JP2015021464A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2015021464A
JP2015021464A JP2013151786A JP2013151786A JP2015021464A JP 2015021464 A JP2015021464 A JP 2015021464A JP 2013151786 A JP2013151786 A JP 2013151786A JP 2013151786 A JP2013151786 A JP 2013151786A JP 2015021464 A JP2015021464 A JP 2015021464A
Authority
JP
Japan
Prior art keywords
reducing agent
injection valve
agent injection
reductant
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013151786A
Other languages
Japanese (ja)
Other versions
JP6192161B2 (en
Inventor
健史 松村
Takeshi Matsumura
健史 松村
弘之 笠原
Hiroyuki Kasahara
弘之 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2013151786A priority Critical patent/JP6192161B2/en
Publication of JP2015021464A publication Critical patent/JP2015021464A/en
Application granted granted Critical
Publication of JP6192161B2 publication Critical patent/JP6192161B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device which is simply constructed to ensure suction back of reductant from a reductant injection valve and supply of the reductant to the reductant injection valve.SOLUTION: The exhaust emission control device includes a reductant injection valve 34 for injecting the reductant to an exhaust passage 11 of an internal combustion engine, a storage tank for storing the reductant to be supplied to the reductant injection valve 34, a pump for supplying the reductant from the storage tank into the reductant injection valve 34 in a first state, and for sucking back the reductant from the reductant injection valve 34 into the storage tank in a second state, and an air permeable member 70 provided in a flow path for the reductant on the further side of the reductant injection valve 34 than the pump for interrupting reductant permeation and allowing only air permeation.

Description

本発明は、排気浄化装置に関する。   The present invention relates to an exhaust emission control device.

車両等に搭載された内燃機関から排出される排気ガスには窒素酸化物(NOx)が含まれる場合がある。このNOxを浄化する排気浄化装置の一つとして、内燃機関の排気通路に備えられた還元触媒の上流側で還元剤を噴射し、還元剤とNOxとの還元反応を触媒によって促進させ、NOxを窒素や水、二酸化炭素等に分解して大気中に放出するように構成されたものがある。   In some cases, exhaust gas discharged from an internal combustion engine mounted on a vehicle or the like contains nitrogen oxides (NOx). As one of the exhaust gas purification devices for purifying NOx, a reducing agent is injected on the upstream side of a reduction catalyst provided in an exhaust passage of an internal combustion engine, and a reduction reaction between the reducing agent and NOx is promoted by the catalyst. Some are configured to be decomposed into nitrogen, water, carbon dioxide, etc. and released into the atmosphere.

このような排気浄化装置として、尿素水溶液やアンモニア水を還元剤として用いる尿素SCR(Selective Catalyst Reduction)システムがある。尿素SCRシステムでは、アンモニアの吸着機能を有するNOx選択還元触媒が用いられ、還元剤が加水分解することによって生成されるアンモニアが還元触媒に吸着され、そこに流入する排気ガス中のNOxがアンモニアと反応することで浄化される。   As such an exhaust purification device, there is a urea SCR (Selective Catalyst Reduction) system using urea aqueous solution or ammonia water as a reducing agent. In the urea SCR system, a NOx selective reduction catalyst having an ammonia adsorption function is used, ammonia generated by hydrolysis of the reducing agent is adsorbed by the reduction catalyst, and NOx in the exhaust gas flowing into the NOx is converted to ammonia. It is purified by reacting.

SCRシステムにおいては、還元剤噴射弁から排気通路に還元剤が噴射される。還元剤として用いられる尿素水溶液は融点が比較的高く、氷点下で凍結するため、エンジン停止時等においては、還元剤を貯蔵するタンクから還元剤噴射弁に至る経路、及び還元剤噴射弁内で還元剤が凍結することが想定される。このため、下記の特許文献1には、エンジン停止後に尿素水の吸い戻しを行う技術が記載されている。   In the SCR system, the reducing agent is injected from the reducing agent injection valve into the exhaust passage. The urea aqueous solution used as the reducing agent has a relatively high melting point and freezes below freezing point. Therefore, when the engine is stopped, etc., it is reduced in the path from the tank storing the reducing agent to the reducing agent injection valve and in the reducing agent injection valve. It is envisaged that the agent will freeze. For this reason, the following Patent Document 1 describes a technique for sucking back urea water after the engine is stopped.

また、下記の特許文献2には、ポンプが還元剤吸い戻し状態で駆動された時に開放される吸気弁を設け、吸気弁の開放により外部からエアを導入することが記載されている。   Patent Document 2 below describes that an intake valve that is opened when the pump is driven in a reductant sucking back state is provided, and air is introduced from the outside by opening the intake valve.

特開2010−196552号公報JP 2010-196552 A 特開2008−101564号公報JP 2008-101564 A

還元剤を貯蔵タンクに吸い戻す際には、還元剤噴射弁が開かれ、還元剤を供給するポンプを逆回転させるか、又は還元剤の流れを逆方向に切り換える。しかし、内燃機関の停止直後に還元剤を貯蔵タンクに吸い戻すと、還元剤噴射弁へ高温の排気ガスが流入する。更に、流入した排気ガスは、還元剤噴射弁へ還元剤を供給する供給管、及びポンプへ到達する。流入した高温の排気ガスは、還元剤を貯蔵タンクに吸い戻した後に収縮し、この結果、ポンプの停止後において、貯蔵タンクからポンプ、供給管、還元剤噴射弁へ還元剤が戻ってしまう。この状態で外気温が還元剤の凍結温度まで低下すると、凍結により還元剤が膨張し、ポンプ、供給管、還元剤噴射弁等が破損する可能性がある。   When sucking the reducing agent back into the storage tank, the reducing agent injection valve is opened, and the pump for supplying the reducing agent is rotated in the reverse direction or the flow of the reducing agent is switched in the reverse direction. However, if the reducing agent is sucked back into the storage tank immediately after the internal combustion engine is stopped, hot exhaust gas flows into the reducing agent injection valve. Further, the exhaust gas that has flowed in reaches the supply pipe for supplying the reducing agent to the reducing agent injection valve and the pump. The hot exhaust gas that has flowed in contracts after sucking the reducing agent back into the storage tank. As a result, after the pump is stopped, the reducing agent returns from the storage tank to the pump, the supply pipe, and the reducing agent injection valve. If the outside air temperature falls to the freezing temperature of the reducing agent in this state, the reducing agent expands due to freezing, and the pump, supply pipe, reducing agent injection valve, and the like may be damaged.

このため、内燃機関が停止してから還元剤の吸い戻しを行うまで待機時間(例えば、15分程度)を設け、待機時間の経過後に還元剤を貯蔵タンクに吸い戻す制御が行われる。待機時間を設けることにより、排気管内の温度が低下し、吸い戻し時に比較的低温のガスが還元剤噴射弁から供給管、ポンプへ流入するため、収縮による還元剤の戻りを回避できる。しかしながら、この制御を行うと、待機時間の間は還元剤噴射装置の電源がオン(ON)状態とされるため、バッテリー電力の浪費に繋がる問題がある。   For this reason, a waiting time (for example, about 15 minutes) is provided until the reducing agent is sucked back after the internal combustion engine stops, and the reducing agent is sucked back into the storage tank after the waiting time has elapsed. By providing the standby time, the temperature in the exhaust pipe decreases, and a relatively low temperature gas flows from the reducing agent injection valve to the supply pipe and the pump at the time of sucking back, so that the return of the reducing agent due to contraction can be avoided. However, when this control is performed, the power of the reducing agent injection device is turned on during the standby time, which causes a problem of waste of battery power.

また、還元剤噴射弁は排気通路に設けられるため、排気熱の影響によって還元剤噴射弁の動作に不具合が生じることが考えられる。例えば、尿素水の沸点は120℃程度であり、排気熱により還元剤噴射弁内で尿素水が沸騰すると、尿素の結晶が析出して結晶化し、弁の可動部が固着して弁動作に不具合が生じる場合が想定される。また、排気熱により還元剤噴射弁の構成部品が劣化して弁の動作に不具合が生じることも考えられる。   In addition, since the reducing agent injection valve is provided in the exhaust passage, it is considered that a malfunction occurs in the operation of the reducing agent injection valve due to the influence of exhaust heat. For example, the boiling point of urea water is about 120 ° C, and when urea water boils in the reducing agent injection valve due to exhaust heat, urea crystals precipitate and crystallize, and the movable parts of the valve stick and the valve operation is defective. Is assumed to occur. It is also conceivable that exhaust gas heat causes deterioration of the components of the reducing agent injection valve, resulting in malfunction of the valve.

還元剤噴射弁に不具合が生じて開弁できなくなった場合、ポンプを逆回転させて貯蔵タンクへの還元剤の吸い戻しを実行しても、還元剤噴射弁に空気を導入することができない。このため、ポンプから還元剤噴射弁に至る経路に負圧が発生し、還元剤の吸い戻しは困難になる。   If the reductant injection valve malfunctions and cannot be opened, air cannot be introduced into the reductant injection valve even if the pump is rotated backward to suck the reductant back into the storage tank. For this reason, a negative pressure is generated in the path from the pump to the reducing agent injection valve, and it becomes difficult to suck back the reducing agent.

特許文献2に記載された技術では、還元剤(尿素水)の通路に吸気弁が設けられている。吸気弁は、内蔵バネの付勢力と尿素水圧力とのバランスにより開閉する機械式のチェック弁により構成され、ポンプが逆回転で駆動された時に尿素水供給管内の負圧により開放されて外部からエアを導入する。しかしながら、この構成では、吸気弁の構成が複雑となり、製造コストが上昇する問題がある。   In the technique described in Patent Document 2, an intake valve is provided in the passage of the reducing agent (urea water). The intake valve is composed of a mechanical check valve that opens and closes due to the balance between the biasing force of the built-in spring and the urea water pressure, and is opened by the negative pressure in the urea water supply pipe when the pump is driven in reverse rotation. Introduce air. However, with this configuration, there is a problem that the configuration of the intake valve becomes complicated and the manufacturing cost increases.

また、還元剤の結晶化等の要因により還元剤噴射弁に不具合が生じている場合であっても、還元剤が還元剤噴射弁に供給されると、固着した部分が溶解して弁の作動が可能になる場合がある。しかしながら、特許文献2に記載された技術では、吸気弁は尿素水供給管内の負圧により開放される構成となっている。このため、尿素水供給管内の尿素水を貯蔵タンクに吸い戻した後、尿素水を還元剤噴射弁(尿素水添加弁)に再度供給する際に、故障により還元剤噴射弁が開弁できない場合は、尿素水供給管内が正圧となるため吸気弁は開弁しない。従って、尿素水供給管内の空気を吸気弁から排出することができず、尿素水が還元剤噴射弁に到達できなくなり、尿素水により固着した部分を溶解することは困難となる。これにより、還元剤噴射弁の不具合を回復させることができず、結果として還元剤噴射弁の交換が必要となり、修理のためのコストが増大する問題がある。   Even if the reducing agent injection valve malfunctions due to factors such as crystallization of the reducing agent, when the reducing agent is supplied to the reducing agent injection valve, the fixed part dissolves and the valve operates. May be possible. However, in the technique described in Patent Document 2, the intake valve is opened by the negative pressure in the urea water supply pipe. For this reason, when the urea water in the urea water supply pipe is sucked back into the storage tank and then supplied again to the reducing agent injection valve (urea water addition valve), the reducing agent injection valve cannot be opened due to a failure. Since the urea water supply pipe has a positive pressure, the intake valve does not open. Therefore, the air in the urea water supply pipe cannot be discharged from the intake valve, the urea water cannot reach the reducing agent injection valve, and it becomes difficult to dissolve the portion fixed by the urea water. As a result, the problem of the reducing agent injection valve cannot be recovered. As a result, it is necessary to replace the reducing agent injection valve, which increases the cost for repair.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、簡素な構成で還元剤噴射弁からの還元剤の吸い戻しと還元剤噴射弁への還元剤の供給を確実に行うことが可能な、新規かつ改良された排気浄化装置を提供することにある。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to suck back the reducing agent from the reducing agent injection valve and reduce the reducing agent to the reducing agent injection valve with a simple configuration. It is an object of the present invention to provide a new and improved exhaust purification device capable of reliably supplying the exhaust gas.

上記課題を解決するために、本発明のある観点によれば、内燃機関の排気通路に還元剤を噴射する還元剤噴射弁と、前記還元剤噴射弁に供給される還元剤が貯蔵される貯蔵タンクと、第1の状態では前記貯蔵タンクから前記還元剤噴射弁に還元剤を供給し、第2の状態では前記還元剤噴射弁から前記貯蔵タンクへ還元剤を吸い戻すポンプと、前記ポンプよりも前記還元剤噴射弁側の還元剤の流路に設けられ、還元剤の透過を遮断して空気のみを透過させる空気透過部材と、を備える、排気浄化装置が提供される。   In order to solve the above problems, according to an aspect of the present invention, a reducing agent injection valve that injects a reducing agent into an exhaust passage of an internal combustion engine, and a storage in which the reducing agent supplied to the reducing agent injection valve is stored. A tank, a pump for supplying a reducing agent from the storage tank to the reducing agent injection valve in the first state, and a pump for sucking the reducing agent back from the reducing agent injection valve to the storage tank in the second state; And an air permeable member that is provided in the flow path of the reducing agent on the reducing agent injection valve side and blocks the permeation of the reducing agent and allows only air to pass therethrough.

前記空気透過部材は、前記還元剤噴射弁に設けられたものであっても良い。   The air permeable member may be provided on the reducing agent injection valve.

また、前記空気透過部材は、前記ポンプから前記還元剤噴射弁に至る還元剤の供給管に設けられたものであっても良い。   The air permeable member may be provided in a reducing agent supply pipe extending from the pump to the reducing agent injection valve.

また、前記空気透過部材は、PTFEメンブレン又はゴアテックスから構成されるものであっても良い。   The air permeable member may be made of a PTFE membrane or Gore-Tex.

本発明によれば、簡素な構成で還元剤噴射弁からの還元剤の吸い戻しと還元剤噴射弁への還元剤の供給を確実に行うことが可能となる。   According to the present invention, it is possible to reliably perform sucking back of the reducing agent from the reducing agent injection valve and supply of the reducing agent to the reducing agent injection valve with a simple configuration.

本発明の一実施形態に係る内燃機関の排気浄化装置とその周辺の構成の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of an internal combustion engine exhaust purification apparatus and its peripheral configuration according to an embodiment of the present invention. 還元剤噴射弁の周辺の構造を詳細に示す模式図である。It is a schematic diagram which shows the structure of the periphery of a reducing agent injection valve in detail. 空気透過部材を第2の還元剤供給通路に設け、還元剤供給通路の内部と外部を空気透過部材によって接続した例を示す模式図である。It is a schematic diagram which shows the example which provided the air permeable member in the 2nd reducing agent supply channel, and connected the inside and the exterior of the reducing agent supply channel by the air permeable member.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

1.排気浄化装置
(1)全体構成
図1は、本発明の一実施形態に係る内燃機関の排気浄化装置10とその周辺の構成の一例を示している。この排気浄化装置10は、内燃機関5の排気通路11に接続されており、還元触媒20と、還元剤噴射装置30と、制御装置60等を備えており、内燃機関5から排出される排気ガス中の窒素酸化物(NOx)を、還元剤としての尿素水溶液を用いて浄化する尿素SCRシステムとして構成されている。ただし、本実施形態において使用できる還元剤は尿素水溶液に限られるものではなく、例えばアンモニア水等、アンモニアが生成されるものであればよい。
1. FIG. 1 shows an example of the configuration of an exhaust emission control device 10 for an internal combustion engine according to an embodiment of the present invention and its surroundings. This exhaust purification device 10 is connected to the exhaust passage 11 of the internal combustion engine 5, and includes a reduction catalyst 20, a reducing agent injection device 30, a control device 60 and the like, and exhaust gas discharged from the internal combustion engine 5. It is configured as a urea SCR system that purifies nitrogen oxide (NOx) therein using a urea aqueous solution as a reducing agent. However, the reducing agent that can be used in the present embodiment is not limited to the urea aqueous solution, and may be any one that generates ammonia, such as ammonia water.

内燃機関5は、ECU(Engine Control Unit)50によって制御される。制御装置60は、内燃機関5の制御に関する制御データ等をCAN(Control Area Network)バスシステムを介してECU50から受信する。   The internal combustion engine 5 is controlled by an ECU (Engine Control Unit) 50. The control device 60 receives control data relating to the control of the internal combustion engine 5 from the ECU 50 via a CAN (Control Area Network) bus system.

排気通路11において、内燃機関5と還元触媒20との間には酸化触媒12(DOC)が配置されている。酸化触媒12は、排気ガス中の炭化水素(HC)、一酸化炭素(CO)を酸化する機能を有する。酸化触媒12は公知の触媒が適宜用いられる。   In the exhaust passage 11, an oxidation catalyst 12 (DOC) is disposed between the internal combustion engine 5 and the reduction catalyst 20. The oxidation catalyst 12 has a function of oxidizing hydrocarbons (HC) and carbon monoxide (CO) in the exhaust gas. A known catalyst is appropriately used as the oxidation catalyst 12.

本実施形態の排気浄化装置10に用いられる還元触媒20は、排気通路11内に噴射された尿素水溶液が加水分解することで生成されるアンモニアを吸着し、アンモニアとNOxとの還元反応を促進する機能を有している。具体的には、還元触媒20では、尿素水溶液中の尿素が分解することによって生成されるアンモニア(NH)がNOxと反応することにより、NOxが窒素(N)及び水(HO)に分解される。還元触媒20は公知の触媒が適宜用いられる。 The reduction catalyst 20 used in the exhaust purification device 10 of the present embodiment adsorbs ammonia generated by hydrolysis of the urea aqueous solution injected into the exhaust passage 11 and promotes the reduction reaction between ammonia and NOx. It has a function. Specifically, in the reduction catalyst 20, ammonia (NH 3 ) produced by the decomposition of urea in the urea aqueous solution reacts with NOx, so that NOx becomes nitrogen (N 2 ) and water (H 2 O). Is broken down into A known catalyst is appropriately used as the reduction catalyst 20.

また、還元触媒20の下流側には排気ガス中のNOx濃度を検出するためのNOxセンサ14が備えられている。NOxセンサ14のセンサ信号は、制御装置60に送信され、制御装置60ではこのセンサ信号に基づいて排気ガス中のNOx濃度が算出される。また、還元触媒20の上流側には排気ガスの温度を検出する排気温度センサ13が設けられている。   Further, a NOx sensor 14 for detecting the NOx concentration in the exhaust gas is provided on the downstream side of the reduction catalyst 20. The sensor signal of the NOx sensor 14 is transmitted to the control device 60, and the control device 60 calculates the NOx concentration in the exhaust gas based on this sensor signal. Further, an exhaust temperature sensor 13 for detecting the temperature of the exhaust gas is provided on the upstream side of the reduction catalyst 20.

(2)還元剤噴射装置
還元剤噴射装置30は、貯蔵タンク31と、還元剤噴射弁34と、ポンプ41等を主たる要素として構成されている。貯蔵タンク31とポンプ41とは第1の還元剤供給通路57で接続され、ポンプ41と還元剤噴射弁34とは第2の還元剤供給通路58で接続されている。このうち第2の還元剤供給通路58には圧力センサ43が設けられている。圧力センサ43のセンサ信号は制御装置60に送信され、制御装置60ではこのセンサ信号に基づいて第2の還元剤供給通路58内の圧力が算出される。
(2) Reducing agent injection device The reducing agent injection device 30 is mainly configured by a storage tank 31, a reducing agent injection valve 34, a pump 41, and the like. The storage tank 31 and the pump 41 are connected by a first reducing agent supply passage 57, and the pump 41 and the reducing agent injection valve 34 are connected by a second reducing agent supply passage 58. Among these, the pressure sensor 43 is provided in the second reducing agent supply passage 58. The sensor signal of the pressure sensor 43 is transmitted to the control device 60, and the control device 60 calculates the pressure in the second reducing agent supply passage 58 based on this sensor signal.

貯蔵タンク31には、尿素水溶液の温度を検出するためのタンク温度センサ18が設けられている。ポンプ41としては、制御装置60により駆動制御される電動ポンプが用いられている。本実施形態において、ポンプ41は、圧力センサ43によって検出される第2の還元剤供給通路58内の圧力が所定値に維持されるように、その出力がフィードバック制御されるように構成されている。   The storage tank 31 is provided with a tank temperature sensor 18 for detecting the temperature of the urea aqueous solution. An electric pump that is driven and controlled by the control device 60 is used as the pump 41. In the present embodiment, the pump 41 is configured such that its output is feedback-controlled so that the pressure in the second reducing agent supply passage 58 detected by the pressure sensor 43 is maintained at a predetermined value. .

還元剤噴射弁34は、制御装置60により開弁のオンオフが制御される電磁駆動式のオンオフ弁が用いられており、還元触媒20よりも上流側において排気通路11に固定されている。この還元剤噴射弁34は、基本的には、第2の還元剤供給通路58内の圧力が目標値に維持されている状態で通電制御が行われる。具体的には、演算によって求められる指示噴射量に応じて所定のDUTYサイクル中における開弁DUTY比を設定することにより、排気通路11内への還元剤の噴射量が調節される。指示噴射量は、排気ガス中の窒素酸化物の流量と、還元触媒20におけるアンモニアの吸着量とに応じて決定される。   The reducing agent injection valve 34 is an electromagnetically driven on / off valve whose opening / closing is controlled by the control device 60, and is fixed to the exhaust passage 11 upstream of the reducing catalyst 20. The reducing agent injection valve 34 is basically energized and controlled while the pressure in the second reducing agent supply passage 58 is maintained at the target value. Specifically, the injection amount of the reducing agent into the exhaust passage 11 is adjusted by setting the valve opening DUTY ratio during a predetermined DUTY cycle in accordance with the instructed injection amount obtained by calculation. The command injection amount is determined according to the flow rate of nitrogen oxides in the exhaust gas and the ammonia adsorption amount in the reduction catalyst 20.

本実施形態において、ポンプ41は、正逆いずれの方向にも回転が可能となっている。ポンプ41の正回転により貯蔵タンク31内の尿素水溶液の吸い上げが行われ、尿素水溶液が還元剤噴射弁34へ供給される。また、ポンプ41の逆回転により還元剤噴射弁34から貯蔵タンク31への尿素水溶液の吸い戻しが行われる。以下では、還元剤噴射弁34へ還元剤(尿素水溶液)を供給する状態を第1の状態と称し、還元剤噴射弁34から還元剤を吸い戻す状態を第2の状態と称する。還元剤噴射弁34への還元剤の供給(第1の状態)と、還元剤噴射弁34からの還元剤の吸い戻し(第2の状態)とは、双方の状態のポンプ34の回転方向を同一として、流路切換弁の制御により行うようにしても良い。このような還元剤噴射装置30の基本構成は、公知の構成のものを用いることができる。   In the present embodiment, the pump 41 can rotate in either the forward or reverse direction. The urea aqueous solution in the storage tank 31 is sucked up by the forward rotation of the pump 41, and the urea aqueous solution is supplied to the reducing agent injection valve 34. Further, the urea aqueous solution is sucked back from the reducing agent injection valve 34 to the storage tank 31 by the reverse rotation of the pump 41. Hereinafter, a state in which the reducing agent (urea aqueous solution) is supplied to the reducing agent injection valve 34 is referred to as a first state, and a state in which the reducing agent is sucked back from the reducing agent injection valve 34 is referred to as a second state. Supply of the reducing agent to the reducing agent injection valve 34 (first state) and sucking back of the reducing agent from the reducing agent injection valve 34 (second state) indicate the rotational directions of the pump 34 in both states. The same may be performed by controlling the flow path switching valve. As such a basic configuration of the reducing agent injection device 30, a known configuration can be used.

2.還元剤噴射弁の構成
SCRシステムでは、内燃機関5の停止後にポンプ41を逆回転させ、貯蔵タンク31から還元剤噴射弁34までの経路に充填されている還元剤を貯蔵タンク31内に戻す動作を行う(第2の状態)。これにより、貯蔵タンク31から還元剤噴射弁34までの経路に充填されている還元剤が低温時に凍結してしまうことを抑止できる。なお、このような還元剤を貯蔵タンク31に戻す動作は、CAN信号にエラーが生じている場合等、エラー発生時にも行うことができる。
2. Configuration of Reducing Agent Injection Valve In the SCR system, after the internal combustion engine 5 is stopped, the pump 41 is reversely rotated to return the reducing agent filled in the path from the storage tank 31 to the reducing agent injection valve 34 into the storage tank 31. (Second state). Thereby, it can suppress that the reducing agent with which the path | route from the storage tank 31 to the reducing agent injection valve 34 is frozen at low temperature. Such an operation of returning the reducing agent to the storage tank 31 can also be performed when an error occurs, such as when an error occurs in the CAN signal.

還元剤を貯蔵タンク31に戻す際には、還元剤噴射弁34が開かれる。この際、還元剤噴射弁34に不具合が生じており、還元剤噴射弁34が開弁できない場合は、ポンプ41を逆回転させて還元剤を吸い戻す際にポンプ41から還元剤噴射弁34に至る経路に負圧が発生し、還元剤を貯蔵タンク31に戻すことが困難になる可能性がある。   When returning the reducing agent to the storage tank 31, the reducing agent injection valve 34 is opened. At this time, if the reducing agent injection valve 34 is defective and the reducing agent injection valve 34 cannot be opened, when the pump 41 is reversely rotated to suck back the reducing agent, the pump 41 returns to the reducing agent injection valve 34. There is a possibility that a negative pressure is generated in the route to reach, and it is difficult to return the reducing agent to the storage tank 31.

このため、本実施形態では、還元剤噴射弁34に空気を透過可能な空気透過部材70を設けている。空気透過部材70は、例えばPTFE(ポリテトラフルオロエチレン)メンブレン、ゴアテックス(登録商標)等の材料(撥水性微多孔材料)から構成され、液体(水分)は通さないが空気(気体)を通すという特性を備えている。   For this reason, in this embodiment, the reducing agent injection valve 34 is provided with an air permeable member 70 capable of transmitting air. The air permeable member 70 is made of a material (water-repellent microporous material) such as a PTFE (polytetrafluoroethylene) membrane or Gore-Tex (registered trademark), and does not allow liquid (moisture) to pass but allows air (gas) to pass. It has the characteristics of.

図2は、還元剤噴射弁34とその周辺の構造を示す模式図である。図1では、便宜上排気通路11を直線状に図示したが、より詳細には、図2に示すように、排気通路11は屈曲して設けられている。そして、排気通路11が鉛直方向に延在している部位に還元剤噴射弁34が設置され、第2の還元剤供給通路58はポンプ41に向かって下降していくように配置されている。   FIG. 2 is a schematic diagram showing the reducing agent injection valve 34 and the surrounding structure. In FIG. 1, the exhaust passage 11 is shown in a straight line for convenience, but more specifically, as shown in FIG. 2, the exhaust passage 11 is bent and provided. The reducing agent injection valve 34 is installed at a portion where the exhaust passage 11 extends in the vertical direction, and the second reducing agent supply passage 58 is arranged so as to descend toward the pump 41.

図2に示すように、還元剤噴射弁34はニードル34aと孔34bを備え、ニードル34aが孔34bを塞いだ状態では閉弁状態とされ、ニードル34aが孔34bを塞いでいない状態では開弁状態とされる。空気透過部材70は、還元剤噴射弁34に設けられた孔34cを覆うように装着されている。図2では、空気透過部材70をブロック状に示したが、空気透過部材70は、例えば1cm四方の正方形とされ、孔34cを覆うように貼り付けられていても良い。   As shown in FIG. 2, the reducing agent injection valve 34 includes a needle 34a and a hole 34b, and is closed when the needle 34a blocks the hole 34b, and opens when the needle 34a does not block the hole 34b. State. The air permeable member 70 is mounted so as to cover the hole 34 c provided in the reducing agent injection valve 34. In FIG. 2, the air permeable member 70 is shown in a block shape, but the air permeable member 70 may be a 1 cm square, for example, and may be attached so as to cover the hole 34 c.

ポンプ41が逆回転した場合は、外気が空気透過部材70を透過して還元剤噴射弁34内に吸い込まれる。この際、空気透過部材70は排気通路11の外の外気を吸い込むため、排気ガスに比べて極めて低い温度の外気が還元剤噴射弁34から貯蔵タンク31に至る経路に導入される。一方、ポンプ41が正回転した場合(第1の状態)は、還元剤噴射弁34内の空気が空気透過部材70を透過して外部に排出される。なお、還元剤噴射弁34には冷却管(不図示)により内燃機関5の冷却水が導入されており、還元剤噴射弁34の温度は80℃程度に保たれている。   When the pump 41 rotates in reverse, the outside air passes through the air permeable member 70 and is sucked into the reducing agent injection valve 34. At this time, since the air permeable member 70 sucks outside air outside the exhaust passage 11, outside air having a temperature extremely lower than that of the exhaust gas is introduced into a path from the reducing agent injection valve 34 to the storage tank 31. On the other hand, when the pump 41 rotates forward (first state), the air in the reducing agent injection valve 34 passes through the air permeable member 70 and is discharged to the outside. Note that cooling water for the internal combustion engine 5 is introduced into the reducing agent injection valve 34 through a cooling pipe (not shown), and the temperature of the reducing agent injection valve 34 is maintained at about 80 ° C.

上述のように、還元剤を貯蔵タンク31に戻す際には、ポンプ41を逆回転させ、還元剤噴射弁34を開弁する。これにより、排気通路11から第2の還元剤供給通路58へ空気が導入され、還元剤をポンプ41側へ戻すことが可能となる。   As described above, when returning the reducing agent to the storage tank 31, the pump 41 is reversely rotated to open the reducing agent injection valve 34. Thereby, air is introduced from the exhaust passage 11 to the second reducing agent supply passage 58, and the reducing agent can be returned to the pump 41 side.

本実施形態では、還元剤を貯蔵タンク31に戻す際に、不具合により還元剤噴射弁34が開弁できない場合であっても、空気透過部材70から還元剤噴射弁34へ空気が導入され、更に、この空気は第2の還元剤供給通路58、ポンプ41へ導入される。これにより、還元剤噴射弁34が開弁できない場合であっても、貯蔵タンク31から還元剤噴射弁34に至る経路内の還元剤を貯蔵タンク31に確実に吸い戻すことが可能となる。   In the present embodiment, when returning the reducing agent to the storage tank 31, even if the reducing agent injection valve 34 cannot be opened due to a malfunction, air is introduced from the air permeable member 70 to the reducing agent injection valve 34. The air is introduced into the second reducing agent supply passage 58 and the pump 41. Thereby, even when the reducing agent injection valve 34 cannot be opened, the reducing agent in the path from the storage tank 31 to the reducing agent injection valve 34 can be surely sucked back into the storage tank 31.

また、図2に示すように、排気通路11が鉛直方向に延在している部位に還元剤噴射弁34が設置され、第2の還元剤供給通路58はポンプ41に向かって下降していくように配置されているため、還元剤噴射弁34内に残留する還元剤は重力によりポンプ41の方向へ流れる。従って、ポンプ41を逆回転させて吸い戻しを行った場合に、還元剤噴射弁34に一部の還元剤が残留していたとしても、重力により還元剤を確実に貯蔵タンク31へ戻すことが可能である。なお、還元剤噴射弁34内に残留する還元剤の量をできるだけ少なくするためには、還元剤噴射弁34の先端に近い位置に空気透過部材70を装着することが望ましい。   Further, as shown in FIG. 2, the reducing agent injection valve 34 is installed at a portion where the exhaust passage 11 extends in the vertical direction, and the second reducing agent supply passage 58 descends toward the pump 41. Therefore, the reducing agent remaining in the reducing agent injection valve 34 flows toward the pump 41 by gravity. Therefore, when the pump 41 is reversely rotated and sucked back, even if a part of the reducing agent remains in the reducing agent injection valve 34, the reducing agent can be reliably returned to the storage tank 31 by gravity. Is possible. In order to reduce the amount of reducing agent remaining in the reducing agent injection valve 34 as much as possible, it is desirable to mount the air permeable member 70 at a position close to the tip of the reducing agent injection valve 34.

空気透過部材70を設けていない場合、還元剤噴射弁34が開弁できないと、ポンプ41を逆回転させた際に第2の還元剤供給通路58に負圧が発生し、貯蔵タンク31から還元剤噴射弁34に至る経路内の還元剤を貯蔵タンク31に吸い戻すことが困難となる。この状態で外気温が還元剤の凍結温度まで低下すると、凍結により還元剤が膨張し、ポンプ41、第1の還元剤供給通路57及び第2の還元剤供給通路58、還元剤噴射弁34等が破損してしまう可能性がある。本実施形態では、空気透過部材70を設けたことにより、不具合により還元剤噴射弁34が開弁できない場合であっても、貯蔵タンク31から還元剤噴射弁34に至る経路内の還元剤を確実に貯蔵タンク31に吸い戻すことが可能となる。従って、還元剤噴射弁34に不具合が生じている場合は、還元剤噴射弁34を交換すれば足り、ポンプ41、第1の還元剤供給通路57及び第2の還元剤供給通路58等が凍結により破損してしまうことを確実に抑止できる。これにより、還元剤噴射弁34に不具合が生じている場合であっても、他の部材への2次的な影響を最小限に抑えることができる。   When the air permeable member 70 is not provided, if the reducing agent injection valve 34 cannot be opened, a negative pressure is generated in the second reducing agent supply passage 58 when the pump 41 is rotated in the reverse direction. It becomes difficult to suck back the reducing agent in the path leading to the agent injection valve 34 back to the storage tank 31. When the outside air temperature drops to the freezing temperature of the reducing agent in this state, the reducing agent expands due to freezing, and the pump 41, the first reducing agent supply passage 57 and the second reducing agent supply passage 58, the reducing agent injection valve 34, and the like. May be damaged. In the present embodiment, the air permeable member 70 is provided, so that the reducing agent in the path from the storage tank 31 to the reducing agent injection valve 34 can be reliably ensured even when the reducing agent injection valve 34 cannot be opened due to a malfunction. It is possible to suck back into the storage tank 31. Therefore, if there is a malfunction in the reducing agent injection valve 34, it is sufficient to replace the reducing agent injection valve 34, and the pump 41, the first reducing agent supply passage 57, the second reducing agent supply passage 58 and the like are frozen. Can be reliably prevented from being damaged. Thereby, even if it is a case where the malfunction has arisen in the reducing agent injection valve 34, the secondary influence on another member can be suppressed to the minimum.

また、本実施形態によれば、空気透過部材70を設けたことにより、還元剤噴射弁34を開くことなく還元剤を貯蔵タンク31に吸い戻すことが可能となる。これにより、内燃機関5の運転停止直後に還元剤を吸い戻した場合に、比較的温度の低い外気が空気透過部材70から還元剤噴射弁34内へ流入し、排気通路11内の高温のガスが還元剤噴射弁34から貯蔵タンク31に至る経路内に入ることがない。従って、内燃機関5の運転停止後、待機時間を設けることなく還元剤の吸い戻しを行うことができ、バッテリーの電力消費を確実に抑えることが可能である。また、還元剤を貯蔵タンク31に吸い戻す際に、還元剤噴射弁34を開く必要が無いため、還元剤噴射弁34の制御を簡素化することが可能となる。   Further, according to the present embodiment, by providing the air permeable member 70, the reducing agent can be sucked back into the storage tank 31 without opening the reducing agent injection valve 34. Thereby, when the reducing agent is sucked back immediately after the operation of the internal combustion engine 5 is stopped, outside air having a relatively low temperature flows into the reducing agent injection valve 34 from the air permeable member 70, and the high-temperature gas in the exhaust passage 11. Does not enter the path from the reducing agent injection valve 34 to the storage tank 31. Therefore, after the operation of the internal combustion engine 5 is stopped, the reducing agent can be sucked back without providing a waiting time, and the power consumption of the battery can be reliably suppressed. Further, when the reducing agent is sucked back into the storage tank 31, it is not necessary to open the reducing agent injection valve 34, so that the control of the reducing agent injection valve 34 can be simplified.

内燃機関5を始動する際には、ポンプ41を正回転させて貯蔵タンク31内の還元剤を還元剤噴射弁34へ供給する(第1の状態)。この際、還元剤の供給前に貯蔵タンク31から還元剤噴射弁34に至る経路に存在していた空気は、還元剤の供給により空気透過部材70から外部へ排出される。従って、還元剤の供給開始時に、還元剤噴射弁34を開くことなく還元剤を還元剤噴射弁34まで到達させることが可能となる。   When starting the internal combustion engine 5, the pump 41 is rotated forward to supply the reducing agent in the storage tank 31 to the reducing agent injection valve 34 (first state). At this time, the air existing in the path from the storage tank 31 to the reducing agent injection valve 34 before the supply of the reducing agent is discharged from the air permeable member 70 to the outside by the supply of the reducing agent. Therefore, when the supply of the reducing agent is started, the reducing agent can reach the reducing agent injection valve 34 without opening the reducing agent injection valve 34.

これにより、還元剤噴射弁34が不具合により開弁できない場合であっても、還元剤を還元剤噴射弁34まで到達させることが可能となる。従って、還元剤噴射弁34が尿素の結晶化等により開弁できなくなっている場合は、還元剤噴射弁34に還元剤が供給されることによって結晶が溶解し、開弁を可能とすることができる。また、還元剤噴射弁34を閉じた状態で還元剤を還元剤噴射弁34へ供給することができるため、還元剤噴射弁34の制御を簡素化することが可能となる。   Thereby, even when the reducing agent injection valve 34 cannot be opened due to a problem, the reducing agent can reach the reducing agent injection valve 34. Therefore, when the reducing agent injection valve 34 cannot be opened due to crystallization of urea or the like, the reducing agent is supplied to the reducing agent injection valve 34 so that the crystals are dissolved and the valve can be opened. it can. Further, since the reducing agent can be supplied to the reducing agent injection valve 34 with the reducing agent injection valve 34 closed, the control of the reducing agent injection valve 34 can be simplified.

図3は、空気透過部材70を第2の還元剤供給通路58に設け、第2の還元剤供給通路58の内部と外部を空気透過部材70を介して接続した例を示す模式図である。このように、空気透過部材70は第2の還元剤供給通路58に設けても良い。但し、ポンプ41を逆回転させた際に、還元剤を第2の還元剤供給通路58内になるべく残留させないようにするためには、できるだけ還元剤噴射弁34と近接する位置に空気透過部材70を配置することが望ましい。また、還元剤を還元剤噴射弁34に充填する際にも、空気透過部材70をできるだけ還元剤噴射弁34と近接する位置に配置しておくことで、噴孔(孔34c)が詰まっている場合でも、還元剤を還元剤噴射弁34に確実に充填することができる。   FIG. 3 is a schematic view showing an example in which the air permeable member 70 is provided in the second reducing agent supply passage 58 and the inside and the outside of the second reducing agent supply passage 58 are connected via the air permeable member 70. Thus, the air permeable member 70 may be provided in the second reducing agent supply passage 58. However, in order to prevent the reducing agent from remaining in the second reducing agent supply passage 58 as much as possible when the pump 41 is reversely rotated, the air permeable member 70 is located as close to the reducing agent injection valve 34 as possible. It is desirable to arrange. Further, when the reducing agent is filled in the reducing agent injection valve 34, the injection hole (hole 34c) is clogged by disposing the air permeable member 70 as close to the reducing agent injection valve 34 as possible. Even in this case, the reducing agent can be reliably filled into the reducing agent injection valve 34.

以上説明したように本実施形態によれば、空気透過部材70を設けたことにより、還元剤噴射弁34を閉じた状態で還元剤を吸い戻すことが可能となる。これにより、内燃機関5が停止してから排気通路11内の温度が低下するまで待機する必要が無くなり、バッテリーの電力消費を大幅に抑えることが可能となる。   As described above, according to the present embodiment, by providing the air permeable member 70, the reducing agent can be sucked back with the reducing agent injection valve 34 closed. Thereby, it is not necessary to wait until the temperature in the exhaust passage 11 decreases after the internal combustion engine 5 is stopped, and the power consumption of the battery can be greatly suppressed.

また、還元剤を貯蔵タンク31に吸い戻す際に、還元剤噴射弁34が何らかの原因により開弁できない場合であっても、空気透過部材70から空気を導入することが可能となる。これにより、還元剤噴射弁34が開弁できない場合であっても還元剤の吸い戻しを確実に行うことが可能となる。   Further, when the reducing agent is sucked back into the storage tank 31, even if the reducing agent injection valve 34 cannot be opened for some reason, air can be introduced from the air permeable member 70. Thereby, even when the reducing agent injection valve 34 cannot be opened, the reducing agent can be sucked back.

更に、内燃機関5の運転開始時に還元剤噴射弁34へ還元剤を供給すると、貯蔵タンク31から還元剤噴射弁34へ至る経路の空気が空気透過部材70から外部へ排出される。これにより、内燃機関5の運転開始時に還元剤噴射弁34が開弁できない場合であっても、貯蔵タンク31内の還元剤を還元剤噴射弁34に確実に供給することが可能となる。   Further, when the reducing agent is supplied to the reducing agent injection valve 34 at the start of the operation of the internal combustion engine 5, the air in the path from the storage tank 31 to the reducing agent injection valve 34 is discharged from the air permeable member 70 to the outside. Thereby, even when the reducing agent injection valve 34 cannot be opened at the start of the operation of the internal combustion engine 5, the reducing agent in the storage tank 31 can be reliably supplied to the reducing agent injection valve 34.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

5 内燃機関
10 排気浄化装置
11 排気通路
31 貯蔵タンク
41 ポンプ
70 空気透過部材
DESCRIPTION OF SYMBOLS 5 Internal combustion engine 10 Exhaust gas purification apparatus 11 Exhaust passage 31 Storage tank 41 Pump 70 Air permeable member

Claims (4)

内燃機関の排気通路に還元剤を噴射する還元剤噴射弁と、
前記還元剤噴射弁に供給される還元剤が貯蔵される貯蔵タンクと、
第1の状態では前記貯蔵タンクから前記還元剤噴射弁に還元剤を供給し、第2の状態では前記還元剤噴射弁から前記貯蔵タンクへ還元剤を吸い戻すポンプと、
前記ポンプよりも前記還元剤噴射弁側の還元剤の流路に設けられ、還元剤の透過を遮断して空気のみを透過させる空気透過部材と、
を備えることを特徴とする、排気浄化装置。
A reducing agent injection valve for injecting the reducing agent into the exhaust passage of the internal combustion engine;
A storage tank for storing a reducing agent supplied to the reducing agent injection valve;
A pump for supplying a reducing agent from the storage tank to the reducing agent injection valve in the first state, and a pump for sucking the reducing agent from the reducing agent injection valve to the storage tank in the second state;
An air permeable member that is provided in the flow path of the reducing agent on the side of the reducing agent injection valve from the pump, and that allows only air to pass by blocking permeation of the reducing agent;
An exhaust emission control device comprising:
前記空気透過部材は、前記還元剤噴射弁に設けられたことを特徴とする、請求項1に記載の排気浄化装置。   The exhaust emission control device according to claim 1, wherein the air permeable member is provided in the reducing agent injection valve. 前記空気透過部材は、前記ポンプから前記還元剤噴射弁に至る還元剤の供給管に設けられたことを特徴とする、請求項1に記載の排気浄化装置。   The exhaust purification device according to claim 1, wherein the air permeable member is provided in a reducing agent supply pipe extending from the pump to the reducing agent injection valve. 前記空気透過部材は、PTFEメンブレン又はゴアテックスから構成されることを特徴とする、請求項1に記載の排気浄化装置。
The exhaust emission control device according to claim 1, wherein the air permeable member is made of a PTFE membrane or Gore-Tex.
JP2013151786A 2013-07-22 2013-07-22 Exhaust purification device Expired - Fee Related JP6192161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151786A JP6192161B2 (en) 2013-07-22 2013-07-22 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013151786A JP6192161B2 (en) 2013-07-22 2013-07-22 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2015021464A true JP2015021464A (en) 2015-02-02
JP6192161B2 JP6192161B2 (en) 2017-09-06

Family

ID=52486123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013151786A Expired - Fee Related JP6192161B2 (en) 2013-07-22 2013-07-22 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP6192161B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016185128A (en) * 2015-03-27 2016-10-27 ヤンマー株式会社 Combine harvester
CN107249301A (en) * 2015-03-04 2017-10-13 洋马株式会社 United reaper
JP2019027364A (en) * 2017-07-31 2019-02-21 株式会社Soken Urea water injector
CN110173377A (en) * 2019-07-03 2019-08-27 广西玉柴机器股份有限公司 The gaseous-pressure feedback system of gas engine
JP2019178610A (en) * 2018-03-30 2019-10-17 いすゞ自動車株式会社 Reducing agent supply device
US11199430B2 (en) 2018-02-07 2021-12-14 Denso Corporation Physical quantity measurement device for measuring a physical quantity of a fluid
US11255709B2 (en) 2018-02-07 2022-02-22 Denso Corporation Physical quantity measurement device having inlet with inclined ceiling
US11365996B2 (en) 2018-04-27 2022-06-21 Denso Corporation Measurement control device and flow measurement device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101564A (en) * 2006-10-20 2008-05-01 Denso Corp Exhaust emission control device for engine
JP2010030682A (en) * 2008-07-29 2010-02-12 General Electric Co <Ge> Fuel tank vent including a membrane separator
WO2012084108A2 (en) * 2010-12-20 2012-06-28 Kautex Textron Gmbh & Co. Kg Ventilating device for liquid containers, in particular for liquid containers for an aqueous urea solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101564A (en) * 2006-10-20 2008-05-01 Denso Corp Exhaust emission control device for engine
JP2010030682A (en) * 2008-07-29 2010-02-12 General Electric Co <Ge> Fuel tank vent including a membrane separator
WO2012084108A2 (en) * 2010-12-20 2012-06-28 Kautex Textron Gmbh & Co. Kg Ventilating device for liquid containers, in particular for liquid containers for an aqueous urea solution

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057380B1 (en) * 2015-03-04 2019-12-18 얀마 가부시키가이샤 combine
CN107249301A (en) * 2015-03-04 2017-10-13 洋马株式会社 United reaper
CN112056079A (en) * 2015-03-04 2020-12-11 洋马动力科技有限公司 Combine harvester
JP2016185128A (en) * 2015-03-27 2016-10-27 ヤンマー株式会社 Combine harvester
JP2019027364A (en) * 2017-07-31 2019-02-21 株式会社Soken Urea water injector
US11255709B2 (en) 2018-02-07 2022-02-22 Denso Corporation Physical quantity measurement device having inlet with inclined ceiling
US11199430B2 (en) 2018-02-07 2021-12-14 Denso Corporation Physical quantity measurement device for measuring a physical quantity of a fluid
US11300434B2 (en) 2018-02-07 2022-04-12 Denso Corporation Physical quantity measurement device
US11313709B2 (en) 2018-02-07 2022-04-26 Denso Corporation Physical quantity measurement device for fluid with narrowed flow path
US11480455B2 (en) 2018-02-07 2022-10-25 Denso Corporation Physical quantity measurement device
JP2019178610A (en) * 2018-03-30 2019-10-17 いすゞ自動車株式会社 Reducing agent supply device
JP7022387B2 (en) 2018-03-30 2022-02-18 いすゞ自動車株式会社 Reducing agent supply device
US11365996B2 (en) 2018-04-27 2022-06-21 Denso Corporation Measurement control device and flow measurement device
CN110173377A (en) * 2019-07-03 2019-08-27 广西玉柴机器股份有限公司 The gaseous-pressure feedback system of gas engine
CN110173377B (en) * 2019-07-03 2023-12-01 广西玉柴机器股份有限公司 Gas pressure feedback system of gas engine

Also Published As

Publication number Publication date
JP6192161B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6192161B2 (en) Exhaust purification device
JP5547815B2 (en) Reducing agent injection valve abnormality determination device and reducing agent supply device
JP5326461B2 (en) Engine exhaust purification system
JP4894827B2 (en) Reducing agent supply system
JP2009215891A (en) Control device for reducing agent supply device, recovery method of reducing agent and exhaust emission control device
JP2009002260A (en) Exhaust emission control device
JP6088865B2 (en) Control method for reducing agent supply device
JP2015078643A (en) Exhaust purification device of internal combustion engine
JP2010037979A (en) Exhaust emission control device
JP2010019134A (en) Exhaust emission control device of internal-combustion engine
JP6017866B2 (en) Reducing agent supply device, liquid reducing agent recovery control method, and exhaust purification device
JP2012163029A (en) Reducing agent supply device
JP6172468B2 (en) Exhaust gas purification device for internal combustion engine
JP6202600B2 (en) Control device, exhaust purification device for internal combustion engine, and control method for exhaust purification device
JP6012086B2 (en) Control method for reducing agent supply device and reducing agent supply device
JP6905910B2 (en) Diagnostic device and diagnostic method
JP2012127308A (en) Reducing agent supply device, and exhaust emission control device for internal combustion engine
EP3333386B1 (en) Injector deposit dissolution system and method
WO2015001858A1 (en) Reducing agent supply device and method of controlling same
JP2011132919A (en) Exhaust emission control device
JP7403274B2 (en) Reducing agent supply control device
JPWO2018047554A1 (en) Control device
JP6217662B2 (en) Additive supply device
JP6231871B2 (en) Exhaust purification device
JP2015017576A (en) Reducer feeding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170804

R151 Written notification of patent or utility model registration

Ref document number: 6192161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees