JP2015020932A - Method for producing chalcopyrite nanoparticle - Google Patents

Method for producing chalcopyrite nanoparticle Download PDF

Info

Publication number
JP2015020932A
JP2015020932A JP2013150685A JP2013150685A JP2015020932A JP 2015020932 A JP2015020932 A JP 2015020932A JP 2013150685 A JP2013150685 A JP 2013150685A JP 2013150685 A JP2013150685 A JP 2013150685A JP 2015020932 A JP2015020932 A JP 2015020932A
Authority
JP
Japan
Prior art keywords
temperature
group
nanoparticles
raising
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013150685A
Other languages
Japanese (ja)
Other versions
JP2015020932A5 (en
Inventor
克昭 菅沼
Katsuaki Suganuma
克昭 菅沼
徹 菅原
Toru Sugahara
徹 菅原
金▲てい▼ 酒
Jinting Jiu
金▲てい▼ 酒
シンハ マンジート
Singh Manjeet
シンハ マンジート
俊博 曽
Chun-Bor Tseng
俊博 曽
租偉 翁
Chu Wei Weng
租偉 翁
卓磨 吉川
Takuma Yoshikawa
卓磨 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYODENCHI SOGO KENKYUSHO KK
Osaka University NUC
Original Assignee
TAIYODENCHI SOGO KENKYUSHO KK
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYODENCHI SOGO KENKYUSHO KK, Osaka University NUC filed Critical TAIYODENCHI SOGO KENKYUSHO KK
Priority to JP2013150685A priority Critical patent/JP2015020932A/en
Priority to PCT/JP2014/069197 priority patent/WO2015008858A1/en
Publication of JP2015020932A publication Critical patent/JP2015020932A/en
Publication of JP2015020932A5 publication Critical patent/JP2015020932A5/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of producing chalcopyrite nanoparticles having a small and uniform particle diameter easily in a large amount.SOLUTION: There is provided a method for producing chalcopyrite nanoparticles by mixing and heating a Group I metal compound, a Group III metal compound and a Group IV metal element in the periodic table in an amine-based solvent to react the Group IV metal element with the Group I metal compound and the Group III metal compound. Since the heating step comprises a first temperature raising step for raising a temperature from room temperature to 100°C at a first temperature raising rate and a second temperature raising step for raising a temperature from 100°C to 200°C at a second temperature raising rate lower than the first temperature raising rate, uniform chalcopyrite nanoparticles having a small and uniform particle diameter can be obtained.

Description

本発明は、化合物太陽電池に用いられるカルコパイライトナノ粒子の製造方法に関する。   The present invention relates to a method for producing chalcopyrite nanoparticles used in compound solar cells.

化合物太陽電池とは、複数の元素から成る化合物半導体から形成された光吸収層を備えた太陽電池をいう。化合物太陽電池に用いられる化合物半導体の代表的なものとして、周期律表のIII族とV族の組み合わせ(GaAs、GaP、InP等)、II族とVI族の組み合わせ(CdTe、ZnSe等)、IV族同士の組み合わせ(SiC)、 I族とIII族とVI族の組み合わせ(CuInSe、CuInGaSe)からなる化合物半導体が挙げられる。CuInSeやCuInGaSeは、その結晶構造が黄銅鉱に似ていることから、カルコパイライト系化合物半導体とも呼ばれる。また、化合物半導体を構成する元素記号から、CIS系化合物半導体、CIGS系化合物半導体とも呼ばれている。これらの化合物半導体を用いた太陽電池は、Si系の太陽電池に比べて遜色ない変換効率を示すだけでなく、製造方法が簡単で、素子に使用する膜厚が薄く原料の省資源化につながる。また、原料に要求される純度が低い事や放射線への高い安定性も言及されており、近年、著しい注目を集めている。   A compound solar cell refers to a solar cell provided with a light absorption layer formed from a compound semiconductor composed of a plurality of elements. Typical compound semiconductors used in compound solar cells are combinations of groups III and V of the periodic table (GaAs, GaP, InP, etc.), combinations of groups II and VI (CdTe, ZnSe, etc.), IV Examples include compound semiconductors composed of combinations of groups (SiC) and combinations of groups I, III and VI (CuInSe, CuInGaSe). CuInSe and CuInGaSe are also called chalcopyrite compound semiconductors because their crystal structures resemble chalcopyrite. Moreover, it is also called a CIS-based compound semiconductor or a CIGS-based compound semiconductor from the element symbols constituting the compound semiconductor. Solar cells using these compound semiconductors not only have conversion efficiency comparable to Si-based solar cells, but also have a simple manufacturing method and a thin film used for the device, leading to resource savings in raw materials. . In addition, low purity required for raw materials and high stability to radiation are also mentioned, and in recent years it has attracted considerable attention.

従来、化合物半導体から光吸収層を形成する方法としては、加熱蒸着法やスパッタリング法が用いられていた。ところが、これらの方法は超高真空環境下で行わなければならず、高価な製造設備が必要となることから、近年、安価な設備で製造できる方法が提案されている。その一つに、カルコパイライト系化合物半導体のナノ粒子を形成し、このナノ粒子を用いて光吸収層を製造する方法がある。   Conventionally, as a method for forming a light absorption layer from a compound semiconductor, a heating vapor deposition method or a sputtering method has been used. However, these methods must be performed in an ultra-high vacuum environment and require expensive manufacturing equipment, and in recent years, methods that can be manufactured with inexpensive equipment have been proposed. One of them is a method of forming a chalcopyrite compound semiconductor nanoparticle and manufacturing a light absorption layer using the nanoparticle.

例えば、特許文献1〜3には、CuInSe化合物(CIS系化合物半導体)やCuInGaSe化合物(CIGS系化合物半導体)を構成する元素の塩と金属塩を反応させることによりカルコパイライトナノ粒子を形成する方法が記載されている。   For example, Patent Documents 1 to 3 disclose a method of forming chalcopyrite nanoparticles by reacting a metal salt with a salt of an element constituting a CuInSe compound (CIS compound semiconductor) or a CuInGaSe compound (CIGS compound semiconductor). Have been described.

特開2012-79770号公報JP 2012-79770 JP 特開2012-49358号公報JP 2012-49358 特開2012-33728号公報JP 2012-33728 A

特許文献1〜3に記載されている方法では、アニリンやアルコールアミン、エチレンジアミン等の有機溶媒にCu、In、及びGaのハロゲン化物とSe単体を溶解して原料溶液を作製し、該原料溶液を加熱して、Cu、In、及びGaのハロゲン化物とSe単体を反応させることによりナノ粒子を形成している。この場合、原料溶液の加熱は150℃〜200℃で1分間〜20時間行うとされている。
Cu、In、及びGaのハロゲン化物とSe単体の反応は200℃付近で進行する。従って、加熱時間が短いと、反応が十分に進まず、均一なナノ粒子を得ることができない。一方、加熱時間が長いとナノ粒子が成長するため、得られるナノ粒子の粒径が大きくなる。また、原料溶液の作製は、通常、室温下で行われる。従って、室温状態の原料溶液を一定の速度で急速に150℃〜200℃まで昇温させると、ナノ粒子の成長過程の相状態をうまくコントロールすることができず、均一な粒径のナノ粒子を得ることが難しい。光吸収層の光電変換効率を上げるためには、緻密な半導体膜を形成する必要があるが、ナノ粒子の粒径が大きかったり、粒径が不均一であったりすると、緻密な半導体膜を形成することができない。
In the methods described in Patent Documents 1 to 3, a raw material solution is prepared by dissolving Cu, In, and Ga halides and Se alone in an organic solvent such as aniline, alcohol amine, and ethylene diamine. Nanoparticles are formed by heating and reacting Cu, In, and Ga halides with Se alone. In this case, heating of the raw material solution is performed at 150 ° C. to 200 ° C. for 1 minute to 20 hours.
The reaction of Cu, In, and Ga halides with Se alone proceeds at around 200 ° C. Therefore, when the heating time is short, the reaction does not proceed sufficiently and uniform nanoparticles cannot be obtained. On the other hand, when the heating time is long, the nanoparticles grow, so that the obtained nanoparticles have a large particle size. The production of the raw material solution is usually performed at room temperature. Therefore, if the temperature of the raw material solution at room temperature is rapidly increased to 150 ° C. to 200 ° C. at a constant rate, the phase state of the nanoparticle growth process cannot be controlled well, and nanoparticles with a uniform particle size are Difficult to get. In order to increase the photoelectric conversion efficiency of the light absorption layer, it is necessary to form a dense semiconductor film. However, if the particle size of the nanoparticles is large or the particle size is not uniform, a dense semiconductor film is formed. Can not do it.

本発明が解決しようとする課題は、粒径が小さく且つ粒径が均一なカルコパイライトナノ粒子を簡単に製造することができる製造方法を提供することである。   The problem to be solved by the present invention is to provide a production method capable of easily producing chalcopyrite nanoparticles having a small particle size and a uniform particle size.

上記課題を解決するために成された本発明は、周期律表の第I族金属化合物、第III族金属化合物、及び第VI族金属の単体をアミン系溶媒中に入れて混合し、加熱して、前記第I族金属化合物及び前記第III族金属化合物と、前記第VI族金属の単体を反応させることによりカルコパイライトナノ粒子を製造する方法であって、
加熱する工程が、
第1昇温速度で室温から100℃まで昇温する第1昇温工程と、
前記第1昇温速度よりも遅い第2昇温速度で100℃から200℃まで昇温する第2昇温工程と
を有することを特徴とする。
The present invention, which has been made to solve the above-mentioned problems, comprises mixing a group I metal compound, group III metal compound, and group VI metal simple substance in the periodic table in an amine solvent, heating the mixture. A method of producing chalcopyrite nanoparticles by reacting the Group I metal compound and the Group III metal compound with the Group VI metal alone,
The heating process is
A first temperature raising step for raising the temperature from room temperature to 100 ° C. at a first temperature raising rate;
And a second temperature raising step of raising the temperature from 100 ° C. to 200 ° C. at a second temperature raising rate slower than the first temperature raising rate.

上記の製造方法においては、さらに、第2昇温工程が、100℃から150℃まで昇温する前期工程と、該前期工程よりも遅い昇温速度で150℃から200℃まで昇温する後期工程から構成されていることが好ましい。このように、第2昇温工程を細分化することにより、カルコパイライトナノ粒子の大きさを制御しやすくなる。さらに、カルコパイライトナノ粒子の大きさも制御しやすくなるという効果もある。   In the above manufacturing method, the second temperature raising step further includes a first step in which the temperature is raised from 100 ° C. to 150 ° C., and a latter step in which the temperature is raised from 150 ° C. to 200 ° C. at a temperature raising rate slower than the first step. It is preferable that it is comprised from these. Thus, it becomes easy to control the size of the chalcopyrite nanoparticles by subdividing the second temperature raising step. Furthermore, there is an effect that the size of chalcopyrite nanoparticles can be easily controlled.

さらに、本発明に係るカルコパイライトナノ粒子の製造方法は、前記第2昇温速度よりも遅い第3昇温速度で200℃から250℃まで昇温する第3昇温工程を有することが好ましい。200℃から250℃までゆっくりとした速度で昇温する第3昇温工程では、第I族金属化合物、第III族金属化合物、及び第VI族金属の単体とアミン系溶媒との反応が安定的に進行するため、均一なカルコパイライトナノ粒子を得ることができる。   Furthermore, the method for producing chalcopyrite nanoparticles according to the present invention preferably includes a third temperature raising step of raising the temperature from 200 ° C. to 250 ° C. at a third temperature raising rate that is slower than the second temperature raising rate. In the third heating step, where the temperature is raised from 200 ° C. to 250 ° C. at a slow rate, the reaction between the group I metal compound, the group III metal compound, and the group VI metal simple substance and the amine solvent is stable. Therefore, uniform chalcopyrite nanoparticles can be obtained.

本発明の方法では、第I族と第III族の金属化合物と第VI族金属の単体を有機溶媒中に入れて混合した後、加熱する工程において、最初は昇温速度を速くして反応を進め、反応が進んだ段階で昇温速度を遅くして安定的に反応させるようにしたため、粒径が小さく且つ粒径の揃った均一なカルコパイライトナノ粒子を得ることができる。また、安定的に反応させることができる結果、カルコパイライト粒子の大量製造が可能となる。さらに、加熱する工程を少なくとも2つの工程から構成したため、各工程における昇温速度を調整することにより、得られるカルコパイライトナノ粒子のサイズだけでなく、元素組成や形状を自由に制御することができる。   In the method of the present invention, the group I and group III metal compound and the group VI metal simple substance are mixed in an organic solvent and then heated. As the reaction proceeds, the temperature rise rate is slowed down and the reaction is stably performed, so that uniform chalcopyrite nanoparticles having a small particle size and a uniform particle size can be obtained. Moreover, as a result of being able to make it react stably, the mass production of chalcopyrite particle | grains is attained. Furthermore, since the heating step is composed of at least two steps, not only the size of the obtained chalcopyrite nanoparticles but also the elemental composition and shape can be freely controlled by adjusting the temperature increase rate in each step. .

製造例1における製造手順の概略図。Schematic of the manufacturing procedure in the manufacture example 1. FIG. 製造例1の第1工程から第3(前期)工程までの各工程におけるナノ粒子の走査型電子顕微鏡(SEM)写真。The scanning electron microscope (SEM) photograph of the nanoparticle in each process from the 1st process of manufacture example 1 to the 3rd (pre-term) process. 第3(後期)工程におけるナノ粒子のSEM写真。The SEM photograph of the nanoparticle in the 3rd (late stage) process. 図2に示すナノ粒子のXRD解析結果。The XRD analysis result of the nanoparticle shown in FIG. 図3に示すナノ粒子のXRD解析結果。The XRD analysis result of the nanoparticle shown in FIG. 製造例2の実験1におけるSEM写真(a)及びTGA解析結果(b)。The SEM photograph (a) and TGA analysis result (b) in Experiment 1 of manufacture example 2. 製造例2の実験2におけるSEM写真(a)及びTGA解析結果(b)。The SEM photograph (a) and TGA analysis result (b) in Experiment 2 of manufacture example 2. 製造例2の実験3におけるSEM写真(a)及びTGA解析結果(b)。The SEM photograph (a) and TGA analysis result (b) in Experiment 3 of manufacture example 2. 実験1〜3で得られるナノ粒子のXRD解析結果。The XRD analysis result of the nanoparticle obtained in Experiments 1-3. 溶媒としてPDAを用いた場合のSEM写真。The SEM photograph at the time of using PDA as a solvent. TGA解析結果及びXRD解析結果。TGA analysis result and XRD analysis result.

本発明は、周期律表の第I族金属化合物、第III族金属化合物、及び第VI族金属の単体を原料とし、これら原料とアミン系溶媒を混合して段階的に温度を上げながら加熱することにより原料とアミン系溶媒を反応させ、カルコパイライトナノ粒子(以下、「ナノ粒子」ともいう。)を製造する方法である。   The present invention uses a group I metal compound, a group III metal compound, and a group VI metal in the periodic table as raw materials, mixes these raw materials and an amine solvent, and heats them while raising the temperature stepwise. Thus, the raw material and the amine solvent are reacted to produce chalcopyrite nanoparticles (hereinafter also referred to as “nanoparticles”).

本発明の製造方法では、アミン系溶媒は原料の分散剤及び還元剤として作用する。このとき、原料とアミン系溶媒の反応温度である200℃付近まで、少なくとも2つの昇温工程により段階的に温度を上げることにより、ナノ粒子の成長過程の相状態を制御し、得られるナノ粒子の形状や大きさを自在に変化させることができる。特に、本発明では、100℃まで昇温する速度を相対的に速く、100℃から200℃まで昇温する速度を相対的に遅くすることにより、ナノ粒子の過度な成長を抑えつつ安定的に反応させるようにしたため、粒径が小さく、且つ、粒径の揃ったナノ粒子を大量に得ることができる。   In the production method of the present invention, the amine solvent acts as a raw material dispersant and reducing agent. At this time, the phase state of the nanoparticle growth process is controlled by increasing the temperature stepwise by at least two heating steps up to about 200 ° C., which is the reaction temperature between the raw material and the amine solvent, and the resulting nanoparticles The shape and size can be changed freely. In particular, in the present invention, the rate of temperature increase to 100 ° C. is relatively high, and the rate of temperature increase from 100 ° C. to 200 ° C. is relatively slow, thereby stably suppressing excessive growth of nanoparticles. Since the reaction is performed, a large amount of nanoparticles having a small particle size and a uniform particle size can be obtained.

しかも、複数の昇温工程を経て200℃まで加熱するようにしたため、各昇温工程における昇温速度をそれぞれ独立的に制御することができ、ナノ粒子の成長過程の相状態の制御の自由度が増す。このため、ナノ粒子の形状や大きさをより一層自在に変化させることができる。   In addition, since heating is performed up to 200 ° C. through a plurality of temperature raising steps, the temperature raising rate in each temperature raising step can be controlled independently, and the degree of freedom in controlling the phase state of the nanoparticle growth process. Increase. For this reason, the shape and size of the nanoparticles can be changed more freely.

本発明では、第I族金属化合物としてはCu化合物が好適に用いられるが、これ以外の例えばAg化合物を用いることもできる。また、第III族金属化合物としては、In又は/及びGa化合物を用いることが好ましい。これら第I族金属化合物、第III族金属化合物としては、CuCl、InCl3、Ga(Cl)3等のハロゲン化物が好適であるが、この他、酢酸塩、硝酸塩、塩酸塩や金属錯体を用いることができる。 In the present invention, a Cu compound is preferably used as the Group I metal compound, but other compounds such as an Ag compound can also be used. Further, as the Group III metal compound, it is preferable to use In or / and a Ga compound. As these Group I metal compounds and Group III metal compounds, halides such as CuCl, InCl 3 , Ga (Cl) 3 are suitable, but in addition, acetates, nitrates, hydrochlorides and metal complexes are used. be able to.

第VI族金属の単体としてはSe粉末が好適に用いられるが、硫黄(S)の粉末でも良い。
アミン系溶媒としては、ドデシル・アミンやペンタジル・アミン等、種々のアミンを用いることができるが、ドデシル・アミンは他のアミンに比べてメタノール系溶媒やトルエンを用いて完全に除去できる点、分解温度が低い点で他のアミンよりも優れており、溶媒にドデシル・アミンを用いた場合は、粒径の小さなナノ粒子を高収率で得ることができる。
Se powder is suitably used as the group VI metal simple substance, but sulfur (S) powder may also be used.
Various amines such as dodecyl amine and pentazyl amine can be used as the amine solvent, but the dodecyl amine can be completely removed using a methanol solvent or toluene as compared with other amines. It is superior to other amines in that the temperature is low, and when dodecylamine is used as the solvent, nanoparticles having a small particle size can be obtained in a high yield.

以下、本発明に係るナノ粒子の具体的な製造方法を、いくつかの製造例を参照しながら説明する。
[製造例1]
製造例1は、第I族金属化合物としてはCuClを、第III族金属化合物としてInCl3とGa(acac)3(アセチルアセトンガリウム)を、第VI族金属の単体としてはSe粉末を、アミン系溶媒としてドデシル・アミン(DDA)を用いた例である。具体的には、以下の製造手順から成る。
Hereinafter, a specific method for producing nanoparticles according to the present invention will be described with reference to several production examples.
[Production Example 1]
Production Example 1 includes CuCl as the Group I metal compound, InCl 3 and Ga (acac) 3 (acetylacetone gallium) as the Group III metal compound, Se powder as the Group VI metal alone, and an amine solvent. As an example using dodecylamine (DDA). Specifically, it consists of the following manufacturing procedures.

[製造手順]
(1)CuCl、InCl3、Ga(acac)3をSe粉末と共に室温状態でDDAと混合し原料液とする(図1(a))。
(2)次に、原料液を250℃まで段階的に昇温する。具体的には、次の5工程を経て段階的に昇温する(図1(b))。
第1工程:室温から100℃まで0.5時間かけて昇温。
第2(前期)工程:100℃から150℃まで0.5時間かけて昇温。
第2(後期)工程:150℃から200℃まで1時間かけて昇温。
第3(前期)工程:200℃から225℃まで1時間かけて昇温。
第3(後期)工程:225℃から250℃まで1時間かけて昇温。
以上の昇温工程により、ナノ粒子がDDA中に分散したナノ粒子分散液が得られる(図1(c))。
[Manufacturing procedure]
(1) CuCl, InCl 3 and Ga (acac) 3 are mixed with DDA together with Se powder at room temperature to obtain a raw material liquid (FIG. 1 (a)).
(2) Next, the temperature of the raw material liquid is raised stepwise to 250 ° C. Specifically, the temperature is raised stepwise through the following five steps (FIG. 1B).
First step: Raise temperature from room temperature to 100 ° C. over 0.5 hours.
Second (first term) step: Raise the temperature from 100 ° C to 150 ° C over 0.5 hours.
2nd (late stage) process: It heated up from 150 degreeC to 200 degreeC over 1 hour.
Third (first term) step: The temperature was raised from 200 ° C. to 225 ° C. over 1 hour.
3rd (late stage) process: It heats up from 225 degreeC to 250 degreeC over 1 hour.
Through the above temperature raising step, a nanoparticle dispersion liquid in which nanoparticles are dispersed in DDA is obtained (FIG. 1C).

(3)得られたナノ粒子分散液からナノ粒子を取り出してメタノールで洗い、トルエンに分散させる。トルエン分散液は、印刷法により化合物太陽電池の光吸収層を作製するためのインクとして利用することができる。なお、製造例1での、収率は90%以上であった。 (3) Nanoparticles are taken out from the obtained nanoparticle dispersion, washed with methanol, and dispersed in toluene. The toluene dispersion can be used as an ink for producing a light absorption layer of a compound solar cell by a printing method. The yield in Production Example 1 was 90% or more.

図2は、第1工程、第2(前期)工程、第2(後期)工程、第3(前期)工程の各工程における走査型電子顕微鏡写真(SEM写真)であり(図2の(a)〜(d))、図3は第3(後期)工程におけるSEM写真である。これらの図から分かるように、第1工程では比較的大きなプレート状の粒子が観察された。第2(前期)工程では、ところどころプレート状の粒子がみられるものの球状の微小粒子が多く観察された。また、第2(後期)工程及び第3(前期)工程では、ほぼ全てが球状の微小粒子であり、プレート状の粒子はわずかしか存在しなかった。第3(後期)工程では、粒径が20 nm以下の球状の均一な微小粒子が観察された。   FIG. 2 is a scanning electron micrograph (SEM photograph) in each step of the first step, the second (first term) step, the second (late term) step, and the third (first term) step ((a) of FIG. 2). (D)) and FIG. 3 are SEM photographs in the third (late stage) process. As can be seen from these figures, relatively large plate-like particles were observed in the first step. In the second (first term) process, many spherical fine particles were observed although some plate-like particles were observed. In the second (late) step and the third (previous) step, almost all were spherical fine particles, and there were only a few plate-like particles. In the third (late stage) step, spherical uniform fine particles having a particle size of 20 nm or less were observed.

図4に、図2の(a)〜(d)及び図3に示す粒子のXRD結果を示し、図5に、図3に示す粒子のXRD結果とJCPDS(Joint Committee for Powder Diffraction Standards)カードから参照したCIGSのXRDパターンを示す。これらの図から、第3(前期)工程までに得られた粒子は、CuInGaSe、CuInSe、CuSe、Se単体の混合物であったが、第3(後期)工程において得られた粒子はほぼ全てがCuInGaSeであることが分かった。   FIG. 4 shows the XRD results of the particles shown in FIGS. 2A to 2D and FIG. 3, and FIG. 5 shows the XRD results of the particles shown in FIG. 3 and the JCPDS (Joint Committee for Powder Diffraction Standards) card. The XRD pattern of the referred CIGS is shown. From these figures, the particles obtained up to the third (early) step were a mixture of CuInGaSe, CuInSe, CuSe, and Se, but almost all the particles obtained in the third (late) step were CuInGaSe. It turns out that.

下記の表1は、原料元素の配合比率を変えてナノ粒子を合成したときの該ナノ粒子の組成比の測定値及びバンドギャップの値を示したものである。表1に示すように、製造例1の方法では、原料元素の配合比率を変えることにより、CuInGaSe系ナノ粒子の組成比やバンドギャップを制御できることが分かる。
Table 1 below shows measured values of the composition ratio of the nanoparticles and band gap values when the nanoparticles were synthesized by changing the mixing ratio of the raw material elements. As shown in Table 1, it can be seen that in the method of Production Example 1, the composition ratio and band gap of CuInGaSe-based nanoparticles can be controlled by changing the blending ratio of the raw material elements.

[製造例2]
原料金属と溶媒との反応は200℃付近で進行することから、第2(後期)工程の昇温速度が、得られるナノ粒子の大きさや形状に及ぼす影響を調べた。第2(後期)工程以外の工程の昇温速度は製造例1と同じである。また、この製造例2では、第3工程により250℃まで加熱した後、250℃の状態を4時間保持してから得られたナノ粒子について調べた。
[実験1]
実験1では、第2(後期)工程の昇温速度を約0.7℃/minとしてナノ粒子を合成した。得られたナノ粒子のSEM写真を図6(a)に、TG解析の結果を図6(b)に示す。図6(a)から、ナノ粒子は比較的大きく、板状をしていることが分かる。また、図6(b)に示すように、TG解析からは不純物量が10%程度であることが分かった。
[Production Example 2]
Since the reaction between the raw material metal and the solvent proceeds at around 200 ° C., the influence of the temperature increase rate in the second (late stage) step on the size and shape of the obtained nanoparticles was investigated. The rate of temperature increase in the processes other than the second (late stage) process is the same as in Production Example 1. In Production Example 2, after heating to 250 ° C. in the third step, the nanoparticles obtained after maintaining the state at 250 ° C. for 4 hours were examined.
[Experiment 1]
In Experiment 1, nanoparticles were synthesized at a rate of temperature increase in the second (late stage) step of about 0.7 ° C./min. The SEM photograph of the obtained nanoparticles is shown in FIG. 6 (a), and the result of TG analysis is shown in FIG. 6 (b). FIG. 6A shows that the nanoparticles are relatively large and have a plate shape. Further, as shown in FIG. 6B, it was found from the TG analysis that the amount of impurities is about 10%.

[実験2]
実験2は製造例1とほぼ同じ手順でナノ粒子を合成した。すなわち、第2(後期)工程の昇温速度を約1℃/minとしてナノ粒子を合成した。得られたナノ粒子のSEM写真を図7(a)に、TG解析の結果を図7(b)に示す。図7(a)から、ナノ粒子は、粒径が20-25 nm程度の、均一な(単分散の)球状粒子であることが分かる。また、TG解析から不純物量は10%程度であった。
[実験3]
実験3では、第2(後期)工程の昇温速度を約2.5℃/minとしてナノ粒子を合成した。得られたナノ粒子のSEM写真を図8(a)に、TG解析の結果を図8(b)に示す。図8(a)から、ナノ粒子は、粒径が15-20 nm程度の、均一な(単分散の)球状粒子であることが分かった。また、図8(b)のTG解析の結果から不純物量は10%程度であった。
[Experiment 2]
In Experiment 2, nanoparticles were synthesized by almost the same procedure as in Production Example 1. That is, the nanoparticles were synthesized at a rate of temperature increase in the second (late stage) step of about 1 ° C./min. The SEM photograph of the obtained nanoparticles is shown in FIG. 7 (a), and the result of TG analysis is shown in FIG. 7 (b). FIG. 7A shows that the nanoparticles are uniform (monodispersed) spherical particles having a particle size of about 20-25 nm. Moreover, the amount of impurities was about 10% from TG analysis.
[Experiment 3]
In Experiment 3, nanoparticles were synthesized at a heating rate of the second (late stage) step of about 2.5 ° C./min. The SEM photograph of the obtained nanoparticles is shown in FIG. 8 (a), and the result of TG analysis is shown in FIG. 8 (b). FIG. 8A shows that the nanoparticles are uniform (monodispersed) spherical particles having a particle size of about 15-20 nm. Moreover, the impurity amount was about 10% from the result of TG analysis of FIG.8 (b).

図9に、実験1〜3で得られたナノ粒子のXRD解析の結果を示す。図9から分かるように、実験1〜3で得られたナノ粒子は、XRDパターンにショルダが現れ、不純物ピークが観察された。特に実験1のナノ粒子のXRDパターンには比較的大きなショルダが現れた。以上の結果から、実験1のように150℃から200℃までゆっくりと昇温した場合は、実験1よりも昇温速度が速い実験2及び実験3の場合に比べて、得られるナノ粒子の粒径が大きく且つ板状になることが分かった。また、ナノ粒子の純度の点でも昇温速度が速いほうが優れていることが分かった。このことから、第2(後期)工程の昇温速度は、ナノ粒子の形状や粒径、粒径分布、純度に影響を及ぼすと思われた。   FIG. 9 shows the results of XRD analysis of the nanoparticles obtained in Experiments 1-3. As can be seen from FIG. 9, in the nanoparticles obtained in Experiments 1 to 3, a shoulder appeared in the XRD pattern, and an impurity peak was observed. In particular, a relatively large shoulder appeared in the XRD pattern of the nanoparticles in Experiment 1. From the above results, when the temperature is slowly raised from 150 ° C. to 200 ° C. as in Experiment 1, the resulting nanoparticles particles are faster than those in Experiment 2 and Experiment 3 where the heating rate is faster than in Experiment 1 It was found that the diameter was large and a plate shape was obtained. Moreover, it turned out that the one where a temperature increase rate is quick is excellent also in the point of the purity of a nanoparticle. From this, it was considered that the rate of temperature increase in the second (late) step affects the shape, particle size, particle size distribution, and purity of the nanoparticles.

<溶媒の検討>
溶媒による違いを調べるために、DDAに代えてペンタデシルアミン(C15H33N、(PDA))を用いて、実験2と同じ工程でナノ粒子を合成した。その結果、得られたナノ粒子の粒径は25-30 nm程度であり、DDAを用いた時に比べると粒径が大きいことが分かった。また、粒径の分布はDDAに比べると不均一であった。さらに、TGA解析の結果から、有機成分の不純物の量は10%程度であり、DDAとほとんど差はないことが分かった。
一方、XRD解析の結果から、PDAを用いた場合に得られる微粒子は、CIGS単相でなく無機系の不純物が含まれていると考えられた。図10に、溶媒としてDDAを用いた場合、PDAを用いた場合のそれぞれにおいて得られたナノ粒子のSEM写真を示す。また、図11に、PDAを用いたときに得られたナノ粒子のTGA解析の結果及びXRD解析の結果を示す。
<Study of solvent>
In order to investigate the difference depending on the solvent, nanoparticles were synthesized in the same process as in Experiment 2 using pentadecylamine (C 15 H 33 N, (PDA)) instead of DDA. As a result, it was found that the obtained nanoparticles had a particle size of about 25-30 nm, which was larger than when DDA was used. Also, the particle size distribution was non-uniform compared to DDA. Furthermore, from the results of TGA analysis, it was found that the amount of organic component impurities is about 10%, which is almost the same as DDA.
On the other hand, from the results of XRD analysis, it was considered that the fine particles obtained when PDA was used contained inorganic impurities, not a CIGS single phase. FIG. 10 shows SEM photographs of nanoparticles obtained in the case of using DDA as a solvent and in the case of using PDA. FIG. 11 shows the result of TGA analysis and the result of XRD analysis of nanoparticles obtained using PDA.

Claims (6)

周期律表の第I族金属化合物、第III族金属化合物、及び第VI族金属の単体をアミン系溶媒中に入れて混合し、加熱して、前記第I族金属化合物及び前記第III族金属化合物と、前記第VI族金属の単体を反応させることによりカルコパイライトナノ粒子を製造する方法であって、
加熱する工程が、
第1昇温速度で室温から100℃まで昇温する第1昇温工程と、
前記第1昇温速度よりも遅い第2昇温速度で100℃から200℃まで昇温する第2昇温工程と
を有することを特徴とするカルコパイライトナノ粒子の製造方法。
The Group I metal compound, Group III metal compound, and Group VI metal in the periodic table are mixed in an amine solvent and heated to heat the Group I metal compound and Group III metal. A method of producing chalcopyrite nanoparticles by reacting a compound and a simple substance of the Group VI metal,
The heating process is
A first temperature raising step for raising the temperature from room temperature to 100 ° C. at a first temperature raising rate;
And a second temperature raising step of raising the temperature from 100 ° C. to 200 ° C. at a second temperature raising rate that is slower than the first temperature raising rate.
前記第2昇温工程が、100℃から150℃まで昇温する前期工程と、該前期工程よりも遅い昇温速度で150℃から200℃まで昇温する後期工程から成ることを特徴とする請求項1に記載のカルコパイライトナノ粒子の製造方法。   The second temperature raising step is composed of a first step for raising the temperature from 100 ° C to 150 ° C and a second step for raising the temperature from 150 ° C to 200 ° C at a rate of temperature rise slower than the first step. Item 2. A method for producing chalcopyrite nanoparticles according to Item 1. 加熱する工程が、さらに、前記第2昇温速度よりも遅い第3昇温速度で200℃から250℃まで昇温する第3昇温工程を備えることを特徴とする請求項1又は2に記載のカルコパイライトナノ粒子の製造方法。   The heating step further comprises a third temperature raising step for raising the temperature from 200 ° C. to 250 ° C. at a third temperature raising rate that is slower than the second temperature raising rate. Method for producing chalcopyrite nanoparticles. 前記第I族金属化合物が銅塩、前記第III族金属化合物がインジウム塩又は/及びガリウム塩、前記第VI族金属がセレンであることを特徴とする請求項1〜3のいずれかに記載のカルコパイライトナノ粒子の製造方法。   The group I metal compound is a copper salt, the group III metal compound is an indium salt and / or a gallium salt, and the group VI metal is selenium. A method for producing chalcopyrite nanoparticles. アミン系溶媒が、ドデシル・アミンであることを特徴とする請求項1〜4のいずれかに記載のカルコパイライトナノ粒子の製造方法。   The method for producing chalcopyrite nanoparticles according to any one of claims 1 to 4, wherein the amine solvent is dodecylamine. 前記第1昇温速度が2.5℃/min〜3.5℃/minであり、前記第2昇温速度が0.8℃/min〜2.5℃/minであることを特徴とする請求項1〜5のいずれかに記載のカルコパイライトナノ粒子の製造方法。   The first temperature increase rate is 2.5 ° C / min to 3.5 ° C / min, and the second temperature increase rate is 0.8 ° C / min to 2.5 ° C / min. The manufacturing method of the chalcopyrite nanoparticle described in 1.
JP2013150685A 2013-07-19 2013-07-19 Method for producing chalcopyrite nanoparticle Pending JP2015020932A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013150685A JP2015020932A (en) 2013-07-19 2013-07-19 Method for producing chalcopyrite nanoparticle
PCT/JP2014/069197 WO2015008858A1 (en) 2013-07-19 2014-07-18 Manufacturing method for chalcopyrite nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013150685A JP2015020932A (en) 2013-07-19 2013-07-19 Method for producing chalcopyrite nanoparticle

Publications (2)

Publication Number Publication Date
JP2015020932A true JP2015020932A (en) 2015-02-02
JP2015020932A5 JP2015020932A5 (en) 2016-09-08

Family

ID=52346299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013150685A Pending JP2015020932A (en) 2013-07-19 2013-07-19 Method for producing chalcopyrite nanoparticle

Country Status (2)

Country Link
JP (1) JP2015020932A (en)
WO (1) WO2015008858A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192542A (en) * 2007-02-07 2008-08-21 Nippon Oil Corp Manufacturing method of chalcopyrite nanoparticle and photoelectric conversion element
JP2010155730A (en) * 2008-12-26 2010-07-15 Dowa Holdings Co Ltd Method for producing chalcogen compound powder
JP2010526007A (en) * 2007-11-14 2010-07-29 成均館大学校 産学協力団 Method for producing I-III-VI2 nanoparticles and method for producing polycrystalline light absorption layer thin film
JP2012033728A (en) * 2010-07-30 2012-02-16 Kyocera Corp Manufacturing method of metal chalcogenide particle, and manufacturing method of photoelectric conversion device
JP2012049358A (en) * 2010-08-27 2012-03-08 Kyocera Corp Method of producing metal chalcogenide particle and method of manufacturing photoelectric conversion device
JP2012076976A (en) * 2010-10-06 2012-04-19 National Institute For Materials Science Method for synthesizing powders of sulfide and selenide
WO2012090339A1 (en) * 2010-12-28 2012-07-05 東北精機工業株式会社 Process for production of compound having chalcopyrite structure
JP2012515708A (en) * 2009-01-21 2012-07-12 パデュー リサーチ ファンデーション Selenization of precursor layers containing CuInS2 nanoparticles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192542A (en) * 2007-02-07 2008-08-21 Nippon Oil Corp Manufacturing method of chalcopyrite nanoparticle and photoelectric conversion element
JP2010526007A (en) * 2007-11-14 2010-07-29 成均館大学校 産学協力団 Method for producing I-III-VI2 nanoparticles and method for producing polycrystalline light absorption layer thin film
JP2010155730A (en) * 2008-12-26 2010-07-15 Dowa Holdings Co Ltd Method for producing chalcogen compound powder
JP2012515708A (en) * 2009-01-21 2012-07-12 パデュー リサーチ ファンデーション Selenization of precursor layers containing CuInS2 nanoparticles
JP2012033728A (en) * 2010-07-30 2012-02-16 Kyocera Corp Manufacturing method of metal chalcogenide particle, and manufacturing method of photoelectric conversion device
JP2012049358A (en) * 2010-08-27 2012-03-08 Kyocera Corp Method of producing metal chalcogenide particle and method of manufacturing photoelectric conversion device
JP2012076976A (en) * 2010-10-06 2012-04-19 National Institute For Materials Science Method for synthesizing powders of sulfide and selenide
WO2012090339A1 (en) * 2010-12-28 2012-07-05 東北精機工業株式会社 Process for production of compound having chalcopyrite structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014043555; M.A. MAJEED KHAN et al.: 'Morphology and non-isothermal crystallization kinetics of CuInS2 nanocrystals synthesized by solvo-t' Materials Characterization Vol.65, 201203, p.109-114 *

Also Published As

Publication number Publication date
WO2015008858A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
Ghorpade et al. Towards environmentally benign approaches for the synthesis of CZTSSe nanocrystals by a hot injection method: a status review
JP5646342B2 (en) Method for producing light absorption layer of copper / indium / gallium / sulfur / selenium thin film solar cell
JP6232078B2 (en) Cu2XSnY4 nanoparticles
JP6688832B2 (en) Antimony-doped nanoparticles
CN105705596A (en) I inorganic salt-nanoparticle ink for thin film photovoltaic devices and related methods
JP5874645B2 (en) Compound semiconductor thin film solar cell and method for manufacturing the same
KR101788240B1 (en) Preparation of copper selenide nanoparticles
TWI552373B (en) Cigs nanoparticle ink formulation having a high crack-free limit
JP6138288B2 (en) Cu2ZnSnS4 nanoparticles
Bouznit et al. New co-spray way to synthesize high quality ZnS films
Aslan et al. Effects of Cu/In ratio and annealing temperature on physical properties of dip-coated CuInS2 thin films
TWI507362B (en) Nanocrystalline copper indium diselenide (cis) and ink-based alloys absorber layers for solar cells
Verma et al. Heat-up and gram-scale synthesis of Cu-poor CZTS nanocrystals with controllable compositions and shapes
Pradeepkumar et al. Phase separation in wurtzite CuIn x Ga 1− x S 2 nanoparticles
Hsu et al. Crystallite formation mechanism of CuIn (Se, S) 2 synthesized using solvothermal method
WO2015008858A1 (en) Manufacturing method for chalcopyrite nanoparticles
KR20130057915A (en) Hybrid ink for czts film
WO2013180137A1 (en) Production method for compound semiconductor thin film, and solar cell provided with said compound semiconductor thin film
Pradeepkumar et al. Nucleation and growth mechanism of wurtzite copper indium disulfide nanoparticles during solution processing
Liu et al. Growth, structure and optical characterization of CuGaS2 thin films obtained by spray pyrolysis
CN105899462A (en) Preparation of copper-rich copper indium (gallium) diselenide/disulfide nanoparticles
KR101395790B1 (en) Fabrication Method of Photo Active Layer for Solar Cell
KR20160046019A (en) Manufacturing method of polycrystalline p-type cigs thin film
JP2011099059A (en) Ink for producing compound semiconductor thin film, compound semiconductor thin film produced by using the same, solar cell having compound semiconductor thin film, and method of manufacturing solar cell
CN105742389A (en) Synthesis method of copper-indium-gallium-sulphur material, thin-film solar cell and preparation method of thin-film solar cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170530