JP2015025609A - Three-stage temperature rising type absorption heat pump - Google Patents

Three-stage temperature rising type absorption heat pump Download PDF

Info

Publication number
JP2015025609A
JP2015025609A JP2013155091A JP2013155091A JP2015025609A JP 2015025609 A JP2015025609 A JP 2015025609A JP 2013155091 A JP2013155091 A JP 2013155091A JP 2013155091 A JP2013155091 A JP 2013155091A JP 2015025609 A JP2015025609 A JP 2015025609A
Authority
JP
Japan
Prior art keywords
temperature
solution
absorber
temperature absorber
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013155091A
Other languages
Japanese (ja)
Inventor
井上 修行
Naoyuki Inoue
修行 井上
中川 安明
Yasuaki Nakagawa
安明 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013155091A priority Critical patent/JP2015025609A/en
Publication of JP2015025609A publication Critical patent/JP2015025609A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-stage temperature rising type absorption heat pump device which reduces a height dimension of the device and improves a start-up property especially, the temperature rising type absorption heat pump device being adapted to generate vapor or the like at a higher temperature than a heat source temperature while using low-quality heat such as hot water as a heat source.SOLUTION: In a solution flow, a can body housing a low-temperature absorber and a low-temperature evaporator is disposed on a can body housing a condenser and a regenerator or horizontally at the substantially equal height. A can body housing a high-temperature absorber and a can body housing a medium-temperature absorber are disposed at the substantially equal height higher than the can body housing the low-temperature absorber and the low-temperature evaporator. The solution flow is adapted to introduce with a solution pump a solution which is condensed by the regenerator, to the high-temperature absorber and the medium-temperature absorber in parallel.

Description

本発明は、温水などの低質熱を熱源として高温水や蒸気を発生させる多段昇温型吸収ヒートポンプ装置に関し、特に装置の高さ寸法の低減と起動特性を改良した三段昇温型吸収ヒートポンプ装置に関するものである。 The present invention relates to a multi-stage temperature rising type absorption heat pump apparatus that generates high-temperature water and steam using low-quality heat such as hot water as a heat source, and more particularly, a three-stage temperature rising type absorption heat pump apparatus with reduced height dimensions and improved start-up characteristics. It is about.

昇温型吸収ヒートポンプは、温水などの低質熱を熱源として熱源温度よりも高温の蒸気などを発生させる装置であり、吸収器、蒸発器、再生器、凝縮器からなる単段昇温型が特許文献1や特許文献2に開示されている。また、昇温幅を上げるために吸収器と蒸発器を二段にして、高温吸収器、高温蒸発器、低温吸収器、低温蒸発器、再生器、凝縮器からなる二段段昇温型とした吸収ヒートポンプが特許文献1、特許文献3に開示されている。多段昇温型吸収ヒートポンプは、複数個の吸収器を備え、吸収器における吸収熱を順次高温段に利用することによって、比較的低温の温水などを熱源として、熱源温度よりもかなり高い温度の被加熱流体を得る装置であり、特許文献3で二段昇温型と共に三段昇温型吸収ヒートポンプが開示されている。 The temperature rising type absorption heat pump is a device that generates low-temperature heat such as hot water as a heat source and generates steam at a temperature higher than the heat source temperature. Patented is a single-stage temperature rising type consisting of an absorber, evaporator, regenerator, and condenser It is disclosed in Document 1 and Patent Document 2. Also, in order to increase the temperature rise range, the absorber and the evaporator are arranged in two stages to form a two-stage temperature rising type consisting of a high-temperature absorber, a high-temperature evaporator, a low-temperature absorber, a low-temperature evaporator, a regenerator, and a condenser. Absorption heat pumps are disclosed in Patent Document 1 and Patent Document 3. A multi-stage temperature rising type absorption heat pump is provided with a plurality of absorbers, and the heat absorbed in the absorber is sequentially used in a high temperature stage, so that a relatively low temperature hot water or the like is used as a heat source, and the temperature is much higher than the heat source temperature. This is a device for obtaining a heated fluid, and Patent Document 3 discloses a two-stage temperature rising type and a three-stage temperature rising type absorption heat pump.

図5は特許文献3に開示された三段昇温型吸収ヒートポンプの概略構成図であり、高温吸収器、中温吸収器、低温吸収器、高温蒸発器、中温蒸発器、低温蒸発器、再生器、凝縮器を主要構成機器として備え、再生器・凝縮器を収めた缶胴の上に吸収器・蒸発器を収めた缶胴を配置した単段昇温型ヒートポンプを基にして、その上に中温吸収器缶胴、高温吸収器缶胴を配置している。なお、前記低温吸収器には管外で溶液が冷媒蒸気を吸収し、管内で冷媒液が蒸発する伝熱管があり、この伝熱管の管内側が前記中温蒸発器になっている。また、中温吸収器にも同様な管外吸収・管内蒸発を行わせる伝熱管があり、この伝熱管の管内側が前記高温蒸発器になっている。温水などの熱源により低温蒸発器で加熱蒸発させた冷媒蒸気を、前記低温吸収器に導入して溶液に吸収させ、その吸収熱で管内の中温蒸発器の冷媒液を加熱蒸発させる。中温蒸発器で発生した冷媒蒸気を前記中温吸収器に導入して溶液に吸収させ、その吸収熱で管内の高温蒸発器の冷媒液を加熱蒸発させる。高温蒸発器で発生した冷媒蒸気を前記高温吸収器に導入して溶液に吸収させ、その吸収熱で管内の被加熱媒体を加熱して高温蒸気として取り出している。再生器で温水により加熱濃縮した溶液を、溶液ポンプにより前記高温吸収器に強制的に導入し、次いで前記中温吸収器、さらに前記低温吸収器、再生器へと機器間の圧力差と位置ヘッドによって導き、各吸収器で冷媒蒸気を吸収して薄くなってきた溶液を、前記再生器に戻している。 FIG. 5 is a schematic configuration diagram of a three-stage temperature rising type absorption heat pump disclosed in Patent Document 3, which includes a high temperature absorber, a medium temperature absorber, a low temperature absorber, a high temperature evaporator, a medium temperature evaporator, a low temperature evaporator, and a regenerator. , Based on a single-stage heating type heat pump with a condenser as the main component and a can body containing an absorber / evaporator placed on a can body containing a regenerator / condenser. Medium temperature absorber can body and high temperature absorber can body are arranged. The low-temperature absorber has a heat transfer tube in which the solution absorbs the refrigerant vapor outside the tube and the refrigerant liquid evaporates inside the tube, and the inside of the heat transfer tube is the intermediate temperature evaporator. Further, the intermediate temperature absorber has a heat transfer tube that performs similar absorption outside the tube and evaporation inside the tube, and the inside of the heat transfer tube is the high temperature evaporator. Refrigerant vapor heated and evaporated by a low-temperature evaporator with a heat source such as hot water is introduced into the low-temperature absorber and absorbed into the solution, and the refrigerant liquid in the intermediate-temperature evaporator in the tube is heated and evaporated by the absorbed heat. The refrigerant vapor generated in the intermediate temperature evaporator is introduced into the intermediate temperature absorber and absorbed by the solution, and the refrigerant liquid in the high temperature evaporator in the pipe is heated and evaporated by the absorption heat. The refrigerant vapor generated in the high-temperature evaporator is introduced into the high-temperature absorber and absorbed in the solution, and the heated medium in the tube is heated by the absorption heat to be taken out as high-temperature vapor. The solution heated and concentrated with warm water in the regenerator is forcibly introduced into the high-temperature absorber by a solution pump, and then into the intermediate-temperature absorber, further into the low-temperature absorber, and the regenerator by the pressure difference between the devices and the position head. The solution that has been thinned by absorbing the refrigerant vapor in each absorber is returned to the regenerator.

この三段昇温吸収ヒートポンプでは、起動時に溶液温度が低く機器間に圧力差がなくても、位置ヘッドで溶液循環を確保できるようにするため、装置高さが非常に高くなっている。すなわち、再生器の上に低温吸収器を、その上に中温吸収器を、さらにその上に高温吸収器を配置し、再生器から溶液を溶液ポンプで最高位置にある高温吸収器に送り、その後は位置ヘッドだけでも、高温吸収器から中温吸収器に、中温吸収器から低温吸収器に、低温吸収器から再生器へと送ることを可能にしている。 In this three-stage temperature increase absorption heat pump, the apparatus height is very high so that the solution circulation can be ensured by the position head even if the solution temperature is low at the time of startup and there is no pressure difference between the devices. That is, a low-temperature absorber is placed on the regenerator, a medium-temperature absorber is placed on the regenerator, and a high-temperature absorber is placed on the regenerator, and the solution is sent from the regenerator to the high-temperature absorber at the highest position by a solution pump. Enables the position head alone to be sent from the high temperature absorber to the intermediate temperature absorber, from the intermediate temperature absorber to the low temperature absorber, and from the low temperature absorber to the regenerator.

特開2006−207882号公報JP 2006-207882 A 特開2008−106983号公報JP 2008-106983 A 特開2010−48519号公報JP 2010-48519 A

この従来構成の三段昇温吸収ヒートポンプでは、再生器の上に低温吸収器が、低温吸収器の上に中温吸収器が、中温吸収器の上に高温吸収器が配置してあり、ヒートポンプ装置の背が高くなってしまうという点、さらに、高さに対して幅が狭く設置上不安定であるという欠点がある。また、少しでも高さを抑えようと機器間の高さ方向のスペースを減らすと、溶液循環のための位置ヘッドが小さくなって、起動時の機器間圧力がほとんどない状態での溶液循環量が減り、起動に時間がかかってしまうという欠点がでてくる。 In this conventional three-stage temperature rising absorption heat pump, a low temperature absorber is disposed on the regenerator, an intermediate temperature absorber is disposed on the low temperature absorber, and a high temperature absorber is disposed on the intermediate temperature absorber. In addition, there is a disadvantage that the height of the device becomes high, and the width is narrow with respect to the height and is unstable in installation. In addition, if the space in the height direction between the devices is reduced so as to suppress the height as much as possible, the position head for solution circulation becomes smaller, and the amount of solution circulation in the state where there is almost no pressure between the devices at start-up is achieved. The disadvantage is that it takes less time to start up.

特許文献2に再生器・凝縮器を収めた缶胴と吸収器・蒸発器を収めた缶胴を左右に配置し、再生器の溶液を吸収器に送る溶液ポンプSPと吸収器の溶液を再生器に戻す補助溶液ポンプSPXを設けた単段昇温型ヒートポンプ開示されているが、このヒートポンプを基にして、低温吸収器を含む缶胴の上に中温吸収器、さらにその上に高温吸収器を配置した三段昇温吸収ヒートポンプも構成できる。この構成であれば、前述の従来構成(図5)の三段昇温吸収ヒートポンプと同様の起動特性を持たせることができ、前述の従来機より高さを抑えることができるが、溶液循環のためのポンプ動力が大きくなるという欠点がある。 In Patent Document 2, the can body containing the regenerator / condenser and the can body containing the absorber / evaporator are arranged on the left and right, and the solution of the regenerator solution SP and the solution of the absorber are regenerated. A single-stage temperature rising type heat pump provided with an auxiliary solution pump SPX to be returned to the vessel has been disclosed. Based on this heat pump, a medium temperature absorber on a can body including a low temperature absorber, and a high temperature absorber thereon A three-stage temperature rising absorption heat pump with the arrangement can also be configured. With this configuration, it is possible to have the same start-up characteristics as the three-stage temperature rising absorption heat pump of the above-described conventional configuration (FIG. 5), and the height can be suppressed as compared with the above-described conventional machine. For this reason, there is a disadvantage that the pump power is increased.

本発明は上述の課題に鑑み、起動特性を維持したまま、従来よりも装置の高さを少しでも低く抑え、かつポンプ動力の増大を防いだ吸収ヒートポンプの提供を目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an absorption heat pump that keeps the starting characteristics and suppresses the height of the apparatus as low as possible and prevents increase in pump power.

上記目的を達成するために、本発明においては、高温吸収器、中温吸収器、低温吸収器、高温蒸発器、中温蒸発器、低温蒸発器、再生器、凝縮器、溶液ポンプ、冷媒ポンプを溶液配管及び冷媒配管で接続して溶液循環経路及び冷媒循環経路を構成し、凝縮器には冷却水を通水し、再生器と低温蒸発器には熱源流体を供給し、前記低温蒸発器で蒸発した冷媒蒸気を前記低温吸収器の溶液に吸収させ、低温吸収器の吸収熱で中温蒸発器(低温吸収器伝熱管の管内側)の冷媒液を加熱蒸発させて中温吸収器の溶液に吸収させ、さらに中温吸収器の吸収熱で高温蒸発器(中温吸収器伝熱管の管内側)の冷媒液を加熱蒸発させて高温吸収器の溶液に吸収させ、高温吸収器から高温の被加熱流体を取り出す三段昇温型吸収ヒートポンプにおいて、凝縮器と再生器を収めた缶胴の上に低温吸収器と低温蒸発器を収めた缶胴を配置するか、または凝縮器と再生器を収めた缶胴の横に低温吸収器と低温蒸発器を収めた缶胴をほぼ同じ高さで配置して、低温吸収器と低温蒸発器を収めた缶胴よりも上に高温吸収器を収めた缶胴と中温吸収器を収めた缶胴とをほぼ同じ高さで配置し、再生器で濃縮した溶液を溶液ポンプで、少なくとも高温吸収器と中温吸収器に並列に導入する構成としている。 In order to achieve the above object, in the present invention, a high temperature absorber, a medium temperature absorber, a low temperature absorber, a high temperature evaporator, a medium temperature evaporator, a low temperature evaporator, a regenerator, a condenser, a solution pump, and a refrigerant pump are used as a solution. A solution circulation path and a refrigerant circulation path are configured by connecting with a pipe and a refrigerant pipe, cooling water is passed through the condenser, a heat source fluid is supplied to the regenerator and the low-temperature evaporator, and evaporation is performed by the low-temperature evaporator. The absorbed refrigerant vapor is absorbed in the solution of the low temperature absorber, and the refrigerant liquid in the intermediate temperature evaporator (inside the tube of the low temperature absorber heat transfer tube) is heated and evaporated by the absorption heat of the low temperature absorber and absorbed in the solution of the intermediate temperature absorber. Furthermore, the refrigerant liquid in the high-temperature evaporator (inside the tube of the intermediate-temperature absorber heat transfer tube) is heated and evaporated by the absorption heat of the intermediate-temperature absorber and absorbed in the solution of the high-temperature absorber, and the high-temperature fluid to be heated is taken out from the high-temperature absorber. In a three-stage temperature rising type absorption heat pump, Place the can body containing the low temperature absorber and the low temperature evaporator on the can body containing the raw container, or place the low temperature absorber and the low temperature evaporator next to the can body containing the condenser and the regenerator. The can body containing the high temperature absorber and the can body containing the intermediate temperature absorber are almost the same as the can body containing the low temperature absorber and the low temperature evaporator. The solution arranged at a height and concentrated in the regenerator is introduced in parallel to at least the high-temperature absorber and the intermediate-temperature absorber by a solution pump.

また、高温吸収器からの出口溶液と中温吸収器からの出口溶液の少なくとも一方の溶液を、低温吸収器を経由せず直接再生器に導くことができる。 Further, at least one of the outlet solution from the high temperature absorber and the outlet solution from the intermediate temperature absorber can be directly led to the regenerator without going through the low temperature absorber.

また、高温吸収器からの出口溶液と中温吸収器からの出口溶液の少なくとも一方の溶液を、低温吸収器に導くことができる。 In addition, at least one of the outlet solution from the high temperature absorber and the outlet solution from the intermediate temperature absorber can be guided to the low temperature absorber.

従来構成の三段昇温吸収ヒートポンプでは、再生器と凝縮器を収めた缶胴の上に、低温吸収器と低温蒸発器を収めた缶胴を設け、その上に中温吸収器缶胴と高温吸収器缶胴を配置しているが、本発明によれば、再生器で濃縮した溶液を溶液ポンプで、高温吸収器と中温吸収器に並列に導入するので、低温吸収器ALと低温蒸発器ELを収めた缶胴の上に、高温吸収器AH缶胴と中温吸収器AM缶胴とを左右に並べた状態で設置することができ、装置の高さを抑えることができる。また、機器間の圧力差が無い状態でも、位置ヘッドによって、溶液循環ができ、起動特性を損ねることはない。 In a conventional three-stage temperature rising absorption heat pump, a can body containing a low temperature absorber and a low temperature evaporator is provided on a can body containing a regenerator and a condenser, and a medium temperature absorber can body and a high temperature are provided on the can body. According to the present invention, since the solution concentrated in the regenerator is introduced into the high-temperature absorber and the intermediate-temperature absorber in parallel by the solution pump, the low-temperature absorber AL and the low-temperature evaporator are arranged. On the can body containing the EL, the high temperature absorber AH can body and the intermediate temperature absorber AM can body can be installed side by side, and the height of the apparatus can be suppressed. Further, even when there is no pressure difference between the devices, the solution can be circulated by the position head, and the starting characteristics are not impaired.

また、高温吸収器からの出口溶液と中温吸収器からの出口溶液の少なくとも一方の溶液を、低温吸収器を経由せず直接再生器に導くことで、低温吸収器の溶液を再生器に戻すための補助溶液ポンプを用いる場合でも、そのポンプ動力の増大を少なくすることができる。 In addition, in order to return the solution of the low-temperature absorber to the regenerator by guiding at least one of the outlet solution from the high-temperature absorber and the outlet solution from the intermediate-temperature absorber directly to the regenerator without passing through the low-temperature absorber. Even when the auxiliary solution pump is used, the increase in pump power can be reduced.

高温吸収器からの出口溶液と中温吸収器からの出口溶液の少なくとも一方の溶液を、低温吸収器に導くこともできるので、低温吸収器の流量確保も容易である。 Since at least one of the outlet solution from the high temperature absorber and the outlet solution from the intermediate temperature absorber can be guided to the low temperature absorber, it is easy to secure the flow rate of the low temperature absorber.

本発明の第一の実施の形態に係る吸収ヒートポンプの構成を示すフローシートおよびデューリング線図である。It is a flow sheet and a dueling diagram showing the configuration of the absorption heat pump according to the first embodiment of the present invention. 本発明の第二の実施の形態に係る吸収ヒートポンプの構成を示すフローシートである。It is a flow sheet which shows the composition of the absorption heat pump concerning a second embodiment of the present invention. 本発明の第三の実施の形態に係る吸収ヒートポンプの構成を示すフローシートである。It is a flow sheet which shows the composition of the absorption heat pump concerning a third embodiment of the present invention. 本発明の第四の実施の形態に係る吸収ヒートポンプの構成を示すフローシートである。It is a flow sheet which shows the composition of the absorption heat pump concerning a 4th embodiment of the present invention. 従来の吸収ヒートポンプの構成を示すフローシートおよびデューリング線図である。It is a flow sheet and a dueling diagram showing a configuration of a conventional absorption heat pump.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。 Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

また、以下の説明において、溶液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「希溶液Sw」や「濃溶液Sa」等と呼称するが、性状等を不問にするときは総称して「溶液S」ということとする。同様に、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「高温冷媒蒸気Rvh」、「再生器冷媒蒸気Rvg」、「冷媒液Rq」等と呼称するが、性状等を不問にするときは総称して「冷媒R」ということとする。本実施の形態では、溶液S(吸収剤と冷媒Rとの混合物)としてLiBr水溶液が用いられており、冷媒Rとして水(HO)が用いられている。また、被加熱媒体Wは、液体の被加熱媒体Wである被加熱媒体液Wq、気体の被加熱媒体である被加熱媒体蒸気Wvの総称である。本実施の形態では、被加熱媒体Wとして水(HO)が用いられている。 In the following description, the solution is referred to as “dilute solution Sw”, “concentrated solution Sa” or the like in accordance with the property or position on the heat pump cycle in order to facilitate distinction on the heat pump cycle. In general, the term “solution S” is used. Similarly, regarding the refrigerant, in order to facilitate the distinction on the heat pump cycle, “high temperature refrigerant vapor Rvh”, “regenerator refrigerant vapor Rvg”, “refrigerant liquid Rq” and the like according to the properties and positions on the heat pump cycle. Although it is called, when the property or the like is not asked, it is generally called “refrigerant R”. In the present embodiment, an LiBr aqueous solution is used as the solution S (mixture of the absorbent and the refrigerant R), and water (H 2 O) is used as the refrigerant R. The heated medium W is a general term for a heated medium liquid Wq that is a liquid heated medium W and a heated medium vapor Wv that is a gaseous heated medium. In the present embodiment, water (H 2 O) is used as the heating medium W.

図1(a)を参照して、本発明の第1の実施の形態に係る三段昇温型吸収ヒートポンプ1を説明する。図1(a)は、三段昇温型吸収ヒートポンプ1の模式的系統を示すフローシートである。缶胴の概略配置は、再生器と凝縮器を収めた缶胴を下側に、低温吸収器と低温蒸発器を収めた缶胴を上側にした構成とし、さらにその上に高温吸収器と中温吸収器を左右に配置しており、図1(a)のフローシートでも機器の上下関係をイメージ的に表している。なお、他の実施例でも同様にイメージ的ではあるが、フローシート内で機器の上下関係を示している。 With reference to Fig.1 (a), the three-stage temperature rising type absorption heat pump 1 which concerns on the 1st Embodiment of this invention is demonstrated. FIG. 1A is a flow sheet showing a schematic system of a three-stage temperature rising type absorption heat pump 1. The general arrangement of the can body is such that the can body containing the regenerator and condenser is on the lower side, and the can body containing the low temperature absorber and the low temperature evaporator is on the upper side. Absorbers are arranged on the left and right, and the flow chart in FIG. In addition, although it is image-like similarly in another Example, the vertical relationship of an apparatus is shown in the flow sheet.

先ず、吸収ヒートポンプとしての通常運転時の動作を説明する。吸収ヒートポンプ1は、希溶液Swを加熱濃縮して濃溶液Saを生成する再生器Gと、再生器Gで希溶液Swから蒸発した冷媒蒸気Rvgを冷却凝縮させて冷媒液Rqとする凝縮器Cと、冷媒液Rqを加熱して冷媒蒸気Rvlを生成する低温蒸発器ELと、冷媒蒸気Rvlを受入れて溶液Sに吸収させる低温吸収器ALと、低温吸収器ALの吸収熱で冷媒液Rqを加熱して冷媒蒸気Rvmを生成する中温蒸発器EMと、冷媒蒸気Rvmを受入れて溶液Sに吸収させる中温吸収器AMと、中温吸収器AMの吸収熱で冷媒液Rqを加熱して冷媒蒸気Rvhを生成する高温蒸発器EHと、冷媒蒸気Rvhを受入れて溶液Sに吸収させ、その吸収熱で被加熱媒体液Wqを加熱蒸発させる高温吸収器AHと、高温吸収器AHからの被加熱媒体Wを導入して蒸気と液体とを分離する気液分離器65と、制御装置100とを備えている。吸収ヒートポンプ1は、比較的利用価値の低い低温(例えば80℃〜90℃程度)の温水を熱源媒体として再生器G及び低温蒸発器ELに供給して、利用価値の高い蒸気(例えば、圧力がゲージ圧で約0.5MPaを超え、望ましくはゲージ圧で0.8MPa程度)を気液分離器65から取り出すことができるものである。 First, the operation during normal operation as an absorption heat pump will be described. The absorption heat pump 1 includes a regenerator G that heats and concentrates the dilute solution Sw to produce a concentrated solution Sa, and a condenser C that cools and condenses the refrigerant vapor Rvg evaporated from the dilute solution Sw in the regenerator G to form a refrigerant liquid Rq. The low-temperature evaporator EL that heats the refrigerant liquid Rq to generate the refrigerant vapor Rvl, the low-temperature absorber AL that receives the refrigerant vapor Rvl and absorbs it in the solution S, and the refrigerant liquid Rq by the heat absorbed by the low-temperature absorber AL. The intermediate temperature evaporator EM that generates the refrigerant vapor Rvm by heating, the intermediate temperature absorber AM that receives the refrigerant vapor Rvm and absorbs it in the solution S, the refrigerant liquid Rq is heated by the absorption heat of the intermediate temperature absorber AM, and the refrigerant vapor Rvh The high-temperature evaporator EH that generates the refrigerant, the high-temperature absorber AH that receives the refrigerant vapor Rvh and absorbs it in the solution S, and heats and evaporates the heated medium liquid Wq with the absorption heat, and the heated medium W from the high-temperature absorber AH Introduced A gas-liquid separator 65 for separating the vapor and liquid, and a control unit 100. The absorption heat pump 1 supplies hot water having a relatively low utility value (for example, about 80 ° C. to 90 ° C.) as a heat source medium to the regenerator G and the low temperature evaporator EL, and steam having a high utility value (for example, having a pressure of The gauge pressure exceeds about 0.5 MPa, and preferably the gauge pressure is about 0.8 MPa).

再生器Gは、管内に熱源媒体が流れる伝熱管11と、希溶液Swを散布する溶液散布装置12とを有し、下部の貯留部13に濃溶液Saが貯留されるように構成されている。伝熱管11には、熱源媒体としての熱源温水hが流れ、散布された希溶液Swは熱源温水hに加熱されることにより、濃溶液Saと再生器冷媒蒸気Rvgとになる。本実施の形態では、低温蒸発器ELの伝熱管31を流れる熱源温水hと、再生器Gの伝熱管11を流れる熱源温水hとは同じ温水であり、伝熱管11を流れた熱源温水hがその後伝熱管31を流れるように、伝熱管11の一端と伝熱管31の一端とが配管で接続されている。 The regenerator G includes a heat transfer tube 11 through which a heat source medium flows and a solution spraying device 12 that sprays the dilute solution Sw. The regenerator G is configured so that the concentrated solution Sa is stored in the lower storage unit 13. . Heat source hot water h as a heat source medium flows through the heat transfer tube 11, and the sprayed diluted solution Sw is heated to the heat source hot water h, thereby becoming a concentrated solution Sa and a regenerator refrigerant vapor Rvg. In the present embodiment, the heat source hot water h flowing through the heat transfer tube 31 of the low-temperature evaporator EL and the heat source hot water h flowing through the heat transfer tube 11 of the regenerator G are the same hot water, and the heat source hot water h flowing through the heat transfer tube 11 is Then, one end of the heat transfer tube 11 and one end of the heat transfer tube 31 are connected by piping so as to flow through the heat transfer tube 31.

再生器Gと凝縮器Cとは、相互に連通するように1つの缶胴内に形成され、再生器Gで発生した冷媒蒸気Rvgは凝縮器Cに缶胴内を移動することができる。 The regenerator G and the condenser C are formed in one can body so as to communicate with each other, and the refrigerant vapor Rvg generated in the regenerator G can move to the condenser C in the can body.

凝縮器Cは、管内に冷却媒体としての冷却水cwが流れる伝熱管21を有している。伝熱管21は、再生器Gから導入された冷媒蒸気Rvgを冷却して凝縮させ冷媒液Rqとする。凝縮器Cには冷媒液管80と冷媒ポンプRPが接続され、冷媒液Rqを低温蒸発器EL、中温蒸発器EM、高温蒸発器EHに直接的あるいは間接的に送っている。冷媒液管80には、低温蒸発器ELへの冷媒液Rqの供給を調節する冷媒調節弁81、気液分離器45を経由して中温蒸発器EMへの冷媒液Rq供給を調節する冷媒調節弁82、気液分離器55を経由して高温蒸発器EHへの冷媒液Rq供給を調節する冷媒調節弁85が設けられている。 The condenser C has a heat transfer tube 21 through which cooling water cw as a cooling medium flows. The heat transfer tube 21 cools and condenses the refrigerant vapor Rvg introduced from the regenerator G into a refrigerant liquid Rq. A refrigerant liquid pipe 80 and a refrigerant pump RP are connected to the condenser C, and the refrigerant liquid Rq is sent directly or indirectly to the low temperature evaporator EL, the intermediate temperature evaporator EM, and the high temperature evaporator EH. The refrigerant liquid pipe 80 includes a refrigerant adjustment valve 81 for adjusting the supply of the refrigerant liquid Rq to the low temperature evaporator EL, and a refrigerant adjustment for adjusting the supply of the refrigerant liquid Rq to the intermediate temperature evaporator EM via the gas-liquid separator 45. A refrigerant adjustment valve 85 for adjusting supply of the refrigerant liquid Rq to the high temperature evaporator EH via the valve 82 and the gas-liquid separator 55 is provided.

低温蒸発器ELは、熱源媒体としての熱源温水hの流路を構成する伝熱管31を内部に有し、伝熱管31の70〜80%程度が冷媒液に浸るように冷媒液Rqを貯留する貯留部33を有し、伝熱管31の周囲の冷媒液Rqが伝熱管31内を流れる熱源温水hの熱で沸騰し冷媒蒸気Rvlが発生する構造となっている。伝熱管31の露出した部分では、沸騰蒸発の際に発生する冷媒液飛沫がかかって液膜を形成し、この液膜は熱源温水hで加熱され、露出部でも冷媒蒸気Rvlが発生する。低温蒸発器ELには、貯留された冷媒液Rqの液位を検出する低温蒸発器液位検出器34が配設されており、液位検出器34の信号に応じて冷媒調節弁81を操作し、低温蒸発器ELに導入する冷媒液Rqの流量を調節することができるように構成されている。 The low-temperature evaporator EL has a heat transfer pipe 31 that forms a flow path of the heat source hot water h as a heat source medium, and stores the refrigerant liquid Rq so that about 70 to 80% of the heat transfer pipe 31 is immersed in the refrigerant liquid. It has the structure which has the storage part 33, the refrigerant | coolant liquid Rq around the heat exchanger tube 31 boils with the heat | fever of the heat source hot water h which flows through the inside of the heat exchanger tube 31, and generate | occur | produces refrigerant | coolant vapor | steam Rvl. In the exposed part of the heat transfer tube 31, a liquid droplet is formed by splashing the refrigerant liquid generated during boiling evaporation, and this liquid film is heated by the heat source hot water h, and the refrigerant vapor Rvl is generated also in the exposed part. The low-temperature evaporator EL is provided with a low-temperature evaporator liquid level detector 34 that detects the liquid level of the stored refrigerant liquid Rq, and operates the refrigerant control valve 81 according to the signal of the liquid level detector 34. In addition, the flow rate of the refrigerant liquid Rq introduced into the low-temperature evaporator EL can be adjusted.

低温吸収器ALと低温蒸発器ELとは、相互に連通するように1つの缶胴内に形成され、低温蒸発器ELで発生した冷媒蒸気Rvlは、低温吸収器ALへと缶胴内を移動することができる。 The low temperature absorber AL and the low temperature evaporator EL are formed in one can body so as to communicate with each other, and the refrigerant vapor Rvl generated in the low temperature evaporator EL moves in the can body to the low temperature absorber AL. can do.

低温吸収器ALは、伝熱管41と、溶液散布装置42を内部に有している。伝熱管41の管内側には気液分離器45から冷媒液Rqが供給され、管外には溶液散布装置42から散布された溶液Sdが降りかかり、溶液Sdが低温蒸発器ELからの冷媒蒸気Rvlを吸収し、その際に生じる吸収熱により、伝熱管41の内側を流れる冷媒液Rqを加熱し、冷媒蒸気Rvmを生成する。すなわち、伝熱管41の管内側は、冷媒蒸気Rvmを生成する中温蒸発器EMを形成し、伝熱管41の内面が中温蒸発器EMの伝熱面となっている。低温吸収器ALで散布された溶液Sdは冷媒蒸気Rvlを吸収して濃度が低下し希溶液Swとなり、溶液配管77を通し、吸収ヒートポンプ1の下部に配置されている低温溶液熱交換器HLの加熱側、減圧器78を経て、再生器Gへと導かれる。 The low-temperature absorber AL has a heat transfer tube 41 and a solution spraying device 42 inside. The refrigerant liquid Rq is supplied from the gas-liquid separator 45 to the inside of the heat transfer pipe 41, and the solution Sd sprayed from the solution spraying device 42 falls to the outside of the pipe, and the solution Sd becomes the refrigerant vapor Rvl from the low-temperature evaporator EL. The refrigerant liquid Rq flowing inside the heat transfer tube 41 is heated by the absorbed heat generated at that time to generate refrigerant vapor Rvm. That is, the inside of the heat transfer tube 41 forms an intermediate temperature evaporator EM that generates the refrigerant vapor Rvm, and the inner surface of the heat transfer tube 41 is a heat transfer surface of the intermediate temperature evaporator EM. The solution Sd sprayed by the low-temperature absorber AL absorbs the refrigerant vapor Rvl and decreases in concentration to become a dilute solution Sw. The solution Sd passes through the solution pipe 77 and passes through the solution heat pump 1 in the low-temperature solution heat exchanger HL. It is led to the regenerator G through the heating side and the decompressor 78.

本実施例では、低温吸収器ALの出口部の液面は、溶液配管77の内部で低温吸収器AL出口から低温溶液熱交換器HLまでの間に形成され、その液面位置は溶液の流量と低温吸収器ALと再生器Gの圧力差(溶液の液ヘッドで表すと1〜1.5m程度である)によって変化する。低温吸収器ALが再生器Gの上部にあり、低温溶液熱交換器HLを再生器Gよりも下側に置くことにより、低温吸収器ALの出口から再生器G入口の散布装置12までの間が、大きな液面変動を許容する液シール管となり、低温蒸発器ELの冷媒蒸気の吹き抜けを防止することができる。なお、減圧器78はオリフィスであり、定格運転時の溶液流量を規定し、液位を適当な位置に設定する役目をしている。 In this embodiment, the liquid level at the outlet of the low-temperature absorber AL is formed in the solution pipe 77 between the low-temperature absorber AL outlet and the low-temperature solution heat exchanger HL, and the liquid level position is the flow rate of the solution. And the pressure difference between the low temperature absorber AL and the regenerator G (which is about 1 to 1.5 m in terms of the liquid head of the solution). The low-temperature absorber AL is located above the regenerator G, and the low-temperature solution heat exchanger HL is placed below the regenerator G, so that the space between the outlet of the low-temperature absorber AL and the spraying device 12 at the inlet of the regenerator G However, it becomes a liquid seal pipe that allows a large liquid level fluctuation, and can prevent the refrigerant vapor from blowing through the low-temperature evaporator EL. The pressure reducer 78 is an orifice, which regulates the solution flow rate during rated operation and serves to set the liquid level at an appropriate position.

中温蒸発器EM(すなわち、伝熱管41の管内側)で加熱された冷媒Rは、冷媒気液分離器45に導かれ、中温冷媒蒸気Rvmに含まれる冷媒液滴が分離され、冷媒蒸気配管84を通って中温吸収器AMへと導かれる。分離された冷媒液Rqは、気液分離器45の下部に貯留される。冷媒液ポンプRPから圧送され、冷媒液管80を通して冷媒気液分離器45に導入される冷媒液量を、冷媒気液分離器45内の冷媒液Rqの液位を検出する分離器液位検出器46の信号を基に、冷媒調節弁82で調節する。気液分離器45の底部と中温蒸発器(伝熱管41の内側)とは、下側に凸になったU字形の冷媒配管83で接続され、気液分離器45の冷媒液Rqが供給されるようになっている。本実施例では、伝熱管41の内部で冷媒液Rqが蒸気に変化して密度が大幅に減少することを利用し、気液分離器45の貯留部と伝熱管41とで気泡ポンプとして機能させて、冷媒Rを循環させている。なお、この気泡ポンプ機能の代わりに、気液分離器45の貯留部から伝熱管41への配管中に冷媒循環ポンプを持たせて、強制的に循環をさせてもよい。以後の気泡ポンプ機能部も同様にポンプで置き換え可能である。 The refrigerant R heated by the intermediate temperature evaporator EM (that is, the inside of the heat transfer pipe 41) is guided to the refrigerant gas-liquid separator 45, where the refrigerant droplets contained in the intermediate temperature refrigerant vapor Rvm are separated, and the refrigerant vapor pipe 84 is supplied. To the intermediate temperature absorber AM. The separated refrigerant liquid Rq is stored in the lower part of the gas-liquid separator 45. Separator liquid level detection that detects the liquid level of the refrigerant liquid Rq in the refrigerant gas-liquid separator 45 based on the amount of refrigerant liquid pumped from the refrigerant liquid pump RP and introduced into the refrigerant gas-liquid separator 45 through the refrigerant liquid pipe 80. Based on the signal from the vessel 46, the refrigerant adjustment valve 82 adjusts. The bottom of the gas-liquid separator 45 and the intermediate temperature evaporator (the inside of the heat transfer tube 41) are connected by a U-shaped refrigerant pipe 83 that protrudes downward, and the refrigerant liquid Rq of the gas-liquid separator 45 is supplied. It has become so. In the present embodiment, the refrigerant liquid Rq is changed to steam inside the heat transfer tube 41 and the density is greatly reduced, so that the reservoir of the gas-liquid separator 45 and the heat transfer tube 41 function as a bubble pump. Thus, the refrigerant R is circulated. Instead of the bubble pump function, a refrigerant circulation pump may be provided in the pipe from the storage part of the gas-liquid separator 45 to the heat transfer pipe 41 to forcibly circulate. Subsequent bubble pump function units can be replaced with pumps as well.

中温吸収器AMは、伝熱管51と、溶液散布装置52を内部に有している。伝熱管51の管内側には気液分離器55から冷媒液Rqが供給され、管外には溶液散布装置52から散布された濃溶液Saが降りかかり、濃溶液Saは中温蒸発器EMからの冷媒蒸気Rvmを吸収し、その際の吸収熱で伝熱管51の内側を流れる冷媒液Rqを加熱し、冷媒蒸気Rvhを生成する。すなわち、伝熱管51の管内側は、冷媒蒸気Rvhを生成する高温蒸発器EHを形成し、伝熱管51の内面が高温蒸発器EHの伝熱面となっている。中温吸収器AMの下部には、散布された濃溶液Saが冷媒蒸気Rvmを吸収して濃度が低下し中間溶液Scとなって、貯留部53に貯留される。伝熱管51は、通常運転時に溶液Scに没入しないように、貯留部53よりも上方に配設されている。貯留部53には、貯留された中間溶液Scの液位を検出する中温吸収器液位検出器54が配設されている。 The intermediate temperature absorber AM has a heat transfer tube 51 and a solution spraying device 52 inside. The refrigerant liquid Rq is supplied from the gas-liquid separator 55 to the inside of the heat transfer pipe 51, and the concentrated solution Sa sprayed from the solution spraying device 52 falls to the outside of the pipe, and the concentrated solution Sa is a refrigerant from the intermediate temperature evaporator EM. The vapor | steam Rvm is absorbed, the refrigerant | coolant liquid Rq which flows inside the heat exchanger tube 51 with the heat absorbed at that time is heated, and refrigerant | coolant vapor | steam Rvh is produced | generated. That is, the inside of the heat transfer tube 51 forms a high-temperature evaporator EH that generates the refrigerant vapor Rvh, and the inner surface of the heat transfer tube 51 is a heat transfer surface of the high-temperature evaporator EH. In the lower part of the intermediate temperature absorber AM, the sprayed concentrated solution Sa absorbs the refrigerant vapor Rvm and the concentration is reduced to become an intermediate solution Sc, which is stored in the storage unit 53. The heat transfer tube 51 is disposed above the storage portion 53 so as not to be immersed in the solution Sc during normal operation. The storage unit 53 is provided with an intermediate temperature absorber liquid level detector 54 that detects the liquid level of the stored intermediate solution Sc.

高温蒸発器EH(すなわち、加熱器51の管内側)で加熱された冷媒Rは、冷媒気液分離器55に導かれ、高温冷媒蒸気Rvhに含まれる冷媒液滴が分離され、蒸気配管87を通して高温吸収器AHへと導かれる。分離された冷媒液Rqは、気液分離器55の下部に貯留される。冷媒液ポンプRPから圧送され、冷媒液管80を通して冷媒気液分離器55に導入される冷媒液量を、冷媒気液分離器55内の冷媒液位を検出する冷媒液位検出器56の信号を基に冷媒調節弁85で調節する。気液分離器55の底部と高温蒸発器EH(伝熱管51の内側)とは、下側に凸になったU字形の冷媒配管86で接続され、気液分離器55の冷媒液Rqが高温蒸発器EHに供給されるようになっている。伝熱管51の内部で冷媒液Rqが蒸気に変化して密度が大幅に減少、気液分離器55の貯留部と伝熱管51とで気泡ポンプとして機能し、冷媒Rが循環する。 The refrigerant R heated by the high-temperature evaporator EH (that is, inside the pipe of the heater 51) is guided to the refrigerant gas-liquid separator 55, where refrigerant droplets contained in the high-temperature refrigerant vapor Rvh are separated and passed through the vapor pipe 87. It is led to the high temperature absorber AH. The separated refrigerant liquid Rq is stored in the lower part of the gas-liquid separator 55. A signal of the refrigerant liquid level detector 56 that detects the refrigerant liquid level in the refrigerant gas-liquid separator 55 based on the amount of refrigerant liquid pumped from the refrigerant liquid pump RP and introduced into the refrigerant gas-liquid separator 55 through the refrigerant liquid pipe 80. It adjusts with the refrigerant | coolant adjustment valve 85 based on this. The bottom of the gas-liquid separator 55 and the high-temperature evaporator EH (inside the heat transfer pipe 51) are connected by a U-shaped refrigerant pipe 86 protruding downward, and the refrigerant liquid Rq of the gas-liquid separator 55 is hot. It is supplied to the evaporator EH. The refrigerant liquid Rq is changed to steam inside the heat transfer tube 51, and the density is greatly reduced. The storage portion of the gas-liquid separator 55 and the heat transfer tube 51 function as a bubble pump, and the refrigerant R circulates.

高温吸収器AHは、管内側に被加熱媒体Wが流れる伝熱管61と、濃溶液Saを散布する濃溶液散布装置62を内部に有している。濃溶液散布装置62から散布した濃溶液Saは伝熱管61に降りかかり、濃溶液Saが高温冷媒蒸気Rvhを吸収する際の吸収熱で伝熱管61を流れる被加熱媒体Wを加熱する。高温吸収器AHの下部には、散布された濃溶液Saが高温冷媒蒸気Rvhを吸収して濃度が低下した中間溶液Sbとなり、貯留部63に貯留される。伝熱管61は、通常運転時に中間溶液Sbに没入しないように、貯留部63よりも上方に配設されている。貯留部63には、貯留された中間溶液Sbの液位を検出する高温吸収器液位検出器64が配設されている。 The high-temperature absorber AH has a heat transfer tube 61 through which the heated medium W flows inside the tube and a concentrated solution spraying device 62 that sprays the concentrated solution Sa. The concentrated solution Sa sprayed from the concentrated solution spraying device 62 falls on the heat transfer tube 61, and heats the heated medium W flowing through the heat transfer tube 61 with heat absorbed when the concentrated solution Sa absorbs the high-temperature refrigerant vapor Rvh. In the lower part of the high-temperature absorber AH, the sprayed concentrated solution Sa absorbs the high-temperature refrigerant vapor Rvh to become an intermediate solution Sb having a reduced concentration, and is stored in the storage unit 63. The heat transfer tube 61 is disposed above the storage portion 63 so as not to be immersed in the intermediate solution Sb during normal operation. The reservoir 63 is provided with a high-temperature absorber liquid level detector 64 that detects the liquid level of the stored intermediate solution Sb.

被加熱媒体気液分離器65は、高温吸収器AHの伝熱管61を流れて加熱された被加熱媒体Wを導入し、被加熱媒体蒸気Wvと被加熱媒体液Wqとを分離する機器である。気液分離器65には、内部に貯留する被加熱媒体液Wqの液位を検出する気液分離器液位検出器66が設けられている。気液分離器65の底部と高温吸収器AHの伝熱管61の一端とは、被加熱媒体液Wqを伝熱管61に導く被加熱媒体液管92で接続されている。液管92は下側に凸になったU字形をしており、伝熱管61の内部で被加熱媒体液Wqが蒸気に変化して密度が大幅に減少することを利用し、気液分離器65の貯留部と伝熱管61とで気泡ポンプとして機能させて、被加熱媒体Wを伝熱管61と気液分離器65の間を循環させている。伝熱管61の出口側は被加熱媒体管93で、気液分離器65に接続されている。 The heated medium gas-liquid separator 65 is an apparatus that introduces the heated medium W that flows through the heat transfer tube 61 of the high-temperature absorber AH and separates the heated medium vapor Wv and the heated medium liquid Wq. . The gas-liquid separator 65 is provided with a gas-liquid separator liquid level detector 66 for detecting the liquid level of the heated medium liquid Wq stored therein. The bottom of the gas-liquid separator 65 and one end of the heat transfer pipe 61 of the high-temperature absorber AH are connected by a heated medium liquid pipe 92 that guides the heated medium liquid Wq to the heat transfer pipe 61. The liquid pipe 92 has a U-shape projecting downward, and the gas-liquid separator utilizes the fact that the density of the medium to be heated Wq changes into steam inside the heat transfer pipe 61 and the density is greatly reduced. The storage section 65 and the heat transfer tube 61 function as a bubble pump, and the heated medium W is circulated between the heat transfer tube 61 and the gas-liquid separator 65. The outlet side of the heat transfer tube 61 is a heated medium tube 93 and is connected to the gas-liquid separator 65.

また、気液分離器65には、蒸気として系外に供給した被加熱媒体Wを補うため、被加熱媒体液(補給水)Wqを系外から導入する被加熱媒体配管(補給水管)90が接続されている。補給水管90には、気液分離器65に向けて補給水Wqを圧送する補給水ポンプWPと、逆止弁91と、補給水Wqを熱源温水で予熱する補給水熱交換器HWとが配設されている。補給水ポンプWPは、気液分離器液位検出器66の信号により、気液分離器65内の被加熱媒体液Wqの液位に応じて発停制御あるいは回転速度制御されるように構成されている。また、気液分離器65には、被加熱媒体蒸気Wvを系外に供給する被加熱媒体蒸気供給管94が上部(典型的には頂部)に接続されている。被加熱媒体蒸気供給管94には、系外に供給する被加熱媒体蒸気Wvの流量を調節することで気液分離器65内の圧力を調節する圧力調節弁95と、被加熱媒体蒸気Wvの気液分離器65内への逆流を防ぐ逆止弁96とが配設されている。気液分離器65には、内部の静圧を検出する気液分離器圧力センサ97が設けられ、検出された圧力に応じて圧力調節弁95の開度を調節することができるように構成されている。 In addition, the gas-liquid separator 65 has a heated medium pipe (replenishment water pipe) 90 for introducing a heated medium liquid (makeup water) Wq from outside the system in order to supplement the heated medium W supplied as vapor outside the system. It is connected. The makeup water pipe 90 includes a makeup water pump WP that pumps the makeup water Wq toward the gas-liquid separator 65, a check valve 91, and a makeup water heat exchanger HW that preheats the makeup water Wq with heat source hot water. It is installed. The make-up water pump WP is configured such that start / stop control or rotational speed control is performed according to the liquid level of the heated medium liquid Wq in the gas-liquid separator 65 based on the signal of the gas-liquid separator liquid level detector 66. ing. In addition, a heated medium vapor supply pipe 94 that supplies the heated medium vapor Wv to the outside of the system is connected to the gas-liquid separator 65 at the upper part (typically the top). The heated medium vapor supply pipe 94 includes a pressure control valve 95 that adjusts the pressure in the gas-liquid separator 65 by adjusting the flow rate of the heated medium vapor Wv supplied outside the system, and the heated medium vapor Wv. A check valve 96 that prevents backflow into the gas-liquid separator 65 is provided. The gas-liquid separator 65 is provided with a gas-liquid separator pressure sensor 97 that detects the internal static pressure, and is configured so that the opening degree of the pressure control valve 95 can be adjusted according to the detected pressure. ing.

次に吸収ヒートポンプ1の溶液側のサイクルを前述と重複する部分もあるが説明する。再生器Gで、希溶液Swは、希溶液散布装置12から散布される。希溶液散布装置12から散布された希溶液Swは、伝熱管11を流れる熱源温水hによって加熱され、散布された希溶液Sw中の冷媒が蒸発して濃溶液Saとなり、再生器Gの下部に貯留される。他方、希溶液Swから蒸発した冷媒Rは再生器冷媒蒸気Rvgとして凝縮器Cへと移動する。再生器Gの下部に貯留された濃溶液Saは、濃溶液管70中の溶液ポンプSPにより、高温吸収器AHの溶液散布装置62と中温吸収器AMの溶液散布装置52に圧送される。濃溶液管70を流れる濃溶液Saは、まず低温溶液熱交換器HLで希溶液Swと熱交換して温度上昇し、一部が分岐して、溶液配管73で中温溶液熱交換器HMの加熱側を経由して中温吸収器AMへと流れ、残部は高温溶液熱交換器HHの加熱側経由で高温吸収器AHへと流れる。このとき、高温吸収器AHの貯留部63に貯留された中間溶液Sbが所定の液位になるように、高温吸収器液位検出器64の検出液位に応じて溶液ポンプSPの回転速度が操作されて高温吸収器AHへの流入量が調節され、また、中温吸収器AMの貯留部53に貯留された中間溶液Scが所定の液位になるように、中温吸収器液位検出器54の検出液位に応じて溶液配管73中の溶液流量調節弁VMの開度が操作され中温吸収器AMへの流入量が調節される。 Next, the solution-side cycle of the absorption heat pump 1 will be described although there is a part overlapping the above. In the regenerator G, the diluted solution Sw is sprayed from the diluted solution spraying device 12. The dilute solution Sw sprayed from the dilute solution spraying device 12 is heated by the heat source hot water h flowing through the heat transfer tube 11, and the refrigerant in the sprayed dilute solution Sw evaporates to become a concentrated solution Sa. Stored. On the other hand, the refrigerant R evaporated from the dilute solution Sw moves to the condenser C as a regenerator refrigerant vapor Rvg. The concentrated solution Sa stored in the lower part of the regenerator G is pumped by the solution pump SP in the concentrated solution tube 70 to the solution spraying device 62 of the high temperature absorber AH and the solution spraying device 52 of the intermediate temperature absorber AM. The concentrated solution Sa flowing through the concentrated solution tube 70 first heat-exchanges with the diluted solution Sw in the low-temperature solution heat exchanger HL, the temperature rises, and partly branches, and the solution pipe 73 heats the intermediate-temperature solution heat exchanger HM. Flows to the intermediate temperature absorber AM via the side, and the remainder flows to the high temperature absorber AH via the heating side of the high temperature solution heat exchanger HH. At this time, the rotational speed of the solution pump SP is set according to the detected liquid level of the high temperature absorber liquid level detector 64 so that the intermediate solution Sb stored in the storage unit 63 of the high temperature absorber AH becomes a predetermined liquid level. The intermediate-temperature absorber liquid level detector 54 is operated so that the amount of flow into the high-temperature absorber AH is adjusted, and the intermediate solution Sc stored in the storage unit 53 of the intermediate-temperature absorber AM becomes a predetermined liquid level. In response to the detected liquid level, the opening of the solution flow rate control valve VM in the solution pipe 73 is operated to adjust the amount of inflow into the intermediate temperature absorber AM.

高温吸収器AHで、溶液散布装置62から伝熱管61に散布された濃溶液Saは、高温冷媒蒸気Rvhを吸収し、濃度が低下して中間溶液Sbとなり、貯留部63に貯留される。貯留部63内の中間溶液Sbは、位置ヘッド及び蒸気圧力差により低温吸収器ALに向かって溶液配管71を通り、高温溶液熱交換器HHで濃溶液Saと熱交換して温度が低下し、減圧器としてのオリフィス72を経て、中温吸収器AMからの溶液との合流点(低温吸収器ALの散布装置42の入口部)に至る。 The concentrated solution Sa sprayed from the solution spraying device 62 to the heat transfer tube 61 by the high-temperature absorber AH absorbs the high-temperature refrigerant vapor Rvh, decreases in concentration, becomes an intermediate solution Sb, and is stored in the storage unit 63. The intermediate solution Sb in the reservoir 63 passes through the solution pipe 71 toward the low-temperature absorber AL due to the position head and the vapor pressure difference, and the temperature is lowered by exchanging heat with the concentrated solution Sa in the high-temperature solution heat exchanger HH. It passes through the orifice 72 as a decompressor and reaches a confluence point with the solution from the intermediate temperature absorber AM (an inlet portion of the spraying device 42 of the low temperature absorber AL).

中温吸収器AMで、濃溶液Saは、溶液散布装置52から伝熱管51に向けて散布され、中温蒸発器EMから移動してきた冷媒蒸気Rvmを吸収し、その際に発生する吸収熱で伝熱管51内すなわち高温蒸発器EHを流れる冷媒液Rqを加熱して高温冷媒蒸気Rvhとする。中間冷媒蒸気Rvmを吸収した溶液は、濃度が低下して中間溶液Scとなり、貯留部53に貯留される。貯留部53内の中間溶液Scは、位置ヘッド及び蒸気圧力差により低温吸収器ALに向かって溶液配管74を通り、中温溶液熱交換器HMで濃溶液Saと熱交換して温度が低下し、減圧器としてのオリフィス75を経て、高温吸収器AHからの溶液との合流点に至る。なお、液位検出器54と溶液調節弁VMとは、一体化したフロート弁で代用してもよい。 In the intermediate temperature absorber AM, the concentrated solution Sa is sprayed from the solution spraying device 52 toward the heat transfer tube 51, absorbs the refrigerant vapor Rvm moved from the intermediate temperature evaporator EM, and the heat transfer tube is generated by the absorbed heat generated at that time. The refrigerant liquid Rq flowing through the high temperature evaporator EH is heated into the high temperature refrigerant vapor Rvh. The solution that has absorbed the intermediate refrigerant vapor Rvm decreases in concentration to become the intermediate solution Sc, and is stored in the storage unit 53. The intermediate solution Sc in the storage unit 53 passes through the solution pipe 74 toward the low-temperature absorber AL due to the position head and the vapor pressure difference, and heat is exchanged with the concentrated solution Sa in the intermediate temperature solution heat exchanger HM, so that the temperature decreases. It passes through the orifice 75 as a decompressor and reaches the junction with the solution from the high temperature absorber AH. The liquid level detector 54 and the solution control valve VM may be replaced with an integrated float valve.

前記合流点で、高温吸収器AHからの中間溶液Sbと中温吸収器AMからの中間溶液Scとは、合流点で混合し中間溶液Sdとなって、低温吸収器ALに導入される。中間溶液Sdは、溶液散布装置42から伝熱管41に向けて散布され、低温蒸発器ELから移動してきた冷媒蒸気Rvlを吸収し、その際に発生する吸収熱で伝熱管41内すなわち中温蒸発器EMを流れる冷媒液Rqを加熱して冷媒蒸気Rvmとする。冷媒蒸気Rvlを吸収した中間溶液Sdは、濃度が低下して希溶液Swとなり、低温吸収器ALの下部出口部に集り、希溶液配管77を通り、低温溶液熱交換器HLで濃溶液Saと熱交換して温度が低下し、減圧器としてのオリフィス78を経て再生器Gの溶液散布装置12に導かれる。 At the junction point, the intermediate solution Sb from the high temperature absorber AH and the intermediate solution Sc from the intermediate temperature absorber AM are mixed at the junction point to become the intermediate solution Sd and introduced into the low temperature absorber AL. The intermediate solution Sd is sprayed from the solution spraying device 42 toward the heat transfer tube 41, absorbs the refrigerant vapor Rvl that has moved from the low temperature evaporator EL, and the heat generated at that time in the heat transfer tube 41, that is, the intermediate temperature evaporator. The refrigerant liquid Rq flowing through the EM is heated to be a refrigerant vapor Rvm. The intermediate solution Sd that has absorbed the refrigerant vapor Rvl is reduced in concentration to become a dilute solution Sw, gathers at the lower outlet of the low-temperature absorber AL, passes through the dilute solution pipe 77, and the concentrated solution Sa in the low-temperature solution heat exchanger HL. The temperature is lowered by heat exchange, and is guided to the solution spraying device 12 of the regenerator G through an orifice 78 as a decompressor.

低温吸収器ALから再生器Gに戻った希溶液Swは、再生器Gで加熱濃縮されて濃溶液Saとなり、サイクルを一巡する。 The dilute solution Sw returned to the regenerator G from the low-temperature absorber AL is heated and concentrated in the regenerator G to become a concentrated solution Sa, and the cycle is completed.

制御装置100は、吸収ヒートポンプ1の運転を制御する機器である。制御装置100は、冷媒液ポンプRP、溶液ポンプSP、補給水ポンプWPなどとそれぞれ信号ケーブルで接続されており、これらの発停や回転速度の調節を行うことができるように構成されている。これまでの説明では高温吸収器液位検出器64の出力を直接入力して制御されることとした溶液ポンプSP、及び気液分離器液位検出器66の出力を直接入力して制御されることとした補給水ポンプWP等は、制御装置100を介して(検出器の出力信号を一旦制御装置100に入力して)制御されることとしてもよい。同様に、操作端となる溶液調節弁VM、冷媒流量調節弁81、82、85と、対応する検出器との関係も制御装置100を介して制御されることとしてもよい。 The control device 100 is a device that controls the operation of the absorption heat pump 1. The control device 100 is connected to the refrigerant liquid pump RP, the solution pump SP, the makeup water pump WP, and the like through signal cables, respectively, and is configured to be able to start / stop and adjust the rotation speed. In the description so far, the output of the high-temperature absorber liquid level detector 64 is directly input and controlled, and the solution pump SP and the output of the gas-liquid separator liquid level detector 66 are directly input and controlled. The makeup water pump WP and the like that have been determined may be controlled via the control device 100 (by inputting the detector output signal to the control device 100 once). Similarly, the relationship between the solution control valve VM and the refrigerant flow rate control valves 81, 82, 85 serving as operation ends and the corresponding detectors may be controlled via the control device 100.

図1(b)はヒートポンプ1の通常運転時のデューリング線図である。本図を参照して、図1(a)の吸収ヒートポンプ1の作用を簡略化して再度説明する。図1(b)のデューリング線図は、縦軸に冷媒R(本実施の形態では水)の露点(溶液の蒸気圧に対する飽和温度)を、横軸に溶液S(本実施の形態ではLiBr水溶液)の温度をとっている。右上がりの直線は溶液Sの等濃度線を表し、右側の直線ほど高濃度、左側の直線ほど低濃度であり、図中の露点0℃を通る右上がりの線Rは溶液濃度0%(すなわち冷媒のみ)の冷媒線である。なお、縦軸が示す露点は飽和圧力と対応関係にあるため、冷媒蒸気Rvg、Rvl、Rvm、Rvhが飽和蒸気である本実施の形態のヒートポンプサイクルでは、縦軸は内部圧力を表していると見ることもできる。 FIG. 1B is a dueling diagram during normal operation of the heat pump 1. With reference to this figure, the effect | action of the absorption heat pump 1 of Fig.1 (a) is simplified and demonstrated again. In the Duhring diagram of FIG. 1B, the vertical axis represents the dew point (saturation temperature relative to the vapor pressure of the solution) of the refrigerant R (water in the present embodiment), and the horizontal axis represents the solution S (LiBr in the present embodiment). Temperature of aqueous solution). The straight line rising to the right represents an isoconcentration line of the solution S, the higher the straight line on the right, the lower the straight line on the left, and the rising line R passing through the dew point of 0 ° C. in the figure is the solution concentration of 0% (that is, Refrigerant line only). Since the dew point indicated by the vertical axis has a corresponding relationship with the saturation pressure, in the heat pump cycle of the present embodiment where the refrigerant vapors Rvg, Rvl, Rvm, and Rvh are saturated vapors, the vertical axis represents the internal pressure. You can also see it.

図1(b)中、吸収ヒートポンプ1の定格運転における溶液Sの状態は溶液線SLで表され、定格運転における冷媒Rの状態は冷媒線R上のC、EL、EM、EHで表されている。本実施の形態の定格条件(設計条件)は、凝縮器Cの伝熱管21に出入りする冷却水cwの入口温度が25℃、出口温度が30℃、再生器Gの伝熱管11に流入する熱源温水hの温度が90℃、低温蒸発器ELの伝熱管31から導出される熱源温水hの温度が75℃であり、気液分離器65から供給される被加熱媒体蒸気Wvの圧力を0.8MPa(ゲージ圧)に調節している。図1(b)中、Gは再生器Gの溶液Sの状態を表し、ALは低温吸収器ALの溶液Sの状態を表し、AMは中温吸収器AMの溶液Sの状態を表し、AHは高温吸収器AHの溶液Sの状態を表している。これらの溶液の状態が水平方向に伸びているのは、等圧下で溶液Sの濃度が変化していることを表している。傾斜線Saは濃溶液の温度変化、Sbは高温吸収器出口の中間溶液の温度変化、Scは中温吸収器出口の中間溶液の温度変化、Sdは低温吸収器入口状態を、Swは低温吸収器出口の希溶液の温度変化を表す。また、Cは凝縮器Cの冷媒の状態を、ELは低温蒸発器ELの冷媒の状態を、EMは中温蒸発器EMの冷媒の状態を、EHは高温蒸発器EHの冷媒の状態をそれぞれ表している。図1(b)から明らかなように、ヒートポンプサイクル中で最も圧力が高くなるのは高温蒸発器EHと高温吸収器AHである。なお、冷媒Rの蒸気を移動させるために互いに連通している高温吸収器AHと高温蒸発器EHは、厳密に言えば冷媒蒸気の下流側となる高温吸収器AHの方が、流動による圧力損失分だけ低くなるがほぼ同圧である。 In FIG. 1B, the state of the solution S in the rated operation of the absorption heat pump 1 is represented by a solution line SL, and the state of the refrigerant R in the rated operation is represented by C, EL, EM, EH on the refrigerant line R. Yes. The rated condition (design condition) of this embodiment is that the inlet temperature of the cooling water cw entering and exiting the heat transfer tube 21 of the condenser C is 25 ° C., the outlet temperature is 30 ° C., and the heat source flowing into the heat transfer tube 11 of the regenerator G The temperature of the hot water h is 90 ° C., the temperature of the heat source hot water h led out from the heat transfer tube 31 of the low-temperature evaporator EL is 75 ° C., and the pressure of the heated medium vapor Wv supplied from the gas-liquid separator 65 is 0. The pressure is adjusted to 8 MPa (gauge pressure). In FIG. 1B, G represents the state of the solution S in the regenerator G, AL represents the state of the solution S in the low temperature absorber AL, AM represents the state of the solution S in the intermediate temperature absorber AM, and AH represents The state of the solution S of the high temperature absorber AH is shown. The state of these solutions extending in the horizontal direction indicates that the concentration of the solution S changes under the same pressure. The inclined line Sa is the temperature change of the concentrated solution, Sb is the temperature change of the intermediate solution at the outlet of the high temperature absorber, Sc is the temperature change of the intermediate solution at the outlet of the intermediate temperature absorber, Sd is the state of the low temperature absorber inlet, and Sw is the low temperature absorber. It represents the temperature change of the dilute solution at the outlet. C represents the state of the refrigerant in the condenser C, EL represents the state of the refrigerant in the low temperature evaporator EL, EM represents the state of the refrigerant in the intermediate temperature evaporator EM, and EH represents the state of the refrigerant in the high temperature evaporator EH. ing. As is apparent from FIG. 1B, the highest pressure in the heat pump cycle is the high temperature evaporator EH and the high temperature absorber AH. Strictly speaking, the high temperature absorber AH and the high temperature evaporator EH, which are in communication with each other to move the vapor of the refrigerant R, are more pressure loss due to flow in the high temperature absorber AH on the downstream side of the refrigerant vapor. Although it is lowered by the amount, it is almost the same pressure.

再生器Gで、希溶液Swは加熱濃縮され、冷媒蒸気Rvgを凝縮器Cに放出し、濃溶液Saとなる。濃溶液Saは、溶液ポンプSPにより昇圧されて、低温溶液熱交換器HLで希溶液Swと熱交換し昇温した後、一部が分岐されて中間溶液Scと熱交換して温度上昇して中温吸収器AMに入り、残部は中間溶液Sbと熱交換して温度上昇し、高温吸収器AHに入る。 In the regenerator G, the dilute solution Sw is heated and concentrated, and the refrigerant vapor Rvg is discharged to the condenser C to become a concentrated solution Sa. The concentrated solution Sa is increased in pressure by the solution pump SP, and heat-exchanged with the dilute solution Sw in the low-temperature solution heat exchanger HL and then heated, and then partially branched and heat-exchanged with the intermediate solution Sc to increase the temperature. The medium temperature absorber AM is entered, and the remainder is heat-exchanged with the intermediate solution Sb to increase the temperature, and then enters the high temperature absorber AH.

高温吸収器AHで、濃溶液Saは、高温蒸発器EHからの高温冷媒蒸気Rvhを吸収し、濃度が低下して中間溶液Sbとなる。高温蒸発器EHの露点(冷媒蒸気の飽和温度)と平衡する溶液温度(濃度Sa〜Sb)は高温であり、被加熱媒体Wを高温化することができる。中間溶液Sbは、高温吸収器AHと低温吸収器ALの高位差(位置ヘッド)及び内圧の差(圧力ヘッド)により、高温吸収器AHから低温吸収器ALに向かって流れ、途中で濃溶液Saと熱交換して温度が低下して、中温吸収器AMからの溶液との合流点に至る。 In the high-temperature absorber AH, the concentrated solution Sa absorbs the high-temperature refrigerant vapor Rvh from the high-temperature evaporator EH, and the concentration decreases to become the intermediate solution Sb. The solution temperature (concentration Sa to Sb) that balances with the dew point (saturation temperature of the refrigerant vapor) of the high-temperature evaporator EH is high, and the heated medium W can be heated. The intermediate solution Sb flows from the high-temperature absorber AH toward the low-temperature absorber AL due to a high level difference (position head) and a difference in internal pressure (pressure head) between the high-temperature absorber AH and the low-temperature absorber AL. As a result of heat exchange with the medium, the temperature is lowered to reach a junction with the solution from the intermediate temperature absorber AM.

中温吸収器AMで、濃溶液Saは、中温蒸発器EMからの冷媒蒸気Rvmを吸収し、濃度が低下して中間溶液Scとなる。中温蒸発器EMの冷媒の露点と平衡する溶液温度(濃度Sa〜Sc)は高温蒸発器EHの冷媒の露点よりも高温であり、中温吸収器AMの溶液で、高温蒸発器EHの冷媒を加熱蒸発させることができる。中間溶液Scは、中温吸収器AMと低温吸収器ALの高位差(位置ヘッド)及び内圧の差(圧力ヘッド)により、中温吸収器AMから低温吸収器ALに向かって流れ、途中で濃溶液Saと熱交換して温度が低下して、高温吸収器AHからの溶液との合流点に至る。合流点で中間溶液SbとScは混合してSdとなり、低温吸収器ALに導かれる。 In the intermediate temperature absorber AM, the concentrated solution Sa absorbs the refrigerant vapor Rvm from the intermediate temperature evaporator EM, and the concentration decreases to become the intermediate solution Sc. The solution temperature (concentration Sa to Sc) in equilibrium with the dew point of the refrigerant of the intermediate temperature evaporator EM is higher than the dew point of the refrigerant of the high temperature evaporator EH, and the refrigerant of the high temperature evaporator EH is heated with the solution of the intermediate temperature absorber AM. Can be evaporated. The intermediate solution Sc flows from the intermediate temperature absorber AM toward the low temperature absorber AL due to a high level difference (position head) and an internal pressure difference (pressure head) between the intermediate temperature absorber AM and the low temperature absorber AL, and the concentrated solution Sa The temperature is lowered by heat exchange with the solution and reaches a confluence with the solution from the high temperature absorber AH. The intermediate solutions Sb and Sc are mixed to become Sd at the junction, and are led to the low temperature absorber AL.

低温吸収器ALで、中間溶液Scは、低温蒸発器ELからの冷媒蒸気Rvlを吸収し、濃度が低下して希溶液Swとなる。低温蒸発器ELの冷媒の露点と平衡する溶液温度(濃度Sc〜Sw)は中温蒸発器EMの冷媒の露点よりも高温であり、低温吸収器ALの溶液で、中温蒸発器EMの冷媒を加熱蒸発させることができる。希溶液Swは、低温吸収器ALと再生器Gとの高位差(位置ヘッド)及び内圧の差(圧力ヘッド)により、低温吸収器ALから再生器Gに向かって流れ、途中、低温溶液熱交換器HLで濃溶液Saと熱交換して温度が低下して、再生器Gに戻り、溶液サイクルを一巡する。 In the low-temperature absorber AL, the intermediate solution Sc absorbs the refrigerant vapor Rvl from the low-temperature evaporator EL, and the concentration is reduced to become a dilute solution Sw. The solution temperature (concentration Sc to Sw) in equilibrium with the dew point of the refrigerant of the low temperature evaporator EL is higher than the dew point of the refrigerant of the intermediate temperature evaporator EM, and the refrigerant of the intermediate temperature evaporator EM is heated with the solution of the low temperature absorber AL. Can be evaporated. The dilute solution Sw flows from the low temperature absorber AL toward the regenerator G due to the high level difference (position head) and the internal pressure difference (pressure head) between the low temperature absorber AL and the regenerator G, and in the middle of the low temperature solution heat exchange The temperature is lowered by exchanging heat with the concentrated solution Sa in the regenerator HL, the flow returns to the regenerator G, and the solution cycle is completed.

次に、起動から通常運転までの動作について説明する。運転前、溶液Sの大部分は再生器G下部の貯留部13に貯留されており、運転開始とともにこの溶液Sは、溶液ポンプSPにより高温吸収器AHと中温吸収器AMに送られる。溶液ポンプSPの回転速度は高温吸収器AHの液面検出器64の信号を基に操作されるのであるが、最大回転速度を高温吸収器AHの状態値(たとえば冷媒蒸気圧とし、圧力センサー69で検出)で制限し、起動直後に通常運転時の回転速度よりも低い速度からスムーズに立ち上がれるようにしている。(制限を加えない場合、起動直後に最大回転速度になり、その後、液面上昇で急激に回転速度が低下する急変動作が生じる)。 Next, the operation from startup to normal operation will be described. Before the operation, most of the solution S is stored in the storage unit 13 below the regenerator G, and the solution S is sent to the high temperature absorber AH and the intermediate temperature absorber AM by the solution pump SP as the operation starts. The rotational speed of the solution pump SP is operated based on the signal of the liquid level detector 64 of the high temperature absorber AH. The maximum rotational speed is the state value of the high temperature absorber AH (for example, the refrigerant vapor pressure, and the pressure sensor 69). ), And it is possible to start up smoothly from a speed lower than the rotation speed during normal operation immediately after startup. (If no restriction is applied, the maximum rotation speed is reached immediately after startup, and then a sudden change operation occurs in which the rotation speed rapidly decreases as the liquid level rises).

ヒートポンプ起動時に、高温吸収器AHおよび中温吸収器AMから低温吸収器ALへと流出する流量は、低温吸収器ALとの蒸気圧力差が小さく、それぞれ、高温吸収器AH出口液面および中温吸収器AM出口液面と低温吸収器ALの溶液散布装置42との位置ヘッド差を主な駆動力としている。高温吸収器液位検出器64の信号により溶液ポンプSPの回転速度が調整されて、高温吸収器AHへの溶液流入量は流出能力に見合ったものとなり、また、中温吸収器液位検出器54の信号により溶液流量調節弁VMの開度が調整されて、中温吸収器AMへの溶液流入量は流出能力に見合ったものとなる。 When starting the heat pump, the flow rate from the high-temperature absorber AH and the intermediate-temperature absorber AM to the low-temperature absorber AL has a small vapor pressure difference from the low-temperature absorber AL. The high-temperature absorber AH outlet liquid level and the intermediate-temperature absorber, respectively. The position head difference between the AM outlet liquid level and the solution spraying device 42 of the low temperature absorber AL is a main driving force. The rotational speed of the solution pump SP is adjusted by a signal from the high temperature absorber liquid level detector 64, so that the amount of solution flowing into the high temperature absorber AH is commensurate with the outflow capability, and the intermediate temperature absorber liquid level detector 54 The opening of the solution flow rate control valve VM is adjusted by this signal, so that the amount of solution flowing into the intermediate temperature absorber AM matches the outflow capability.

高温吸収器AHおよび中温吸収器AMは、低温吸収器ALの溶液散布装置42よりも高位にあり、溶液Sは位置ヘッド差で低温吸収器ALの溶液散布装置42へと導かれ、伝熱管41に散布される。低温吸収器ALは再生器Gの溶液散布装置12よりも高位にあり、溶液Sは位置ヘッド差で再生器Gに戻ることができる。 The high temperature absorber AH and the intermediate temperature absorber AM are higher than the solution spraying device 42 of the low temperature absorber AL, and the solution S is led to the solution spraying device 42 of the low temperature absorber AL due to the position head difference, and the heat transfer tube 41. Sprayed on. The low-temperature absorber AL is higher than the solution spraying device 12 of the regenerator G, and the solution S can return to the regenerator G due to the position head difference.

熱源温水hは、再生器伝熱管11で溶液Sを加熱し、次いで低温蒸発器ELの伝熱管31で冷媒液Rqを加熱蒸発させる。低温蒸発器で発生した冷媒蒸気Rvlは低温吸収器ALに入り、伝熱管41の周囲で溶液Sに吸収され、前記溶液Sは吸収熱で昇温し、蒸発器ELの冷媒温度よりも高温になって、伝熱管41内部の中温蒸発器EMの冷媒液を加熱蒸発させる。中温蒸発器EMで発生した冷媒蒸気Rvmは、気液分離器45を経由して、中温吸収器AMに入り、溶液Sに吸収される。中温吸収器で溶液Sは吸収熱で昇温され、蒸発器EMの冷媒温度よりも高温になり、伝熱管51内部の高温蒸発器EHの冷媒液を加熱蒸発させる。高温蒸発器EHで発生した冷媒蒸気Rvhは、気液分離器55を経由して、高温吸収器AHに入り、高温吸収器AHの蒸気圧を上げるとともに、溶液Sに吸収され、溶液Sはその吸収熱で高温になる。 The heat source hot water h heats the solution S with the regenerator heat transfer tube 11 and then heats and evaporates the refrigerant liquid Rq with the heat transfer tube 31 of the low temperature evaporator EL. The refrigerant vapor Rvl generated in the low-temperature evaporator enters the low-temperature absorber AL and is absorbed by the solution S around the heat transfer tube 41. The temperature of the solution S is increased by the absorbed heat, and becomes higher than the refrigerant temperature of the evaporator EL. Thus, the refrigerant liquid in the intermediate temperature evaporator EM inside the heat transfer tube 41 is heated and evaporated. The refrigerant vapor Rvm generated in the intermediate temperature evaporator EM enters the intermediate temperature absorber AM via the gas-liquid separator 45 and is absorbed by the solution S. The solution S is heated by absorption heat in the intermediate temperature absorber and becomes higher than the refrigerant temperature in the evaporator EM, and the refrigerant liquid in the high temperature evaporator EH inside the heat transfer tube 51 is heated and evaporated. The refrigerant vapor Rvh generated in the high-temperature evaporator EH enters the high-temperature absorber AH via the gas-liquid separator 55, increases the vapor pressure of the high-temperature absorber AH, and is absorbed by the solution S. It becomes high temperature by absorption heat.

各蒸発器の冷媒温度が上昇すると共に、各吸収器の蒸気圧が上昇し、溶液温度も次第に上昇していく。蒸気圧上昇と共、機器間の蒸気圧差も大きくなり、溶液循環量が増大していき、各部の圧力は通常運転の蒸気圧分布に近づいていく。高温吸収器AHの伝熱管61内の被加熱媒体Wは加熱され蒸発はするが、圧力センサ97で蒸気弁95が調節されており、所定の圧力以下では外部に供給されることはないので、高温吸収器AHの加熱能力は、主に内部の溶液温度や被加熱媒体の温度上昇に使われ、急激な温度上昇、圧力上昇となって、起動から通常運転へと立ち上がっていくことになる。 As the refrigerant temperature of each evaporator rises, the vapor pressure of each absorber rises, and the solution temperature gradually rises. Along with the increase in vapor pressure, the vapor pressure difference between devices also increases, the amount of solution circulation increases, and the pressure in each part approaches the vapor pressure distribution in normal operation. The heated medium W in the heat transfer tube 61 of the high-temperature absorber AH is heated and evaporated, but the steam valve 95 is adjusted by the pressure sensor 97 and is not supplied to the outside below a predetermined pressure. The heating capacity of the high-temperature absorber AH is mainly used for increasing the temperature of the internal solution and the temperature of the medium to be heated, resulting in a sudden increase in temperature and pressure, and a start-up to normal operation.

図1(a)では、中温吸収器AMへの溶液分岐点を低温溶液熱交換器HL加熱側の下流で、中温溶液熱交換器HM加熱側の上流とし、高温吸収器AHからの溶液と中温吸収器AMからの溶液の合流点を高温溶液熱交換器HH被加熱側の直後で、かつ中温溶液熱交換器HM被加熱側の直後としている。この分岐点、合流点は、中温吸収器AMへの溶液の分岐点を中温溶液熱交換器HL加熱側と高温溶液熱交換器HM加熱側の中間とし、合流点を高温吸収器AH被加熱側と中温溶液熱交換器HM被加熱側の中間とすることもできる。 In FIG. 1A, the solution branch point to the intermediate temperature absorber AM is set downstream of the low temperature solution heat exchanger HL heating side and upstream of the intermediate temperature solution heat exchanger HM heating side. The junction point of the solution from the absorber AM is set immediately after the high temperature solution heat exchanger HH heated side and immediately after the medium temperature solution heat exchanger HM heated side. This branch point and junction point is the intermediate point of the solution branch to the intermediate temperature absorber AM between the intermediate temperature solution heat exchanger HL heating side and the high temperature solution heat exchanger HM heating side, and the junction point is the high temperature absorber AH heated side And intermediate temperature solution heat exchanger HM can also be in the middle of the heated side.

次に図2を参照して、本発明の第2の実施の形態に係る三段昇温型の吸収ヒートポンプ2を説明する。吸収ヒートポンプ1との大きな違いは、吸収ヒートポンプ1が高温吸収器AHおよび中温吸収器AMからの溶液Sを合流させて低温再生器ALの散布装置42に導いているのに対し、吸収ヒートポンプ2は高温吸収器AHからの溶液Sbを低温再生器ALの出口側に導くとともに、中温再生器AMからの溶液Scは低温吸収器ALの散布装置42に導いている点である。また、再生器Gと凝縮器Cを含む缶胴と、低温吸収器ALと低温蒸発器ELを含む缶胴を、合体させた構造としている点も吸収ヒートポンプ1と異なる。 Next, a three-stage temperature rising type absorption heat pump 2 according to a second embodiment of the present invention will be described with reference to FIG. The major difference from the absorption heat pump 1 is that the absorption heat pump 1 joins the solution S from the high temperature absorber AH and the intermediate temperature absorber AM and leads to the spraying device 42 of the low temperature regenerator AL, whereas the absorption heat pump 2 The solution Sb from the high temperature absorber AH is led to the outlet side of the low temperature regenerator AL, and the solution Sc from the medium temperature regenerator AM is led to the spraying device 42 of the low temperature absorber AL. The absorption heat pump 1 is also different in that the can body including the regenerator G and the condenser C and the can body including the low temperature absorber AL and the low temperature evaporator EL are combined.

高温吸収器AHからの溶液Sbを低温再生器ALの出口側に導くことで、高温吸収器AHから低温吸収器ALの散布装置42に導いた時よりも、位置ヘッド差を大きくすることができ、起動時の高温吸収器AHからの流出能力が増え、高温吸収器の溶液循環量を多くすることができる。また、再生器G、凝縮器C、低温吸収器ALおよび低温蒸発器ELを単胴とすることで、ヒートポンプ装置の高さ寸法を抑えることができる。 By introducing the solution Sb from the high temperature absorber AH to the outlet side of the low temperature regenerator AL, the position head difference can be made larger than when the high temperature absorber AH is led to the spraying device 42 of the low temperature absorber AL. The ability to flow out of the high-temperature absorber AH during startup increases, and the amount of solution circulation in the high-temperature absorber can be increased. Moreover, the height dimension of a heat pump apparatus can be suppressed by making the regenerator G, the condenser C, the low temperature absorber AL, and the low temperature evaporator EL into a single cylinder.

なお、図2では、高温吸収器AHからの溶液Sbを低温再生器ALの出口側に導くとともに、中温再生器AMからの溶液Scは低温吸収器ALの散布装置42に導いているが、高温吸収器AHからの溶液Sbを低温吸収器ALの散布装置42に、中温再生器AMからの溶液Scを低温再生器ALの出口側に導いてもよい。この場合、起動時の中温吸収器AMの循環量を多くすることができる。 In FIG. 2, the solution Sb from the high temperature absorber AH is led to the outlet side of the low temperature regenerator AL and the solution Sc from the medium temperature regenerator AM is led to the spraying device 42 of the low temperature absorber AL. The solution Sb from the absorber AH may be guided to the spraying device 42 of the low temperature absorber AL, and the solution Sc from the intermediate temperature regenerator AM may be guided to the outlet side of the low temperature regenerator AL. In this case, the circulation amount of the intermediate temperature absorber AM at the time of activation can be increased.

また、図2の溶液の変形フローとして、溶液ポンプSPの吐出側直後で分岐し、高温吸収器AH、中温再生器AM、低温吸収器ALに溶液Sを導き、各吸収器からの戻りの溶液Sを再生器Gの散布装置12の入口側で合流させることもできる。この場合は、高温吸収器AHおよび中温吸収器AMからの流出に係る位置ヘッド差が大きくとれるので、起動時の高温吸収器AHおよび中温吸収器AMの溶液循環量を多くすることができ、起動を速めることができる。 As a deformation flow of the solution in FIG. 2, the solution branches immediately after the discharge side of the solution pump SP, leads the solution S to the high temperature absorber AH, the intermediate temperature regenerator AM, and the low temperature absorber AL, and returns from each absorber. S can also be merged at the inlet side of the spraying device 12 of the regenerator G. In this case, since the position head difference related to the outflow from the high temperature absorber AH and the intermediate temperature absorber AM can be greatly increased, the amount of solution circulation in the high temperature absorber AH and the intermediate temperature absorber AM at the time of activation can be increased, and the activation is started. Can speed up.

次に図3を参照して、本発明の第3の実施の形態に係る三段昇温型吸収ヒートポンプ3を説明する。吸収ヒートポンプ3は、再生器Gと凝縮器Cを収めた缶胴と、低温吸収器ALと低温蒸発器ELを収めた缶胴とを左右に配置し、これらの缶胴の上に高温吸収器AHと中温吸収器AMとを左右にほぼ同じ高さで配置して、ヒートポンプの高さを抑えている。この場合、両吸収器AHとAMの間に圧力差のほとんどない状態では、高温吸収器AHからの溶液Sbを中温吸収器AMの散布装置52に位置ヘッド差で戻すことはできない。 Next, with reference to FIG. 3, a three-stage temperature rising type absorption heat pump 3 according to a third embodiment of the present invention will be described. The absorption heat pump 3 has a can body containing a regenerator G and a condenser C, and a can body containing a low temperature absorber AL and a low temperature evaporator EL arranged on the left and right, and a high temperature absorber on these can bodies. The height of the heat pump is suppressed by arranging the AH and the intermediate temperature absorber AM on the left and right at substantially the same height. In this case, in a state where there is almost no pressure difference between the two absorbers AH and AM, the solution Sb from the high temperature absorber AH cannot be returned to the spraying device 52 of the intermediate temperature absorber AM due to the position head difference.

吸収ヒートポンプ3では、再生器Gの濃溶液Saを溶液ポンプSPで昇圧し、高温吸収器AHと中温吸収器AMとに並列に導くと共に、中温吸収器AMからの戻り溶液Scは中温吸収器AMの出口液面より下側に配置された再生器Gの散布装置12に導き、高温吸収器AHからの戻り溶液Sbは高温吸収器AHの出口液面より下側に配置された低温吸収器ALの散布装置42に導き、低温吸収器ALからの溶液Swは、補助溶液ポンプSPXで再生器Gの溶液散布装置12に導くことで、機器間の圧力差が無い状態でも溶液循環ができるようにしている。なお、低温吸収器ALの下部には溶液貯留部43と貯留部液位検出器44を設け、液位検出器44の信号でSPXの溶液Swの吐出流量を低温吸収器ALへの流入量にバランスするように調節している。 In the absorption heat pump 3, the concentrated solution Sa of the regenerator G is boosted by the solution pump SP and guided in parallel to the high temperature absorber AH and the intermediate temperature absorber AM, and the return solution Sc from the intermediate temperature absorber AM is the intermediate temperature absorber AM. The return solution Sb from the high-temperature absorber AH is guided to the spraying device 12 of the regenerator G arranged below the outlet liquid level of the low-temperature absorber AL. The solution Sw from the low-temperature absorber AL is guided to the solution spraying device 12 of the regenerator G by the auxiliary solution pump SPX so that the solution can be circulated even in the absence of a pressure difference between the devices. ing. A solution reservoir 43 and a reservoir liquid level detector 44 are provided below the low temperature absorber AL, and the discharge flow rate of the SPX solution Sw is set to the inflow amount to the low temperature absorber AL by the signal of the liquid level detector 44. It is adjusted to balance.

吸収ヒートポンプ3では、中温吸収器AMからの溶液Scを、直接再生器Gの散布装置12に導いて、補助溶液ポンプSPXの動力を減らしているが、高温吸収器AHからの溶液Sbを再生器Gの散布装置12に導き、中温吸収器AMからの溶液Scを低温吸収器ALの散布装置42に導いても補助溶液ポンプSPXの動力を減らすことはできる。なお、補助溶液ポンプSPXの動力削減にはならないが、高温吸収器AHおよび中温吸収器AMからの溶液Sを、合流して再生器Gの散布装置12に導いても、起動時の溶液循環が可能で、ヒートポンプ装置の高さ抑制効果はある。 In the absorption heat pump 3, the solution Sc from the intermediate temperature absorber AM is directly guided to the spraying device 12 of the regenerator G to reduce the power of the auxiliary solution pump SPX, but the solution Sb from the high temperature absorber AH is regenerated. The power of the auxiliary solution pump SPX can be reduced even if the solution Sc from the intermediate temperature absorber AM is led to the spray device 42 of the low temperature absorber AL. Although the power of the auxiliary solution pump SPX is not reduced, even if the solution S from the high-temperature absorber AH and the intermediate-temperature absorber AM is joined and guided to the spraying device 12 of the regenerator G, the solution circulation at the time of startup is not It is possible and has the effect of suppressing the height of the heat pump device.

次に図4を参照して、本発明の第4の実施の形態に係る三段昇温型の吸収ヒートポンプ4を説明する。図3の吸収ヒートポンプ3との違いは、再生器Gの濃溶液Saを溶液ポンプSPで昇圧して、高温吸収器AH、中温吸収器AMおよび低温吸収器ALとに三方向に分岐して並列に導くと共に、高温吸収器AHおよび中温吸収器AMからの溶液Sを直接再生器Gの散布装置12に導いている点である。補助溶液ポンプSPXで低温吸収器ALから再生器Gの溶液散布装置12に戻す溶液は、溶液ポンプSPにより低温吸収器ALに送り込まれた分量だけであり、補助溶液ポンプSPXの動力を減らすことができる。 Next, with reference to FIG. 4, a three-stage temperature rising type absorption heat pump 4 according to a fourth embodiment of the present invention will be described. The difference from the absorption heat pump 3 in FIG. 3 is that the concentrated solution Sa of the regenerator G is boosted by the solution pump SP, and is branched in parallel in three directions to the high temperature absorber AH, the intermediate temperature absorber AM, and the low temperature absorber AL. And the solution S from the high temperature absorber AH and the intermediate temperature absorber AM is directly guided to the spraying device 12 of the regenerator G. The solution returned from the low temperature absorber AL to the solution spraying device 12 of the regenerator G by the auxiliary solution pump SPX is only the amount sent to the low temperature absorber AL by the solution pump SP, and the power of the auxiliary solution pump SPX can be reduced. it can.

以上の説明では、低温再生器ELの伝熱管31の大部分を冷媒液Rqに浸して、伝熱管内を流れる熱源温水hと熱交換させる形式(満液式)として説明したが、通常の吸収冷凍機と同じように冷媒液を散布して伝熱管外面に液膜を形成する形式であっても差し支えない。 In the above description, most of the heat transfer tubes 31 of the low-temperature regenerator EL are immersed in the refrigerant liquid Rq to exchange heat with the heat source hot water h flowing in the heat transfer tubes (full liquid type). As in the case of the refrigerator, a liquid film may be formed on the outer surface of the heat transfer tube by spraying the refrigerant liquid.

以上の説明では、熱源媒体が熱源温水hとしたが、排蒸気等の熱媒体としてもよい。また、伝熱管11及び伝熱管31に同じ熱源温水hが流れるとしたが、それぞれの伝熱管11、31に異なる熱源媒体が流れるように構成してもよい。 In the above description, the heat source medium is the heat source hot water h, but it may be a heat medium such as exhaust steam. Although the same heat source hot water h flows through the heat transfer tubes 11 and 31, different heat source media may flow through the heat transfer tubes 11 and 31.

以上の説明では、高温吸収器AHの状態検出器を高温吸収器AHの缶胴内蒸気圧力を検出する高温吸収器圧力センサ69としたが、高温吸収器と高温蒸発器とはほぼ同圧なので、高温蒸発器EHの缶胴内蒸気圧力を検出する圧力センサとしてもよく、また蒸気圧と相関関係のある、例えば、高温蒸発器EHの内部温度(飽和温度)を検出する温度センサ等を用いてもよい。また高温吸収器の溶液温度センサ等を用いてもよい。 In the above description, the state detector of the high temperature absorber AH is the high temperature absorber pressure sensor 69 that detects the vapor pressure in the can body of the high temperature absorber AH, but the high temperature absorber and the high temperature evaporator are almost the same pressure. A pressure sensor that detects the vapor pressure in the can body of the high-temperature evaporator EH may be used, and a temperature sensor that detects the internal temperature (saturation temperature) of the high-temperature evaporator EH, for example, having a correlation with the vapor pressure is used. May be. Also, a solution temperature sensor of a high temperature absorber may be used.

以上の説明で、高温吸収器AHの溶液循環量は、定格運転時に定格流量になるように、高温吸収器出口部のオリフィス72で設定し、運転状態によりオリフィスを通る流量(流出量)が変化するのに合わせて流入量を調節するため、流入出量のバランスを液面検出器66で検出し、溶液ポンプSPの回転速度制御をしているが、溶液ポンプSPの吐出側に流量調節弁を用いて溶液の流入量を調節してもよい。また、例えば高温吸収器の運転状態を基にインバータなどでポンプ能力を調節することで流入量を可変とし、その流入量に合わせて流出量を高温吸収器出口の調節弁で調節する方式などであってもよい。 In the above description, the solution circulation rate of the high-temperature absorber AH is set at the orifice 72 at the outlet of the high-temperature absorber so that the rated flow rate becomes the rated flow during the rated operation, and the flow rate (outflow amount) passing through the orifice varies depending on the operating state. In order to adjust the inflow amount in accordance with this, the balance of the inflow / outflow amount is detected by the liquid level detector 66, and the rotational speed of the solution pump SP is controlled. May be used to adjust the inflow of the solution. In addition, for example, by adjusting the pump capacity with an inverter etc. based on the operating state of the high temperature absorber, the inflow amount can be made variable, and the outflow amount can be adjusted with the adjustment valve at the high temperature absorber outlet according to the inflow amount, etc. There may be.

1、2、3、4 昇温型吸収ヒートポンプ
11、21、31、41、51、61 伝熱管
12、42、52、62 溶液散布装置
13、33、43、53、63 貯留部
34、44、54、64 液位検出器
45、55、65 気液分離器
46、56、66 分離器液位検出器
69、97 圧力センサ
70、71、73、74、76、77 溶液配管
72、75、78 減圧器(オリフィス)
80、83、86 冷媒液配管
81、82、85 冷媒調節弁
84、87 冷媒蒸気配管
90、92、93、94 被加熱媒体配管
91、96 チェッキ弁
100 制御装置
AH 高温吸収器
AL 低温吸収器
AM 中温吸収器
C 凝縮器
cw 冷却水
EH 高温蒸発器
EL 低温蒸発器
EM 中温蒸発器
G 再生器
h 熱原水
HL、HM、HH 溶液熱交換器
R 冷媒
RP 冷媒ポンプ
Rq 冷媒液
Rvg、Rvh、Rvm、Rvl 冷媒蒸気
S、Sa、Sb、Sc、Sd、Sw 溶液
SP 溶液ポンプ
SPX 溶液循環補助ポンプ
VM 溶液調節弁
W、Wv、Wq 被加熱媒体
WP 補給水ポンプ
1, 2, 3, 4 Temperature rising type absorption heat pump 11, 21, 31, 41, 51, 61 Heat transfer tube 12, 42, 52, 62 Solution spraying device 13, 33, 43, 53, 63 Reservoir 34, 44, 54, 64 Liquid level detector 45, 55, 65 Gas-liquid separator 46, 56, 66 Separator liquid level detector 69, 97 Pressure sensor 70, 71, 73, 74, 76, 77 Solution piping 72, 75, 78 Pressure reducer (orifice)
80, 83, 86 Refrigerant liquid piping 81, 82, 85 Refrigerant control valves 84, 87 Refrigerant vapor piping 90, 92, 93, 94 Heated medium piping 91, 96 Check valve 100 Controller AH High temperature absorber AL Low temperature absorber AM Medium temperature absorber C Condenser cw Cooling water EH High temperature evaporator EL Low temperature evaporator EM Medium temperature evaporator G Regenerator h Heat source water HL, HM, HH Solution heat exchanger R Refrigerant RP Refrigerant pump Rq Refrigerant liquid Rvg, Rvh, Rvm, Rvl Refrigerant vapor S, Sa, Sb, Sc, Sd, Sw Solution SP Solution pump SPX Solution circulation auxiliary pump VM Solution control valve W, Wv, Wq Heated medium WP Replenishment water pump

Claims (3)

高温吸収器、中温吸収器、低温吸収器、高温蒸発器、中温蒸発器、低温蒸発器、再生器、凝縮器、溶液ポンプ、冷媒ポンプなどを溶液配管及び冷媒配管で接続して溶液循環経路及び冷媒循環経路を構成し、前記凝縮器には冷却水を通水し、前記再生器と前記低温蒸発器には熱源流体を供給し、前記低温蒸発器で加熱蒸発した冷媒蒸気を前記低温吸収器の溶液に吸収させ、その吸収熱で前記中温蒸発器の冷媒液を加熱蒸発させて前記中温吸収器の溶液に吸収させ、さらに前記中温吸収器の吸収熱で前記高温蒸発器の冷媒液を加熱蒸発させて前記高温吸収器の溶液に吸収させ、前記高温吸収器から高温の被加熱流体を取り出す三段昇温型吸収ヒートポンプにおいて;
前記凝縮器と前記再生器を収めた缶胴の上に前記低温吸収器と前記低温蒸発器を収めた缶胴を配置するか、または前記凝縮器と前記再生器を収めた缶胴の横に前記低温吸収器と前記低温蒸発器を収めた缶胴をほぼ同じ高さで配置し;
前記低温吸収器と前記低温蒸発器を収めた缶胴よりも上に、前記高温吸収器を収めた缶胴と前記中温吸収器を収めた缶胴とをほぼ同じ高さで配置し;
前記再生器で濃縮した溶液を前記溶液ポンプで、少なくとも前記高温吸収器と前記中温吸収器に並列に導入すること;
を特徴とする三段昇温型吸収ヒートポンプ装置。
High temperature absorber, medium temperature absorber, low temperature absorber, high temperature evaporator, medium temperature evaporator, low temperature evaporator, regenerator, condenser, solution pump, refrigerant pump, etc. are connected by solution piping and refrigerant piping, A refrigerant circulation path is configured, cooling water is passed through the condenser, a heat source fluid is supplied to the regenerator and the low-temperature evaporator, and the refrigerant vapor heated and evaporated by the low-temperature evaporator is supplied to the low-temperature absorber. The intermediate temperature evaporator is heated and evaporated with the absorption heat, absorbed into the intermediate temperature absorber solution, and further, the high temperature evaporator refrigerant liquid is heated with the absorption heat of the intermediate temperature absorber. In a three-stage temperature rising type absorption heat pump that evaporates and absorbs the solution in the high-temperature absorber and takes out a high-temperature heated fluid from the high-temperature absorber;
The can body containing the low-temperature absorber and the low-temperature evaporator is disposed on the can body containing the condenser and the regenerator, or beside the can body containing the condenser and the regenerator. Arranging the can body containing the low-temperature absorber and the low-temperature evaporator at substantially the same height;
Above the can body containing the low temperature absorber and the low temperature evaporator, the can body containing the high temperature absorber and the can body containing the intermediate temperature absorber are arranged at substantially the same height;
Introducing the solution concentrated in the regenerator in parallel with at least the high temperature absorber and the intermediate temperature absorber with the solution pump;
A three-stage temperature rising type absorption heat pump device.
前記高温吸収器からの出口溶液と前記中温吸収器からの出口溶液の少なくとも一方の溶液を、前記低温吸収器を経由せず、直接前記再生器に導くこと;
を特徴とする請求項1に記載の三段昇温型吸収ヒートポンプ装置。
Directing at least one of the outlet solution from the high temperature absorber and the outlet solution from the intermediate temperature absorber directly to the regenerator without passing through the low temperature absorber;
The three-stage temperature rising type absorption heat pump device according to claim 1.
前記高温吸収器からの出口溶液と前記中温吸収器からの出口溶液の少なくとも一方の溶液を、前記低温吸収器に導く
ことを特徴とする請求項1に記載の三段昇温型吸収ヒートポンプ装置。
The three-stage temperature rising type absorption heat pump apparatus according to claim 1, wherein at least one of an outlet solution from the high temperature absorber and an outlet solution from the intermediate temperature absorber is led to the low temperature absorber.
JP2013155091A 2013-07-25 2013-07-25 Three-stage temperature rising type absorption heat pump Pending JP2015025609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013155091A JP2015025609A (en) 2013-07-25 2013-07-25 Three-stage temperature rising type absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155091A JP2015025609A (en) 2013-07-25 2013-07-25 Three-stage temperature rising type absorption heat pump

Publications (1)

Publication Number Publication Date
JP2015025609A true JP2015025609A (en) 2015-02-05

Family

ID=52490403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155091A Pending JP2015025609A (en) 2013-07-25 2013-07-25 Three-stage temperature rising type absorption heat pump

Country Status (1)

Country Link
JP (1) JP2015025609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949379A (en) * 2015-07-09 2015-09-30 烟台荏原空调设备有限公司 Second class absorption heat pump
CN113188108A (en) * 2021-04-26 2021-07-30 松下制冷(大连)有限公司 Efficient heat pump and control use method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949379A (en) * 2015-07-09 2015-09-30 烟台荏原空调设备有限公司 Second class absorption heat pump
CN113188108A (en) * 2021-04-26 2021-07-30 松下制冷(大连)有限公司 Efficient heat pump and control use method

Similar Documents

Publication Publication Date Title
JP5250340B2 (en) Absorption heat pump
JP5204965B2 (en) Absorption heat pump
JP2015025628A (en) Multi-stage temperature rising type absorption heat pump device
JP6080598B2 (en) Absorption heat pump and operation method of absorption heat pump
JP2015025609A (en) Three-stage temperature rising type absorption heat pump
JP6397747B2 (en) Absorption heat pump
JP2015025629A (en) Temperature rise type absorption heat pump
JP5395502B2 (en) Absorption heat pump
JP2015025610A (en) Three-stage temperature rising type absorption heat pump
JP6337062B2 (en) Absorption heat pump
JP2006207883A (en) Absorption heat pump
JP2013231577A (en) Absorption heat pump and operation method of absorption heat pump
JP6337056B2 (en) Absorption heat pump
JP6416848B2 (en) Absorption heat pump
JP6570965B2 (en) Absorption heat pump
JP6337055B2 (en) Absorption heat pump
JP6798074B2 (en) Absorption heat pump
JP6200655B2 (en) Absorption heat pump and operation method of absorption heat pump
JP2015025615A (en) Temperature rise type absorption heat pump
JP6437354B2 (en) Absorption refrigerator
JP7372197B2 (en) Absorption heat source device
JP5882835B2 (en) Absorption heat pump
JP5513979B2 (en) Absorption heat pump
JP5816135B2 (en) Absorption heat pump and operation method of absorption heat pump
JP5513980B2 (en) Absorption heat pump