JP2015025795A - 絶縁検査方法及び絶縁検査装置 - Google Patents

絶縁検査方法及び絶縁検査装置 Download PDF

Info

Publication number
JP2015025795A
JP2015025795A JP2013195727A JP2013195727A JP2015025795A JP 2015025795 A JP2015025795 A JP 2015025795A JP 2013195727 A JP2013195727 A JP 2013195727A JP 2013195727 A JP2013195727 A JP 2013195727A JP 2015025795 A JP2015025795 A JP 2015025795A
Authority
JP
Japan
Prior art keywords
value
voltage
terminal
insulation
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013195727A
Other languages
English (en)
Inventor
文雄 岩崎
Fumio Iwasaki
文雄 岩崎
桑原 延行
Nobuyuki Kuwabara
延行 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MULTI KEISOKUKI KK
Original Assignee
MULTI KEISOKUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MULTI KEISOKUKI KK filed Critical MULTI KEISOKUKI KK
Priority to JP2013195727A priority Critical patent/JP2015025795A/ja
Publication of JP2015025795A publication Critical patent/JP2015025795A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Photovoltaic Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

【課題】太陽光発電ユニットにおける絶縁不良箇所の探査を可能にする絶縁検査装置を提供する。
【解決手段】CPU101は、高圧発生回路140から太陽光発電ユニット50に第1電圧を供給させたときの第1電流と、第2電圧を供給させたときの第2電流とを入出力回路160で検出し、ディジタルの電流値として取得する。CPU101は、第1電圧と第2電圧との差分電圧値に対する第1電流と第2電流との差分電流値の変化勾配を導出し、この変化勾配に基づき、第1電流又は第2電流の電流値が有値からゼロ値になるときの仮想電圧値を導出する。そして、この仮想電圧値と太陽光発電ユニット50の端子間電圧値とを比較することにより、絶縁不良箇所を判別する。
【選択図】図2

Description

本発明は、例えば太陽光発電ユニットのように、複数の電力発電体を接続して成る直流電力発電ユニットの絶縁検査を行うための方法及び装置に関する。
近年の太陽光発電ユニットは、数百ボルトで数千ワットの大電力を出力することが可能となっている。そのため、漏電事故を防止する観点から、太陽光発電ユニットは、設置後も適宜絶縁抵抗値を測定して、絶縁不良が生じていないかどうかを定期的に検査する必要がある。絶縁抵抗の値の測定には、一般的には「メガー」と呼ばれる絶縁抵抗計が用いられる。
しかし、太陽光発電ユニットは、設置後は大地から絶縁されるため、電路を含めて帯電する。つまり、太陽光発電ユニットを構成する太陽電池モジュール又は太陽電池セルに電荷が溜まる。電荷は、必ずしも太陽光発電ユニットの正極端子及び負極端子に対して平衡しておらず、また、貯まる電荷の量も天候によって変化する。そのため、絶縁検査を屋外で行おうとすると、太陽光が照射されている日中は、絶縁抵抗値の測定結果に大きな誤差が生じるという問題がある。
この問題を解決する従来技術として、特許文献1に開示された太陽電池モジュールの絶縁抵抗の測定方法及び装置がある。この測定方法は、太陽電池モジュールに抵抗器を介してアース線を接続し、溜まった電荷をアース線を介して放電し、放電完了後に絶縁抵抗の測定を行うというものである。
しかし、溜まった電荷を放電しても、絶縁検査を日中に行う場合には、依然として太陽電池モジュールが発電し続けるため、正しい絶縁抵抗値を測定することが困難となる。絶縁抵抗の測定中の発電の問題を解消するには、日中であれば太陽光発電ユニットを遮光布等で覆うか、夜間に測定作業を実施すれば良い。しかし、太陽光発電ユニットが屋外の高所に設置されている場合には、遮光布等で覆ったり、視界が十分でない夜間の測定作業は非常に危険なものとなる。
特許文献2に開示された絶縁抵抗測定装置は、上記の危険を解消するために、絶縁抵抗値を、任意の時点において安全に検査できるようにしたものである。すなわち、特許文献1に開示された絶縁抵抗測定装置では、太陽光発電ユニットの正極端子と接地部位との間に検査電圧を印加した状態で流れる電流(第1電流値)と、検査電圧の印加を停止した状態で流れる電流(第2電流値)とを測定する。そして、両電流値の差分である電流(第3電流値)と、印加した検査電圧の電圧値とに基づいて正極端子と接地部位との間の絶縁抵抗値を演算する。
これにより、太陽光発電ユニットを遮光布で覆う作業が不要となり、太陽光の照射を避けて夜間に測定作業を実施する必要もないことから、太陽光発電ユニットの絶縁抵抗値を安全かつ簡便に測定することができるとされている。
特許文献2には、また、検査電圧の電圧値を変更しつつ、変更した検査電圧を印加した状態において正極端子と接地部位との間を流れる各電流値を直線近似処理して第1電流値とすることも記載されている。
特開2012−146931号公報 特開2011−127983号公報
太陽光発電ユニットは、通常は、非接地電路となる。そのため、電路の途中、例えば負極端子側で絶縁不良が生じ、絶縁抵抗値が規格限度を越えて小さくなったとしても、当該太陽光発電ユニットには、直流の電流(漏れ電流)が流れない。つまり、絶縁不良が生じただけでは、太陽光発電ユニットに接続された機器や回路、例えばリレー等の誤動作は発生しない。
一方、太陽光発電ユニットの絶縁抵抗を計測するために、絶縁抵抗計の正端子を太陽光発電ユニットの正極端子、負端子を接地部位に接続すると、接続前には流れなかった電流が、絶縁抵抗計を通じて流れ始める。この電流の大きさによっては、上記機器の焼損や上記回路の誤動作が発生する。これを防止するため、絶縁抵抗計は、接地部位との間に大容量の抵抗器を介在するものとしなければならない。しかし、そうすると、計器本体の質量が大きく、かつ、高価なものにならざるを得ないばかりでなく、作業性にも影響を与えるという問題を生じさせる。
特許文献2に開示された絶縁抵抗測定装置は、太陽光発電ユニットが発電している最中に絶縁抵抗値を測定するものである。すなわち、検査電圧の印加を停止した状態で絶縁抵抗測定装置を接続することにより、太陽光発電ユニットの出力端子と接地部位との間に、発電電圧に起因する大きさの直流電流(第2電流値)が流れることが前提となっている(特許文献2の段落0031)。そのため、この絶縁抵抗測定装置は、発電電圧の値ならびに絶縁不良時の電流の値を考慮して、大容量の抵抗器を備えなければならず、計器本体を小型、軽量化するには、限界がある。
また、特許文献2に開示された絶縁抵抗測定装置では、太陽光発電ユニットが発電しない天候のときや夜間には、使用できないという問題がある。
特許文献2に開示された絶縁抵抗測定装置では、また、絶縁抵抗値を演算により求めることができるとされているが、絶縁不良が生じている場合に、それがどの箇所で生じているのかを探査することができない。この点は、特許文献1に開示された測定装置においても同様である。
本発明は、上記課題を解決するものであり、直流電力発電ユニットの絶縁抵抗を計測する際に流れる漏れ電流を抑制させ、これにより、発電設備側への影響を低減させるとともに、計器本体の小型、軽量化を図ることができるようにすることを目的とする。
本発明の他の目的は、直流電力発電ユニットの絶縁不良の箇所の探査を可能にする絶縁検査技術を提供することにある。
本発明の絶縁検査方法は、複数の電力発電体が接続された直流電力発電ユニットにおける電圧及び電流の計測が可能な装置が実行する方法であって、前記直流電力発電ユニットが有する一対の出力端子のうちいずれかの端子と接地部位との間の電路に、前記端子に表れる電圧の振幅を小さくする検査電圧を、所定の時間間隔で2回以上、それぞれ異なる値で供給し、これにより前記電路に流れる電流の差分を表す差分電流値を検出する工程と、この電流差分値と変化した前記検査電圧の差分を表す差分電圧値とに基づいて前記電路の絶縁抵抗値を導出する工程とを含む方法である。
本発明の絶縁検査装置は、複数の電力発電体が接続された直流電力発電ユニットが有する一対の出力端子のうちいずれかの端子と接地部位との間の電路に、前記端子に表れる電圧の振幅を小さくする値の検査電圧を、所定の時間間隔で2回以上、異なる値で供給する電圧供給手段と、供給された前記検査電圧の値が変化した際に前記電路に流れる電流の差分を表す差分電流値を検出する電流検出手段と、この電流差分値と変化した前記検査電圧の差分を表す差分電圧値とに基づいて前記電路の絶縁抵抗値を導出する絶縁抵抗値導出手段と、を有する装置である。
本発明の絶縁検査方法及び絶縁検査装置では、直流電力発電ユニットに対して、出力端子のうち一方の端子に表れる電圧の振幅を小さくする(相殺する)値の検査電圧を少なくとも2回供給することにより変化する電流の差分により、絶縁抵抗値を導出する。そのため、絶縁検査の際に、検査電圧を供給しない場合を含む検査手法(例えば特許文献2に開示された発明のように検査電圧をゼロにする場合)に比べて直流電力発電ユニットに流れる漏れ電流が抑制されるので、漏れ電流に起因するトラブルの発生が防止される。また、計器本体に流れる電流も小さくなるので、計器本体に大容量の抵抗器を備える必要が無くなり、計器本体の小型、軽量化が可能となる。
また、2回以上、検査電圧を直流電力発電ユニットに供給し、そのときに流れる電流の差分を検出するので、発電電圧が十分でない天候や夜間においても、絶縁検査ができるようになる。
また、探索手段を備えた構成では、仮想電圧値と直流電力発電ユニットの端子間電圧値との比較により、絶縁不良箇所の相対位置を特定することができるので、簡易な手法で絶縁不良箇所を探査することができる。
本実施形態による絶縁検査装置の外観図。 電子回路部の構成図。 直流電力発電ユニットの一例となる太陽光発電ユニットの構成図。 太陽光発電ユニットへの絶縁検査装置の接続状況を示す説明図。 絶縁監視を行うときの太陽光発電ユニットと絶縁検査装置との実質的な接続状態を示す説明図。 太陽電池モジュールにおいて絶縁不良が生じている状態を示す説明図。 絶縁不良が発生したときの表示器の表示例を示す説明図。 電圧値V1,V2及び電流値I1,I2の計測結果をグラフ。 絶縁不良箇所の違いによる上記直線の変化の様子を示したグラフ。 擬似的に絶縁不良を生じさせたときの実測結果を示すグラフ。
以下、図面を参照して本発明の実施の形態例を説明する。
図1は、本実施形態による絶縁検査装置1の外観図である。この絶縁検査装置1は、絶縁抵抗値の計測のほか、直流電力発電ユニットの絶縁不良があったときの絶縁不良箇所の探査を可能とする電子回路部を筐体10に内蔵している。
筐体10の操作面には、表示器110、測定スイッチ120、測定項目及び測定レンジの切換スイッチ121その他のスイッチが設けられている。
表示器110は、絶縁検査の結果を視覚的に把握できるようにするものである。例えば、絶縁不良箇所の探査では、絶縁抵抗値と絶縁不良の監視結果が表示される。絶縁不良の監視結果は、本実施形態では、直流電力発電ユニットを構成する複数の電力発電体の全体に対する絶縁不良を起こしている電力発電体の相対位置を表すLED(発光ダイオード)が発光するものとする。
測定スイッチ120は、測定内容を定めるためのスイッチである。測定内容については、後述する。切換スイッチ121は、電源断、メガワットクラスの高い電力の直流電力発電ユニットの絶縁検査(PVH)、1000[W]未満の比較的低電力の直流電力発電ユニットの絶縁検査(PVL)のいずれかを選択的に切り換えるためのスイッチである。
筐体10の所定部位、例えば筐体10の上端には、Pプローブ11、Nプローブ12、及び、Eプローブ13が設けられている。Pプローブ11は、その先端部501を直流電力発電ユニットの一対の出力端子のうち一方の端子、すなわち正極端子に当接するためのプローブである。Nプローブ12は、その先端部502を上記一対の出力端子のうち他方の端子、すなわち負極端子にクリップするためのプローブである。Eプローブ13は、その先端部をアース線(接地部位)に接続するためのプローブである。
筐体10に内蔵される電子回路部の構成例を図2に示す。電子回路部は、主制御回路であるCPU(Central Processing Unit)101を含む。CPU101は、発振器102から出力されるクロックのタイミングで動作する。このCPU101には、レジスタ103と、EEPROM(Electrically Erasable Programmable Read-Only Memory)などで構成される不揮発性のメモリ104が接続されている。
メモリ104には、CPU101に読み取られて実行される絶縁不良箇所探査用のコンピュータプログラムが格納されている。このコンピュータプログラムは、絶縁検査の自動実行を可能にするための制御手順を規定したものである。制御手順の詳細については後述する。メモリ104には、数値の加減乗除を行う際に読み出される複数の演算ルール、検査対象となる直流電力発電ユニットの構造を記憶するための構造ファイルが格納されている。メモリ104には、また、後述する計測結果をディジタルデータとして記憶する計測ファイル、及び、計測した絶縁抵抗値が正常であると判別するための基準抵抗値R0も格納されている。構造ファイルは、例えば直流電力発電体が直列に(あるいは並列に)どの位の段数が接続されているかとか、発電される定格電力(あるいは電圧値)がどの位かという内容のものである。
レジスタ103は、CPU101の処理対象となるデータを一旦格納するものであり、バッファとして機能するものである。
CPU101には、図1に示した表示器110、測定スイッチ120、切換スイッチ121が接続されている。CPU101は、ユーザによる測定スイッチ120及び切換スイッチ121の操作内容を認識し、これにより、シーケンス手順による絶縁検査のための制御を可能にする。絶縁検査の結果は、表示器110に表示される。
電子回路部は、また、ドライバー130を有する。ドライバー130は、CPU101の制御により、高圧発生回路140及び入出力回路160に、それぞれ制御信号を出力する。高圧発生回路140は、例えば電源部150から供給された電圧と上記の制御信号とをもとに、予め設定された値及び極性の検査電圧を生成し、入出力回路160へ出力する電源部150とは別に電力を発生するものであっても良い。
入出力回路160は、Pプローブ11に接続するためのP端子12、Nプローブ12に接続するためのN端子14、及び、Eプローブ13に接続するためのE端子16と導通している。そして、上記の制御信号により、外部との間で電圧の入力と出力とを切り換えたり、電流を検出したりする。すなわち、高圧発生回路140から出力される検査電圧をP端子12を経てPプローブ11に供給する。また、P端子12及びN端子14を経て入力したアナログ電圧、あるいは、P端子12/N端子14とE端子16とを経て入力したアナログ電流を検出する。そして、これらをBPF(Band-Pass Filter)及びA/Dコンバータ(Analog-to-Digital converter)180を介してCPU101に伝達する。
なお、図示を省略しているが、入出力回路160には、N端子14とNプローブ12との間の電路を開閉するための開閉スイッチが挿入接続されている。この開閉スイッチは、測定スイッチ120と連動して動作するオン・オフ切換スイッチである。例えば測定スイッチ120を1回押す(オンにする)ことにより開閉スイッチがオンとなり、N端子14とNプローブ12との間の電路を閉じる。他方、測定スイッチ120をもう1回押す(オフにする)ことにより開閉スイッチがオフとなり、当該電路を開く。
これにより、Nプローブ12をN端子14に接続したままで、それを取り外したと同じ効果を奏するので、絶縁検査時のNプローブ12の接続及びその取り外しの作業を軽減することができる。
BPF170は、ノイズ除去用の帯域通過フィルタであり、A/Dコンバータ180は、ノイズ除去後のアナログ信号又はノイズ除去を要しないアナログ信号をCPU101が処理可能なデジタル信号に変換するものである。
CPU101は、絶縁不良箇所探査用のコンピュータプログラムを読み取って実行することにより、絶縁検査装置1を、検査電圧を供給するための制御を行う電圧供給手段、電路に流れる電流の差分を表す差分電流値を検出する電流検出手段として機能させる。また、検査電圧と差分電流値により電路の絶縁抵抗値を導出する絶縁抵抗値導出手段、端子間電圧値保持手段、絶縁不良箇所を判別可能にする探査手段として機能させる。これらの機能については後述する。
[直流電力発電ユニット]
ここで、絶縁検査装置1の被検査対象となる直流電力発電ユニットについて説明する。本実施形態では、図3に示す太陽光発電ユニットを直流電力発電ユニットとする場合の例を挙げる。太陽光発電ユニット50は、それぞれ電力発電体であるn個の太陽電池セル53を直列接続した太陽電池モジュールを、さらに、m行に直列接続したものである。つまり、太陽電池セル53をm行n列(n,mは2以上の自然数)に配したものであり、これにより、数百ボルトで数千ワット又は数メガワットの大電力を出力することが可能なものである。
太陽電池セル53は、光電変換ダイオードを主たる要素として含む。太陽電池モジュール毎に正極端子と負極端子とを有するほか、太陽光発電ユニットとしても全体として、正極端子51と負極端子52とを有している。太陽電池モジュール間には、正極端子51の方向がカソードとなり、負極端子52の方向がアノードとなるバイパスダイオード54が接続されている。電流は、アノードからカソードに向けて流れる。バイパスダイオード54は、日射量の影響などで、ある太陽電池モジュールにおける発生電圧が相対的に低いときに、その太陽電池モジュールを迂回させるために設けられる。
太陽光発電ユニット50において発電された直流電力は、図示しないパワーコンディショナで交流電力に変換される。
[絶縁検査方法]
次に、上記のように構成される絶縁検査装置1を用いた絶縁検査方法を説明する。
検査対象となる太陽光発電ユニット50は、屋外に設置されており、所定値の直流電力を発生させているものとする。図4は、屋外で行う太陽光発電ユニット50への絶縁検査装置1の接続状況を示す説明図である。
検査時には、ユーザが、図1に示したとおり、Pプローブ11、Nプローブ12、Eプローブ13を筐体10に接続する。太陽光発電ユニット50とパワーコンディショナ60との間の電路を遮断した上で、太陽光発電ユニット50の負極端子52に繋がる電路NにNプローブ12の先端502をクリップするとともに、Eプローブ13をアース線に接続する(接地電位にする)。そして、正極端子51に繋がる電路PにPプローブ11の先端501を当接させる。
この状態で、ユーザが、切換スイッチ121を絶縁不良箇所の探査(PV)に切り換える。すると、絶縁検査装置1のCPU101は、絶縁検査用のコンピュータプログラムに従い、上記の電圧供給手段、電流検出手段、絶縁抵抗値導出手段、端子間電圧値保持手段及び探査手段としての動作を開始する。
すなわち、ユーザが測定スイッチ120を1回押した(入出力回路160における開閉スイッチをオンにして、Nプローブ12と筐体10内部のN端子とが導通する状態になった)とする。この状態を認識すると、CPU101は、太陽光発電ユニット50の正極端子51と負極端子52との端子間電圧値を取得する。そして、それをメモリ104に格納させる。
具体的には、ドライバー130及び入出力回路160を制御して、電路P−N間の電圧を取り込ませる。取り込まれた電圧は、BPF170でノイズ除去され、A/Dコンバータ180でディジタルデータに変換された後、メモリ104の計測ファイルに、CPU101が内蔵するタイマから出力される計測時刻と共に格納される。ディジタルデータに変換された電圧値が端子間電圧値V0となる。
ユーザが、測定スイッチ120をもう1回押すと、太陽光発電ユニット50と絶縁検査装置1との接続状態は図5のようになる。CPU101は、この接続状態(上記の開閉スイッチがオフになり、Nプローブ12と筐体10内部のN端子とが非導通の状態になった状態)を認識する。そして、ドライバー130を通じて高圧発生回路140及び入出力回路160を制御し、正(プラス)の第1検査電圧をP端子12に供給させる。このときの第1検査電圧の電圧値をV1とする。
P端子12に供給された第1検査電圧は、Pプローブ11の先端部501及び電路Pを通じて太陽光発電ユニット50の正極端子51に供給(印加)される。上述したとおり、太陽光発電ユニット50は非接地電路である。そのため、電路の一部が短絡しない限り、通常は太陽光発電ユニット50に電流は流れない。しかし、Pプローブ11の先端部501を接続することにより、太陽光発電ユニット50を構成する各太陽電池モジュールとアース線Eとの間に電流が流れる。CPU101は、この電流をEプローブ13及びE端子16を通じて入出力回路160で検出させ、A/Dコンバータ180でディジタルデータに変換させる。ディジタルデータに変換された電流値をI1とする。CPU101は、この電流値I1を第1検査電圧の電圧値V1及び計測時刻と共に、メモリ104の計測ファイルに記憶する。
なお、太陽光発電ユニット50の正極端子51と接地部位との間の電路に第1検査電圧を供給するのは、正極端子51に表れる電圧の振幅を小さくし、これにより漏れ電流を少なくするためである。また、バイパスダイオード54の影響を抑制することも理由に挙げられる。すなわち、太陽光発電ユニット50では、太陽電池モジュール間がバイパスダイオード54で接続されている。バイパスダイオード54は、そのカソードが各太陽電池モジュールの正極端子、アノードが負極端子に接続される。そのため、ある太陽電池モジュールの正極端子−負極端子間の電路を流れる電流がバイパスダイオード54を通ってしまうと、当該太陽電池モジュールにおける太陽電池セル53がバイパスされる。その結果、後述する絶縁不良箇所の探査ができなくなってしまう。そのため,本実施形態では、正極端子51に第1検査電圧を供給させる。この第1検査電圧は、正極端子51に表れる電圧と合算したときに、その振幅がゼロを超え、かつ、太陽光発電ユニット50において発電可能な電圧の振幅未満となる値の電圧である。つまり、正極端子51に表れる電圧を相殺するように供給される。
第1検査電圧の電圧値V1と検出した電流値I1のメモリ140への記憶が完了すると、CPU101は、第1検査電圧と異なる電圧値の第2検査電圧をP端子12に供給させる。第2検査電圧もまた、正極端子51に表れる電圧と合算したときに、その振幅がゼロを超え、かつ、太陽光発電ユニット50において発電可能な電圧の振幅未満となる値の電圧であることは、第1検査電圧の場合と同じである。
この第2検査電圧の電圧値をV2とする。
P端子12に供給された第2検査電圧は、Pプローブ11の先端部501及び電路Pを通じて太陽光発電ユニット50の正極端子51に供給される。これにより、太陽光発電ユニット50の各太陽電池モジュールとアース線Eとの間に電流が流れる。この電流は、Eプローブ13及びE端子16を通じて入出力回路160で検出され、A/Dコンバータ180でディジタルデータに変換される。ディジタルデータに変換された電流値をI2とする。CPU101は、この電流値I2を第2検査電圧の電圧値V2及び計測時刻と共に、メモリ104の計測ファイルに記憶する。
計測ファイルに、端子間電圧値V0、電圧値V1,V2、電流値I1,I2が記憶されると、CPU101は、以下の制御手順で、絶縁抵抗値の導出と、絶縁不良箇所の探査とを行う。
例えば、図6に示すように、太陽光発電ユニット50の正極端子51からみて、m行に直列接続された太陽電池モジュールのうち、相対的に30%の行に配置されている太陽電池モジュールにおいて絶縁不良が生じ、これにより絶縁抵抗値がRxになったとする。また、絶縁不良箇所500から正極端子51までの仮想電圧値をVxとする。この場合、上記各種データの間には、以下の関係式が成り立つ。
I1=(V1−Vx)/Rx ・・・(1)
I2=(V2−Vx)/Rx ・・・(2)
(1)式及び(2)式より、
Vx=V1−I1・Rx
=V2−I2・Rx ・・・(3)
Rx=(V2−V1)/(I2−I1)・・・(4)
Vx=V1−I1・(V2−V1)/(I2−I1)
=V2−I2・(V2−V1)/(I2−I1)・・・(5)
CPU101は、上記(4)式より、絶縁抵抗値Rxを導出する。また、仮想電圧値Vxと端子間電圧値V0とを比較し、比較結果とメモリ104に格納された構造ファイルとに基づいて、太陽光発電ユニット50の正極端子51から複数の太陽電池モジュールを経て負極端子52に至る経路における絶縁不良箇所を判別可能にする。判別できた場合は、絶縁不良箇所を表示器110に表示させる。本例では、仮想電圧値Vxが端子間電圧値V0の30[%]となる。そのため、正極端子51を起点として、全体(m行)のうち30[%]の行に配置されている太陽電池モジュールを絶縁不良箇所と判別することができる。その後、CPU101は、図7に示されるように、正極端子51である「P」を始点として、10個中3番目のLEDを発光させる。
なお、LEDの数を多くすれば、絶縁不良箇所をより細かく表示することができる。例えば、太陽電池モジュールを構成する太陽電池セル53のうち、どの太陽電池モジュールのどの太陽電池セル53に絶縁不良が生じたかをどうかを判別することもできる。
図6に示した部分以外の絶縁不良箇所については、以下のようにして判別することになる。すなわち、仮想電圧値Vxがゼロ値のときは、図6を参照すると正極端子51ということになるから、正極端子51を絶縁不良が発生している箇所と判別する。また、仮想電圧値Vxが端子間電圧値V0と等しいときは、負極端子52において絶縁不良が発生していると判別する。
また、上記(4)式より導出した絶縁抵抗値Rxが基準抵抗値R0と比較して明らかに絶縁不良を起こしていないと判定できる場合、CPU101は、仮想電圧値Vxの電圧値に関わらず、絶縁不良箇所の探査を止める。この場合、表示器110のどのLEDも発光しない。
各検査電圧の電圧値V1,V2及び電流値I1,I2の計測結果をグラフ化すると図8のようになる。図8において、横軸は、太陽光発電ユニット50の正極端子51に供給される検査電圧(印加電圧)の電圧値Vである。また、縦軸は、印加電圧をV1,V2としたときに、それぞれ太陽光発電ユニット50とアース線との間に流れる電流の電流値I(I1、I2)である。電圧値V1の検査電圧が供給されたときに電流値I1となる計測点をQ1、電圧値V2の検査電圧が供給されたときに電流値I2となる計測点をQ2とすると、Q1とQ2とを結ぶ直線(以下、「特性直線」と称する。)は、次式で表すことができる。
I=(V/Rx)−(Vx/Rx) ・・・(6)
この特性直線の変化勾配が絶縁抵抗値Rx、この特性直線が横軸と交わる箇所、すなわち、電流値I(I1,I2)が有値からゼロ値になるときの電圧値が仮想電圧値Vxとなる。なお、(6)式は、(1)式を変形しても導き出すことができる。
このように、(5)式から仮想電圧値Vxを算定しても良いが、(6)式の特性直線の変化勾配に基づき、電流値Iが有値からゼロ値になるときの電圧値を仮想電圧値Vxとして導出することもできる。その際、(6)式の特性直線の変化勾配から導出される絶縁抵抗値が上述した基準抵抗値R0以上であれば、その時点で絶縁不良が生じていないと判別して、そのときの絶縁抵抗値を表示器110に表示させ、絶縁不良箇所の探査を終了することができる。
図9は、絶縁不良箇所の違いによる上記特性直線の変化の様子を示したグラフである。横軸は正極端子51に供給される検査電圧(印加電圧)の電圧値(V)であり、縦軸は電流値(I)を表す。太陽光発電ユニット50の正極端子51が絶縁不良のときは、破線で示すように、特性直線の変化勾配が基準抵抗値R0未満であれば、いずれの変化勾配であっても、電流値Iが有値からゼロ値になるときの仮想電圧値Vxがゼロ値となる。
同様に、負極端子52が絶縁不良のときは、一点鎖線で示すように仮想電圧値Vxが端子間電圧値V0と同じ値となり、いずれかの太陽電池モジュール間が絶縁不良のときは、実線で示すように、仮想電圧値Vxが端子間電圧値V0となる。
つまり、絶縁不良の探査を行う上で重要なのは、特性直線の変化勾配であり、この変化勾配さえ特定することができれば、電圧値V1,V2、電流値I1,I2は、それを記録した時間が所定時間内であれば、大きくとも小さくとも構わないことになる。
図10は、擬似的に絶縁不良を生じさせたときの実証実験の結果を示すグラフである。実証実験は、発電する直流電圧値、すなわち、端子間電圧値V0が386[V]の太陽光発電ユニット50を対象とし、当該太陽光発電ユニット50の全面の受光面に太陽光が照射している状態で行った。擬似的な絶縁不良は、1[kΩ]の抵抗値を持ち、一方端をアース線に接続した絶縁抵抗器の他端を正極端子51、及び、負極端子52に選択的に接続することにより生じさせている。検査電圧は、上述した理由により、正極端子51だけに供給した。
図10の横軸は、正極端子51に供給した検査電圧の電圧値(V)、縦軸は太陽光発電ユニット50に流れる漏れ電流の電流値(μA)である。なお、このときの電流値は、当該絶縁抵抗器の両端の電圧[mV]を計測することによっても導出することができる。
正極端子51への検査電圧は、それぞれ電圧値を変えて10回以上供給したが、それによる電流の変化を表す特性直線の変化勾配は、図10に示すように、回数に関わらず一定であった。また、正極端子51の絶縁不良のときの仮想電圧値Vxは0[V]であり、負極端子52の絶縁不良のときの仮想電圧値Vxは、端子間電圧V0と同じ386[V]となることが実証された。他方、負極端子52の絶縁不良のときに供給する検査電圧の極性は、負(マイナス)であっても、正(プラス)の場合と同様の変化勾配となり、同じ値の仮想電圧値V0が得られた。つまり、太陽光発電ユニット50に、正(プラス)の検査電圧(電圧値V1,V2)を供給する場合に限定されず、負(マイナス)の検査電圧を供給するようにしても良いことがわかる。
このように、本実施形態では、絶縁検査装置1が、太陽光発電ユニット50の正極端子51又は負極端子52と接地部位との間の電路に、検査電圧を、所定の時間間隔で2回以上、異なる値で供給する(第1検査電圧、第2検査電圧)。これらの検査電圧は、いずれも正極端子51又は負極端子52に表れる電圧の振幅を小さくする値の電圧である。そして、供給された検査電圧の値が変化した際に電路に流れる漏れ電流の差分を表す差分電流値を検出し、この電流差分値と変化した検査電圧の差分を表す差分電圧値とに基づいて電路の絶縁抵抗値を導出する。
例えば、図10を参照し、太陽光発電ユニット50の発生電圧が400[v]、N端子52側で絶縁不良が生じ、そのときの絶縁抵抗値Rxが0.1[MΩ]であったとする。この場合、検査電圧を供給しないと(例えば特許文献2に開示された発明において、検査電圧をゼロにすると)、電路及び絶縁検査装置1の内部には、4[mA]の漏れ電流が流れる。これに対し、本実施形態のように、250[v]の第1検査電圧V1と500[v]の第2検査電圧V2とを、それぞれ正極端子51がプラスになるように、正極端子51と接地部位との間に供給すると、漏れ電流は抑制される。すなわち、第1検査電圧V1を供給したときに流れる漏れ電流(第1電流)I1は1.5(=(400−250)/100)[mA]となる。また、第2検査電圧V2を供給したときに流れる漏れ電流(第2電流I2)は、−1.0(=(400−500)/100)[mA]となる。
このように、検査電圧を供給することにより、電路及び絶縁検査装置1の内部に流れる漏れ電流は、検査電圧を供給しない場合よりも小さくなる。そのため、漏れ電流に起因する発電設備側に与える影響を抑制することができる。また、絶縁検査装置1に大容量の抵抗器を内蔵させる必要が無いので計器本体の小型、軽量化が容易となり、絶縁検査時の作業性を向上させることができる。
本実施形態の絶縁検査装置1では、また、仮想電圧値Vxと端子間電圧値V0とを比較することにより、正極端子51から複数の太陽光発電モジュールないしセルを経て負極端子52に至る経路における絶縁不良箇所を判別可能にした。そのため、図3に示されるように膨大な数の太陽電池セル53で構成されていたり、複数の太陽電池モジュールが直列接続される太陽光発電ユニット50であっても、絶縁不良箇所をほぼピンポイントで判別することができる。
また、上記経路における絶縁不良箇所があるときにそのときの絶縁抵抗値Rxと当該絶縁不良箇所の相対位置とを視覚的に表す表示器110を有するので、絶縁不良状態を直感的に把握することができる。
また、本実施形態の絶縁検査装置1では、Pプローブ11、Nプローブ12、Eプローブ13のほか、N端子14とNプローブ12との間の電路を開閉するための開閉スイッチが挿入接続されている。そして、Pプローブ11を正極端子51に接続し、Nプローブ12を負極端子512に接続し、Eプローブ13を接地部位に接続した状態で開閉スイッチをオンにすることにより、端子間電圧値V0の取得を可能とする。また、開閉スイッチをオフにすることにより各電流の値の取得を可能にする。これにより、絶縁検査の際に、各プローブ11,12,13を取り外す作業を省略することができ、作業性を格段に向上させることができる。
なお、検査電圧の供給とそのときの電流値の計測は2回ずつだけでなく、それぞれ異なる電圧値で3回以上供給し、そのときの電流値を計測するようにしても良い。このようにすれば、上記の特性直線の変化勾配がより正確なものとなる。
本発明は、太陽光発電ユニット50以外の直流電力発電ユニットにおいても、同様に適用することができるものである。
1・・・絶縁検査装置、10・・・筐体、110・・・表示器、120・・・測定スイッチ、121・・・切換スイッチ、11・・・Pプローブ、12・・・Nプローブ、13・・・Eプローブ、101・・・CPU、140・・・高圧発生回路、160・・・入出力回路、180・・・A/Dコンバータ。
本発明の絶縁検査方法は、複数の電力発電体が接続された直流電力発電ユニットと、この直流電力発電ユニットが有する一対の出力端子に接続された負荷とを有する発電システムにおける電圧及び電流の計測が可能な装置が実行する方法であって、前記一対の出力端子から前記負荷を遮断する工程と、前記負荷が遮断された一対の出力端子の端子間電圧値を取得する工程と、前記負荷が遮断された一対の出力端子のうちいずれかの端子と接地部位との間の電路に、当該端子に表れる電圧の振幅を小さくする検査電圧を、所定の時間間隔で2回以上、それぞれ異なる値で供給し、これにより前記電路に流れる電流の差分を表す差分電流値を検出するとともに前記差分電圧値と前記差分電流値の一方に対する他方の変化勾配に基づいて前記電流の値が有値からゼロ値になるときの仮想電圧値を導出する工程と、この仮想電圧値と前記端子間電圧値とを比較することにより、前記出力端子の一方の端子から前記複数の電力発電体を経て前記出力端子の他方の端子に至る経路における絶縁不良箇所を判別可能にする工程とを有する方法である。
本発明の絶縁検査装置は、複数の電力発電体が接続された直流電力発電ユニットが有する一対の出力端子から負荷を遮断した状態で前記一対の出力端子の端子間電圧値を取得する端子間電圧値保持手段と、前記負荷を遮断した状態で前記一対の出力端子のうちいずれかの端子と接地部位との間の電路に、前記端子に表れる電圧の振幅を小さくする値の検査電圧を、所定の時間間隔で2回以上、異なる値で供給する電圧供給手段と、供給された前記検査電圧の値が変化した際に前記電路に流れる電流の差分を表す差分電流値を検出する電流検出手段と、前記差分電圧値と前記差分電流値の一方に対する他方の変化勾配に基づいて前記電流の値が有値からゼロ値になるときの仮想電圧値を導出し、この仮想電圧値と前記端子間電圧値とを比較することにより、前記出力端子の一方の端子から前記複数の電力発電体を経て前記出力端子の他方の端子に至る経路における絶縁不良箇所を判別可能にする探査手段と、を有する装置である。
本発明の絶縁検査方法及び絶縁検査装置では、仮想電圧値と直流電力発電ユニットの端子間電圧値との比較により、絶縁不良箇所の相対位置を特定することができるので、簡易な手法で絶縁不良箇所を探査することができる。
本発明の絶縁検査方法は、複数の電力発電体が接続された直流電力発電ユニットと、この直流電力発電ユニットが有する一対の出力端子に接続された負荷とを有する発電システムにおける電圧及び電流の計測が可能な装置が実行する方法であって、前記一対の出力端子から前記負荷を遮断する工程と、前記負荷が遮断された一対の出力端子との端子間電圧値を取得する工程と、前記負荷が遮断された一対の出力端子のうちいずれかの端子と接地部位との間の電路に、当該端子に表れる電圧の振幅を小さくすることにより前記接地部位を通じて流れる漏れ電流を少なくする検査電圧を、所定の時間間隔で2回以上、それぞれ異なる値で供給し、これにより前記電路に流れる電流の差分を表す差分電流値と前記異なる値の電圧の差分を表す差分電圧値とを検出するとともに、前記差分電圧値と前記差分電流値の一方に対する他方の変化勾配に基づいて前記電流の値が有値からゼロ値になるときの仮想電圧値を導出する工程と、この仮想電圧値と前記端子間電圧値とを比較することにより、前記出力端子の一方の端子から前記複数の電力発電体を経て前記出力端子の他方の端子に至る経路における絶縁不良箇所を判別可能にする工程とを有する方法である。
本発明の絶縁検査装置は、複数の電力発電体が接続された直流電力発電ユニットが有する一対の出力端子から負荷を遮断した状態で前記一対の出力端子の端子間電圧値を取得する端子間電圧値保持手段と、前記負荷が遮断された一対の出力端子のうちいずれかの端子と接地部位との間の電路に、当該端子に表れる電圧の振幅を小さくすることにより前記接地部位を通じて流れる漏れ電流を少なくする検査電圧を、所定の時間間隔で2回以上、異なる値で供給する電圧供給手段と、供給された前記検査電圧の値が変化した際に前記電路に流れる電流の差分を表す差分電流値と前記異なる値の電圧の差分を表す差分電圧値とを検出する電流検出手段と、前記差分電圧値と前記差分電流値の一方に対する他方の変化勾配に基づいて前記電流の値が有値からゼロ値になるときの仮想電圧値を導出し、この仮想電圧値と前記端子間電圧値とを比較することにより、前記出力端子の一方の端子から前記複数の電力発電体を経て前記出力端子の他方の端子に至る経路における絶縁不良箇所を判別可能にする探査手段と、を有する装置である。
本発明の絶縁検査方法は、複数の電力発電体が接続された直流電力発電ユニットと、この直流電力発電ユニットが有する一対の出力端子に接続された負荷とを有する発電システムにおける電圧及び電流の計測が可能な装置が実行する方法であって、前記一対の出力端子から前記負荷を遮断する工程と、前記負荷が遮断された一対の出力端子の端子間電圧値を取得する工程と、前記負荷が遮断された一対の出力端子のうちいずれかの端子と接地部位との間の電路に、それぞれ前記端子に表れる電圧と合算したときにその振幅がゼロを超え、かつ、前記直流電力発電ユニットにおいて発電可能な電圧の振幅未満となる検査電圧を、所定の時間間隔で2回以上、当該電路に流れる電流の振幅が前回よりも小さくなるように異なる値で供給し、これにより前記電路に流れる電流の差分を表す差分電流値と前記異なる値の電圧の差分を表す差分電圧値とを検出するとともに、前記差分電圧値と前記差分電流値の一方に対する他方の変化勾配に基づいて前記電流の値が有値からゼロ値になるときの仮想電圧値を導出する工程と、この仮想電圧値と前記端子間電圧値とを比較することにより、前記出力端子の一方の端子から前記複数の電力発電体を経て前記出力端子の他方の端子に至る経路における絶縁不良箇所を判別可能にする工程とを有する方法である。
本発明の絶縁検査装置は、複数の電力発電体が接続された直流電力発電ユニットが有する一対の出力端子から負荷を遮断した状態で前記一対の出力端子の端子間電圧値を取得する端子間電圧値保持手段と、前記負荷を遮断した状態で前記一対の出力端子のうちいずれかの端子と接地部位との間の電路に、それぞれ前記端子に表れる電圧と合算したときにその振幅がゼロを超え、かつ、前記直流電力発電ユニットにおいて発電可能な電圧の振幅未満となる検査電圧を、所定の時間間隔で2回以上、当該電路に流れる電流の振幅が前回よりも小さくなるように異なる値で供給する電圧供給手段と、供給された前記検査電圧の値が変化した際に前記電路に流れる電流の差分を表す差分電流値と前記異なる値の電圧の差分を表す差分電圧値とを検出する電流検出手段と、前記差分電圧値と前記差分電流値の一方に対する他方の変化勾配に基づいて前記電流の値が有値からゼロ値になるときの仮想電圧値を導出し、この仮想電圧値と前記端子間電圧値とを比較することにより、前記出力端子の一方の端子から前記複数の電力発電体を経て前記出力端子の他方の端子に至る経路における絶縁不良箇所を判別可能にする探査手段と、を有する装置である。

Claims (8)

  1. 複数の電力発電体が接続された直流電力発電ユニットにおける電圧及び電流の計測が可能な装置が実行する方法であって、
    前記直流電力発電ユニットが有する一対の出力端子のうちいずれかの端子と接地部位との間の電路に、前記端子に表れる電圧の振幅を小さくする検査電圧を、所定の時間間隔で2回以上、それぞれ異なる値で供給し、これにより前記電路に流れる電流の差分を表す差分電流値を検出する工程と、
    この電流差分値と変化した前記検査電圧の差分を表す差分電圧値とに基づいて前記電路の絶縁抵抗値を導出する工程とを含む、
    絶縁検査方法。
  2. 2回以上供給する前記検査電圧は、いずれも前記端子に表れる電圧と合算したときにその振幅がゼロを超え、かつ、前記直流電力発電ユニットにおいて発電可能な電圧の振幅未満となる値の電圧であり、それぞれ前記端子に表れる電圧を相殺するように供給される、
    請求項1記載の絶縁検査方法。
  3. 前記一対の出力端子の端子間電圧値を取得し、取得した端子間電圧値を記憶する工程と、
    前記差分電圧値と前記差分電流値の一方に対する他方の変化勾配に基づいて前記電流の値が有値からゼロ値になるときの仮想電圧値を導出し、この仮想電圧値と前記記憶されている端子間電圧値とを比較することにより、前記出力端子の一方の端子から前記複数の電力発電体を経て前記出力端子の他方の端子に至る経路における絶縁不良箇所を判別可能にする工程とをさらに含む、
    請求項1又は2記載の絶縁検査方法。
  4. 複数の電力発電体が接続された直流電力発電ユニットが有する一対の出力端子のうちいずれかの端子と接地部位との間の電路に、前記端子に表れる電圧の振幅を小さくする値の検査電圧を、所定の時間間隔で2回以上、異なる値で供給する電圧供給手段と、
    供給された前記検査電圧の値が変化した際に前記電路に流れる電流の差分を表す差分電流値を検出する電流検出手段と、
    この電流差分値と変化した前記検査電圧の差分を表す差分電圧値とに基づいて前記電路の絶縁抵抗値を導出する絶縁抵抗値導出手段と、
    を有する絶縁検査装置。
  5. 前記一対の出力端子の間の端子間電圧値を取得し、取得した端子間電圧値を記憶する端子間電圧値保持手段と、
    前記差分電圧値と前記差分電流値の一方に対する他方の変化勾配に基づいて前記電流の値が有値からゼロ値になるときの仮想電圧値を導出し、この仮想電圧値と前記記憶されている端子間電圧値とを比較することにより、前記出力端子の一方の端子から前記複数の電力発電体を経て前記出力端子の他方の端子に至る経路における絶縁不良箇所を判別可能にする探査手段と、
    をさらに有する、請求項4記載の絶縁検査装置。
  6. 前記経路における前記絶縁不良箇所があるときに当該絶縁不良箇所の相対位置を視覚的に表す表示器をさらに有する、
    請求項5記載の絶縁検査装置。
  7. 前記絶縁抵抗値導出手段で導出された絶縁抵抗値を前記相対位置と共に前記表示器に表示させる、
    請求項6記載の絶縁検査装置。
  8. 前記一対の出力端子の一方と前記電圧供給手段とを接続する第1プローブと、
    前記一対の出力端子の他方と前記電圧供給手段とを接続する第2プローブと、
    接地部位と前記電流検出手段とを接続する第3プローブと、
    前記第2プローブと前記電圧供給手段との間に挿入接続された開閉スイッチとを有し、
    前記開閉スイッチをオンにすることにより前記端子間電圧値の取得を可能とし、
    前記開閉スイッチをオフにすることにより前記電路に流れる電流の値の取得を可能とする、
    請求項4ないし7のいずれかの項記載の絶縁検査装置。
JP2013195727A 2013-06-20 2013-09-20 絶縁検査方法及び絶縁検査装置 Pending JP2015025795A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013195727A JP2015025795A (ja) 2013-06-20 2013-09-20 絶縁検査方法及び絶縁検査装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013129587 2013-06-20
JP2013129587 2013-06-20
JP2013195727A JP2015025795A (ja) 2013-06-20 2013-09-20 絶縁検査方法及び絶縁検査装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015077900A Division JP2015155912A (ja) 2013-06-20 2015-04-06 絶縁検査方法及び絶縁検査装置

Publications (1)

Publication Number Publication Date
JP2015025795A true JP2015025795A (ja) 2015-02-05

Family

ID=52490551

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013195727A Pending JP2015025795A (ja) 2013-06-20 2013-09-20 絶縁検査方法及び絶縁検査装置
JP2015077900A Pending JP2015155912A (ja) 2013-06-20 2015-04-06 絶縁検査方法及び絶縁検査装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015077900A Pending JP2015155912A (ja) 2013-06-20 2015-04-06 絶縁検査方法及び絶縁検査装置

Country Status (1)

Country Link
JP (2) JP2015025795A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085778A (ja) * 2018-11-29 2020-06-04 株式会社Nttファシリティーズ 絶縁抵抗試験支援装置及び絶縁抵抗測定方法
CN113227798A (zh) * 2018-12-06 2021-08-06 日本电产理德股份有限公司 检查装置、检查方法以及检查装置用程序
JP2021151034A (ja) * 2020-03-18 2021-09-27 株式会社アイテス 住宅用太陽電池診断システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6586651B2 (ja) * 2015-12-08 2019-10-09 共立電気計器株式会社 絶縁抵抗表示方法および絶縁抵抗計
JP6586650B2 (ja) * 2015-12-08 2019-10-09 共立電気計器株式会社 絶縁抵抗表示方法および絶縁抵抗計
JP6586649B2 (ja) * 2015-12-08 2019-10-09 共立電気計器株式会社 絶縁抵抗表示方法および絶縁抵抗計

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166773A (ja) * 1990-10-29 1992-06-12 Kyocera Corp 太陽電池アレイの絶縁抵抗良否判定方法
JPH07325121A (ja) * 1994-05-31 1995-12-12 Tokyo Electric Power Co Inc:The 電力貯蔵用二次電池の地絡位置検出方法及びその装置
JP2002140123A (ja) * 2000-10-30 2002-05-17 Canon Inc 電力変換装置およびその制御方法、並びに、発電装置
JP2012119382A (ja) * 2010-11-29 2012-06-21 Jx Nippon Oil & Energy Corp 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
WO2013018794A1 (ja) * 2011-08-01 2013-02-07 Jx日鉱日石エネルギー株式会社 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
WO2013018797A1 (ja) * 2011-08-01 2013-02-07 Jx日鉱日石エネルギー株式会社 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166773A (ja) * 1990-10-29 1992-06-12 Kyocera Corp 太陽電池アレイの絶縁抵抗良否判定方法
JPH07325121A (ja) * 1994-05-31 1995-12-12 Tokyo Electric Power Co Inc:The 電力貯蔵用二次電池の地絡位置検出方法及びその装置
JP2002140123A (ja) * 2000-10-30 2002-05-17 Canon Inc 電力変換装置およびその制御方法、並びに、発電装置
JP2012119382A (ja) * 2010-11-29 2012-06-21 Jx Nippon Oil & Energy Corp 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
WO2013018794A1 (ja) * 2011-08-01 2013-02-07 Jx日鉱日石エネルギー株式会社 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
WO2013018797A1 (ja) * 2011-08-01 2013-02-07 Jx日鉱日石エネルギー株式会社 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085778A (ja) * 2018-11-29 2020-06-04 株式会社Nttファシリティーズ 絶縁抵抗試験支援装置及び絶縁抵抗測定方法
JP7204450B2 (ja) 2018-11-29 2023-01-16 株式会社Nttファシリティーズ 絶縁抵抗試験システム及び絶縁抵抗試験方法
CN113227798A (zh) * 2018-12-06 2021-08-06 日本电产理德股份有限公司 检查装置、检查方法以及检查装置用程序
JP2021151034A (ja) * 2020-03-18 2021-09-27 株式会社アイテス 住宅用太陽電池診断システム
JP7138355B2 (ja) 2020-03-18 2022-09-16 株式会社アイテス 住宅用太陽電池診断システム

Also Published As

Publication number Publication date
JP2015155912A (ja) 2015-08-27

Similar Documents

Publication Publication Date Title
JP2015155912A (ja) 絶縁検査方法及び絶縁検査装置
EP2741094A1 (en) Ground fault detection device, ground fault detection method, solar energy system, and ground fault detection program
CN103229063A (zh) 接地检测装置、接地检测方法、太阳能发电***以及接地检测程序
CN107861066B (zh) 动力电池漏电电阻、漏电位置检测方法及电子设备
EP3200341B1 (en) Method and device for inspecting photovoltaic power generation system
JP2016213955A (ja) 太陽電池検査装置および太陽電池検査方法
CN103969674B (zh) 辐射监测器以及通过辐射监测器的静电计测量电流的方法
JP5918390B2 (ja) 太陽電池パネルの検査装置、及び太陽電池パネルの検査方法
JP2018031718A (ja) 架空配電系統探査システムおよび架空配電系統探査方法
WO2017047111A1 (ja) 検査装置
CN102967793A (zh) 一种车载终端天线开路短路检测电路
US20180231597A1 (en) Arc occurrence position detection device and arc occurrence position detection method
CN103323655A (zh) 非接触式交直流串电在线检测装置及其在线检测方法
ES2684319T3 (es) Un método para determinar el estado de funcionamiento de un motor de carga de resorte para un aparato de conmutación de BT o MT y un sistema de diagnóstico que implementa dicho método
US9645186B2 (en) Loose plug detection
EP3282578A1 (en) Method and device for testing photovoltaic generation system
JP6504087B2 (ja) 検査器およびその制御方法、制御プログラム
JP6702168B2 (ja) 太陽光発電システムの検査装置および検査方法
JP6665767B2 (ja) 検査支援装置およびその制御方法、検査システム、並びに制御プログラム
CN205541252U (zh) 带短路、断路报警的电气火灾探测器
JP2016099276A (ja) 絶縁抵抗測定装置
JP7073802B2 (ja) 太陽光発電システムの故障検査装置
JPWO2017159053A1 (ja) 異常検出装置
CN110568377A (zh) 一种电池***绝缘检测装置
JP6428396B2 (ja) 太陽光発電システムの検査方法および検査装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150413

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150703