JP2015021698A - Air conditioning control method and air conditioning control system - Google Patents

Air conditioning control method and air conditioning control system Download PDF

Info

Publication number
JP2015021698A
JP2015021698A JP2013152474A JP2013152474A JP2015021698A JP 2015021698 A JP2015021698 A JP 2015021698A JP 2013152474 A JP2013152474 A JP 2013152474A JP 2013152474 A JP2013152474 A JP 2013152474A JP 2015021698 A JP2015021698 A JP 2015021698A
Authority
JP
Japan
Prior art keywords
temperature
ict device
air conditioner
ict
calculation formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013152474A
Other languages
Japanese (ja)
Other versions
JP6002098B2 (en
Inventor
中村 雅之
Masayuki Nakamura
雅之 中村
橋本 英明
Hideaki Hashimoto
英明 橋本
中村 亮太
Ryota Nakamura
亮太 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013152474A priority Critical patent/JP6002098B2/en
Publication of JP2015021698A publication Critical patent/JP2015021698A/en
Application granted granted Critical
Publication of JP6002098B2 publication Critical patent/JP6002098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an ICT apparatus quickly and safely and achieve energy saving of an air conditioner.SOLUTION: A first calculation formula for estimating an inlet temperature of each ICT apparatus is calculated, a second calculation formula for estimating power consumption of each air conditioner is calculated, and a third calculation formula for estimating a change amount of the power consumption of the air conditioner is calculated using the first and second calculation formulas. A second load factor of each ICT apparatus in the third calculation formula is determined so that the power consumption of the air conditioner is made a minimum on the basis of the number of the ICT apparatuses necessary for processing a predetermined load. Providing that a first conditional expression for a condition that a value obtained by assigning a second blow temperature to the second calculation formula is a minimum is an object function and that a second conditional expression for a condition that a value obtained by assigning the second blow temperature and the second load factor of the ICT apparatus to the first calculation formula is not more than a first threshold is a constraint condition, the second blow temperature is calculated by means of mathematical planning.

Description

本発明は、空調制御方法および空調制御システムに関し、より詳細には、サーバ室、通信機械室やデータセンタなど複数のICT装置が設置された室内の空調を制御する空調制御方法および空調制御システムに関する。   The present invention relates to an air conditioning control method and an air conditioning control system, and more particularly to an air conditioning control method and an air conditioning control system for controlling air conditioning in a room in which a plurality of ICT devices such as a server room, a communication machine room, and a data center are installed. .

従来から、複数のICT(Information and Communication Technology:情報通信技術)装置が設置されたサーバ室、通信機械室やデータセンタではICT装置を冷却するための冷房の空調機を制御する空調制御システムが存在する。従来の冷房の空調システムは、空調機の設定温度を十分低く設定したり、ICT装置付近の温度を計測し、一定の温度に保たれるよう空調機の設定温度を制御したりしている。従来の冷房の空調システムにおいて、一部のICT装置に負荷がかかりICT装置の排気熱がたまることなどを回避するため、冷房の空調機でICT装置を必要以上に冷却していた。しかしながら冷房の空調機の設定温度を必要以上に低くすると空調機の消費電力が増大する。そこで空調機の消費電力を最小に抑えつつ、空調機の設定温度を適切に制御することが求められていた。   Conventionally, there is an air conditioning control system for controlling a cooling air conditioner for cooling an ICT device in a server room, a communication machine room or a data center where a plurality of ICT (Information and Communication Technology) devices are installed. To do. In the conventional cooling air conditioning system, the set temperature of the air conditioner is set sufficiently low, the temperature in the vicinity of the ICT device is measured, and the set temperature of the air conditioner is controlled so as to be maintained at a constant temperature. In the conventional cooling air conditioning system, in order to avoid a load on some ICT devices and the accumulation of exhaust heat of the ICT devices, the ICT devices are cooled more than necessary by the cooling air conditioners. However, if the set temperature of the air conditioner for cooling is lowered more than necessary, the power consumption of the air conditioner increases. Accordingly, it has been required to appropriately control the set temperature of the air conditioner while minimizing the power consumption of the air conditioner.

例えば非特許文献1には、空調室における空調機の吹出温度とICT装置の負荷と空調機の消費電力との関係式を用いて、空調機の消費電力の総和を最小化するように空調機の吹出温度を制御しICT装置の負荷を管理しようとする空調制御システムが記載されている。空調室とは、例えば、複数のICT装置と、複数のICT装置が収納されるラックとが設置されたサーバ室、および通信機械室をいう。   For example, Non-Patent Document 1 describes an air conditioner that minimizes the total power consumption of the air conditioner using a relational expression of the air outlet temperature of the air conditioner, the load of the ICT device, and the power consumption of the air conditioner. An air-conditioning control system that controls the blowout temperature of the ICT device and manages the load of the ICT device is described. The air-conditioned room refers to, for example, a server room in which a plurality of ICT devices and a rack in which a plurality of ICT devices are stored, and a communication machine room.

非特許文献1に記載の空調制御システムは、ICT装置の吸気温度の温度条件を満足するようにICT装置の負荷を割り当てることを試みる。ICT装置の排気による熱たまりおよびICT装置の過冷却を回避するように負荷を割り当てることを考慮している。また非特許文献1に記載の空調制御システムでは、空調機の消費電力の総和を最小化するように空調機の吹出温度を制御することにより、空調室の空調機の省エネを試みている。   The air conditioning control system described in Non-Patent Document 1 attempts to assign the load of the ICT device so as to satisfy the temperature condition of the intake temperature of the ICT device. Consideration is given to assigning a load so as to avoid heat accumulation due to exhaust of the ICT device and overcooling of the ICT device. In the air conditioning control system described in Non-Patent Document 1, an attempt is made to save energy in the air conditioner in the air conditioning room by controlling the blowout temperature of the air conditioner so as to minimize the total power consumption of the air conditioner.

Masayuki Nakamura、Ryota Nakamura、Ryuichi Nishida、Akira Takeuchi and Tetsuya Tominaga、NTT Energy and Environment Systems Laboratories、「Energy Efficient Cooling in Data Center Using Optimization Approach」、SICE2012、pp.2103-2108、2012Masayuki Nakamura, Ryota Nakamura, Ryuichi Nishida, Akira Takeuchi and Tetsuya Tominaga, NTT Energy and Environment Systems Laboratories, `` Energy Efficient Cooling in Data Center Using Optimization Approach '', SICE2012, pp.2103-2108, 2012 一森哲男著、「数理計画法―最適化の手法」、共立出版、p.4、1994年8月Tetsuo Ichimori, "Mathematical programming-Optimization technique", Kyoritsu Shuppan, p. 4, August 1994

非特許文献1に記載の空調制御システムでは、空調機の吹出温度およびICT装置の吸込温度の実測値からICT装置の吸込温度を推定する推定式を算定し、空調機の吹出温度および空調機の消費電力の実測値から、空調機の消費電力を推定する推定式を算定している。また非特許文献1に記載の空調制御システムは、算定された推定式およびICT装置の負荷の情報を用いて、空調機の消費電力を最小にするように空調機の設定温度を算出しようとしている。しかしながら、非特許文献1に記載の空調制御システムでは、すべての台数のICT装置の負荷の情報を用いて空調機の設定温度を算出しようとしていたため、ICT装置の台数相当の算出時間がかかっていた。算出時間が長くかかるとICT装置の冷却が間に合わず想定していた温度を逸脱し、ICT装置の吸込温度の温度条件を満たすことができず、ICT装置を安定して動作させることができないという問題があった。   In the air conditioning control system described in Non-Patent Document 1, an estimation formula for estimating the suction temperature of the ICT device is calculated from the actual measurement values of the air temperature of the air conditioner and the suction temperature of the ICT device. An estimation formula for estimating the power consumption of the air conditioner is calculated from the actually measured power consumption. Further, the air conditioning control system described in Non-Patent Document 1 tries to calculate the set temperature of the air conditioner so as to minimize the power consumption of the air conditioner, using the calculated estimation formula and the load information of the ICT device. . However, in the air conditioning control system described in Non-Patent Document 1, since it is attempted to calculate the set temperature of the air conditioner using the load information of all ICT devices, it takes a calculation time corresponding to the number of ICT devices. It was. If the calculation time takes a long time, the cooling of the ICT device will not be in time, deviating from the assumed temperature, the temperature condition of the suction temperature of the ICT device cannot be satisfied, and the ICT device cannot be operated stably. was there.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、ICT装置を迅速かつ安全に冷却することができ、さらに空調機の省エネを実現するための、空調制御方法および空調制御システムを提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide an air-conditioning control method capable of cooling an ICT device quickly and safely and further realizing energy saving of an air conditioner. And providing an air conditioning control system.

上記課題を解決するための手段として、本発明は、ICT装置の温度を制御する空調機および前記ICT装置の負荷を制御する空調機・ICT装置制御装置がネットワークで接続された空調・ICT装置制御システムにおいて、前記空調機の吹出温度を取得する手段と、前記空調機の消費電力を取得する手段と、前記空調機の吹出温度から前記ICT装置の吸込温度を推定する手段と、前記空調機の吹出温度から前記空調機の消費電力を推定する手段と、前記ICT装置の負荷変化量から前記空調機の消費電力変化量を推定する手段と、前記消費電力変化量を最小にするように前記ICT装置の前記負荷変化量を決定する手段と、前記ICT装置の吸込温度の推定値が前記ICT装置の上限温度以下でかつ前記空調機の消費電力が最小となるように前記空調機の吹出温度を決定する手段を有することを特徴とする。   As means for solving the above problems, the present invention provides an air conditioner / ICT device control in which an air conditioner for controlling the temperature of an ICT device and an air conditioner / ICT device controller for controlling a load of the ICT device are connected by a network. In the system, means for acquiring the air temperature of the air conditioner, means for acquiring power consumption of the air conditioner, means for estimating the suction temperature of the ICT device from the air temperature of the air conditioner, Means for estimating the power consumption of the air conditioner from the blowing temperature; means for estimating the power consumption change amount of the air conditioner from the load change amount of the ICT device; and the ICT so as to minimize the power consumption change amount. The means for determining the load change amount of the device, and the estimated value of the suction temperature of the ICT device is equal to or lower than the upper limit temperature of the ICT device, and the power consumption of the air conditioner is minimized Characterized in that it comprises means for determining the outlet temperature of sea urchin the air conditioner.

本発明は、このような目的を達成するために、請求項1に記載の発明は、ICT装置の吸込温度が一定の温度を超えた場合に、前記ICT装置を冷却する空調機の予め設定された第1の吹出温度を、第2の吹出温度に変更するシステムによる空調制御方法であって、前記ICT装置の第1の負荷率および前記第1の吹出温度に基づいて前記ICT装置の吸込温度を推定する第1の計算式を算定する第1のステップと、前記第1の吹出温度に基づいて前記空調機の消費電力を推定する第2の計算式を算定する第2のステップと、前記第1の計算式および前記第2の計算式を用いて、前記ICT装置の負荷が変化したときの前記空調機の消費電力の変化量を推定する第3の計算式を算定し、前記空調機の消費電力が最小となるように、所定の負荷を処理するために必要な前記ICT装置の台数に基づいて、前記第3の計算式における前記ICT装置の第2の負荷率を決定する第3のステップと、前記第2の計算式に前記第2の吹出温度を代入した値が最小となる第1の条件式を目的関数とし、前記第1の計算式に前記第2の吹出温度および前記ICT装置の前記第2の前記負荷率を代入した値が第1の閾値以下とする第2の条件式を制約条件として、数理計画法により前記第2の吹出し温度を計算する第4のステップとを備えることを特徴とする。   In order to achieve such an object, the present invention according to claim 1 is a preset air conditioner that cools the ICT device when the suction temperature of the ICT device exceeds a certain temperature. An air conditioning control method by a system for changing the first blowing temperature to the second blowing temperature, the suction temperature of the ICT device based on the first load factor of the ICT device and the first blowing temperature A first step of calculating a first calculation formula for estimating the first calculation formula, a second step of calculating a second calculation formula for estimating power consumption of the air conditioner based on the first blowing temperature, and Using the first calculation formula and the second calculation formula, a third calculation formula for estimating the amount of change in power consumption of the air conditioner when the load of the ICT device changes is calculated, and the air conditioner A given load so that the power consumption of the A third step of determining a second load factor of the ICT device in the third calculation formula based on the number of the ICT devices required for processing, and the second calculation formula in the second calculation formula A value obtained by substituting the second blowing temperature and the second load factor of the ICT device into the first calculation formula, with the first conditional expression that minimizes the value substituted with the blowing temperature of And a fourth step of calculating the second blowing temperature by mathematical programming using a second conditional expression that is less than or equal to the first threshold as a constraint.

以上説明したように、本発明によれば、ICT装置の台数が多くても空調機の設定温度の高速計算が可能となる。さらに本発明によれば、空調室を安全な温度に保ちつつ空調機の省エネを実現することが可能となる。   As described above, according to the present invention, it is possible to calculate the set temperature of the air conditioner at high speed even when the number of ICT devices is large. Furthermore, according to this invention, it becomes possible to implement | achieve the energy saving of an air conditioner, keeping an air conditioning room at safe temperature.

本発明の一実施形態にかかる、空調制御システムを示す構成図である。It is a lineblock diagram showing an air-conditioning control system concerning one embodiment of the present invention. 本発明の一実施形態にかかる、空調機・ICT装置制御装置を示すブロック図である。It is a block diagram which shows the air conditioner and ICT apparatus control apparatus concerning one Embodiment of this invention. 本発明の一実施形態にかかる、空調制御方法を示すフローチャートである。It is a flowchart which shows the air-conditioning control method concerning one Embodiment of this invention.

以下、本発明の空調制御方法および空調制御システムについて実施形態を挙げ、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the air conditioning control method and the air conditioning control system of the present invention will be described in detail with reference to the drawings.

図1に本発明の一実施形態にかかる、空調制御システムの構成を示す。空調室1は、複数のICT装置2Iと、ICT装置2Iを冷却する複数の空調機3Aとを含む。各空調機3Aの吹出温度を制御し、ICT装置2Iの負荷を割り当てる空調機・ICT装置制御装置4と、複数のICT装置2Iと、複数の空調機3Aとは、LAN(Local Area Network)などのネットワーク5で接続されている。 FIG. 1 shows a configuration of an air conditioning control system according to an embodiment of the present invention. The air conditioning room 1 includes a plurality of ICT devices 2I j and a plurality of air conditioners 3A i that cool the ICT devices 2I j . Controls air temperature of each air conditioner 3A i, the air conditioner · ICT device controller 4 assigns the load of the ICT device 2I j, is a plurality of ICT devices 2I j, a plurality of air conditioners 3A i, LAN (Local Are connected by a network 5 such as an area network.

空調機3Aの吹出温度とは、空調機3Aの冷気の吹き出し口付近の温度である。空調機3Aの吹出温度は、空調機3Aの吹出し口付近に設置された温度センサによって測定される。空調機3Aの設定温度は、実測温度である吹出温度とは異なり、吹出温度の目標値である。実際に空調で設定できるのは吹出温度の目標値である設定温度であり、吹出温度が設定温度と等しくなるにはある程度の時間を要する。 The outlet temperature of the air conditioner 3A i, the temperature in the vicinity of outlet of the cold air of the air conditioner 3A i. Outlet temperature of the air conditioner 3A i is measured by installed temperature sensor near the air outlet of the air conditioner 3A i. Set temperature of the air conditioner 3A i is different from the air temperature is measured temperature, which is the target value of the air temperature. What can actually be set by air conditioning is a set temperature, which is a target value of the blowing temperature, and it takes a certain amount of time for the blowing temperature to be equal to the set temperature.

ICT装置2Iは、ICT装置2I,…ICT装置2I(j=1〜m,mは正の整数)を含む。ICT装置2Iは、ICT装置2Iの吸込温度を計測する温度センサ部を備える。ICT装置2Iは、例えば、サーバなどのIT機器や通信機器であり、サーバラックに収納されうる。 ICT device 2I j includes ICT device 2I 1 ,... ICT device 2I m (j = 1 to m , m is a positive integer). The ICT device 2I j includes a temperature sensor unit that measures the suction temperature of the ICT device 2I j . The ICT device 2I j is, for example, an IT device such as a server or a communication device, and can be stored in a server rack.

ICT装置2Iの吸込温度とは、ICT装置2I内に吸気される開口部付近の温度である。ICT装置2Iの吸込温度は、ICT装置2I内に吸気される開口部付近に設置されたセンサによって測定される。 The inlet temperature of the ICT device 2I j, which is the temperature of the vicinity of an opening to be sucked into the ICT device 2I j. Inlet temperature of the ICT device 2I j is determined by the installed sensors near the opening to be sucked into the ICT device 2I j.

空調機3Aは、空調機3A,…空調機3A(i=1〜n,nは正の整数)を含む。空調機3Aは、例えば、室内機と室外機とからなる。図1では、空調機3Aが空調室に含まれているが、空調機3Aが空調室とは別の部屋に設けられ、ダクトを通じてICT装置に冷気を供給する態様でもよい。空調機3Aは、吹出温度を制御するための温度設定が可能であり、空調機3Aの吹出温度、消費電力を計測している。 The air conditioner 3A i includes air conditioners 3A 1 ,... 3A n (i = 1 to n, n is a positive integer). Air conditioner 3A i, for example, consists of an indoor unit and an outdoor unit. In FIG. 1, the air conditioner 3 </ b> A i is included in the air conditioning room, but the air conditioner 3 </ b> A i may be provided in a room different from the air conditioning room and supply cold air to the ICT apparatus through a duct. Air conditioner 3A i is capable of temperature setting for controlling the air temperature, measures the air temperature, the power consumption of the air conditioner 3A i.

空調機・ICT装置制御装置4は、SNMP(Simple Network Management Protocol)などを用いて各空調機3Aの吹出温度の情報、各空調機3Aの消費電力の情報、各ICT装置2Iの吸込温度の情報、各ICT装置2Iの負荷の情報を収集したり、各空調機3Aの吹出温度を設定したりすることができる。また空調機・ICT装置制御装置4は、ICT装置2Iで処理する全体の負荷に応じて、どのICT装置2Iにどれだけの負荷を割り当てるかを決定し制御する。 Air conditioner · ICT device controller 4, SNMP (Simple Network Management Protocol) outlet temperature information of each air conditioner 3A i by using a power consumption information for each of the air conditioners 3A i, suction of the ICT device 2I j temperature information, or to gather information for loads of ICT devices 2I j, or can set the outlet temperature of each air conditioner 3A i. The air conditioner · ICT device controller 4, depending on the load of the entire treatment with ICT device 2I j, or the determined control assign how much load to which ICT device 2I j.

図2に本発明の一実施形態にかかる、空調機・ICT装置制御装置4の例のブロック図を示す。空調機・ICT装置制御装置4は、LAN経由で各空調機3Aから各空調機3Aの吹出温度の情報や各空調機3Aの消費電力の情報を収集する空調機情報取得部41と、LAN経由で各ICT装置2Iから各ICT装置2Iの吸込温度および各ICT装置2Iの負荷の情報を受信するICT装置情報取得部42とを備える。ICT装置2Iの負荷、あるいはICT装置2Iの負荷変化量という用語は、本明細書では、ICT装置2Iで処理するタスク量やリソースの使用量を含む。ICT装置2Iの負荷は、簡単にICT装置2Iのオン、オフと表すこともできる。リソースの使用量は、CPUの動作周波数、メモリ容量、ネットワークI/O速度などを含む。また空調機・ICT装置制御装置4は、各空調機3Aの吹出温度の情報、各空調機3Aの消費電力の情報、各ICT装置2Iの吸込温度の情報などを格納する記憶部43と、各ICT装置2Iの吸込温度の推定値を、後述する式から計算するICT装置吸込温度推定部(第1の算出部)44とを備える。さらに空調機・ICT装置制御装置4は、各空調機3Aの消費電力の推定値を、後述する式から計算する空調機消費電力推定部(第2の算出部)45と、ICT装置2Iの吸込温度が一定の温度条件を満足し、かつ空調機3Aの消費電力の和が最小となるようにICT装置2Iの負荷を割り当てるICT装置負荷設定部(決定部)46とを備える。また空調機・ICT装置制御装置4は、ICT装置に関する一定の温度条件を満足し、かつ空調機3Aの消費電力の和が最小となる空調機吹出温度を求める空調機吹出温度設定部(第3の算出部)47とを備える。 FIG. 2 shows a block diagram of an example of the air conditioner / ICT device control device 4 according to one embodiment of the present invention. Air conditioner · ICT device control device 4, the air conditioner information acquiring unit 41 that collects power consumption information of the air temperature information and each of the air conditioners 3A i of each air conditioner 3A i from each of the air conditioners 3A i via LAN The ICT device information acquisition unit 42 receives information on the suction temperature of each ICT device 2I j and the load on each ICT device 2I j from each ICT device 2I j via the LAN. The term load variation of the load, or ICT device 2I j of ICT device 2I j, as used herein, includes the amount of task quantity or resource to be processed by ICT device 2I j. Loading ICT device 2I j is turned on briefly ICT device 2I j, it may be represented off. Resource usage includes CPU operating frequency, memory capacity, network I / O speed, and the like. The air conditioner · ICT device controller 4, outlet temperature information of each of the air conditioners 3A i, a storage unit 43 which the power consumption information for each of the air conditioners 3A i, stores such information in the suction temperature of the ICT device 2I j And an ICT device suction temperature estimation unit (first calculation unit) 44 that calculates an estimated value of the suction temperature of each ICT device 2I j from an expression described later. Furthermore, the air conditioner / ICT device control device 4 includes an air conditioner power consumption estimation unit (second calculation unit) 45 that calculates an estimated value of power consumption of each air conditioner 3A i from an expression described later, and an ICT device 2I j. An ICT device load setting unit (decision unit) 46 that allocates the load of the ICT device 2I j so that the suction temperature of the air conditioner satisfies a certain temperature condition and the sum of the power consumption of the air conditioners 3A i is minimized. In addition, the air conditioner / ICT device control device 4 satisfies a certain temperature condition regarding the ICT device and obtains an air conditioner blow temperature setting unit (first operation) for obtaining an air conditioner blow temperature at which the sum of power consumption of the air conditioners 3A i is minimized. 3 calculation units) 47.

空調機情報取得部41は、LAN経由で各空調機3Aから各空調機3Aの吹出温度の情報や各空調機3Aの消費電力の情報を収集し、ICT装置情報取得部42は、LAN経由で各ICT装置2Iから各ICT装置2Iの吸込温度および各ICT装置2Iの負荷を受信する。 Air conditioner information acquisition unit 41 collects power consumption information of the air temperature information and each of the air conditioners 3A i of each air conditioner 3A i from each of the air conditioners 3A i via LAN, ICT device information acquisition unit 42, via LAN to receive the load of the suction temperature and the ICT device 2I j of each ICT device 2I j from each ICT device 2I j.

ICT装置吸込温度推定部44は、空調機情報取得部41が収集した各空調機3Aの吹出温度の情報、およびICT装置情報取得部42が収集した各ICT装置2Iの吸込温度および各ICT装置2Iの負荷を受信する。またICT装置吸込温度推定部44は、各空調機3Aの吹出温度と各ICT装置2Iの負荷が変化した際に、各ICT装置2Iの吸込温度がどのように変化するかを表わした次の関係式(式1)(第1の計算式)を決定する。
Y=TX+VC (式1)
ICT device inlet temperature estimating unit 44, suction temperature and the ICT of the ICT device 2I j information air temperature, and the ICT device information acquiring unit 42 has collected in each of the air conditioners 3A i that the air conditioner information acquisition unit 41 has collected The load of the device 2I j is received. The ICT device inlet temperature estimating unit 44, the load of the air temperature and the ICT device 2I j of each air conditioner 3A i is upon changes, expressed or suction temperature of the ICT device 2I j how changes The following relational expression (formula 1) (first calculation formula) is determined.
Y = TX + VC (Formula 1)

Yは各ICT装置2Iの吸込温度を表すm次元の列ベクトル、mはICT装置2Iの台数、Xは各空調機3Aの吹出温度(空調機の第1の吹出温度)を表すn次元の列ベクトル、nは空調機3Aの台数、Tはm×n行列、Cは各ICT装置2Iの負荷(ICT装置の第1の負荷率)を表すm次元の列ベクトル、Vはm×m行列である。ベクトルCの要素は、簡単な例として、各ICT装置2Iの負荷Cの要素番号のICT装置2Iに負荷を割り当てる場合を1、割り当てない場合を0とすることができる。 Y is an m-dimensional column vector that represents the suction temperature of each ICT device 2I j , m is the number of ICT devices 2I j , and X is the air temperature of each air conditioner 3A i (the first air temperature of the air conditioner) n Dimensional column vector, n is the number of air conditioners 3A i , T is an m × n matrix, C is an m-dimensional column vector representing the load of each ICT device 2I j (first load factor of the ICT device), V is It is an m × m matrix. As a simple example, the element of the vector C can be 1 when the load is assigned to the ICT device 2I j of the element number of the load C of each ICT device 2I j , and can be 0 when the load is not assigned.

(式1)に示す関数は、予め各ICT装置2Iからの吸込温度Yの情報および負荷Cの情報と、各空調機3Aからの吹出温度Xの情報の学習データにより決定され記憶部43に格納されている。 The function shown in (Equation 1) is determined in advance by learning data of the information on the suction temperature Y and the information on the load C from each ICT device 2I j and the information on the blowing temperature X from each air conditioner 3A i. Stored in

なお、(式1)における各ICT装置2Iの吸込温度Yと各ICT装置2Iの負荷Cとの関係について、各ICT装置2Iの負荷Cは、各ICT装置2Iの発熱量と同等と考えられるため、各ICT装置2Iの負荷Cの変化が各ICT装置2Iの吹出温度を変化させる。各ICT装置2Iの排気は、各ICT装置2Iの吸込側に回りこんで各ICT装置2Iの吸込温度Yに影響を与える。したがって各ICT装置2Iの負荷Cの大きさは、各ICT装置2Iの吹出温度のみならず各ICT装置2Iの吸込温度Yにも影響を及ぼすことになる。 Note that the relationship between the load C of the suction temperature Y and the ICT device 2I j of each ICT device 2I j in Equation (1), the load C in the ICT device 2I j is equal to the calorific value of the ICT device 2I j it is considered that the change of the load C in the ICT device 2I j alters the outlet temperature of the ICT device 2I j. Exhaust of each ICT device 2I j affects the suction temperature Y of the ICT device 2I j crowded around to the suction side of the ICT device 2I j. Thus the magnitude of the load C in the ICT device 2I j will also affect the suction temperature Y of the ICT device 2I j not blow temperature only the ICT device 2I j.

空調機消費電力推定部45は、空調機情報取得部41が収集した各空調機3Aの消費電力の情報および各空調機3Aの吹出温度Xの情報を受信する。さらに空調機消費電力推定部45は、空調機情報取得部41で取得した各空調機3Aの消費電力を用いて各空調機3Aの吹出温度を変化させた際の各空調機3Aの消費電力の合計を推定する次の関係式(式2)(第2の計算式)を決定する。
P=WX+b (式2)
Air conditioner consumed power estimation unit 45 receives the information of the air temperature X of the information of the power consumption of each of the air conditioners 3A i that the air conditioner information acquisition unit 41 has collected and each air conditioner 3A i. Furthermore the air conditioner consumed power estimation unit 45, the air conditioner information of each air conditioner 3A i when the power consumption by using varying the outlet temperature of each air conditioner 3A i of each of the air conditioners 3A i obtained by the obtaining unit 41 The following relational expression (Expression 2) (second calculation expression) for estimating the total power consumption is determined.
P = WX + b (Formula 2)

Pは複数の空調機3Aの消費電力の合計、Wは各空調機3Aの吹出温度Xの係数を表すn次元の行ベクトル、bは正の定数である。 P is the total power consumption of the plurality of air conditioners 3A i, W is a row vector of n dimensions representing the coefficients of the outlet temperature X of each air conditioner 3A i, b is a positive constant.

(式2)に示す関数も予め空調機3Aからの消費電力Pの情報と吹出温度Xの情報の学習データにより決定され記憶部43に格納されている。 The function shown in (Equation 2) is also determined in advance by learning data of the information on the power consumption P from the air conditioner 3A i and the information on the blowing temperature X, and is stored in the storage unit 43.

(式2)より各空調機3Aの吹出温度の変化量ΔXと各空調機3Aの消費電力の合計の変化量ΔPの関係式は、次の(式3)となる。
ΔP=WΔX (式3)
Relationship of the total amount of change ΔP of the power consumption of the air temperature change amount ΔX and each of the air conditioners 3A i of each air conditioner 3A i from equation (2) becomes the following (Equation 3).
ΔP = WΔX (Formula 3)

(式1)より各空調機3Aの吹出温度の変化量ΔXおよび各ICT装置2Iの負荷変化量ΔCと、各ICT装置2Iの吸込温度変化量ΔYの関係式を次の(式4)に示す。
ΔY=TΔX+VΔC (式4)
(Equation 1) than the outlet temperature of each air conditioner 3A i variation ΔX and the load change amount ΔC of the ICT device 2I j, of each ICT device 2I j of the suction temperature variation ΔY relational expression of the following (Formula 4 ).
ΔY = TΔX + VΔC (Formula 4)

今、各ICT装置2Iに負荷が与えられ各ICT装置2Iの吸込温度が変化し、各空調機3Aの吹出温度を制御して各ICT装置2Iの吸込温度をできるだけ一定にする場合を考える。すなわち、(式4)においてΔY=0とすると、
ΔX=−TVΔC (式5)
となる。T+は、m×n行列Tの擬似逆行列(n×m行列)で、次の(式6)で表される。
T=(TT)-1T (式6)
Now, if the suction temperature of the ICT device 2I j load is applied to the ICT device 2I j is changed to constant as possible suction temperature of the ICT device 2I j to control the air temperature of each air conditioner 3A i think of. That is, if ΔY = 0 in (Equation 4),
ΔX = −T + VΔC (Formula 5)
It becomes. T + is a pseudo inverse matrix (n × m matrix) of the m × n matrix T and is expressed by the following (formula 6).
T + = (T t T) −1 T t (Formula 6)

Tはm×n行列Tの行と列を入れ替えた転置行列(n×m行列)、(TT)-1はn×n行列TTの逆行列(n×n行列)を表す。 T t represents a transposed matrix (n × m matrix) in which rows and columns of the m × n matrix T are exchanged, and (T t T) −1 represents an inverse matrix (n × n matrix) of the n × n matrix T t T. .

(式3)、(式5)より次の(式7)(第3の計算式)が導き出される。
ΔP=−WTVΔC (式7)
From (Expression 3) and (Expression 5), the following (Expression 7) (third calculation expression) is derived.
ΔP = −WT + VΔC (Formula 7)

(式7)で示されるΔPは、各ICT装置2Iの負荷を変化させたときの複数の空調機3Aの消費電力の合計の変化量を表し、−WTV(第1のパラメータ)は、m次元の行ベクトルを表している。また、ベクトル−WTVの各要素の符号は正である。できるだけ各空調機3Aの省エネとなる各ICT装置2Iの負荷の割り当てを求めるには、各空調機3Aの消費電力の合計の変化量ΔPを最小にするように各ICT装置2Iの負荷を決定すればよい。 ΔP shown in (Expression 7) represents the total amount of change in power consumption of the plurality of air conditioners 3A i when the load of each ICT device 2I j is changed, and −WT + V (first parameter) Represents an m-dimensional row vector. Further, the sign of each element of the vector −WT + V is positive. Possible to determine the allocation of energy saving become loads of the ICT device 2I j of each air conditioner 3A i are each ICT device 2I j to the total power dissipation of the amount of change ΔP of the air conditioner 3A i to minimize What is necessary is just to determine a load.

各空調機3Aの消費電力の合計の変化量ΔPを最小にするように各ICT装置2Iの負荷を決定する方法として、所定の負荷の処理を実行するのに必要となるICT装置2Iの負荷総量C#を用いる。ICT装置2Iの負荷総量C#は、本明細書では簡単な例として、所定の負荷を処理するのに必要な各ICT装置2Iの台数とする。ICT装置2Iの負荷総量C#は記憶部43に格納される。 The total power dissipation of the amount of change ΔP of the air conditioner 3A i as a method for determining the load of each ICT device 2I j to minimize, ICT device 2I j necessary for executing the processing of a predetermined load Use the total load C # . The total load C # of the ICT device 2I j is, as a simple example in this specification, the number of ICT devices 2I j necessary for processing a predetermined load. The total load C # of the ICT device 2I j is stored in the storage unit 43.

各ICT装置2Iの負荷変化量ΔCを次の(式8)に示す。
ΔC=(ΔC1,ΔC2,ΔC3,ΔC4,ΔC5,ΔC6,ΔC7,ΔC8,ΔC9,…,ΔCm) (式8)
また、ベクトル−WTVを、次の(式9)に示す。
−WTV=(a1,a2,a3,a4,a5,a6,a7,a8,a9,…,am) (式9)
The load change amount ΔC of each ICT device 2I j is shown in the following (formula 8).
ΔC = (ΔC 1 , ΔC 2 , ΔC 3 , ΔC 4 , ΔC 5 , ΔC 6 , ΔC 7 , ΔC 8 , ΔC 9 ,..., ΔC m ) t (Formula 8)
Further, the vector −WT + V is shown in the following (Equation 9).
−WT + V = (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 ,…, a m ) (Equation 9)

(式8)および(式9)において、要素a1がICT装置2Iに対応し、要素a2がICT装置2Iに対応し、…要素amがICT装置2Iに対応するように、各要素番号は各ICT装置2Iに紐付けられている。 In (Equation 8) and (Equation 9), the element a 1 corresponds to the ICT device 2I 1 , the element a 2 corresponds to the ICT device 2I 2 ,..., And the element a m corresponds to the ICT device 2I m . each element number is tied to the ICT device 2I j.

(式7)、(式8)および(式9)により、各空調機3Aの消費電力の合計の変化量ΔPは、次の(式10)に示すことができる。
ΔP=a1ΔC1+a2ΔC2+a3ΔC3+a4ΔC4+a5ΔC5+a6ΔC6+a7ΔC7+a8ΔC8+a9ΔC9+…+amΔCm (式10)
From (Expression 7), (Expression 8), and (Expression 9), the total amount of change ΔP of the power consumption of each air conditioner 3A i can be expressed by the following (Expression 10).
ΔP = a 1 ΔC 1 + a 2 ΔC 2 + a 3 ΔC 3 + a 4 ΔC 4 + a 5 ΔC 5 + a 6 ΔC 6 + a 7 ΔC 7 + a 8 ΔC 8 + a 9 ΔC 9 +… + a m ΔC m (Formula 10)

各ICT装置2Iの負荷変化量ΔCの要素は、後述するように値が1か0となるので、実質的にはベクトル−WTVの各要素ajの値が、各ICT装置2Iの負荷に対する空調機3Aの消費電力を示しているということができる。よって、各空調機3Aの消費電力の合計の変化量ΔPを最小とするためには、ベクトル−WTVの各要素ajの合計が最小であることが必要となる。所定の負荷を処理するために必要なICT装置2Iの台数C#の各要素ajのうち小さい方から順番に要素ajを選択すれば、所定の負荷を処理するために必要最低限の各空調機3Aの消費電力の合計の変化量ΔPで、負荷を処理することが可能となる。 Since the element of the load change amount ΔC of each ICT device 2I j has a value of 1 or 0 as described later, the value of each element a j of the vector −WT + V is substantially equal to each ICT device 2I j. It can be said that the power consumption of the air conditioner 3A i with respect to the load of is shown. Therefore, in order to power consumption total variation ΔP of the air conditioner 3A i minimized, it is necessary that the sum of the elements a j of the vector -WT + V is minimum. If the element a j is selected in order from the smallest of the elements a j of the number C # of the ICT devices 2I j necessary for processing the predetermined load, the minimum necessary for processing the predetermined load in the variation ΔP of the total power consumption of each of the air conditioners 3A i, it is possible to handle the load.

ICT装置2Iの負荷総量C#を取得したICT装置負荷設定部46は、次の4つの手順を行い、各ICT装置2Iの負荷パターン(ICT装置の第2の負荷率)C*を計算し決定する。 The ICT device load setting unit 46 that has acquired the total load C # of the ICT device 2I j performs the following four procedures, and calculates the load pattern (second load factor of the ICT device) C * of each ICT device 2I j. And decide.

(手順1)
(式9)において例えば、ICT装置2Iの台数mを10として、a1=17、a2=23、a3=34、a4=26、a5=13、a6=10、a7=43、a8=50、a9=27、a10=30とすると、(式9)は、次の(式11)に示される。
−WTV=(17,23,34,26,13,10,43,50,27,30) (式11)
所定の負荷を処理するために必要なICT装置2Iの台数C#を5台として、空調機3Aの消費電力が最小となるように、ベクトル−WTVの各要素の数値が小さい方から順に要素を5つ選択する。選択された要素は、(式11)を参照すると、a6=10,a5=13,a1=17,a2=23,a4=26となる。
(Procedure 1)
For example, in (Equation 9), the number m of the ICT device 2I j as 10, a 1 = 17, a 2 = 23, a 3 = 34, a 4 = 26, a 5 = 13, a 6 = 10, a 7 Assuming = 43, a 8 = 50, a 9 = 27, and a 10 = 30, (Expression 9) is expressed by the following (Expression 11).
−WT + V = (17,23,34,26,13,10,43,50,27,30) (Formula 11)
The smaller the numerical value of each element of the vector −WT + V so that the power consumption of the air conditioner 3A i is minimized with the number C # of the ICT devices 2I j necessary for processing the predetermined load being five. Select five elements in order. The selected elements are a 6 = 10, a 5 = 13, a 1 = 17, a 2 = 23, and a 4 = 26 with reference to (Equation 11).

(手順2)
(手順1)で選択された要素について、要素a6はICT装置2I、要素a5はICT装置2I5、要素a1はICT装置2I1、要素a2はICT装置2I2、要素a4はICT装置2I4にそれぞれ紐付けられ、記憶部43に格納される。
(Procedure 2)
Regarding the element selected in (Procedure 1), the element a 6 is the ICT apparatus 2I 6 , the element a 5 is the ICT apparatus 2I 5 , the element a 1 is the ICT apparatus 2I 1 , the element a 2 is the ICT apparatus 2I 2 , and the element a 4 Are associated with the ICT device 2I 4 and stored in the storage unit 43.

(手順3)
選択された各ICT装置2Iの負荷変化量ΔCの要素を1とし、選択されなかった各ICT装置2Iの負荷変化量ΔCの要素を0とする。(手順2)において選択された各ICT装置2Iは、ICT装置2I、ICT装置2I5、ICT装置2I1、ICT装置2I2、ICT装置2I4であるため、負荷変化量ΔC6=1、負荷変化量ΔC5=1、負荷変化量ΔC1=1、負荷変化量ΔC2=1、負荷変化量ΔC4=1となる。ICT装置2I、ICT装置2I、ICT装置2I、ICT装置2I、ICT装置2I10は、(手順2)において選択されなかったため、負荷変化量ΔC3=0、負荷変化量ΔC7=0、負荷変化量ΔC8=0、負荷変化量ΔC9=0、負荷変化量ΔC10=0となる。
(Procedure 3)
The element of the load change amount ΔC of each selected ICT device 2I j is set to 1, and the element of the load change amount ΔC of each ICT device 2I j that is not selected is set to 0. Since the ICT devices 2I j selected in (Procedure 2) are the ICT device 2I 6 , the ICT device 2I 5 , the ICT device 2I 1 , the ICT device 2I 2 , and the ICT device 2I 4 , the load change amount ΔC 6 = 1. , Load change amount ΔC 5 = 1, load change amount ΔC 1 = 1, load change amount ΔC 2 = 1, and load change amount ΔC 4 = 1. Since the ICT device 2I 3 , the ICT device 2I 7 , the ICT device 2I 8 , the ICT device 2I 9 , and the ICT device 2I 10 were not selected in (procedure 2), the load change amount ΔC 3 = 0 and the load change amount ΔC 7 = 0, load change amount ΔC 8 = 0, load change amount ΔC 9 = 0, load change amount ΔC 10 = 0.

(手順4)
(手順3)と(式8)により、各ICT装置2Iの負荷変化量ΔCを次の(式12)に示される。
ΔC=(1,1,0,1,1,1,0,0,0,0)=C* (式12)
(Procedure 4)
By (Procedure 3) and (Equation 8), the load change amount ΔC of each ICT device 2I j is expressed by the following (Equation 12).
ΔC = (1,1,0,1,1,1,0,0,0,0) t = C * (Formula 12)

所定の負荷を処理するために必要なICT装置2Iの台数C#における各ICT装置2Iの負荷変化量ΔCを、各ICT装置2Iの負荷パターンC*とする。 The load change amount ΔC of each ICT device 2I j in the number C # of ICT devices 2I j necessary for processing a predetermined load is defined as a load pattern C * of each ICT device 2I j .

空調機吹出温度設定部47は、各ICT装置2Iの負荷パターンC*が決定した後、ICT装置2Iの温度条件を満足し、かつ各空調機3Aの消費電力の和が最小となる空調機3Aの吹出温度を求める。空調機3Aの吹出温度を求める方法としては数理計画法を用いる。数理計画法は、任意の等式もしくは不等式で表される制約条件下で、任意の目的関数を最小化あるいは最大化する変数の組を求める手法である(非特許文献2を参照)。 After the load pattern C * of each ICT device 2I j is determined, the air conditioner outlet temperature setting unit 47 satisfies the temperature condition of the ICT device 2I j and the sum of the power consumption of each air conditioner 3A i is minimized. Request outlet temperature of the air conditioner 3A i. As a method for determining the outlet temperature of the air conditioner 3A i uses mathematical programming. Mathematical programming is a technique for obtaining a set of variables that minimizes or maximizes an arbitrary objective function under a constraint condition expressed by an arbitrary equality or inequality (see Non-Patent Document 2).

数理計画法で求める変数の組は各空調機3Aの吹出温度であり、最小化する目的関数は各空調機3Aの消費電力の合計を示す(式2)に基づく次の(式13)(第1の条件式)である。
P=WX’+b (式13)
Set of variables calculated by the mathematical programming method is air temperature of each air conditioner 3A i, the objective function to be minimized representing the total power consumption of each of the air conditioners 3A i follows based on equation (2) (Formula 13) (First conditional expression).
P = WX '+ b (Formula 13)

X’は、求める各空調機3Aの吹出温度である。 X ′ is the blowing temperature of each air conditioner 3A i to be obtained.

ICT装置2Iの温度条件を表す不等式制約条件を表す式は、各ICT装置2Iの負荷パターンC*を(式1)に代入したICT装置吸込温度が上限温度(第1の閾値)以下という次の条件式(式14)(第2の条件式)である。
TX’+VC*≦Y# (式14)
Expression for the inequality constraints to represent the temperature conditions of the ICT device 2I j is a load pattern C * of the ICT device 2I j of equation (1) ICT device inlet temperature obtained by substituting the upper limit temperature (first threshold value) or less The following conditional expression (Expression 14) (second conditional expression) is satisfied.
TX '+ VC * ≤ Y # (Formula 14)

Y#は各ICT装置2Iの上限温度を表すm次元の列ベクトルで、上限温度を越えると故障などの確率が高くなる。 Y # is a column vector of m dimensions representing the maximum temperature of the ICT device 2I j, the probability of such a failure exceeds the upper limit temperature is high.

(式14)を満たし、(式13)を最小にする各空調機3Aの吹出温度X’を数理計画法で求める。数理計画法としては線形計画法を使用してもよく、市販のパッケージを利用してもよい。 Satisfies the equation (14), obtained by mathematical programming a blowing temperature X 'of each of the air conditioners 3A i which minimizes the equation (13). As mathematical programming, linear programming may be used, or a commercially available package may be used.

ICT装置負荷設定部46は、各ICT装置2Iの負荷パターンC*に従って、別のICT装置2Iに負荷を割り当て、空調機吹出温度設定部47は、空調機3Aの吹出設定温度を空調機3Aに送信する。 The ICT device load setting unit 46 assigns a load to another ICT device 2I j according to the load pattern C * of each ICT device 2I j , and the air conditioner blow temperature setting unit 47 air-conditions the blow set temperature of the air conditioner 3A i. Send to machine 3A i .

なお、(式7)では、できるだけ空調機3Aの省エネとなるICT装置2Iの負荷割り当てを求めるために、各空調機3Aの消費電力の合計Pではなく各空調機3Aの消費電力の合計の変化量ΔPを使用している。初期状態が各空調機3Aの消費電力の合計Pが最小である状態からICT装置2Iの負荷が変化した場合、各空調機3Aの消費電力の合計の変化量ΔPを最小にすることにより、近似的に各空調機3Aの消費電力の合計Pを最小化するということを意味している。 In (Equation 7), in order to determine the load allocation of the ICT device 2I j as the energy saving as possible air conditioner 3A i, the power consumption of each of the air conditioners 3A i rather than a total P of the power consumption of each of the air conditioners 3A i The total amount of change ΔP is used. When the load of the ICT device 2I j is changed from the state where the total power consumption P of each air conditioner 3A i is the minimum, the change amount ΔP of the total power consumption of each air conditioner 3A i is minimized. by, which means that minimizing the total P of the power consumption of approximately each air conditioner 3A i.

図3に本発明の一実施形態にかかる、空調制御方法のフローチャートを示す。空調機情報取得部41は、各空調機3Aの吹出温度Xの情報を収集し、ICT装置情報取得部42は、各ICT装置2Iの吸込温度Yの情報および各ICT装置2Iの負荷Cの情報を収集する。ICT装置吸込温度推定部44は、収集された各空調機3Aの吹出温度Xの情報、各ICT装置2Iの吸込温度Yの情報および各ICT装置2Iの負荷Cの情報に基づいて(式1)を決定し(S101)(第1のステップ)、決定された(式1)は、記憶部43に記録される。 FIG. 3 shows a flowchart of an air conditioning control method according to an embodiment of the present invention. Air conditioner information acquisition unit 41 collects information of the air temperature X of each air conditioner 3A i, ICT device information acquisition unit 42, the load of the suction temperature Y information and the ICT device 2I j of each ICT device 2I j Collect C information. ICT device suction temperature estimation unit 44, based on information of the air temperature X of each air conditioner 3A i collected, the information of the load C in inlet temperature Y information and the ICT device 2I j of each ICT device 2I j ( Formula (1) is determined (S101) (first step), and the determined (Formula 1) is recorded in the storage unit 43.

空調機情報取得部41は、空調機3Aの消費電力Pの情報および各空調機3Aの吹出温度Xの情報を収集する。空調機消費電力推定部45は、収集された空調機3Aの消費電力Pの情報および各空調機3Aの吹出温度Xの情報に基づいて(式2)を決定し(S102)(第2のステップ)、決定された(式2)は、記憶部43に記録される。ステップS102により、学習データが記憶部43に格納され、次のステップS103に進む。 Air conditioner information acquisition unit 41 collects information of the air temperature X of the information and each of the air conditioners 3A i power consumption P of the air conditioner 3A i. Air conditioner consumed power estimation unit 45, based on the information of the power consumption P of the collected air conditioner 3A i and information of the air temperature X of each air conditioner 3A i determines the (Formula 2) (S102) (second Step 2) and the determined (Expression 2) are recorded in the storage unit 43. In step S102, the learning data is stored in the storage unit 43, and the process proceeds to the next step S103.

ICT装置負荷設定部46は、(式1)および(式2)を用いて、各ICT装置2Iの負荷変化量ΔCおよびベクトル−WTVにより空調機の消費電力ΔPを推定する(式7)を算定する。またICT装置負荷設定部46は、空調機の消費電力ΔPが最小となるように、所定の負荷を処理するために必要なICT装置の台数C#に基づいて、(式7)における各ICT装置2Iの負荷パターンC*を決定する(S103)(第3のステップ)。 The ICT device load setting unit 46 uses (Equation 1) and (Equation 2) to estimate the power consumption ΔP of the air conditioner from the load change amount ΔC and the vector −WT + V of each ICT device 2I j (Equation 7) ) Is calculated. In addition, the ICT device load setting unit 46 sets each ICT device in (Equation 7) based on the number C # of ICT devices necessary for processing a predetermined load so that the power consumption ΔP of the air conditioner is minimized. A load pattern C * of 2I j is determined (S103) (third step).

ICT装置2Iの吸込み温度が一定の温度を超えた場合、空調機吹出温度設定部47は、(式2)に求めようとする空調機3Aの吹出温度を代入した値である空調機3Aの消費電力が最小となる(式13)と、(式1)に求めようとする空調機3Aの吹出温度および各ICT装置2Iの負荷パターンC*を代入した値であるICT装置2Iの吸込温度が上限温度以下とする(式14)とを満足するように、第2の吹出し温度を計算する。具体的には、各ICT装置2Iの負荷パターンC*および各ICT装置2Iの上限温度Y#を用いた(式14)を制約条件とし、(式13)を用いて空調機3Aの消費電力Pを最小化する空調機3Aの設定温度を数理計画法で決定する(S104)(第4のステップ)。 When the suction temperature of the ICT device 2I j exceeds a certain temperature, the air conditioner outlet temperature setting unit 47 sets the air conditioner 3A that is the value obtained by substituting the outlet temperature of the air conditioner 3A i to be obtained in (Equation 2). i power consumption is minimized and (equation 13), ICT is a value obtained by substituting the load pattern C * of air temperature and the ICT device 2I j of the air conditioner 3A i to be obtained in (equation 1) device 2I The second blowing temperature is calculated so that the suction temperature of j is equal to or lower than the upper limit temperature (Formula 14). Specifically, the upper limit temperature Y # of load pattern C * and the ICT device 2I j of each ICT device 2I j using (Equation 14) and constraints of the air conditioner 3A i using equation (13) determining a set temperature of the air conditioner 3A i that minimizes the power consumption P in mathematical programming (S104) (fourth step).

ICT装置負荷設定部46は、計算したICT装置2Iの負荷を割り当て(S105)、空調機吹出温度設定部47は、各空調機3Aの設定温度を送信し、各ICT装置2Iと各空調機3Aを制御する(S106)。各空調機3Aは設定された吹出温度で各ICT装置2Iに給気する。 The ICT device load setting unit 46 assigns the calculated load of the ICT device 2I j (S105), and the air conditioner outlet temperature setting unit 47 transmits the set temperature of each air conditioner 3A i to each ICT device 2I j and each The air conditioner 3A i is controlled (S106). Each air conditioner 3A i supplies air to each ICT device 2I j at the set blowing temperature.

ICT装置2Iの必要負荷総量が変わると、再びステップS103に戻り、新たな空調機3Aの吹出温度とICT装置2Iの負荷を計算する。 When the total required load of the ICT device 2I j changes, the process returns to step S103 again, and the new air blower temperature of the air conditioner 3A i and the load of the ICT device 2I j are calculated.

なお、記憶部43は、ROM(Read Only Memory)とRAM(Random Access Memory)とを含んで構成される。ROMには、空調機・ICT装置制御装置4全体の動作制御に必要なプログラムや各種のデータ(例えば、ICT装置2Iの吸込温度を推定するための計算式、および、空調機3Aの消費電力を推定するための計算式など)が記録される。RAMには、データやプログラムを一時的に記憶するための記録領域が設けられ、プログラムやデータが保持される。 The storage unit 43 includes a ROM (Read Only Memory) and a RAM (Random Access Memory). In the ROM, programs and various data (for example, a calculation formula for estimating the suction temperature of the ICT device 2I j and the consumption of the air conditioner 3A i are necessary for controlling the operation of the air conditioner / ICT device control device 4 as a whole. The calculation formula for estimating the power is recorded. The RAM is provided with a recording area for temporarily storing data and programs, and holds programs and data.

本実施形態によれば、ICT装置の台数が多くても空調機の設定温度の高速計算が可能となる。さらに本実施形態によれば、空調室を安全な温度に保ちつつ空調機の省エネを実現することが可能となる。   According to this embodiment, it is possible to calculate the set temperature of the air conditioner at high speed even when the number of ICT devices is large. Furthermore, according to the present embodiment, it is possible to realize energy saving of the air conditioner while keeping the air conditioning room at a safe temperature.

1 空調室
2I、2I、2I、2I ICT装置
3A、3A、3A、3A 空調機
4 空調機・ICT装置制御装置
5 ネットワーク
41 空調機情報取得部
42 ICT装置情報取得部
43 記憶部
44 ICT装置吸込温度推定部
45 空調機消費電力推定部
46 ICT装置負荷設定部
47 空調機吹出温度設定部
1 air-conditioned room 2I 1, 2I 2, 2I j , 2I m ICT device 3A 1, 3A 2, 3A i , 3A n air conditioner 4 air conditioner · ICT device controller 5 network 41 air conditioner information acquiring unit 42 ICT device information acquisition Unit 43 Storage unit 44 ICT device suction temperature estimation unit 45 Air conditioner power consumption estimation unit 46 ICT device load setting unit 47 Air conditioner outlet temperature setting unit

Claims (2)

ICT装置の吸込温度が一定の温度を超えた場合に、前記ICT装置を冷却する空調機の予め設定された第1の吹出温度を、第2の吹出温度に変更するシステムによる空調制御方法であって、
前記ICT装置の第1の負荷率および前記第1の吹出温度に基づいて前記ICT装置の吸込温度を推定する第1の計算式を算定する第1のステップと、
前記第1の吹出温度に基づいて前記空調機の消費電力を推定する第2の計算式を算定する第2のステップと、
前記第1の計算式および前記第2の計算式を用いて、前記ICT装置の負荷が変化したときの前記空調機の消費電力の変化量を推定する第3の計算式を算定し、前記空調機の消費電力が最小となるように、所定の負荷を処理するために必要な前記ICT装置の台数に基づいて、前記第3の計算式における前記ICT装置の第2の負荷率を決定する第3のステップと、
前記第2の計算式に前記第2の吹出温度を代入した値が最小となる第1の条件式を目的関数とし、前記第1の計算式に前記第2の吹出温度および前記ICT装置の前記第2の前記負荷率を代入した値が第1の閾値以下とする第2の条件式を制約条件として、数理計画法により前記第2の吹出し温度を計算する第4のステップと
を備えることを特徴とする空調制御方法。
When the suction temperature of the ICT device exceeds a certain temperature, the air conditioning control method by the system changes the preset first blowing temperature of the air conditioner that cools the ICT device to the second blowing temperature. And
A first step of calculating a first calculation formula for estimating a suction temperature of the ICT device based on a first load factor of the ICT device and the first outlet temperature;
A second step of calculating a second calculation formula for estimating power consumption of the air conditioner based on the first blowing temperature;
Using the first calculation formula and the second calculation formula, a third calculation formula for estimating the amount of change in power consumption of the air conditioner when the load of the ICT device changes is calculated, and the air conditioning The second load factor of the ICT device in the third calculation formula is determined based on the number of the ICT devices necessary for processing a predetermined load so that the power consumption of the machine is minimized. 3 steps,
The first conditional expression that minimizes the value obtained by substituting the second blowing temperature into the second calculation formula is an objective function, and the second calculation temperature and the ICT device's A fourth step of calculating the second blowing temperature by a mathematical programming method using the second conditional expression in which the value substituted for the second load factor is equal to or less than the first threshold value as a constraint. A characteristic air conditioning control method.
ICT装置の吸込温度が一定の温度を超えた場合に、前記ICT装置を冷却する空調機の予め設定された第1の吹出温度を、第2の吹出温度に変更する空調制御システムであって、
前記ICT装置の第1の負荷率および前記第1の吹出温度に基づいて前記ICT装置の吸込温度を推定する第1の計算式を算定する第1の算出部と、
前記第1の吹出温度に基づいて前記空調機の消費電力を推定する第2の計算式を算定する第2の算出部と、
前記第1の計算式および前記第2の計算式を用いて、前記ICT装置の負荷が変化したときの前記空調機の消費電力の変化量を推定する第3の計算式を算定し、前記空調機の消費電力が最小となるように、所定の負荷を処理するために必要な前記ICT装置の台数に基づいて、前記第3の計算式における前記ICT装置の第2の負荷率を決定する決定部と、
前記第2の計算式に前記第2の吹出温度を代入した値が最小となる第1の条件式を目的関数とし、前記第1の計算式に前記第2の吹出温度および前記ICT装置の前記第2の前記負荷率を代入した値が第1の閾値以下とする第2の条件式を制約条件として、数理計画法により前記第2の吹出し温度を計算する第3の算出部と
を備えたことを特徴とする空調制御システム。
When the suction temperature of the ICT device exceeds a certain temperature, the air conditioning control system changes the preset first blowing temperature of the air conditioner that cools the ICT device to the second blowing temperature,
A first calculation unit that calculates a first calculation formula for estimating the suction temperature of the ICT device based on the first load factor of the ICT device and the first blowing temperature;
A second calculation unit for calculating a second calculation formula for estimating power consumption of the air conditioner based on the first blowing temperature;
Using the first calculation formula and the second calculation formula, a third calculation formula for estimating the amount of change in power consumption of the air conditioner when the load of the ICT device changes is calculated, and the air conditioning A decision to determine the second load factor of the ICT device in the third calculation formula based on the number of the ICT devices required to process a predetermined load so that the power consumption of the machine is minimized And
The first conditional expression that minimizes the value obtained by substituting the second blowing temperature into the second calculation formula is an objective function, and the second calculation temperature and the ICT device's And a third calculation unit that calculates the second blowing temperature by mathematical programming using a second conditional expression in which the value substituted for the second load factor is equal to or less than a first threshold. An air conditioning control system characterized by that.
JP2013152474A 2013-07-23 2013-07-23 Air conditioning control method and air conditioning control system Expired - Fee Related JP6002098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013152474A JP6002098B2 (en) 2013-07-23 2013-07-23 Air conditioning control method and air conditioning control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013152474A JP6002098B2 (en) 2013-07-23 2013-07-23 Air conditioning control method and air conditioning control system

Publications (2)

Publication Number Publication Date
JP2015021698A true JP2015021698A (en) 2015-02-02
JP6002098B2 JP6002098B2 (en) 2016-10-05

Family

ID=52486307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013152474A Expired - Fee Related JP6002098B2 (en) 2013-07-23 2013-07-23 Air conditioning control method and air conditioning control system

Country Status (1)

Country Link
JP (1) JP6002098B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11523760B2 (en) 2019-05-21 2022-12-13 Honda Motor Co., Ltd. Arousal state estimation apparatus and arousal state estimation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115450A (en) * 1996-08-22 1998-05-06 Mitsubishi Electric Corp Air conditioner
JP2010078218A (en) * 2008-09-25 2010-04-08 Hitachi Ltd System and method for controlling air conditioning facility and system and method for managing electric power in computer room
JP2010085011A (en) * 2008-09-30 2010-04-15 Hitachi Plant Technologies Ltd Air conditioning control system and air conditioning control method
JP2010108324A (en) * 2008-10-31 2010-05-13 Hitachi Ltd Physical computer, method for controlling cooling device, and server system
JP2010270937A (en) * 2009-05-19 2010-12-02 Fujitsu Ltd Air-conditioning control system, air-conditioning control method, and air-conditioning control program
JP2011039889A (en) * 2009-08-14 2011-02-24 Kddi Corp Network operation management method and network operation management device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115450A (en) * 1996-08-22 1998-05-06 Mitsubishi Electric Corp Air conditioner
JP2010078218A (en) * 2008-09-25 2010-04-08 Hitachi Ltd System and method for controlling air conditioning facility and system and method for managing electric power in computer room
JP2010085011A (en) * 2008-09-30 2010-04-15 Hitachi Plant Technologies Ltd Air conditioning control system and air conditioning control method
JP2010108324A (en) * 2008-10-31 2010-05-13 Hitachi Ltd Physical computer, method for controlling cooling device, and server system
JP2010270937A (en) * 2009-05-19 2010-12-02 Fujitsu Ltd Air-conditioning control system, air-conditioning control method, and air-conditioning control program
JP2011039889A (en) * 2009-08-14 2011-02-24 Kddi Corp Network operation management method and network operation management device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中村雅之、橋本英明、中村亮太、浦田穣司: "データセンタ省電力化のための空調制御とサ−バ負荷配置の最適化", 計測自動制御学会論文集, vol. 第50巻第7号, JPN6016032869, 18 July 2014 (2014-07-18), JP, pages 518 - 527, ISSN: 0003385590 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11523760B2 (en) 2019-05-21 2022-12-13 Honda Motor Co., Ltd. Arousal state estimation apparatus and arousal state estimation method

Also Published As

Publication number Publication date
JP6002098B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
EP2606406B1 (en) Energy-optimal control decisions for hvac systems
JP6254953B2 (en) Multidimensional optimization to control environmental maintenance modules
JP4685105B2 (en) CRAC unit control based on recirculation index
US6868682B2 (en) Agent based control method and system for energy management
US9420725B2 (en) Air conditioning apparatus and air conditioning control method
US20130317654A1 (en) Air-conditioning control system and air-conditioning control method
US20100076607A1 (en) Data center thermal performance optimization using distributed cooling systems
EP1495270A1 (en) Atmospheric control within a building
KR101754536B1 (en) Method and apparatus for optimum control of refrigerator using building energy management system
JP2016024562A (en) Air conditioning control system and air conditioning control method
JP6790889B2 (en) Temperature prediction system and temperature prediction method
JP5969939B2 (en) Data center air conditioning controller
JP6937261B2 (en) Air conditioning control device, air conditioning control method and computer program
CN107133286A (en) A kind of three-dimensional map generalization of computer room temperature parameter distribution and analysis method and system
JP2021177122A (en) Control device, control method and control program for air conditioning system and air conditioning system
JP6002098B2 (en) Air conditioning control method and air conditioning control system
JP6849345B2 (en) Air conditioning system controls, control methods and control programs
JP5997671B2 (en) Air conditioning control method and air conditioning control system
JP2015132388A (en) Air conditioning control method and air conditioning control system
JP6982146B2 (en) Air conditioning system controls, control methods, control programs and air conditioning systems
JP2016053443A (en) Temperature distribution prediction method and air conditioning management system
JP6117583B2 (en) Air conditioning system
Kumar et al. Data center air handling unit fan speed optimization using machine learning techniques
JP2018071805A (en) Air-conditioning control device, air-conditioning system, air-conditioning control method and program
JP6750980B2 (en) Air conditioning system control device, control method, control program, and air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160902

R150 Certificate of patent or registration of utility model

Ref document number: 6002098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees