JP2015021175A - Film production method of metallic thin film - Google Patents

Film production method of metallic thin film Download PDF

Info

Publication number
JP2015021175A
JP2015021175A JP2013151105A JP2013151105A JP2015021175A JP 2015021175 A JP2015021175 A JP 2015021175A JP 2013151105 A JP2013151105 A JP 2013151105A JP 2013151105 A JP2013151105 A JP 2013151105A JP 2015021175 A JP2015021175 A JP 2015021175A
Authority
JP
Japan
Prior art keywords
thin film
gas
film
raw material
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013151105A
Other languages
Japanese (ja)
Other versions
JP6116425B2 (en
Inventor
秀治 清水
Hideji Shimizu
秀治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2013151105A priority Critical patent/JP6116425B2/en
Publication of JP2015021175A publication Critical patent/JP2015021175A/en
Application granted granted Critical
Publication of JP6116425B2 publication Critical patent/JP6116425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film production method of a metallic thin film capable of obtaining a highly pure metallic thin film without damaging a substrate by fluorine.SOLUTION: A film production method of a metallic thin film to be adopted, which is a method for producing a metallic thin film on the surface of a substrate by a thin film deposition method using a chemical reaction, includes the first step for forming a metal nitride film on the surface of the substrate by supplying raw material gas containing prescribed organic metallic chemical species and nitrogen-containing reaction gas, and the second step for removing nitrogen atoms in the metal nitride film by supplying hydrogen gas onto the surface of the substrate.

Description

本発明は、金属薄膜の製膜方法に関するものである。   The present invention relates to a method for forming a metal thin film.

半導体デバイスは、微細化・高集積化に伴って、高いアスペクト比の溝や孔に様々な金属膜を形成することが求められている。これまではスパッタリングを用いた物理的製膜手法によって金属膜が形成されてきた。しかしながら、従来のスパッタリングを用いた物理的製膜手法は段差被覆性に劣っているため、基板上に形成された高アスペクト比のパターンを被覆する目的でこれらの薄膜を形成すると、ボイド形成やバリア膜破れなどが生じて信頼性劣化に繋がるという問題が顕在化してきた。   With miniaturization and high integration, semiconductor devices are required to form various metal films in grooves and holes having a high aspect ratio. Until now, a metal film has been formed by a physical film forming technique using sputtering. However, since the conventional physical deposition method using sputtering is inferior in step coverage, when these thin films are formed for the purpose of covering a high aspect ratio pattern formed on a substrate, void formation and barrier The problem that film breakage and the like lead to deterioration of reliability has become apparent.

上記問題を解決するために、段差被覆性に優れたCVD法またはALD法による金属膜の導入が検討されている(例えば、特許文献1を参照)。具体的には、例えば、メモリデバイスの形成において製膜されるタングステン薄膜については、従来から六フッ化タングステン(WF)を原料として用いたCVDプロセスが適用されていた。しかしながら、原料である六フッ化タングステンに含まれているフッ素により、周囲の絶縁膜やタングステン(W)膜そのものの信頼性が損なわれるおそれが懸念されている。 In order to solve the above problem, introduction of a metal film by a CVD method or an ALD method having excellent step coverage has been studied (for example, see Patent Document 1). Specifically, for example, for a tungsten thin film formed in the formation of a memory device, conventionally, a CVD process using tungsten hexafluoride (WF 6 ) as a raw material has been applied. However, there is a concern that the reliability of the surrounding insulating film and the tungsten (W) film itself may be impaired by the fluorine contained in the raw material tungsten hexafluoride.

ところで、フッ素フリーのタングステン膜形成用の原料としては、下記式(A)に示したビスシクロペンタジエニルタングステン二水素化物や、下記式(B)に示したビス(ターシャリーブチルイミノ)ビス(ジメチルアミノ)タングステン、あるいは、これらの類似体が提案されてきた。   By the way, as a raw material for forming a fluorine-free tungsten film, biscyclopentadienyl tungsten dihydride represented by the following formula (A) or bis (tertiary butylimino) bis ( (Dimethylamino) tungsten or analogs thereof have been proposed.

Figure 2015021175
Figure 2015021175
Figure 2015021175
Figure 2015021175

しかしながら、上記式(A)に示した原料は、製膜温度が500℃以上と高く、基板や装置を損傷するおそれがあるため、実用のプロセスには適さないという課題があった。一方、上記式(B)に示した原料は、350℃以上の温度で製膜できるものの、タングステン膜ではなく窒化タングステン膜が得られるため、抵抗率を低減させることが困難であるという課題があった。   However, the raw material represented by the above formula (A) has a problem that it is not suitable for a practical process because the film forming temperature is as high as 500 ° C. or higher and there is a risk of damaging the substrate or the apparatus. On the other hand, although the raw material shown in the above formula (B) can be formed at a temperature of 350 ° C. or higher, a tungsten nitride film is obtained instead of a tungsten film, so that it is difficult to reduce the resistivity. It was.

特表2006−511716号公報JP-T-2006-511716

本発明は、上記事情に鑑みてなされたものであって、フッ素によって基板に損傷を与えることなく、高純度の金属薄膜を得ることが可能な金属薄膜の製膜方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for forming a metal thin film capable of obtaining a high-purity metal thin film without damaging the substrate with fluorine. To do.

かかる課題を解決するため、本願発明者は鋭意検討した結果、所定のフッ素フリーのタングステン膜の原料を用いて形成した金属窒化膜について、水素雰囲気下で加熱することにより窒素原子を除去することができることを見出した。また、膜中の窒素組成が原子組成で1at%(原子組成百分率)以下になるまでの時間と膜厚との関係は、およそ比例関係にあることを見出して、本願発明を完成させた。   In order to solve this problem, the present inventor has intensively studied, and as a result, it is possible to remove nitrogen atoms by heating a metal nitride film formed using a raw material of a predetermined fluorine-free tungsten film in a hydrogen atmosphere. I found out that I can do it. Further, the present invention was completed by finding that the relationship between the time until the nitrogen composition in the film became 1 at% (atomic composition percentage) or less in atomic composition and the film thickness was approximately proportional.

すなわち、本発明は、以下の構成を有する。
請求項1にかかる発明は、化学反応を用いた薄膜堆積法によって基板の表面に金属薄膜を製膜する方法であって、
基板の表面に、下記式(1)で示される有機金属化学種を含む原料ガスと含窒素反応ガスとを供給して、金属窒化膜を形成する第1工程と、
前記基板の表面に水素ガスを供給して、前記金属窒化膜中の窒素原子を除去する第2工程と、を含むことを特徴とする金属薄膜の製膜方法である。

Figure 2015021175
なお、上記式(1)において、R及びRは、C2n+1(n=1〜4)の化学式で表される直鎖状又は分岐された炭化水素であり、Rは、水素又はC2n+1(n=1〜4)の化学式で表される直鎖状又は分岐された炭化水素である。
また、Mは、第5族又は第6族の金属原子であり、Mが第5族である場合にp+2q=5であり、Mが第6族である場合にp+2q=6である。 That is, the present invention has the following configuration.
The invention according to claim 1 is a method of forming a metal thin film on the surface of a substrate by a thin film deposition method using a chemical reaction,
A first step of forming a metal nitride film by supplying a source gas containing a metalorganic species represented by the following formula (1) and a nitrogen-containing reaction gas to the surface of the substrate;
And a second step of removing nitrogen atoms in the metal nitride film by supplying hydrogen gas to the surface of the substrate.
Figure 2015021175
In the above formula (1), R 1 and R 2 are linear or branched hydrocarbons represented by the chemical formula of C n H 2n + 1 (n = 1 to 4), and R 3 is hydrogen. or C n H 2n + 1 (n = 1~4) linear or branched hydrocarbons represented by the chemical formula.
Further, M 1 is a Group 5 or Group 6 metal atoms are p + 2q = 5 when M 1 is a Group 5 is the p + 2q = 6 when M 1 is a Group 6 .

請求項2にかかる発明は、前記第1工程において、前記原料ガスを供給した後に、前記含窒素反応ガスを供給することを特徴とする請求項1に記載の金属薄膜の製膜方法である。   The invention according to claim 2 is the metal thin film forming method according to claim 1, wherein in the first step, the nitrogen-containing reaction gas is supplied after the source gas is supplied.

請求項3にかかる発明は、前記第1工程において、前記原料ガスと前記含窒素反応ガスとを同時に供給することを特徴とする請求項1に記載の金属薄膜の製膜方法である。   The invention according to claim 3 is the metal thin film forming method according to claim 1, wherein in the first step, the source gas and the nitrogen-containing reaction gas are supplied simultaneously.

請求項4にかかる発明は、上記式(1)中に示すMは、Taであることを特徴とする請求項1乃至3のいずれか一項に記載の金属薄膜の製膜方法である。 The invention according to claim 4 is the method for forming a metal thin film according to any one of claims 1 to 3, wherein M 1 shown in the formula (1) is Ta.

請求項5にかかる発明は、上記式(1)中に示すMは、W又はMoであることを特徴とする請求項1乃至3のいずれか一項に記載の金属薄膜の製膜方法である。 The invention according to claim 5, M 1 shown in the above formula (1) is a film forming method of the metal thin film according to any one of claims 1 to 3, characterized in that the W or Mo is there.

請求項6にかかる発明は、前記含窒素反応ガスが、アンモニア、ヒドラジン、モノメチルヒドラジン、ジメチルヒドラジン及びジフェニルヒドラジンのうち、少なくともいずれか一つを含むことを特徴とする請求項1乃至5のいずれか一項に記載の金属薄膜の製膜方法である。   The invention according to claim 6 is characterized in that the nitrogen-containing reaction gas contains at least one of ammonia, hydrazine, monomethylhydrazine, dimethylhydrazine and diphenylhydrazine. A method for forming a metal thin film according to one item.

請求項7にかかる発明は、前記第1工程で形成する金属窒化膜の厚さを10nm以下とすることを特徴とする請求項1乃至6のいずれか一項に記載の金属薄膜の製膜方法である。   The invention according to claim 7 is characterized in that the thickness of the metal nitride film formed in the first step is 10 nm or less, and the method for forming a metal thin film according to any one of claims 1 to 6 is provided. It is.

請求項8にかかる発明は、前記第1及び第2工程を2回以上繰り返すことを特徴する請求項1乃至7のいずれか一項に記載の金属薄膜の製膜方法である。   The invention according to claim 8 is the metal thin film forming method according to any one of claims 1 to 7, wherein the first and second steps are repeated twice or more.

本発明の金属薄膜の製膜方法によれば、フッ素によって基板に損傷を与えることなく、高純度の金属薄膜を得ることができる。   According to the metal thin film forming method of the present invention, a high-purity metal thin film can be obtained without damaging the substrate with fluorine.

本発明を適用した第1実施形態である金属薄膜の製膜方法のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the film forming method of the metal thin film which is 1st Embodiment to which this invention is applied. 本発明を適用した第2実施形態である金属薄膜の製膜方法のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the film forming method of the metal thin film which is 2nd Embodiment to which this invention is applied. 高純度の金属薄膜を得ることができない、金属薄膜の製膜方法のフローチャートの参考例を示す図である。It is a figure which shows the reference example of the flowchart of the film forming method of a metal thin film which cannot obtain a highly purified metal thin film. 高純度の金属薄膜を得ることができない、金属薄膜の製膜方法のフローチャートの参考例を示す図である。It is a figure which shows the reference example of the flowchart of the film forming method of a metal thin film which cannot obtain a highly purified metal thin film. 高純度の金属薄膜を得ることができない、金属薄膜の製膜方法のフローチャートの参考例を示す図である。It is a figure which shows the reference example of the flowchart of the film forming method of a metal thin film which cannot obtain a highly purified metal thin film. 高純度の金属薄膜を得ることができない、金属薄膜の製膜方法のフローチャートの参考例を示す図である。It is a figure which shows the reference example of the flowchart of the film forming method of a metal thin film which cannot obtain a highly purified metal thin film.

以下、本発明を適用した実施の形態である金属薄膜の製膜方法について、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。   Hereinafter, a metal thin film forming method according to an embodiment to which the present invention is applied will be described in detail with reference to the drawings. In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent.

<第1の実施形態>
本実施形態の金属薄膜の製膜方法は、化学反応を用いた薄膜堆積法(例えば、CVD法、ALD法)によって、例えばシリコン基板等の基板の表面に金属薄膜を製膜する方法であって、製膜対象となる基板の表面に、下記式(1)で示される有機金属化学種を含む原料ガスと含窒素反応ガスとを供給して、金属窒化膜を形成する第1工程と、基板の表面に水素ガスを供給して、金属窒化膜中の窒素原子を除去する第2工程と、を含んで概略構成されている。
<First Embodiment>
The metal thin film forming method of the present embodiment is a method of forming a metal thin film on the surface of a substrate such as a silicon substrate by a thin film deposition method (for example, a CVD method or an ALD method) using a chemical reaction. A first step of forming a metal nitride film by supplying a raw material gas containing an organometallic chemical species represented by the following formula (1) and a nitrogen-containing reaction gas to the surface of a substrate to be formed; And a second step of removing nitrogen atoms in the metal nitride film by supplying hydrogen gas to the surface.

Figure 2015021175
Figure 2015021175

なお、上記式(1)において、R及びRは、C2n+1(n=1〜4)の化学式で表される直鎖状又は分岐された炭化水素であり、Rは、水素又はC2n+1(n=1〜4)の化学式で表される直鎖状又は分岐された炭化水素である。
また、Mは、第5族又は第6族の金属原子であり、Mが第5族である場合にp+2q=5であり、Mが第6族である場合にp+2q=6である。
In the above formula (1), R 1 and R 2 are linear or branched hydrocarbons represented by the chemical formula of C n H 2n + 1 (n = 1 to 4), and R 3 is hydrogen. or C n H 2n + 1 (n = 1~4) linear or branched hydrocarbons represented by the chemical formula.
Further, M 1 is a Group 5 or Group 6 metal atoms are p + 2q = 5 when M 1 is a Group 5 is the p + 2q = 6 when M 1 is a Group 6 .

上記式(1)で示される有機金属化学種(以下、アミノイミノ原料という)としては、当該式(1)中に示される金属原子Mが第5族である場合には、p+2q=5を満たす物質を原料として用いる。具体的には、例えば、金属原子Mが、タンタル(Ta)である場合には、ターシャリーブチルイミノトリス(ジエチルアミノ)タンタル、ターシャリーブチルイミノトリス(エチルメチルアミノ)タンタル、ペンタキス(ジメチルアミノ)タンタル等が挙げられる。 The organometallic chemical species represented by the above formula (1) (hereinafter referred to as aminoimino raw material) satisfies p + 2q = 5 when the metal atom M 1 represented by the formula (1) is Group 5. The substance is used as a raw material. Specifically, for example, when the metal atom M 1 is tantalum (Ta), tertiary butyl imino tris (diethylamino) tantalum, tertiary butyl imino tris (ethylmethylamino) tantalum, pentakis (dimethylamino) Examples include tantalum.

また、上記式(1)で示されるアミノイミノ原料としては、当該式(1)中に示される金属原子Mが第6族である場合には、p+2q=6を満たす物質を原料として用いる。具体的には、例えば、金属原子Mが、タングステン(W)である場合には、ビス(ターシャリーブチルイミノ)ビス(ジメチルアミノ)タングステン、ビス(ターシャリーブチルイミノ)ビス(ターシャリーブチルアミノ)タングステン、ビス(ターシャリーブチルイミノ)ビス(ジエチルアミノ)タングステン、ビス(ターシャリーブチルイミノ)ビス(エチルメチルアミノ)タングステン等が挙げられる。また、金属原子Mが、モリブデン(Mo)である場合には、ビス(ターシャリーブチルイミノ)ビス(ジメチルアミノ)モリブデン、ビス(ターシャリーブチルイミノ)ビス(ターシャリーブチルアミノ)モリブデン、ビス(ターシャリーブチルイミノ)ビス(ジエチルアミノ)モリブデン、ビス(ターシャリーブチルイミノ)ビス(エチルメチルアミノ)モリブデン等が挙げられる。 In addition, as the aminoimino raw material represented by the above formula (1), when the metal atom M 1 represented in the formula (1) is a Group 6, a material satisfying p + 2q = 6 is used as the raw material. Specifically, for example, when the metal atom M 1 is tungsten (W), bis (tertiarybutylimino) bis (dimethylamino) tungsten, bis (tertiarybutylimino) bis (tertiarybutylamino) ) Tungsten, bis (tertiary butyl imino) bis (diethylamino) tungsten, bis (tertiary butyl imino) bis (ethylmethylamino) tungsten, and the like. When the metal atom M 1 is molybdenum (Mo), bis (tertiary butyl imino) bis (dimethylamino) molybdenum, bis (tertiary butyl imino) bis (tertiary butyl amino) molybdenum, bis ( And tertiary butylimino) bis (diethylamino) molybdenum and bis (tertiarybutylimino) bis (ethylmethylamino) molybdenum.

含窒素反応ガスの成分は、上記式(1)で示されるアミノイミノ原料と反応して金属窒化膜を形成可能な成分であれば、特に限定されるものではない。このような含窒素反応ガスの含窒素成分としては、具体的には、例えば、アンモニア、ヒドラジン、モノメチルヒドラジン、ジメチルヒドラジン及びジフェニルヒドラジン等が挙げられる。なお、含窒素反応ガスは、上記含窒素成分のうち、いずれか一種を選択して用いても良いし、2種以上の混合ガスとして用いても良い。   The component of the nitrogen-containing reactive gas is not particularly limited as long as it can react with the aminoimino raw material represented by the above formula (1) to form a metal nitride film. Specific examples of the nitrogen-containing component of such a nitrogen-containing reaction gas include ammonia, hydrazine, monomethyl hydrazine, dimethyl hydrazine, and diphenyl hydrazine. The nitrogen-containing reaction gas may be used by selecting any one of the nitrogen-containing components, or may be used as a mixed gas of two or more.

次に、図1を参照して、本実施形態の金属薄膜の製膜方法について、具体的に説明する。
先ず、図1中に示すステップS11に示すように、CVD装置あるいはALD装置等のプロセス装置のチャンバ内に製膜対象となる基板を搬入する。
Next, with reference to FIG. 1, the metal thin film forming method of the present embodiment will be specifically described.
First, as shown in step S11 shown in FIG. 1, a substrate to be formed is carried into a chamber of a process apparatus such as a CVD apparatus or an ALD apparatus.

ここで、チャンバ内の真空度は、50Torr(6.6kPa)以上、0.1Torr(13Pa)以下とすることが好ましく、0.3Torr(40Pa)以下とすることがより好ましい。上記真空度が50Torr未満であると、原料ガスの分圧が低くなり、金属窒化膜の膜厚が得られないために好ましくない。一方、上記真空度が0.1Torrを超えると、供給ガスの切り替え間のパージ処理時間が長くなってしまうために好ましくない。これに対して、チャンバ内の真空度が上記範囲内であると、充分な膜厚の金属窒化膜が短時間で得られるために好ましい。   Here, the degree of vacuum in the chamber is preferably 50 Torr (6.6 kPa) or more and 0.1 Torr (13 Pa) or less, and more preferably 0.3 Torr (40 Pa) or less. When the degree of vacuum is less than 50 Torr, the partial pressure of the source gas is lowered, and the thickness of the metal nitride film cannot be obtained, which is not preferable. On the other hand, when the degree of vacuum exceeds 0.1 Torr, it is not preferable because the purge processing time between supply gas changes becomes long. On the other hand, it is preferable that the degree of vacuum in the chamber is within the above range because a sufficiently thick metal nitride film can be obtained in a short time.

(第1工程)
次に、ステップS12に示すように、チャンバ内をヘリウム(He)ガスを流通させながら基板を加熱する。ここで、基板の加熱温度は、350〜400℃の範囲とすることが好ましい。上記加熱温度が350℃未満であると、金属窒化膜の製膜速度が遅くなるために好ましくない。一方、上記加熱温度が400℃を超えると、熱によって基板やプロセス装置が損傷をうけるおそれがあるために好ましくない。これに対して、基板の加熱温度が上記範囲内であれば、基板やプロセス装置に損傷を与えるおそれがなく、金属窒化膜の製膜速度を高めることができるために好ましい。
(First step)
Next, as shown in step S12, the substrate is heated while flowing helium (He) gas through the chamber. Here, the heating temperature of the substrate is preferably in the range of 350 to 400 ° C. If the heating temperature is less than 350 ° C., the film forming speed of the metal nitride film is slow, which is not preferable. On the other hand, if the heating temperature exceeds 400 ° C., the substrate and the process apparatus may be damaged by heat, which is not preferable. On the other hand, it is preferable that the heating temperature of the substrate is within the above range because there is no possibility of damaging the substrate and the process apparatus, and the deposition rate of the metal nitride film can be increased.

次に、ステップS13に示すように、ヘリウムガスの供給を停止した後、上記式(1)で示されるアミノイミノ原料をキャリアガスに同伴させてチャンバ内に供給する。換言すると、チャンバ内の加熱された基板表面にアミノイミノ原料を供給する。これにより、基板の表面にアミノイミノ原料を吸着させる。なお、キャリアガスは、上記アミノイミノ原料と反応しない不活性ガスであれば、特に限定されるものではなく、例えば、窒素ガス、ヘリウムガス、アルゴンガス等を用いることができる。   Next, as shown in step S13, after the supply of helium gas is stopped, the aminoimino raw material represented by the above formula (1) is supplied into the chamber along with the carrier gas. In other words, the aminoimino raw material is supplied to the heated substrate surface in the chamber. Thereby, the aminoimino raw material is adsorbed on the surface of the substrate. The carrier gas is not particularly limited as long as it is an inert gas that does not react with the aminoimino raw material. For example, nitrogen gas, helium gas, argon gas, or the like can be used.

次に、ステップS14に示すように、アミノイミノ原料ガスの供給を停止した後、チャンバ内にパージガスを供給する。なお、パージガスは、上記アミノイミノ原料と反応しない不活性ガスであれば、特に限定されるものではなく、例えば、窒素ガス、ヘリウムガス、アルゴンガス等を用いることができる。   Next, as shown in step S14, after the supply of the aminoimino source gas is stopped, the purge gas is supplied into the chamber. The purge gas is not particularly limited as long as it is an inert gas that does not react with the aminoimino raw material. For example, nitrogen gas, helium gas, argon gas, or the like can be used.

次に、ステップS15に示すように、パージガスの供給を停止した後、チャンバ内に含窒素反応ガスを供給する。換言すると、チャンバ内の加熱された基板表面に含窒素反応ガスを供給する。これにより、基板表面に吸着させたアミノイミノ原料と含窒素反応ガスとを反応させて、当該基板の表面に金属窒化膜を製膜することができる。   Next, as shown in step S15, after supply of the purge gas is stopped, a nitrogen-containing reactive gas is supplied into the chamber. In other words, a nitrogen-containing reactive gas is supplied to the heated substrate surface in the chamber. Thus, a metal nitride film can be formed on the surface of the substrate by reacting the aminoimino raw material adsorbed on the substrate surface with the nitrogen-containing reactive gas.

なお、ステップS13に示すアミノイミノ原料の供給量およびステップS15に示す含窒素反応ガスの供給量は、基板表面に製膜される金属窒化膜の膜厚が、10nm以下となるように調整することが好ましい。ここで、金属窒化膜の上記膜厚が10nmを超えると、ガスの供給量の増加や製膜時間の増加を招くとともに、後述する第2工程において金属窒化膜中の窒素原子の除去に時間を要する、あるいは除去が不十分となるために好ましくない。しかしながら、理想的な原子層堆積工程においては、ステップS13に示すアミノイミノ原料の供給量を増やしても、基板全体にアミノイミノ原料が1層吸着した時点で飽和する。また引き続くステップS15の含窒素反応ガスの供給量を増やしても、上記吸着したアミノイミノ原料がすべて反応した時点でそれ以上反応が進まなくなる。そのため、ステップ13〜15による第1工程によって製膜された金属窒化膜の膜厚は1nm以下にとどまり、上述の膜厚10nm以下という必要条件を満たす。   The supply amount of the aminoimino raw material shown in step S13 and the supply amount of the nitrogen-containing reactive gas shown in step S15 can be adjusted so that the thickness of the metal nitride film formed on the substrate surface is 10 nm or less. preferable. Here, when the thickness of the metal nitride film exceeds 10 nm, an increase in gas supply amount and an increase in film formation time are caused, and a time is required for removing nitrogen atoms in the metal nitride film in the second step described later. This is not preferable because it requires or is insufficiently removed. However, in an ideal atomic layer deposition process, even if the supply amount of the aminoimino raw material shown in step S13 is increased, the aminoimino raw material is saturated when one layer is adsorbed on the entire substrate. Further, even if the supply amount of the nitrogen-containing reactive gas in the subsequent step S15 is increased, the reaction does not proceed any more when all the adsorbed aminoimino raw materials have reacted. Therefore, the thickness of the metal nitride film formed by the first process in steps 13 to 15 is 1 nm or less, and satisfies the above requirement of the film thickness of 10 nm or less.

(第2工程)
次に、図1中のステップS16に示すように、含窒素反応ガスの供給を停止した後、チャンバ内にパージガスを供給する。
(Second step)
Next, as shown in step S16 in FIG. 1, after the supply of the nitrogen-containing reaction gas is stopped, the purge gas is supplied into the chamber.

次に、ステップS17に示すように、パージガスの供給を停止した後、チャンバ内に水素ガスを供給する。換言すると、チャンバ内の基板表面に製膜された金属窒化膜に水素ガスを供給する。これにより、金属窒化膜中の窒素原子が除去されて、低不純物の(すなわち、高純度の)金属薄膜を製膜することができる。   Next, as shown in step S17, after the supply of the purge gas is stopped, hydrogen gas is supplied into the chamber. In other words, hydrogen gas is supplied to the metal nitride film formed on the substrate surface in the chamber. Thereby, nitrogen atoms in the metal nitride film are removed, and a low impurity (that is, high purity) metal thin film can be formed.

なお、ステップS17において、水素ガスの供給量(あるいは供給時間)は、上記第1工程で基板表面に製膜した金属窒化膜の膜厚に応じて適宜選択することが好ましい。   In step S17, the supply amount (or supply time) of hydrogen gas is preferably selected as appropriate according to the thickness of the metal nitride film formed on the substrate surface in the first step.

次に、ステップS18に示すように、水素ガスの供給を停止した後、チャンバ内にパージガスを供給する。
以上のステップS13〜S18を1サイクルとして、基板表面に、膜厚が1nm以下の金属薄膜を製膜することができる。
Next, as shown in step S18, after the supply of hydrogen gas is stopped, purge gas is supplied into the chamber.
With the above steps S13 to S18 as one cycle, a metal thin film having a thickness of 1 nm or less can be formed on the substrate surface.

ここで、金属薄膜の膜厚が目標の膜厚に達していない場合には、ステップS13〜S18のサイクル(すなわち、第1工程及び第2工程)を2以上繰りかえすことが好ましい。これにより、金属薄膜の膜厚を目標の膜厚とすることができる。   Here, when the film thickness of the metal thin film does not reach the target film thickness, it is preferable to repeat two or more cycles of steps S13 to S18 (that is, the first step and the second step). Thereby, the film thickness of a metal thin film can be made into a target film thickness.

一方、金属薄膜の膜厚が目標の膜厚に達した場合には、ステップS19に示すように、チャンバ内を大気圧に戻した後、プロセス装置から金属薄膜を製膜した基板を取り出す。   On the other hand, when the film thickness of the metal thin film reaches the target film thickness, as shown in step S19, the chamber is returned to atmospheric pressure, and then the substrate on which the metal thin film is formed is taken out from the process apparatus.

以上説明したように、本実施形態の金属薄膜の製膜方法によれば、元素組成で1at%以下の高純度の金属薄膜を製膜することができる。また、本実施形態の金属薄膜の製膜方法によって製膜された金属薄膜によれば、抵抗率を3.0×10−7Ω・m以下に抑えることができる。 As described above, according to the metal thin film forming method of the present embodiment, a high-purity metal thin film having an element composition of 1 at% or less can be formed. Moreover, according to the metal thin film formed by the metal thin film forming method of the present embodiment, the resistivity can be suppressed to 3.0 × 10 −7 Ω · m or less.

また、本実施形態の金属薄膜の製膜方法によれば、フッ素原子を含まないアミノイミノ原料を用いるため、製膜中にフッ素が生成するおそれがなく、基板に損傷を与えることがない。   Further, according to the metal thin film forming method of the present embodiment, since an aminoimino raw material not containing fluorine atoms is used, there is no possibility that fluorine is generated during film formation, and the substrate is not damaged.

<第2の実施形態>
次に、本発明を適用した第2の実施形態について説明する。本実施形態では、第1の実施形態の金属薄膜の製膜方法とは一部異なる構成となっている。このため、図2を用いて本実施形態の金属薄膜の製膜方法について説明する。
<Second Embodiment>
Next, a second embodiment to which the present invention is applied will be described. In this embodiment, the metal thin film forming method of the first embodiment is partially different. For this reason, the metal thin film forming method of the present embodiment will be described with reference to FIG.

図2中に示すステップS21〜S27は、それぞれ下記に示す内容となっている。
S21:基板搬送ステップ(図1中のS11に対応)
S22:基板加熱ステップ(図1中のS12に対応)
S23:アミノイミノ原料及び含窒素反応ガスの同時供給ステップ
S24:パージガスの供給ステップ(図1中のS16に対応)
S25:水素ガスの供給ステップ(図1中のS17に対応)
S26:パージガスの供給ステップ(図1中のS18に対応)
S27:基板取り出しステップ(図1中のS19に対応)
Steps S21 to S27 shown in FIG. 2 have the following contents, respectively.
S21: Substrate transport step (corresponding to S11 in FIG. 1)
S22: Substrate heating step (corresponding to S12 in FIG. 1)
S23: Aminoimino raw material and nitrogen-containing reaction gas simultaneous supply step S24: Purge gas supply step (corresponding to S16 in FIG. 1)
S25: Hydrogen gas supply step (corresponding to S17 in FIG. 1)
S26: Purge gas supply step (corresponding to S18 in FIG. 1)
S27: Substrate removal step (corresponding to S19 in FIG. 1)

本実施形態の金属薄膜の製膜方法は、図2中に示すステップS23に示すように、基板の加熱後、チャンバ内にアミノイミノ原料と含窒素反応ガスと同時に供給する点で上述した第1実施形態と異なっている。換言すると、金属窒化膜を形成する第1工程において、上述した第1実施形態ではアミノイミノ原料(原料ガス)を供給した後に含窒素反応ガスを供給する(すなわち、ステップS13〜S15の3ステップで行う)のに対して、本実施形態ではアミノイミノ原料と含窒素反応ガスとを同時に供給する(すなわち、ステップS23の1ステップで行う)点で異なる構成となっている。   As shown in step S23 in FIG. 2, the metal thin film forming method of the present embodiment is the first implementation described above in that after the substrate is heated, the aminoimino raw material and the nitrogen-containing reactive gas are supplied into the chamber at the same time. It is different from the form. In other words, in the first step of forming the metal nitride film, in the first embodiment described above, the nitrogen-containing reactive gas is supplied after supplying the aminoimino raw material (raw material gas) (that is, performed in three steps S13 to S15). On the other hand, the present embodiment is different in that the aminoimino raw material and the nitrogen-containing reactive gas are supplied simultaneously (that is, performed in one step of step S23).

しかしながら、本実施形態の金属薄膜の製膜方法によれば、第1実施形態と同様に、チャンバ内の基板にアミノイミノ原料と含窒素反応ガスと同時に供給する(ステップS23)ことにより、加熱された基板表面でアミノイミノ原料と含窒素反応ガスとを反応させて金属窒化膜を形成することができる。   However, according to the metal thin film forming method of the present embodiment, as in the first embodiment, the substrate is heated by supplying the aminoimino raw material and the nitrogen-containing reactive gas simultaneously to the substrate in the chamber (step S23). A metal nitride film can be formed by reacting an aminoimino raw material with a nitrogen-containing reactive gas on the substrate surface.

また、本実施形態の金属薄膜の製膜方法によれば、チャンバ内の基板にアミノイミノ原料と含窒素反応ガスと同時に供給する(ステップS23)ため、第1実施形態における第1工程よりも金属窒化膜の膜厚を厚く製膜することができる。しかしながら、窒素原子を除去する第2工程を考慮して、第1工程で製膜する金属窒化膜の膜厚は、10nm未満とすることが好ましい。   Further, according to the metal thin film forming method of the present embodiment, since the aminoimino raw material and the nitrogen-containing reactive gas are supplied simultaneously to the substrate in the chamber (step S23), the metal nitridation is performed more than the first step in the first embodiment. The film can be formed thick. However, considering the second step of removing nitrogen atoms, the thickness of the metal nitride film formed in the first step is preferably less than 10 nm.

ところで、プロセス装置のチャンバ内に、アミノイミノ原料、含窒素反応ガス及び水素ガスを供給する順番の組合せとしては、図3〜図6に示すフローチャートを例示することができる。ここで、図3に示すフローチャートでは、ステップS37の含窒素反応ガスの供給の前に、ステップS35において水素ガスを供給する構成となっている。また、図4に示すフローチャートでは、ステップS45において含窒素反応ガスと水素ガスとを同時に供給する構成となっている。また、図5に示すフローチャートでは、ステップS55窒素反応ガスの供給の前に、ステップS53においてアミノイミノ原料と同時に水素ガスを供給する構成となっている。また、図6に示すフローチャートでは、ステップS63においてアミノイミノ原料、含窒素反応ガス及び水素ガスを同時に供給する構成となっている。   By the way, as a combination of the order of supplying the aminoimino raw material, the nitrogen-containing reaction gas, and the hydrogen gas into the chamber of the process apparatus, the flowcharts shown in FIGS. 3 to 6 can be exemplified. Here, in the flowchart shown in FIG. 3, the hydrogen gas is supplied in step S <b> 35 before the supply of the nitrogen-containing reaction gas in step S <b> 37. Moreover, in the flowchart shown in FIG. 4, it has the structure which supplies a nitrogen-containing reaction gas and hydrogen gas simultaneously in step S45. In the flowchart shown in FIG. 5, hydrogen gas is supplied simultaneously with the aminoimino raw material in step S53 before supplying the nitrogen reactive gas in step S55. In the flowchart shown in FIG. 6, the aminoimino raw material, the nitrogen-containing reaction gas, and the hydrogen gas are simultaneously supplied in step S63.

しかしながら、図3〜図6に示すフローチャートでは、いずれも含窒素反応ガスの供給の後に水素ガスを供給する構成(すなわち、金属窒化膜を形成した後に、水素ガスを供給する構成)とはなっていないため、当該図3〜図6に示すフローチャートによって製膜された金属薄膜は、いずれも上述した第1及び第2実施形態で得られるような高純度の金属薄膜とはならない。例えば、図3及び図4に示すフローチャートによって製膜された金属薄膜は、膜中に炭素原子(C)が取り残されてしまうため、タングステン炭窒化膜(WCN膜)となる。   However, the flowcharts shown in FIGS. 3 to 6 are all configured to supply hydrogen gas after supplying the nitrogen-containing reaction gas (that is, to supply hydrogen gas after forming the metal nitride film). Therefore, none of the metal thin films formed by the flowcharts shown in FIGS. 3 to 6 is a high-purity metal thin film as obtained in the first and second embodiments described above. For example, the metal thin film formed by the flowcharts shown in FIGS. 3 and 4 becomes a tungsten carbonitride film (WCN film) because carbon atoms (C) are left behind in the film.

これに対して、上述した第1及び第2実施形態の金属薄膜の製膜方法では、いずれも含窒素反応ガスの供給の後に水素ガスを供給する構成(すなわち、金属窒化膜を形成した後に、水素ガスを供給する構成)となっているため、元素組成で1at%以下の高純度の金属薄膜を製膜することができる。   On the other hand, in the metal thin film forming methods of the first and second embodiments described above, the configuration in which hydrogen gas is supplied after the supply of the nitrogen-containing reaction gas (that is, after forming the metal nitride film, Therefore, a high-purity metal thin film having an elemental composition of 1 at% or less can be formed.

以下、具体例を示す。
なお、以下に示す実施例及び比較例における製膜は、コールドウォールの基板加熱式ステンレスチャンバを用いて実施した。また、元素組成は、X線光電子分光法(アルバックファイ社製、以下XPSと略す)によってスペクトル強度から測定した。このXPSによる元素組成の検出下限は1at%である。また、膜厚は、分光エリプソメトリー(Sopra社製)用いた観察によって評価した。
Specific examples are shown below.
The film formation in the following examples and comparative examples was performed using a cold wall substrate heating type stainless steel chamber. The elemental composition was measured from the spectral intensity by X-ray photoelectron spectroscopy (manufactured by ULVAC-PHI, hereinafter abbreviated as XPS). The lower limit of detection of the element composition by XPS is 1 at%. The film thickness was evaluated by observation using spectroscopic ellipsometry (manufactured by Sopra).

(実施例1)
有機金属原料として、下記式(2)に示したビス(ターシャリーブチルイミノ)ビス(ジメチルアミノ)タングステンを用いて、タングステン膜の製膜を実施した。
先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムを、30sccmのアンモニアと同時に基板表面に搬送した。このとき、ステンレスチャンバの全圧を3Torr(約400Pa)に保ち、基板温度を約350℃に加熱した。次に、原料ガスおよびアンモニアガスの供給を約5分間続け、これにより、基板表面上にタングステン窒化膜2nmを製膜した。得られたタングステン窒化膜をステンレスチャンバより取り出し、組成を調べた結果を下記の表1に示す。
Example 1
A tungsten film was formed using bis (tertiarybutylimino) bis (dimethylamino) tungsten represented by the following formula (2) as the organometallic raw material.
First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium accompanied by the organometallic raw material was transferred to the substrate surface simultaneously with 30 sccm of ammonia by bubbling. At this time, the total pressure of the stainless steel chamber was maintained at 3 Torr (about 400 Pa), and the substrate temperature was heated to about 350 ° C. Next, the supply of the source gas and the ammonia gas was continued for about 5 minutes, thereby forming a tungsten nitride film of 2 nm on the substrate surface. The obtained tungsten nitride film was taken out from the stainless steel chamber and the composition was examined. The results are shown in Table 1 below.

次に、一度取り出したタングステン窒化膜を、50Torr(約6.6kPa)の水素雰囲気で約400℃に加熱して15分間保持した。処理後の薄膜を取り出して、組成を調べたところ、下記の表1に示した結果となり、窒素が除去されていることを確認した。また、4端子法で処理後の薄膜の抵抗率を調べたところ、3.0×10−7Ω・mであった。 Next, the tungsten nitride film once taken out was heated to about 400 ° C. in a hydrogen atmosphere of 50 Torr (about 6.6 kPa) and held for 15 minutes. The treated thin film was taken out and the composition was examined. The results shown in Table 1 below were obtained, and it was confirmed that nitrogen was removed. Moreover, when the resistivity of the thin film after a process was investigated by the 4-terminal method, it was 3.0 * 10 <-7> ohm * m.

Figure 2015021175
Figure 2015021175

(実施例2)
有機金属原料として、上記式(2)に示した原料を用いてタングステン膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムを、30sccmのアンモニアと同時に基板表面に搬送した。このとき、チャンバの全圧を3Torr(約400Pa)に保ち、基板温度を約350℃に加熱した。次に、原料ガスおよびアンモニアガスの供給を約5分間続け、これにより、基板表面上にタングステン窒化膜2nmを製膜した。
(Example 2)
A tungsten film was formed using the raw material represented by the above formula (2) as the organometallic raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium accompanied by the organometallic raw material was transferred to the substrate surface simultaneously with 30 sccm of ammonia by bubbling. At this time, the total pressure in the chamber was maintained at 3 Torr (about 400 Pa), and the substrate temperature was heated to about 350 ° C. Next, the supply of the source gas and the ammonia gas was continued for about 5 minutes, thereby forming a tungsten nitride film of 2 nm on the substrate surface.

次いで、チャンバから取り出すことなく、引き続き50Torr(約6.6kPa)の水素雰囲気で400℃に加熱して15分間保持した。得られた薄膜をチャンバより取り出して組成を調べたところ、下記の表1に示した結果となり、タングステン膜が得られていることを確認した。また、4端子法で処理後の薄膜の抵抗率を調べたところ、3.0×10−7Ω・mであった。 Next, without removing from the chamber, it was continuously heated to 400 ° C. in a hydrogen atmosphere of 50 Torr (about 6.6 kPa) and held for 15 minutes. The obtained thin film was taken out of the chamber and the composition was examined. The results shown in Table 1 below were obtained, and it was confirmed that a tungsten film was obtained. Moreover, when the resistivity of the thin film after a process was investigated by the 4-terminal method, it was 3.0 * 10 <-7> ohm * m.

(実施例3)
有機金属原料として、上記式(2)に示した原料を用いてタングステン膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムガスを、30sccmのアンモニアガスと同時に約350℃に加熱した基板表面に6秒間供給した(製膜工程)。引き続いて、ヘリウムガス60sccmを3秒間流通させて、チャンバ内に残った原料ガスを排気(パージ工程1)した後、水素ガス60sccmを同じく約350℃に加熱した基板に3秒間供給した(窒素除去工程)。この後、ヘリウムガス60sccmを3秒間流通させて、チャンバ内に残った水素ガスを排気した(パージ工程2)。
Example 3
A tungsten film was formed using the raw material represented by the above formula (2) as the organometallic raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium gas accompanied by the organometallic raw material was supplied by bubbling to the substrate surface heated to about 350 ° C. simultaneously with 30 sccm of ammonia gas (film forming step). Subsequently, 60 sccm of helium gas was circulated for 3 seconds to exhaust the raw material gas remaining in the chamber (purge process 1), and then hydrogen gas 60 sccm was supplied to the substrate heated to about 350 ° C. for 3 seconds (nitrogen removal). Process). Thereafter, 60 sccm of helium gas was circulated for 3 seconds to exhaust the hydrogen gas remaining in the chamber (purge process 2).

このとき、チャンバの全圧を0.3Torr(約40Pa)に保ち、製膜工程、パージ工程1、窒素除去工程及びパージ工程2を、300回繰り返した。これにより、タングステン窒化膜27nmを製膜した。得られた薄膜をチャンバより取り出して組成を調べたところ、下記の表1に示した結果となり、タングステン膜が得られていることを確認した。また、4端子法で処理後の薄膜の抵抗率を調べたところ、3.0×10−7Ω・mであった。 At this time, the total pressure in the chamber was maintained at 0.3 Torr (about 40 Pa), and the film forming process, the purge process 1, the nitrogen removing process, and the purge process 2 were repeated 300 times. As a result, a tungsten nitride film of 27 nm was formed. The obtained thin film was taken out of the chamber and the composition was examined. The results shown in Table 1 below were obtained, and it was confirmed that a tungsten film was obtained. Moreover, when the resistivity of the thin film after a process was investigated by the 4-terminal method, it was 3.0 * 10 <-7> ohm * m.

(実施例4)
有機金属原料として、上記式(2)に示した原料を用いてタングステン膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムガスを、約350℃に加熱した基板表面に6秒間供給した(W吸着工程)。引き続いて、ヘリウムガス30sccmを3秒間流通させて、チャンバに残った原料を排気(パージ工程1)した後、30sccmのアンモニアガスを3秒間供給して、上記W吸着工程で吸着した原料を分解した(反応工程)。引き続いて、ヘリウム30sccmを3秒間流通させて、チャンバ内に残ったアンモニアガスを排気(パージ工程2)した後、水素ガス30sccmを同じく約350℃に加熱した基板に3秒間供給した(窒素除去工程)。この後、ヘリウムガス30sccmを3秒間流通させて、チャンバ内に残った水素ガスを排気した(パージ工程3)。
Example 4
A tungsten film was formed using the raw material represented by the above formula (2) as the organometallic raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium gas accompanied by the organometallic raw material by bubbling was supplied to the substrate surface heated to about 350 ° C. for 6 seconds (W adsorption process). Subsequently, 30 sccm of helium gas was circulated for 3 seconds to exhaust the raw material remaining in the chamber (purge process 1), and then 30 sccm of ammonia gas was supplied for 3 seconds to decompose the raw material adsorbed in the W adsorption process. (Reaction process). Subsequently, 30 sccm of helium was circulated for 3 seconds to exhaust the ammonia gas remaining in the chamber (purge process 2), and then 30 sccm of hydrogen gas was supplied to the substrate heated to about 350 ° C. for 3 seconds (nitrogen removal process) ). Thereafter, 30 sccm of helium gas was circulated for 3 seconds to exhaust the hydrogen gas remaining in the chamber (purge process 3).

このとき、チャンバの全圧を0.3Torr(約40Pa)に保ち、W吸着工程、パージ工程1、反応工程、パージ工程2、窒素除去工程及びパージ工程3を300回繰り返した。これにより、タングステン窒化膜13nmを製膜した。得られた薄膜をチャンバより取り出して組成を調べたところ、下記の表1に示した結果となり、タングステン膜が得られていることを確認した。また、4端子法で処理後の薄膜の抵抗率を調べたところ3.0×10−7Ω・mであった。 At this time, the total pressure in the chamber was maintained at 0.3 Torr (about 40 Pa), and the W adsorption step, purge step 1, reaction step, purge step 2, nitrogen removal step and purge step 3 were repeated 300 times. As a result, a tungsten nitride film of 13 nm was formed. The obtained thin film was taken out of the chamber and the composition was examined. The results shown in Table 1 below were obtained, and it was confirmed that a tungsten film was obtained. Further, when the resistivity of the thin film after the treatment by the four-terminal method was examined, it was 3.0 × 10 −7 Ω · m.

(比較例1)
有機金属原料として、上記式(2)に示した原料を用いてタングステン膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムガスを、15sccmのアンモニアガス、15sccmの水素ガスと同時に基板表面に搬送した。このとき、チャンバの全圧を3Torr(約400Pa)に保ち、基板温度を約350℃に加熱した。原料ガス、アンモニアガス及び水素ガスの供給を5分間続け、得られた薄膜をステンレスチャンバより取り出し、組成を調べた結果を下記の表1に示した。また、4端子法で処理後の薄膜の抵抗率を調べたところ1.0×10−4Ω・mであった。
(Comparative Example 1)
A tungsten film was formed using the raw material represented by the above formula (2) as the organometallic raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium gas accompanied by the organometallic raw material was transferred to the substrate surface simultaneously with 15 sccm of ammonia gas and 15 sccm of hydrogen gas by bubbling. At this time, the total pressure in the chamber was maintained at 3 Torr (about 400 Pa), and the substrate temperature was heated to about 350 ° C. The supply of the source gas, ammonia gas and hydrogen gas was continued for 5 minutes, the obtained thin film was taken out from the stainless steel chamber, and the composition was examined. The results are shown in Table 1 below. Further, when the resistivity of the thin film after the treatment was examined by the four-terminal method, it was 1.0 × 10 −4 Ω · m.

(比較例2)
有機金属原料として、上記式(2)に示した原料を用いてタングステン膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムガスを、30sccmの水素ガスと同時に基板表面に搬送した。このとき、チャンバの全圧を3Torr(約400Pa)に保ち、基板温度を約350℃に加熱した。原料ガスおよび水素ガスの供給を5分間続け、得られた薄膜をステンレスチャンバより取り出し、組成を調べた結果を下記の表1に示した。また、4端子法で処理後の薄膜の抵抗率を調べたところ、3.0×10−4Ω・mであった。
(Comparative Example 2)
A tungsten film was formed using the raw material represented by the above formula (2) as the organometallic raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium gas accompanied by the organometallic raw material was transferred to the substrate surface simultaneously with 30 sccm of hydrogen gas by bubbling. At this time, the total pressure in the chamber was maintained at 3 Torr (about 400 Pa), and the substrate temperature was heated to about 350 ° C. The supply of the source gas and the hydrogen gas was continued for 5 minutes, the obtained thin film was taken out from the stainless steel chamber, and the composition was examined. The results are shown in Table 1 below. Moreover, when the resistivity of the processed thin film was investigated by the 4-terminal method, it was 3.0 × 10 −4 Ω · m.

(比較例3)
有機金属原料として、上記式(2)に示した原料を用いてタングステン膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムガスを、30sccmのアンモニアガスと同時に基板表面に搬送した。このとき、チャンバの全圧を3Torr(約400Pa)に保ち、基板温度を約350℃に加熱した。原料ガスおよびアンモニアガスの供給を5分間続け、これにより、タングステン窒化膜2nmを製膜した。
(Comparative Example 3)
A tungsten film was formed using the raw material represented by the above formula (2) as the organometallic raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium gas accompanied by the organometallic raw material was transferred to the substrate surface simultaneously with 30 sccm of ammonia gas by bubbling. At this time, the total pressure in the chamber was maintained at 3 Torr (about 400 Pa), and the substrate temperature was heated to about 350 ° C. The supply of the source gas and ammonia gas was continued for 5 minutes, thereby forming a tungsten nitride film of 2 nm.

次に、一度取り出したタングステン窒化膜を、50Torr(約6.6kPa)の窒素雰囲気で400℃に加熱し、15分間保持した。処理後の薄膜を取り出して、組成を調べたところ、下記の表1に示した結果となり、窒素が除去されていることを確認した。また、4端子法で処理後の薄膜の抵抗率を調べたところ1.0×10−4Ω・mであった。 Next, the tungsten nitride film once taken out was heated to 400 ° C. in a nitrogen atmosphere of 50 Torr (about 6.6 kPa) and held for 15 minutes. The treated thin film was taken out and the composition was examined. The results shown in Table 1 below were obtained, and it was confirmed that nitrogen was removed. Further, when the resistivity of the thin film after the treatment was examined by the four-terminal method, it was 1.0 × 10 −4 Ω · m.

(比較例4)
有機金属原料として、上記式(2)に示した原料を用いてタングステン膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムガスを、約350℃に加熱した基板表面に6秒間供給した(W吸着工程)。引き続いて、ヘリウムガス60sccmを3秒間流通させて、チャンバ内に残った原料ガスを排気(パージ工程1)した後、30sccmのアンモニアガスと30sccmの水素ガスとを同時に3秒間供給して上記W吸着工程で吸着した原料を分解した(反応工程)。引き続いて、ヘリウムガス30sccmを3秒間流通させて、チャンバ内に残ったアンモニアガスを排気(パージ工程2)した。このとき、チャンバの全圧を0.3Torr(約40Pa)に保ち、W吸着工程、パージ工程1、反応工程及びパージ工程2を300回繰り返した。これにより、タングステン窒化膜15nmを製膜した。得られた薄膜をチャンバより取り出して組成を調べたところ、下記の表1に示した結果となり、タングステン膜が得られていることを確認した。また、4端子法で処理後の薄膜の抵抗率を調べたところ2.0×10−4Ω・mであった。
(Comparative Example 4)
A tungsten film was formed using the raw material represented by the above formula (2) as the organometallic raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium gas accompanied by the organometallic raw material by bubbling was supplied to the substrate surface heated to about 350 ° C. for 6 seconds (W adsorption process). Subsequently, 60 sccm of helium gas was circulated for 3 seconds to exhaust the raw material gas remaining in the chamber (purging process 1), and then 30 sccm of ammonia gas and 30 sccm of hydrogen gas were simultaneously supplied for 3 seconds to perform the W adsorption. The raw material adsorbed in the process was decomposed (reaction process). Subsequently, 30 sccm of helium gas was circulated for 3 seconds to exhaust the ammonia gas remaining in the chamber (purge process 2). At this time, the total pressure in the chamber was maintained at 0.3 Torr (about 40 Pa), and the W adsorption process, the purge process 1, the reaction process, and the purge process 2 were repeated 300 times. Thereby, a tungsten nitride film of 15 nm was formed. The obtained thin film was taken out of the chamber and the composition was examined. The results shown in Table 1 below were obtained, and it was confirmed that a tungsten film was obtained. Moreover, it was 2.0 * 10 <-4> ( omega | ohm) * m when the resistivity of the thin film after processing by the 4 terminal method was investigated.

Figure 2015021175
Figure 2015021175

(実施例5)
有機金属原料として、下記式(3)に示したビス(ターシャリーブチルイミノ)ビス(ジメチルアミノ)モリブデンを用いて、モリブデン膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムガスを、30sccmのアンモニアガスと同時に基板表面に搬送した。このとき、チャンバの全圧を3Torr(約400Pa)に保ち、基板温度を約350℃に加熱した。原料ガスおよびアンモニアガスの供給を5分間続け、これにより、モリブデン窒化膜2nmを製膜した。得られたモリブデン窒化膜をステンレスチャンバより取り出し、組成を調べた結果、Mo:45at%、窒素:55at%であった。
(Example 5)
A molybdenum film was formed using bis (tertiarybutylimino) bis (dimethylamino) molybdenum represented by the following formula (3) as the organometallic raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium gas accompanied by the organometallic raw material was transferred to the substrate surface simultaneously with 30 sccm of ammonia gas by bubbling. At this time, the total pressure in the chamber was maintained at 3 Torr (about 400 Pa), and the substrate temperature was heated to about 350 ° C. The supply of source gas and ammonia gas was continued for 5 minutes, thereby forming a molybdenum nitride film of 2 nm. The obtained molybdenum nitride film was taken out from the stainless steel chamber and the composition was examined. As a result, Mo was 45 at% and nitrogen was 55 at%.

次に、一度取り出したモリブデン窒化膜を、50Torr(約6.6kPa)の水素雰囲気で400℃に加熱し、15分間保持した。処理後の薄膜を取り出して、組成を調べた結果、Mo:100at%となり、窒素が除去されていることを確認した。また、4端子法で処理後の薄膜の抵抗率を調べたところ、4.0×10−7Ω・mであった。 Next, the molybdenum nitride film once taken out was heated to 400 ° C. in a hydrogen atmosphere of 50 Torr (about 6.6 kPa) and held for 15 minutes. The processed thin film was taken out and the composition was examined. As a result, it was confirmed that Mo was 100 at% and nitrogen was removed. Further, when the resistivity of the thin film after the treatment by the four-terminal method was examined, it was 4.0 × 10 −7 Ω · m.

Figure 2015021175
Figure 2015021175

(比較例5)
有機金属原料として、下記式(3)に示した原料を用いて、モリブデン膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムガスを、15sccmのアンモニアガス、15sccmの水素ガスと同時に基板表面に搬送した。このとき、チャンバの全圧を3Torr(約400Pa)に保ち、基板温度を約350℃に加熱した。原料ガス、アンモニアガス及び水素ガスの供給を5分間続け、得られた薄膜をステンレスチャンバより取り出し、組成を調べた結果、Mo:40at%、窒素:30at%、炭素:30at%であった。また、4端子法で処理後の薄膜の抵抗率を調べたところ1.3×10−4Ω・mであった。
(Comparative Example 5)
A molybdenum film was formed using the raw material represented by the following formula (3) as the organometallic raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium gas accompanied by the organometallic raw material was transferred to the substrate surface simultaneously with 15 sccm of ammonia gas and 15 sccm of hydrogen gas by bubbling. At this time, the total pressure in the chamber was maintained at 3 Torr (about 400 Pa), and the substrate temperature was heated to about 350 ° C. The supply of the raw material gas, ammonia gas and hydrogen gas was continued for 5 minutes. The obtained thin film was taken out from the stainless steel chamber and examined for the composition. As a result, Mo: 40 at%, nitrogen: 30 at%, and carbon: 30 at%. Further, when the resistivity of the thin film after the treatment was examined by the four-terminal method, it was 1.3 × 10 −4 Ω · m.

(実施例6)
有機金属原料として、下記式(4)に示したターシャリーブチルイミノトリス(ジエチルアミノ)タンタルを用いて、タンタル膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムガスを、30sccmのアンモニアガスと同時に基板表面に搬送した。このとき、チャンバの全圧を3Torr(約400Pa)に保ち、基板温度を約350℃に加熱した。原料ガスおよびアンモニアガスの供給を5分間続け、これにより、タンタル窒化膜2nmを製膜した。得られたタンタル窒化膜をステンレスチャンバより取り出し、組成を調べた結果、Ta:45at%、窒素:55at%であった。
(Example 6)
A tantalum film was formed using tertiary butyliminotris (diethylamino) tantalum represented by the following formula (4) as the organometallic raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium gas accompanied by the organometallic raw material was transferred to the substrate surface simultaneously with 30 sccm of ammonia gas by bubbling. At this time, the total pressure in the chamber was maintained at 3 Torr (about 400 Pa), and the substrate temperature was heated to about 350 ° C. The supply of source gas and ammonia gas was continued for 5 minutes, thereby forming a tantalum nitride film of 2 nm. As a result of taking out the obtained tantalum nitride film from the stainless steel chamber and examining the composition, Ta: 45 at% and nitrogen: 55 at%.

次に、取り出したタンタル窒化膜を、50Torr(約6.6kPa)の水素雰囲気で約400℃に加熱し、15分間保持した。処理後の薄膜を取り出して、組成を調べた結果、Ta:80at%、窒素:20at%となり、窒素が部分的に除去されていることを確認した。また、4端子法で処理後の薄膜の抵抗率を調べたところ9.0×10−7Ω・mであった。 Next, the extracted tantalum nitride film was heated to about 400 ° C. in a hydrogen atmosphere of 50 Torr (about 6.6 kPa) and held for 15 minutes. The processed thin film was taken out and the composition was examined. As a result, Ta: 80 at% and nitrogen: 20 at% were obtained, and it was confirmed that nitrogen was partially removed. Further, when the resistivity of the thin film after the treatment by the four-terminal method was examined, it was 9.0 × 10 −7 Ω · m.

Figure 2015021175
Figure 2015021175

(実施例7)
有機金属原料として、下記式(4)に示した原料を用いて、タンタル膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムガスを、約350℃に加熱した基板表面に6秒間供給した(Ta吸着工程)。引き続いて、ヘリウムガス30sccmを3秒間流通させて、チャンバに残った原料ガスを排気(パージ工程1)した後、30sccmのアンモニアガスを3秒間供給して上記Ta吸着工程で吸着した原料を分解した(反応工程)。引き続いて、ヘリウムガス30sccmを3秒間流通させて、チャンバ内に残ったアンモニアガスを排気(パージ工程2)した後、水素ガス30sccmを同じく約350℃に加熱した基板に3秒間供給した(窒素除去工程)。この後、ヘリウムガス30sccmを3秒間流通させて、チャンバ内に残った水素ガスを排気した(パージ工程3)。このとき、チャンバの全圧を0.3Torr(約40Pa)に保ち、Ta吸着工程、パージ工程1、反応工程、パージ工程2、窒素除去工程及びパージ工程3を300回繰り返した。これにより、タンタル窒化膜13nmを製膜した。得られた薄膜をチャンバより取り出して組成を調べたところ、タンタル膜が得られていることを確認した。また、4端子法で処理後の薄膜の抵抗率を調べたところ3.5×10−7Ω・mであった。
(Example 7)
A tantalum film was formed using the raw material represented by the following formula (4) as the organic metal raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium gas accompanied by the organometallic raw material by bubbling was supplied to the substrate surface heated to about 350 ° C. for 6 seconds (Ta adsorption step). Subsequently, 30 sccm of helium gas was circulated for 3 seconds to exhaust the raw material gas remaining in the chamber (purge process 1), and then 30 sccm of ammonia gas was supplied for 3 seconds to decompose the raw material adsorbed in the Ta adsorption process. (Reaction process). Subsequently, 30 sccm of helium gas was allowed to flow for 3 seconds to exhaust the ammonia gas remaining in the chamber (purging process 2), and then 30 sccm of hydrogen gas was supplied to the substrate that was also heated to about 350 ° C. for 3 seconds (removal of nitrogen) Process). Thereafter, 30 sccm of helium gas was circulated for 3 seconds to exhaust the hydrogen gas remaining in the chamber (purge process 3). At this time, the total pressure in the chamber was maintained at 0.3 Torr (about 40 Pa), and the Ta adsorption process, purge process 1, reaction process, purge process 2, nitrogen removal process, and purge process 3 were repeated 300 times. Thereby, a tantalum nitride film of 13 nm was formed. When the obtained thin film was taken out from the chamber and the composition was examined, it was confirmed that a tantalum film was obtained. Further, when the resistivity of the thin film after the treatment by the four-terminal method was examined, it was 3.5 × 10 −7 Ω · m.

(比較例6)
有機金属原料として、下記式(4)に示した原料を用いて、タンタル膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムガスを、15sccmのアンモニアガス、15sccmの水素ガスと同時に基板表面に搬送した。このとき、チャンバの全圧を3Torr(約400Pa)に保ち、基板温度を約350℃に加熱した。原料ガス、アンモニアガス、水素ガスの供給を5分間続け、得られた薄膜をステンレスチャンバより取り出し、組成を調べたところ、Ta:35at%、窒素:25at%、炭素:30at%であった。また、4端子法で処理後の薄膜の抵抗率を調べたところ4.0×10−4Ω・mであった。
(Comparative Example 6)
A tantalum film was formed using the raw material represented by the following formula (4) as the organic metal raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium gas accompanied by the organometallic raw material was transferred to the substrate surface simultaneously with 15 sccm of ammonia gas and 15 sccm of hydrogen gas by bubbling. At this time, the total pressure in the chamber was maintained at 3 Torr (about 400 Pa), and the substrate temperature was heated to about 350 ° C. The supply of the source gas, ammonia gas, and hydrogen gas was continued for 5 minutes, and the obtained thin film was taken out from the stainless steel chamber and examined for the composition. Ta: 35 at%, nitrogen: 25 at%, carbon: 30 at%. Further, when the resistivity of the thin film after the treatment was examined by the four-terminal method, it was 4.0 × 10 −4 Ω · m.

(実施例8)
有機金属原料として、上記式(2)に示した原料を用いて、タングステン膜の製膜を実施した。先ず、有機金属ボトルを40℃に加熱し、バブリングによって有機金属原料を同伴した30sccmヘリウムガスを約350℃に加熱した基板表面に6秒間供給した(W吸着工程)。引き続いて、ヘリウムガス30sccmを3秒間流通させて、チャンバに残った原料ガスを排気(パージ工程1)した後、30sccmのモノメチルヒドラジンを3秒間供給して上記W吸着工程で吸着した原料を分解した(反応工程)。引き続いて、ヘリウムガス30sccmを3秒間流通させて、チャンバ内に残ったモノメチルヒドラジンを排気(パージ工程2)した後、水素ガス30sccmを同じく約350℃に加熱した基板に3秒間供給した(窒素除去工程)。この後、ヘリウムガス30sccmを3秒間流通させて、チャンバ内に残った水素ガスを排気した(パージ工程3)。このとき、チャンバの全圧を0.3Torr(約40Pa)に保ち、W吸着工程、パージ工程1、反応工程、パージ工程2、窒素除去工程及びパージ工程3を300回繰り返した。これにより、タングステン窒化膜15nmを製膜した。得られた薄膜をチャンバより取り出して組成を調べたところ、W:100%(炭素および窒素は検出下限以下)であり、タングステン膜が得られていることを確認した。また、4端子法で処理後の薄膜の抵抗率を調べたところ、3.2×10−7Ω・mであった。
(Example 8)
A tungsten film was formed using the raw material represented by the above formula (2) as the organometallic raw material. First, the organometallic bottle was heated to 40 ° C., and 30 sccm helium gas accompanied by the organometallic raw material was supplied by bubbling to the substrate surface heated to about 350 ° C. for 6 seconds (W adsorption process). Subsequently, 30 sccm of helium gas was circulated for 3 seconds to exhaust the raw material gas remaining in the chamber (purging process 1), and then 30 sccm of monomethylhydrazine was supplied for 3 seconds to decompose the raw material adsorbed in the W adsorption process. (Reaction process). Subsequently, 30 sccm of helium gas was allowed to flow for 3 seconds to exhaust the monomethylhydrazine remaining in the chamber (purging process 2), and then 30 sccm of hydrogen gas was supplied to the substrate that was also heated to about 350 ° C. for 3 seconds (removal of nitrogen) Process). Thereafter, 30 sccm of helium gas was circulated for 3 seconds to exhaust the hydrogen gas remaining in the chamber (purge process 3). At this time, the total pressure in the chamber was maintained at 0.3 Torr (about 40 Pa), and the W adsorption step, purge step 1, reaction step, purge step 2, nitrogen removal step and purge step 3 were repeated 300 times. Thereby, a tungsten nitride film of 15 nm was formed. When the obtained thin film was taken out from the chamber and the composition was examined, it was confirmed that W was 100% (carbon and nitrogen were below the detection lower limit), and a tungsten film was obtained. Further, when the resistivity of the thin film after the treatment by the four-terminal method was examined, it was 3.2 × 10 −7 Ω · m.

Claims (8)

化学反応を用いた薄膜堆積法によって基板の表面に金属薄膜を製膜する方法であって、
基板の表面に、下記式(1)で示される有機金属化学種を含む原料ガスと含窒素反応ガスとを供給して、金属窒化膜を形成する第1工程と、
前記基板の表面に水素ガスを供給して、前記金属窒化膜中の窒素原子を除去する第2工程と、を含むことを特徴とする金属薄膜の製膜方法。
Figure 2015021175
なお、上記式(1)において、R及びRは、C2n+1(n=1〜4)の化学式で表される直鎖状又は分岐された炭化水素であり、Rは、水素又はC2n+1(n=1〜4)の化学式で表される直鎖状又は分岐された炭化水素である。
また、Mは、第5族又は第6族の金属原子であり、Mが第5族である場合にp+2q=5であり、Mが第6族である場合にp+2q=6である。
A method of forming a metal thin film on the surface of a substrate by a thin film deposition method using a chemical reaction,
A first step of forming a metal nitride film by supplying a source gas containing a metalorganic species represented by the following formula (1) and a nitrogen-containing reaction gas to the surface of the substrate;
And a second step of removing nitrogen atoms in the metal nitride film by supplying hydrogen gas to the surface of the substrate.
Figure 2015021175
In the above formula (1), R 1 and R 2 are linear or branched hydrocarbons represented by the chemical formula of C n H 2n + 1 (n = 1 to 4), and R 3 is hydrogen. or C n H 2n + 1 (n = 1~4) linear or branched hydrocarbons represented by the chemical formula.
Further, M 1 is a Group 5 or Group 6 metal atoms are p + 2q = 5 when M 1 is a Group 5 is the p + 2q = 6 when M 1 is a Group 6 .
前記第1工程において、前記原料ガスを供給した後に、前記含窒素反応ガスを供給することを特徴とする請求項1に記載の金属薄膜の製膜方法。   2. The method for forming a metal thin film according to claim 1, wherein in the first step, the nitrogen-containing reaction gas is supplied after the source gas is supplied. 前記第1工程において、前記原料ガスと前記含窒素反応ガスとを同時に供給することを特徴とする請求項1に記載の金属薄膜の製膜方法。   2. The method for forming a metal thin film according to claim 1, wherein in the first step, the source gas and the nitrogen-containing reaction gas are supplied simultaneously. 上記式(1)中に示すMは、Taであることを特徴とする請求項1乃至3のいずれか一項に記載の金属薄膜の製膜方法。 4. The method for forming a metal thin film according to claim 1, wherein M 1 shown in the formula (1) is Ta. 5. 上記式(1)中に示すMは、W又はMoであることを特徴とする請求項1乃至3のいずれか一項に記載の金属薄膜の製膜方法。 4. The method for forming a metal thin film according to claim 1, wherein M 1 represented in the formula (1) is W or Mo. 5. 前記含窒素反応ガスが、アンモニア、ヒドラジン、モノメチルヒドラジン、ジメチルヒドラジン及びジフェニルヒドラジンのうち、少なくともいずれか一つを含むことを特徴とする請求項1乃至5のいずれか一項に記載の金属薄膜の製膜方法。   The metal thin film according to any one of claims 1 to 5, wherein the nitrogen-containing reaction gas contains at least one of ammonia, hydrazine, monomethyl hydrazine, dimethyl hydrazine, and diphenyl hydrazine. Film forming method. 前記第1工程で形成する金属窒化膜の厚さを10nm以下とすることを特徴とする請求項1乃至6のいずれか一項に記載の金属薄膜の製膜方法。   7. The method for forming a metal thin film according to claim 1, wherein the thickness of the metal nitride film formed in the first step is 10 nm or less. 前記第1及び第2工程を2回以上繰り返すことを特徴する請求項1乃至7のいずれか一項に記載の金属薄膜の製膜方法。   The method for forming a metal thin film according to any one of claims 1 to 7, wherein the first and second steps are repeated twice or more.
JP2013151105A 2013-07-19 2013-07-19 Method for forming metal thin film Active JP6116425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151105A JP6116425B2 (en) 2013-07-19 2013-07-19 Method for forming metal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013151105A JP6116425B2 (en) 2013-07-19 2013-07-19 Method for forming metal thin film

Publications (2)

Publication Number Publication Date
JP2015021175A true JP2015021175A (en) 2015-02-02
JP6116425B2 JP6116425B2 (en) 2017-04-19

Family

ID=52485888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013151105A Active JP6116425B2 (en) 2013-07-19 2013-07-19 Method for forming metal thin film

Country Status (1)

Country Link
JP (1) JP6116425B2 (en)

Cited By (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133569A (en) * 2017-02-15 2018-08-23 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Method for forming metallic film on substrate by cyclical deposition, and related semiconductor device structure
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11996292B2 (en) 2020-10-19 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134739A (en) * 1980-03-26 1981-10-21 Nec Corp Manufacture of semiconductor device
JP2008162887A (en) * 2008-01-17 2008-07-17 Nec Corp Group iii nitride semiconductor substrate
JP2009007670A (en) * 2007-06-19 2009-01-15 Air Products & Chemicals Inc Method for depositing metal silicon nitride
WO2011040385A1 (en) * 2009-09-29 2011-04-07 東京エレクトロン株式会社 PROCESS FOR PRODUCTION OF Ni FILM
JP2012502179A (en) * 2008-09-08 2012-01-26 アプライド マテリアルズ インコーポレイテッド In situ chamber processing and deposition processes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134739A (en) * 1980-03-26 1981-10-21 Nec Corp Manufacture of semiconductor device
JP2009007670A (en) * 2007-06-19 2009-01-15 Air Products & Chemicals Inc Method for depositing metal silicon nitride
JP2008162887A (en) * 2008-01-17 2008-07-17 Nec Corp Group iii nitride semiconductor substrate
JP2012502179A (en) * 2008-09-08 2012-01-26 アプライド マテリアルズ インコーポレイテッド In situ chamber processing and deposition processes
WO2011040385A1 (en) * 2009-09-29 2011-04-07 東京エレクトロン株式会社 PROCESS FOR PRODUCTION OF Ni FILM

Cited By (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11970766B2 (en) 2016-12-15 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
JP2018133569A (en) * 2017-02-15 2018-08-23 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Method for forming metallic film on substrate by cyclical deposition, and related semiconductor device structure
JP2021192455A (en) * 2017-02-15 2021-12-16 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Method for forming metallic film on base material through periodic deposition, and related semiconductor device structure
JP7182676B2 (en) 2017-02-15 2022-12-02 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Method of forming metallic films on substrates by cyclical deposition and related semiconductor device structures
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11976361B2 (en) 2017-06-28 2024-05-07 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11972944B2 (en) 2018-01-19 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11996309B2 (en) 2020-05-14 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11996292B2 (en) 2020-10-19 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11996289B2 (en) 2021-01-05 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11993847B2 (en) 2021-01-06 2024-05-28 Asm Ip Holding B.V. Injector
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11996304B2 (en) 2023-04-19 2024-05-28 Asm Ip Holding B.V. Substrate processing device

Also Published As

Publication number Publication date
JP6116425B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6116425B2 (en) Method for forming metal thin film
US11056385B2 (en) Selective formation of metallic films on metallic surfaces
US10049924B2 (en) Selective formation of metallic films on metallic surfaces
US11761081B2 (en) Methods for depositing tungsten or molybdenum films
JP5441340B2 (en) Plasma ALD of tantalum nitride film
US20180151355A1 (en) Formation of silicon-containing thin films
US7638170B2 (en) Low resistivity metal carbonitride thin film deposition by atomic layer deposition
JP2017041632A (en) Selective deposition of materials containing aluminium and nitrogen
TW201932637A (en) Vapor deposition of molybdenum using a bis(alkyl-arene) molybdenum precursor
JPWO2005101473A1 (en) Barrier film formation method and electrode film formation method
TWI661080B (en) Selective formation of metal silicides
CN110872703A (en) Method for producing silicon-and nitrogen-containing film
TWI628305B (en) Deposition of films comprising aluminum alloys with high aluminum content
Eisenbraun et al. Atomic layer deposition (ALD) of tantalum-based materials for zero thickness copper barrier applications
JP2024511271A (en) Reducing agent for atomic layer deposition
US20160293483A1 (en) Process of filling the high aspect ratio trenches by co-flowing ligands during thermal cvd
TWI515803B (en) Doping aluminum in tantalum silicide
CN117721436A (en) Method and assembly for selectively depositing transition metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R150 Certificate of patent or registration of utility model

Ref document number: 6116425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250