermosetting resin composition and premixed. This preliminary mixture is kneaded with, for example, three rolls or a kneader to obtain an insulating resin substrate compound. Here, as the high thermal conductive insulating particles 5 to be added to the solution, for example, in order to obtain a powder having a desired particle size distribution as shown in FIG. 2, a mass production type spin air sheave SAR-500 (seishin company), Micron Classy It is recommended to use a classifier such as Fire (Seishin company).

次に、得られたコンパウンドを、離型処理された樹脂シートまたは金属板上に、ドクターブレード法により塗布する。次に、この塗布物を乾燥し、塗布物中の溶剤を揮発させ、絶縁樹脂基板2を得る。ここで、本願発明のように、高熱伝導絶縁粒子5が第1金属層3、第2金属層4と点接触するような絶縁樹脂基板2を得るためには、上記のように得られたコンパウンドを、高熱伝導絶縁粒子5の粒子径と同程度の厚みになるよう、樹脂シート
や金属板上に塗布すると良い。
Next, the obtained compound is apply | coated by the doctor blade method on the resin sheet or metal plate by which the mold release process was carried out. Next, this coated material is dried, and the solvent in the coated material is volatilized to obtain the insulating resin substrate 2. Here, in order to obtain the insulating resin substrate 2 in which the high thermal conductive insulating particles 5 are in point contact with the first metal layer 3 and the second metal layer 4 as in the present invention, the compound obtained as described above is used. Is preferably applied on a resin sheet or a metal plate so as to have the same thickness as the particle diameter of the high thermal conductive insulating particles 5.

この時、必要に応じて加熱をして、溶剤の揮発を促進させても良く、熱硬化性樹脂組成物の反応を進め、Bステージ化しても良い。また、粘度が低い熱硬化性樹脂組成物の場合は、溶剤を添加することなしに、熱硬化性樹脂組成物そのものに、高熱伝導絶縁粒子5を添加しても良い。また、カップリング剤などの添加剤は、熱硬化性樹脂組成物と高熱伝導絶縁粒子5との混練工程までに添加すれば良い。   At this time, it may be heated as necessary to promote the volatilization of the solvent, or the reaction of the thermosetting resin composition may be advanced to form a B stage. In the case of a thermosetting resin composition having a low viscosity, the high thermal conductive insulating particles 5 may be added to the thermosetting resin composition itself without adding a solvent. Moreover, what is necessary is just to add additives, such as a coupling agent, by the kneading | mixing process of the thermosetting resin composition and the highly heat-conductive insulating particle 5. FIG.

(2)次に、絶縁樹脂基板2に、第1金属層3、第2金属層4を形成する。上記方法で得られた絶縁樹脂基板2は、マトリックスの熱硬化性樹脂がBステージ状態であるので、第1金属層3、第2金属層4とで挟んで加熱硬化して、両者をそれぞれ絶縁樹脂基板2の主面に接着するとともに電気絶縁する。ここで、本願発明のように、高熱伝導絶縁粒子5が第1金属層3、第2金属層4と点接触するような絶縁樹脂基板2を得るためには、第1金属層3、第2金属層4とで絶縁樹脂基板2を挟んだ際に、0.1MPa〜10MPa程度の圧力で両側から加圧すると良い。押圧力が0.1MPa以上であれば、高熱伝導絶縁粒子5を第1金属層3(第2金属層4)と十分に点接触させることができる点から好ましく、10MPa以下であれば、高熱伝導絶縁粒子5が第1金属層3(第2金属層4)に突入することによって面接触となることを避けることができるので好ましい。   (2) Next, the first metal layer 3 and the second metal layer 4 are formed on the insulating resin substrate 2. The insulating resin substrate 2 obtained by the above method is in a B-stage state of the matrix thermosetting resin. Therefore, the insulating resin substrate 2 is heated and cured between the first metal layer 3 and the second metal layer 4 to insulate the two. It adheres to the main surface of the resin substrate 2 and is electrically insulated. Here, as in the present invention, in order to obtain an insulating resin substrate 2 in which the high thermal conductive insulating particles 5 are in point contact with the first metal layer 3 and the second metal layer 4, the first metal layer 3 and the second metal layer 2 When the insulating resin substrate 2 is sandwiched between the metal layer 4, the pressure may be applied from both sides with a pressure of about 0.1 MPa to 10 MPa. If the pressing force is 0.1 MPa or more, it is preferable from the viewpoint that the high heat conductive insulating particles 5 can be sufficiently brought into point contact with the first metal layer 3 (second metal layer 4). It is preferable that the insulating particles 5 can be prevented from coming into surface contact by entering the first metal layer 3 (second metal layer 4).

また、上記の方法以外に以下の方法であっても良い。まず、(1)で得られた絶縁樹脂基板用コンパウンドを、第1金属層3に塗布する。塗布方法としては、プリント、ポッティング等がある。次に、絶縁樹脂基板用コンパウンドを、例えば、温度80℃で10分間、120℃で10分間、温度150℃10分間で乾燥させることにより、半硬化状態の絶縁樹脂基板2が張り付けられた第1金属層3を得る。次に、絶縁樹脂基板2における第1金属層3が張り付けられていない方の主面に第2金属層4を接触、あるいは貼着させる。次に、170℃の温度が加えることによって、半硬化状態の絶縁樹脂基板2を熱硬化させ、第1金属層3および第2金属層4が設けられた絶縁樹脂基板2、すなわち絶縁放熱基板1を得る。   In addition to the above method, the following method may be used. First, the insulating resin substrate compound obtained in (1) is applied to the first metal layer 3. Application methods include printing and potting. Next, the compound for insulating resin substrate is dried at, for example, a temperature of 80 ° C. for 10 minutes, a temperature of 120 ° C. for 10 minutes, and a temperature of 150 ° C. for 10 minutes, whereby the semi-cured insulating resin substrate 2 is attached. A metal layer 3 is obtained. Next, the second metal layer 4 is brought into contact with or adhered to the main surface of the insulating resin substrate 2 where the first metal layer 3 is not attached. Next, by applying a temperature of 170 ° C., the semi-cured insulating resin substrate 2 is thermally cured, and the insulating resin substrate 2 provided with the first metal layer 3 and the second metal layer 4, that is, the insulating heat dissipation substrate 1. Get.

なお、図3に示す例のような高密度点接触領域6を有する絶縁樹脂基板2を製造する際の製造方法について以下に説明する。まず、上記(1)の工程において、高密度点接触領域6となる絶縁樹脂基板用コンパウンドと、それ以外の領域用の絶縁樹脂基板用コンパウンドとをそれぞれ準備する。高密度点接触領域6用の粒度分布としては、例えば、モード径の粒子の存在比率に対し、モード径の1.5倍以上の粒子径を有する粒子の存在比率が10%以下であるものを用い、それ以外の領域用の粒度分布としては、例えば、モード径の粒子の存在比率に対し、モード径の1.5倍以上の粒子径を有する粒子の存在比率が30%以下であるものを用いる。そして、これらコンパウンドを樹脂シートや金属板上に塗布する際、素子実装部7と対応する高密度点接触領域6には高密度点接触領域6用のコンパウンドを塗布し、それ以外の領域には高密度点接触領域6以外の領域用のコンパウンドを塗布すると良い。あとの工程は上述した工程と同様である。   In addition, the manufacturing method at the time of manufacturing the insulating resin substrate 2 which has the high-density point contact area | region 6 like the example shown in FIG. 3 is demonstrated below. First, in the step (1), an insulating resin substrate compound that becomes the high-density point contact region 6 and an insulating resin substrate compound for other regions are prepared. The particle size distribution for the high-density point contact region 6 is, for example, that the ratio of particles having a particle diameter of 1.5 times or more the mode diameter is 10% or less with respect to the ratio of particles having a mode diameter. Used as the particle size distribution for other regions, for example, the presence ratio of particles having a particle diameter of 1.5 times or more the mode diameter is 30% or less with respect to the existence ratio of the mode diameter particles Use. When these compounds are applied on a resin sheet or metal plate, the compound for the high-density point contact region 6 is applied to the high-density point contact region 6 corresponding to the element mounting portion 7 and the other regions are applied. It is preferable to apply a compound for a region other than the high-density point contact region 6. The subsequent steps are the same as those described above.

なおこれまで述べた「モード径の1.5倍以上の粒子径を有する粒子の存在比率が30%以下」は、粒度分布上でモード径の1.5倍以上の各区間の粒子の存在比率がそれぞれ30%以下であることを示しており、モード径の1.5倍以上すべての粒子の合計の存在比率が30%以下であることではない。これは「モード径の1.5倍以上の粒子径を有する粒子の存在比率が10%以下」の場合も同様である。   In addition, “the abundance ratio of particles having a particle diameter of 1.5 times or more of the mode diameter is 30% or less” as described above is the abundance ratio of particles in each section having a mode diameter of 1.5 or more on the particle size distribution. Is not more than 30%, and the total abundance ratio of all particles not less than 1.5 times the mode diameter is not less than 30%. The same applies to the case where the abundance ratio of particles having a particle diameter of 1.5 times the mode diameter is 10% or less.

またこれまで述べた「モード径の0.5倍以下の粒子径を有する粒子の存在比率が30%以下」についても同様に、粒度分布上でモード径の0.5倍以下の各区間の粒子の存在比率がそれぞれ30%以下であることを示しており、モード径の0.5倍以下すべての粒子の
合計の存在比率が30%以下であることではない。
Similarly, with regard to “the abundance ratio of particles having a particle diameter of 0.5 times or less of the mode diameter is 30% or less” as described above, the particles in each section having a mode diameter of 0.5 times or less on the particle size distribution. The abundance ratio of each particle is 30% or less, and the total abundance ratio of all particles not more than 0.5 times the mode diameter is not 30% or less.

1・・・・・絶縁放熱基板
2・・・・・絶縁樹脂基板
3・・・・・第1金属層
4・・・・・第2金属層
5・・・・・高熱伝導絶縁粒子
6・・・・・高密度点接触領域
7・・・・・素子実装部
DESCRIPTION OF SYMBOLS 1 ... Insulation heat dissipation board 2 ... Insulation resin substrate 3 ... 1st metal layer 4 ... 2nd metal layer 5 ... High heat conductive insulating particle 6 .... High-density point contact area 7 ... Element mounting part

Claims (6)

絶縁樹脂基板と、
該絶縁樹脂基板の上下面のそれぞれに積層された第1金属層および第2金属層と、
前記絶縁樹脂基板中に配置された複数の高熱伝導絶縁粒子とを有し、
上部が前記第1金属層と点接触しており、下部が前記第2金属層と点接触している前記高熱伝導絶縁粒子を含んでいる
絶縁放熱基板。
An insulating resin substrate;
A first metal layer and a second metal layer laminated on each of the upper and lower surfaces of the insulating resin substrate;
A plurality of high thermal conductive insulating particles disposed in the insulating resin substrate,
An insulating heat dissipation substrate comprising the highly thermally conductive insulating particles having an upper portion in point contact with the first metal layer and a lower portion in point contact with the second metal layer.
前記絶縁樹脂基板の厚さが、前記高熱伝導絶縁粒子のモード径と略一致している請求項1に記載の絶縁放熱基板。   The insulated heat dissipation substrate according to claim 1, wherein a thickness of the insulating resin substrate substantially matches a mode diameter of the high thermal conductive insulating particles. 前記高熱伝導絶縁粒子は、モード径の粒子の存在比率に対し、モード径の1.5倍以上の粒子径を有する粒子の存在比率が30%以下である請求項1または請求項2に記載の絶縁放熱基板。   3. The high thermal conductive insulating particle according to claim 1, wherein the abundance ratio of particles having a particle diameter of 1.5 times or more the mode diameter is 30% or less with respect to the abundance ratio of the mode diameter particles. Insulated heat dissipation board. 前記高熱伝導絶縁粒子は、モード径の粒子の存在比率に対し、モード径の0.5倍以下の粒子径を有する粒子の存在比率が30%以下である請求項1乃至請求項3のいずれかに記載の絶縁放熱基板。   4. The high heat conductive insulating particle according to claim 1, wherein an abundance ratio of particles having a particle diameter of 0.5 times or less of a mode diameter is 30% or less with respect to an abundance ratio of particles having a mode diameter. Insulation heat dissipation board described in 1. 前記絶縁樹脂基板は、点接触している粒子の密度が高くなっている高密度点接触領域を有し、
該高密度点接触領域では、モード径の粒子の存在比率に対し、モード径の1.5倍以上の粒子径を有する粒子の存在比率が10%以下である請求項1乃至請求項4のいずれかに記載の絶縁放熱基板。
The insulating resin substrate has a high-density point contact region in which the density of particles in point contact is high,
5. The abundance ratio of particles having a particle diameter of 1.5 times or more of the mode diameter is 10% or less in the high-density point contact region with respect to the abundance ratio of the mode diameter particles. An insulating heat dissipation substrate according to claim 1.
前記高密度点接触領域は、前記絶縁樹脂基板の素子実装部に存在する
請求項5に記載の絶縁放熱基板。
The insulating heat dissipation substrate according to claim 5, wherein the high-density point contact region exists in an element mounting portion of the insulating resin substrate.
JP2013156784A 2013-07-29 2013-07-29 Insulating heat dissipating substrate Pending JP2015026780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013156784A JP2015026780A (en) 2013-07-29 2013-07-29 Insulating heat dissipating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013156784A JP2015026780A (en) 2013-07-29 2013-07-29 Insulating heat dissipating substrate

Publications (1)

Publication Number Publication Date
JP2015026780A true JP2015026780A (en) 2015-02-05

Family

ID=52491193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013156784A Pending JP2015026780A (en) 2013-07-29 2013-07-29 Insulating heat dissipating substrate

Country Status (1)

Country Link
JP (1) JP2015026780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428681A (en) * 2017-02-14 2018-08-21 乐金电子研发中心(上海)有限公司 The power electronic equipment of front side conductive backside radiator
JP2020122426A (en) * 2019-01-30 2020-08-13 株式会社豊田自動織機 Electric compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428681A (en) * 2017-02-14 2018-08-21 乐金电子研发中心(上海)有限公司 The power electronic equipment of front side conductive backside radiator
JP2020122426A (en) * 2019-01-30 2020-08-13 株式会社豊田自動織機 Electric compressor
JP7095610B2 (en) 2019-01-30 2022-07-05 株式会社豊田自動織機 Electric compressor

Similar Documents

Publication Publication Date Title
US7602051B2 (en) Thermally conductive resin sheet and power module using the same
US8007897B2 (en) Insulating sheet and method for producing it, and power module comprising the insulating sheet
JP2008153430A (en) Heatsink substrate and heat conductive sheet, and power module using these
JP5532419B2 (en) Insulating material, metal base substrate, semiconductor module, and manufacturing method thereof
JP6276498B2 (en) Thermosetting resin composition, heat conductive sheet, and semiconductor module
JPWO2017014238A1 (en) Thermally conductive resin composition, thermal conductive sheet, and semiconductor device
JP2009049062A (en) Method of manufacturing substrate for metal base circuit, and substrate for metal base circuit
JP2011178894A (en) Thermosetting resin composition, thermally conductive sheet, and power module
JP2008255186A (en) Heat-conductive resin sheet and power module
CN105960709B (en) Thermally conductive sheet and semiconductor device
JP2016192474A (en) Granulated powder, resin composition for heat dissipation, heat dissipation sheet, heat dissipation member, and semiconductor device
JP5391530B2 (en) Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP2013254921A (en) Circuit board and electronic-component mounting board
JP5424984B2 (en) Manufacturing method of semiconductor module
JP5274007B2 (en) Thermally conductive resin sheet and power module using the same
JP2016094599A (en) Resin composition for thermally conductive sheet, resin layer with substrate, thermally conductive sheet, and semiconductor device
JP2016155946A (en) Thermosetting resin composition, thermally conductive resin sheet, circuit board, and power module
WO2019112048A1 (en) Laminate and electronic device
CN106133900B (en) Thermally conductive sheet and semiconductor device
JP2011100757A (en) Electronic component, and method of manufacturing the same
JP2015026780A (en) Insulating heat dissipating substrate
JP7200674B2 (en) Manufacturing method of heat dissipation structure
JP2008010821A (en) Method of hardening resin film for die bonding, and method of die bonding
WO2022255450A1 (en) Resin sheet, laminate, and semiconductor device
JP2023107225A (en) Laminate and semiconductor device