JP2015017927A - Tensile and compression test method and device - Google Patents

Tensile and compression test method and device Download PDF

Info

Publication number
JP2015017927A
JP2015017927A JP2013146106A JP2013146106A JP2015017927A JP 2015017927 A JP2015017927 A JP 2015017927A JP 2013146106 A JP2013146106 A JP 2013146106A JP 2013146106 A JP2013146106 A JP 2013146106A JP 2015017927 A JP2015017927 A JP 2015017927A
Authority
JP
Japan
Prior art keywords
test
test piece
compression
extensometer
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013146106A
Other languages
Japanese (ja)
Other versions
JP5991278B2 (en
Inventor
遼 揚場
Ryo Ageba
遼 揚場
健太郎 佐藤
Kentaro Sato
健太郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013146106A priority Critical patent/JP5991278B2/en
Publication of JP2015017927A publication Critical patent/JP2015017927A/en
Application granted granted Critical
Publication of JP5991278B2 publication Critical patent/JP5991278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tensile and compression test device for a thin steel plate test piece having a plate thickness of approximately several millimeters, excellent in economical efficiency and capable of highly accurately measuring a strain.SOLUTION: A tensile and compression test method comprises: setting a relationship between a test part length L and width W of a test piece 1 to be L/W≥4.0; setting a test part shoulder R to be R≤2.0 mm; fixing an extensometer 2 to extensometer holding metal fittings 11 joined to a side surface of the test piece 1 by resistance welding, using an elastic body 10; applying an adhesive onto a contact portion between the measurement part of the extensometer 2 and the side surface of the test piece 1; sandwiching the test piece 1 from both thickness-direction sides with a buckling prevention jig 7 and a buckling prevention base jigs 3 and 4; driving an actuator so as to be constant in a stroke speed while a spring generates a force resisting buckling; and repeating the loading test to the test part using the output of the extensometer 2 as a target value.

Description

本発明は、引張圧縮試験方法および装置に関し、特に薄鋼板の引張圧縮試験に好ましく用いうる、引張圧縮試験方法および装置に関する。   The present invention relates to a tensile and compression test method and apparatus, and more particularly to a tensile and compression test method and apparatus that can be preferably used for a tensile and compression test of a thin steel sheet.

引張圧縮試験は、金属材料の強度性能を評価するための試験である。具体的には所定の試験片形状に加工された金属材料に引張荷重を付与し、特定ひずみ量の引張変形を与えた後、一旦荷重を除荷し、そのまま圧縮荷重を付与して圧縮変形させる、あるいは、圧縮変形を与えた後に引張変形を与える場合もある。
与える荷重が引張から圧縮に反転する場合に、引張変形時に達した応力値より低い応力で再降伏し塑性変形する現象が知られている。この現象はバウシンガー効果と呼ばれている。
The tensile compression test is a test for evaluating the strength performance of a metal material. Specifically, a tensile load is applied to a metal material processed into a predetermined test piece shape, and after applying a tensile deformation of a specific strain amount, the load is once removed, and a compressive load is applied as it is to cause a compressive deformation. Alternatively, tensile deformation may be applied after compressive deformation is applied.
It is known that when the applied load is reversed from tension to compression, it yields again at a stress lower than the stress value reached at the time of tensile deformation and plastically deforms. This phenomenon is called the Bausinger effect.

近年、自動車用鋼板が高強度化されるにつれ、このバウシンガー効果の影響が重要視されるようになってきた。
例えば、高強度自動車用鋼板のプレス成形時に、スプリングパックと呼ばれる寸法精度不良が発生する。これはプレス成形により発生した残留応力を有する材料が金型から外される場合に弾性回復して形状が変化するものである。プレス成形中に材料は複雑な変形をうけ、引張変形と圧縮変形が素材に与えられるため、上記のバウシンガー効果が残留応力の大きさに影響することが知られている。
In recent years, as the strength of steel sheets for automobiles has increased, the influence of the Bausinger effect has come to be regarded as important.
For example, a dimensional accuracy defect called a spring pack occurs during press forming of a high-strength automotive steel sheet. In this case, when a material having a residual stress generated by press molding is removed from the mold, the shape is recovered by elastic recovery. It is known that the material is subjected to complicated deformation during press molding, and tensile deformation and compression deformation are imparted to the material, so that the above Bauschinger effect affects the magnitude of residual stress.

また、自動車の重要な性能である衝突安全性能にもバウシンガー効果の影響があることが知られている。車体は、その衝突時に自動車部品が塑性変形することで衝突エネルギーを吸収し乗員の安全を確保する構造となっているが、衝突による変形時に、材料には複雑な引張変形と圧縮変形が繰り返し発生する。この負荷応力の方向が反転する場合にバウシンガー効果により降伏応力が低下するため、結果的に衝突エネルギーに影響を与えることになる。   In addition, it is known that collision safety performance, which is an important performance of automobiles, is also influenced by the Bauschinger effect. The car body is structured to absorb the collision energy and ensure the safety of the occupant by plastic deformation of the automobile parts at the time of the collision, but during the deformation due to the collision, the material repeatedly undergoes complicated tensile deformation and compression deformation To do. When the direction of the load stress is reversed, the yield stress is reduced by the Bauschinger effect, resulting in an impact on the collision energy.

したがって、より精度の高いプレス成形や衝突特性の最適化を実現するためには、バウシンガー効果を含めた材料の特性を正確に把握する必要がある。
バウシンガー効果を評価する引張圧縮試験を薄鋼板(略して薄板)で実施する場合、圧縮時に材料が座屈変形を起こす問題がある。さらに試験対象材料の強度が高くて板厚が薄くなると座屈変形が更に発生しやすく、精度の高い試験が難しいという問題があり、従来から薄板での引張圧縮試験方法が検討されてきた。
Therefore, in order to realize press molding with higher accuracy and optimization of collision characteristics, it is necessary to accurately grasp the characteristics of the material including the Bauschinger effect.
When a tensile compression test for evaluating the Bauschinger effect is performed on a thin steel plate (abbreviated as a thin plate), there is a problem that the material undergoes buckling deformation during compression. Further, when the strength of the material to be tested is high and the plate thickness is thin, buckling deformation is more likely to occur, and there is a problem that a highly accurate test is difficult. Conventionally, a tensile compression test method using a thin plate has been studied.

特許文献1には座屈を防止するため、応力試験中に試験片に対する応力負荷方向と試験片長手方向が常に一致するように少なくとも2本のガイド材が試験片に対する応力負荷方向に平行に設置された試験方法が提案されている。これにより、1.5%以上のひずみを付与しても引張圧縮試験が可能とされている。
特許文献2には、薄板の引張圧縮試験の際に試験片を保持する試験片保持装置が提案されている。これにより圧縮試験時に試験片が曲がることが防止され、精度の良い試験がなし得るとされ、座屈防止治具に設定された窓から試験片に発生するひずみが容易に測定されるとされている。
In Patent Document 1, in order to prevent buckling, at least two guide members are installed in parallel to the stress load direction on the test piece so that the stress load direction on the test piece and the test piece longitudinal direction always coincide during the stress test. A proposed test method has been proposed. Thereby, even if a strain of 1.5% or more is applied, a tensile compression test is possible.
Patent Document 2 proposes a test piece holding device that holds a test piece during a tensile and compression test of a thin plate. This prevents bending of the test piece during the compression test, can be performed with high accuracy, and the strain generated on the test piece from the window set in the buckling prevention jig is easily measured. Yes.

特許文献3には、二軸荷重負荷条件下であっても座屈を起こさず、試験片が破断しても負荷グリップが変形や損傷等の不具合を生じない試験装置および試験方法が提案されている。そこでは、比較的板厚の厚い試験片を取り扱い、試験部に均一な応力を与えることを目的として試験片形状の寸法が規定されている。   Patent Document 3 proposes a test apparatus and a test method that do not buckle even under biaxial load conditions, and that do not cause defects such as deformation and damage to the load grip even when the test piece breaks. Yes. There, the dimensions of the test piece shape are defined for the purpose of handling a test piece having a relatively large thickness and giving a uniform stress to the test portion.

特開2008−241530号公報JP 2008-241530 A 特開2009−257885号公報JP 2009-257885 A 特開2000−180322号公報JP 2000-180322 A

プレス成形や衝突変形において、鋼板に発生するひずみは5%以上の領域になる場合があり、バウシンガー効果の測定においてもこのような高いひずみ領域で測定するニーズがある。
しかしながら、特許文献1および特許文献2の図に記載されるとおり、従来の方法および装置では、ひずみは最大でも5%未満であり、前記ニーズに応じて板厚1.0mm程度(より具体的には、0.7〜2.0mm)の薄鋼板の引張・圧縮変形を5%以上ものひずみを加えて高い精度で行なうことは困難とされてきた。
In press forming and impact deformation, the strain generated in the steel sheet may be in a region of 5% or more, and there is a need for measurement in such a high strain region in the measurement of the Bausinger effect.
However, as described in the drawings of Patent Document 1 and Patent Document 2, in the conventional method and apparatus, the strain is less than 5% at the maximum, and the plate thickness is about 1.0 mm according to the needs (more specifically, It has been difficult to perform tensile and compressive deformation of a thin steel sheet of 0.7 to 2.0 mm with high accuracy by applying strain of 5% or more.

特許文献1および特許文献3で提案されている技術は、板厚が10mm以上あるラインパイプ用の材料や構造用ステンレス鋼およびセラミックスを対象にした試験方法であるため、板厚が数mm以下と薄い自動車用の薄鋼板で実施する場合、容易に座屈変形が生じてしまう問題がある。
特許文献2に記載された技術は薄鋼板を対象にした試験方法であるが、座屈防止治具に設置された窓からのひずみ測定では、窓部に位置する試験体部分に座屈押さえがないため試験体の座屈を完全にゼロにすることは難しく、さらにひずみ測定手段として、ひずみゲージを用いるため、現状市販されているひずみゲージの最大限界ひずみ(5%未満の値)を超える5%以上のひずみ領域では精度低下やゲージの剥離といった問題を生じる。なお、ひずみゲージは繰り返しの引張ひずみと圧縮ひずみには対応しておらず、引張変形後の圧縮変形、あるいは圧縮変形後の引張変形では測定される精度が保障されない問題がある。また、ひずみゲージは使い捨てであって経済性にも問題がある。
Since the techniques proposed in Patent Document 1 and Patent Document 3 are test methods for line pipe materials having a thickness of 10 mm or more, structural stainless steels and ceramics, the thickness is several mm or less. When it is implemented with a thin steel sheet for automobiles, there is a problem that buckling deformation easily occurs.
The technique described in Patent Document 2 is a test method for thin steel sheets. However, in strain measurement from a window installed in a buckling prevention jig, a buckling presser is not applied to a specimen portion located in the window. Therefore, it is difficult to make the buckling of the specimen completely zero. Further, since a strain gauge is used as a strain measuring means, it exceeds the maximum limit strain (value less than 5%) of the strain gauge currently on the market. In the strain region of more than 10%, problems such as a decrease in accuracy and peeling of the gauge occur. Note that the strain gauge does not support repeated tensile strain and compressive strain, and there is a problem that the accuracy of measurement is not guaranteed in compressive deformation after tensile deformation or tensile deformation after compressive deformation. In addition, the strain gauge is disposable and has a problem with economy.

以上のように、従来技術では、板厚数mm程度の薄鋼板試験片の引張圧縮試験において、圧縮ひずみが5%以上になると座屈変形或いは引張及び圧縮共に測定精度の低下を生じ易く、又、経済性が良くないという課題があった。   As described above, in the prior art, in a tensile compression test of a thin steel plate test piece having a thickness of about several millimeters, if the compressive strain is 5% or more, the measurement accuracy is likely to be reduced in both buckling deformation and tensile and compression. There was a problem that the economy was not good.

本発明は、前記課題を解決する為に成されたものであり、その要旨構成は以下の通りである。
[1] 試験片1の試験部に引張から圧縮へと、圧縮から引張へとの負荷繰り返し試験を行なう引張圧縮試験方法であって、
試験片1の試験部長さLと試験部幅Wの関係をL/W≧4.0とし、試験部肩RをR≦2.0mmとし、試験片1の側面に抵抗溶接にて接合した伸び計保持金具11に伸び計2を弾性体10で固定し、伸び計2の測定部と試験片1の側面の接触部に接着剤を塗布し、試験片1をその厚さ方向両側から座屈防止治具7と座屈防止ベース治具3、4とで挟み、バネ9Aで座屈に抵抗する力を発生させた状態下で、ストローク速度が一定となるようにアクチュエータを駆動し、伸び計の出力を目標値として、前記試験部に前記負荷繰り返し試験を施すことを特徴とする引張圧縮試験方法。
[2] 試験片1の試験部に引張から圧縮へと、圧縮から引張へとの負荷繰り返し試験を行なう引張圧縮試験装置であって、
試験片1の試験部長さLと試験部幅Wの関係をL/W≧4.0とし、試験部肩RをR≦2.0mmとし、試験片1の側面に抵抗溶接にて接合した伸び計保持金具11に伸び計2を弾性体10で固定し、伸び計2の測定部と試験片1の側面の接触部に接着剤を塗布し、試験片1をその厚さ方向両側から座屈防止治具7と座屈防止ベース治具3、4とで挟み、バネ9Aで座屈に抵抗する力を発生させる構成とされた試験治具100を、試験治具ベース200のボールベアリング300付きスライド軸400によるスライド機構である高剛性スライド機構に組み込んでなり、高剛性スライド機構全体を接地用治具500に組み付け、スライド軸を水平方向となしうることを特徴とする引張圧縮試験装置。
The present invention has been made to solve the above problems, and the gist of the present invention is as follows.
[1] A tensile and compression test method for performing a load repetition test from tension to compression and from compression to tension on the test portion of the test piece 1,
Elongation in which the relationship between the test part length L and the test part width W of the test piece 1 is L / W ≧ 4.0, the test part shoulder R is R ≦ 2.0 mm, and is joined to the side surface of the test piece 1 by resistance welding. The extensometer 2 is fixed to the gauge holder 11 with the elastic body 10, the adhesive is applied to the contact part between the measurement part of the extensometer 2 and the side surface of the test piece 1, and the test piece 1 is buckled from both sides in the thickness direction. The extensometer is driven by the actuator so that the stroke speed is constant under the condition that the force between the prevention jig 7 and the buckling prevention base jigs 3 and 4 is generated and the spring 9A resists buckling. A tensile and compression test method, wherein the load repetition test is performed on the test section with the output of the target as a target value.
[2] A tensile and compression test apparatus for performing a load repetition test from tension to compression and from compression to tension on the test portion of the test piece 1,
Elongation in which the relationship between the test part length L and the test part width W of the test piece 1 is L / W ≧ 4.0, the test part shoulder R is R ≦ 2.0 mm, and is joined to the side surface of the test piece 1 by resistance welding. The extensometer 2 is fixed to the gauge holder 11 with the elastic body 10, the adhesive is applied to the contact part between the measurement part of the extensometer 2 and the side surface of the test piece 1, and the test piece 1 is buckled from both sides in the thickness direction. The test jig 100 that is sandwiched between the prevention jig 7 and the buckling prevention base jigs 3 and 4 and generates a force that resists buckling by the spring 9A is attached to the ball bearing 300 of the test jig base 200. A tensile / compression test apparatus characterized in that it is incorporated in a high-rigidity slide mechanism that is a slide mechanism using a slide shaft 400, the entire high-rigidity slide mechanism is assembled in a grounding jig 500, and the slide shaft can be set in the horizontal direction.

本発明によれば、形状を特定した試験片の側面部に弾性体で固定した伸び計により前記負荷繰り返し試験時のひずみを測定し、さらに圧縮時の座屈を防止する治具(座屈防止治具及び座屈防止ベース治具)を用いたから、高精度で前記負荷繰り返し試験時のひずみを測定することが可能となる。又、従来のひずみゲージ貼付に代えて伸び計を弾性体により固定するとしたから、作業性、経済性が向上する。さらに、試験装置を横置きにすることが可能となったため、多くのタイプのアクチュエータへ適用でき、装置全体の小型化が実現する。加えて、アクチュエータの駆動方法を、ストローク速度を一定とし、伸び計の値を目標値とする方法としたことで、安定した測定を行なうことが可能となる。   According to the present invention, a jig for preventing buckling during compression by measuring strain at the time of the repeated load test using an extensometer fixed to the side surface of the test piece whose shape has been specified, and further preventing buckling during compression. Since the jig and the buckling prevention base jig) are used, it is possible to measure the strain during the repeated load test with high accuracy. In addition, since the extensometer is fixed by an elastic body instead of the conventional strain gauge sticking, workability and economy are improved. Furthermore, since the test apparatus can be placed horizontally, it can be applied to many types of actuators, and the entire apparatus can be downsized. In addition, it is possible to perform stable measurement by using a method of driving the actuator with a constant stroke speed and a value of the extensometer as a target value.

本発明の実施形態の一例に用いる制御系における、(a)は信号の伝達経路を示すブロック図、(b)は制御の流れを示すフローチャートである。In the control system used for an example of embodiment of this invention, (a) is a block diagram which shows the transmission path | route of a signal, (b) is a flowchart which shows the flow of control. 本発明に係る引張圧縮試験装置の横置き状態の一例を示す立体図である。It is a three-dimensional view showing an example of a horizontally placed state of the tensile compression test apparatus according to the present invention. 本発明の実施形態の一例における、(a)は試験片形状、(b)は引張圧縮試験装置の全体概要、(c)は試験片のセッティング状態、(d)は伸び計の測定部詳細をそれぞれ示す立体図である。In one example of an embodiment of the present invention, (a) is a shape of a test piece, (b) is an overall outline of a tensile / compression test apparatus, (c) is a setting state of the test piece, (d) is a detail of an extensometer measuring unit FIG. 図1B(b)における試験治具100の分解図である。It is an exploded view of the test jig 100 in FIG. 1B (b). 寸法を種々変えて引張試験した試験片の中央部ひずみλCと、該λCに対する側面部ひずみλEの誤差Δλ(=λE−λC)との関係の一例を示す線図である。It is a diagram which shows an example of the relationship between the center part distortion | strain (lambda) C of the test piece which carried out the tension test by changing a dimension variously, and error (DELTA) (lambda) (= (lambda) E- (lambda) C) of the side part distortion | strain (lambda) with respect to this (lambda) C. 実施例1の試験で得た応力−ひずみ履歴曲線を示す線図である。2 is a diagram showing a stress-strain history curve obtained in the test of Example 1. FIG. 実施例2の試験で得た応力−ひずみ履歴曲線を示す線図である。6 is a diagram showing a stress-strain history curve obtained in the test of Example 2. FIG. 実施例3の試験で得た応力−ひずみ履歴曲線を示す線図である。4 is a diagram showing a stress-strain history curve obtained in the test of Example 3. FIG.

以下、図面を参照して、本発明を成すに至るまでの経緯を交えて、本発明の実施形態を説明する。
試験片1の側面部でひずみを計測する場合、任意の試験片形状を用いるとひずみが試験片幅方向で不均一になり、試験片の中央部とのひずみ値の誤差が懸念されるが、各試験片形状で開発検討実験を行なった結果、図1B(a)に示す試験片形状において、試験部(平行部)長さLと試験部幅Wの関係がL/W≧4.0であって、かつ、試験片部肩RがR≦2.0mmとなる試験片を用いることで中央部ひずみと側面部ひずみがほぼ相等しくなる(誤差0.15%以下となる)という知見を得た。
(開発検討実験の一例)
試験片サイズ(試験部の長さL、幅W、肩R)を表1に示す各水準とした試験片にケガキ線を付して最大14%までの引張変形を加え、ケガキ線間隔の変化からの試験片の中央部のひずみλCと、側面部ひずみλEの差Δλ(=λE−λC)との関係を求めた。すると、例えば図2に線図で示す様に、Δλは、L/W≧4.0およびR≦2.0mmを満たす寸法範囲(便宜上、特定寸法範囲という)内であるS4およびS5では、λCの増加に対し減少から増加に転じる極小点(該極小点におけるΔλ=−0.15%)(|Δλ|では最大値0.15%である)を有する谷形状曲線を呈し、一方、前記特定寸法範囲外であるS1〜S3、S6、S7では、λCの増加に対し単調減少曲線を呈することが分かった。尚、表1には各水準における14%引張時の最大誤差Δλmax(|Δλ|が最大を示すΔλの値)を記した。
Embodiments of the present invention will be described below with reference to the drawings and the background to the present invention.
When measuring the strain on the side surface of the test piece 1, if an arbitrary test piece shape is used, the strain becomes non-uniform in the width direction of the test piece, and there is a concern about an error in the strain value with the center portion of the test piece. As a result of the development examination experiment with each test piece shape, in the test piece shape shown in FIG. 1B (a), the relationship between the test portion (parallel portion) length L and the test portion width W is L / W ≧ 4.0. In addition, by using a test piece having a test piece shoulder R of R ≦ 2.0 mm, the knowledge that the center strain and the side strain are substantially equal (with an error of 0.15% or less) is obtained. It was.
(Example of development study experiment)
The test piece size (test part length L, width W, shoulder R) was changed to a maximum of 14% by applying a marking line to the test piece with each level shown in Table 1 to change the marking line spacing. The relationship between the strain λC at the center of the test piece and the difference Δλ (= λE−λC) of the side surface strain λE was obtained. Then, for example, as shown by a diagram in FIG. 2, Δλ is λC in S4 and S5 that are within a size range satisfying L / W ≧ 4.0 and R ≦ 2.0 mm (referred to as a specific size range for convenience). Exhibiting a valley-shaped curve having a minimum point (Δλ = −0.15% at the minimum point) (maximum value is 0.15% at | Δλ |) that changes from increasing to decreasing with increasing It was found that S1 to S3, S6, and S7 outside the size range exhibited a monotonically decreasing curve with respect to an increase in λC. Table 1 shows the maximum error Δλmax (value of Δλ where | Δλ | is the maximum) at 14% tension at each level.

Figure 2015017927
Figure 2015017927

上記の知見に基づき、本発明で用いる試験片を、L/W≧4.0且つR≦2.0mmであるものに限定した。
斯かる試験片寸法限定により、ひずみゲージで測定していた従来で生じがちであった前記負荷繰り返し試験時の測定誤差を排除することができる。
それとともに、図1B(a)(b)(c)の如く、試験片1の側面に抵抗溶接にて接合した伸び計保持金具11に伸び計2を弾性体10で固定することで作業効率が格段に向上した。伸び計2は繰り返し使用することができるため、試験毎に廃棄されるひずみゲージを用いていた従来の試験形態におけるような不経済性を解消することが可能となる。
Based on the above findings, the test pieces used in the present invention were limited to those having L / W ≧ 4.0 and R ≦ 2.0 mm.
By limiting the size of the test piece as described above, it is possible to eliminate a measurement error during the load repetition test, which has been apt to occur in the past, which has been measured with a strain gauge.
At the same time, as shown in FIGS. 1B (a), 1 (b), and 1 (c), the work efficiency is improved by fixing the extensometer 2 with the elastic body 10 to the extensometer holding metal fitting 11 joined to the side surface of the test piece 1 by resistance welding. Significantly improved. Since the extensometer 2 can be used repeatedly, it becomes possible to eliminate the uneconomical effect as in the conventional test form in which a strain gauge discarded every test is used.

伸び計2を固定するために試験片1側面には伸び計保持金具11が必要になるが、抵抗溶接を用いることで簡便・強固に伸び計保持金具11を試験片1に固定することが可能となる。伸び計2の計測部は試験片側面部に、伸び計保持金具11で固定された弾性体10の弾性力で、押し付けられて保持される。この弾性力により伸び計2の計測部が試験片1の側面部に対して試験中にすべることなく固定されるため、精度の高いひずみ測定が可能となる。   In order to fix the extensometer 2, an extensometer holding metal fitting 11 is required on the side of the test piece 1, but the extensometer holding metal fitting 11 can be fixed to the test piece 1 simply and firmly by using resistance welding. It becomes. The measuring part of the extensometer 2 is pressed and held on the side surface of the test piece by the elastic force of the elastic body 10 fixed by the extensometer holding metal fitting 11. Since the measurement part of the extensometer 2 is fixed to the side part of the test piece 1 without slipping by the elastic force during the test, highly accurate strain measurement can be performed.

さらに、引張圧縮試験装置を横置きで使用する場合、図1Aに示すように設置用治具500に組みつけて使用する。同図に示すように、作業性の問題から試験機の前面(座屈押さえ8やバネ付ボルト9を組み付ける側)を上側とする必要があるが、図1B(c)の伸び計2の自重によって伸び計2の計測部と試験片1の接触面積が小さくなり、両者が滑りやすくなる傾向がある。その場合は、接着剤例えば瞬間接着剤等を伸び計2の計測部に塗布し、試験片1の側面部に対する追従性を高めることで、この問題を解決できる。このように、該引張圧縮試験装置を横置きで使用することができれば、多くのタイプのアクチュエータに適用可能となる。前記接着剤としては、アロンアルファ(登録商標)等の接着剤が好ましく用いうる。   Further, when the tension / compression test apparatus is used in a horizontal position, it is used by being assembled in an installation jig 500 as shown in FIG. 1A. As shown in the figure, the front side of the testing machine (the side on which the buckling presser 8 and the spring-loaded bolt 9 are assembled) needs to be on the upper side due to workability problems, but the weight of the extensometer 2 in FIG. As a result, the contact area between the measuring part of the extensometer 2 and the test piece 1 becomes small, and both tend to be slippery. In that case, this problem can be solved by applying an adhesive such as an instantaneous adhesive to the measuring part of the extensometer 2 and improving the followability to the side part of the test piece 1. As described above, if the tensile / compression test apparatus can be used in a horizontal position, it can be applied to many types of actuators. As the adhesive, an adhesive such as Aron Alpha (registered trademark) can be preferably used.

又、座屈防止の為に、図1Cの如く、上下に分割される座屈防止ベース治具3および4の凹部垂直平面に試験片1の一方の面を当接させ、該試験片1の他方の面に座屈防止治具7を当接させて、前記試験片1を座屈防止治具7と座屈防止ベース治具3および4との間に挟み込み、座屈防止治具7を座屈押さえ8および座屈押さえ力調整用バネ9A付きボルト9(図1C参照)で押さえる。斯かる構成とされた試験治具を用いることで板厚数mm程度以下の薄鋼板の引張圧縮試験でひずみが5%以上の圧縮時の座屈変形を極力抑えて試験することが可能となる。   In order to prevent buckling, as shown in FIG. 1C, one surface of the test piece 1 is brought into contact with the concave vertical plane of the buckling prevention base jigs 3 and 4 divided into upper and lower parts. The buckling prevention jig 7 is brought into contact with the other surface, and the test piece 1 is sandwiched between the buckling prevention jig 7 and the buckling prevention base jigs 3 and 4. It is pressed by a buckling retainer 8 and a bolt 9 with a buckling restraining force adjusting spring 9A (see FIG. 1C). By using the test jig having such a configuration, it becomes possible to perform a test while suppressing as much as possible buckling deformation at the time of compression with a strain of 5% or more in a tensile compression test of a thin steel plate having a thickness of about several millimeters or less. .

座屈押さえ力が試験片の引張方向の変形に影響することが懸念されるが、本発明では、座屈押さえ力は座屈押さえ力調整用バネ9A付ボルト9で、座屈押さえ力の付与レベルを調整することが可能であり、座屈押さえ力の影響をできるだけ小さくして試験することが可能である。
また、座屈は試験片1を圧縮した際に発生しやすいが、試験片1の一方の面は座屈防止治具7の端部平面に常に当接され、試験片1の他方の面は座屈防止ベース治具3および4の凹部垂直平面に測定部を含む大半が当接し、かつ、圧縮時には座屈防止ベース治具3と4が近接するため、これらの隙間が僅かとなり、座屈を充分防止できるわけである。
Although it is feared that the buckling pressing force affects the deformation of the test piece in the tensile direction, in the present invention, the buckling pressing force is applied by the bolt 9 with the buckling pressing force adjusting spring 9A, and the buckling pressing force is applied. It is possible to adjust the level, and it is possible to test with the effect of buckling holding force as small as possible.
Further, buckling is likely to occur when the test piece 1 is compressed, but one surface of the test piece 1 is always in contact with the end plane of the buckling prevention jig 7 and the other surface of the test piece 1 is The majority of the measurement unit including the measurement part comes into contact with the concave vertical plane of the buckling prevention base jigs 3 and 4, and the buckling prevention base jigs 3 and 4 come close to each other at the time of compression. Can be sufficiently prevented.

また、アクチュエータの制御に関しては、単位時間当たりの変位増分が経過時間に対して一定となるようにアクチュエータを駆動し、伸び計の値が目標の値に到達したところで負荷を反転する方法をとることで、引張・圧縮の負荷反転を目的のひずみで行うことができ、かつ、バックラッシュ解消時に生じる急激な変位増にともなう衝撃による伸び計2の計測部と試験片1の側面部のズレを回避することができるため、安定した測定が可能となった。上記の制御系における信号の伝達経路を図1(a)に、制御のフローチャートを図1(b)に示す。   As for actuator control, the actuator is driven so that the displacement increment per unit time is constant with respect to the elapsed time, and the load is reversed when the extensometer value reaches the target value. Therefore, the tension / compression load can be reversed with the desired strain, and the displacement between the measurement part of the extensometer 2 and the side part of the test piece 1 due to the impact caused by the sudden increase in displacement that occurs when the backlash is eliminated. Therefore, stable measurement is possible. A signal transmission path in the control system is shown in FIG. 1A, and a control flowchart is shown in FIG.

さらに、本発明に係る引張圧縮試験装置は、前記試験治具100(図1C参照)を、図1B(b)の如く、試験治具ベース200のボールベアリング300付きスライド軸400によるスライド機構である高剛性スライド機構に組み込んだ構造の装置とした。これにより、引張圧縮負荷方向の軸が試験中に偏心するのを防止でき、座屈変形のない安定した引張圧縮試験が可能となる。   Further, the tensile and compression test apparatus according to the present invention is a slide mechanism in which the test jig 100 (see FIG. 1C) is a slide mechanism 400 using a slide shaft 400 with a ball bearing 300 of the test jig base 200 as shown in FIG. 1B (b). The device was built into a high-rigidity slide mechanism. Thereby, it is possible to prevent the shaft in the tension / compression load direction from being decentered during the test, and it is possible to perform a stable tension / compression test without buckling deformation.

(実施例1)
実施例1として、板厚1.6mm、TS(引張強度の略号である。以下同じ)=590MPa級の薄鋼板から表1の水準S5の寸法に合わせて採取した試験片を用い、図1、図1A、図1B、および図1Cに示した通りの実施形態に従い、表2に示す条件2、条件3および条件4で引張圧縮(但し条件4は引張のみ)試験を行い、図3に示す処の、真応力と真ひずみの関係を表す応力−ひずみ履歴曲線を得た。尚、伸び計2の計測部と試験片1の側面部との接触部は、接着剤(アロンアルファ)にて固定した。
(実施例2)
実施例2として、板厚1.6mm、TS=980MPa級の薄鋼板から表1の水準S5の寸法に合わせて採取した試験片を用い、図1、図1A、図1B、および図1Cに示した通りの実施形態に従い、表2に示す条件2、条件3および条件4で引張圧縮(但し条件4は引張のみ)試験を行い、図4に示す処の、真応力と真ひずみの関係を表す応力−ひずみ履歴曲線を得た。尚、伸び計2の計測部と試験片1の側面部との接触部は、接着剤(アロンアルファ)にて固定した。
Example 1
As Example 1, a test piece sampled from a thin steel plate of 1.6 mm in thickness and TS (abbreviation of tensile strength; the same applies hereinafter) = 590 MPa class to the level S5 in Table 1 was used, as shown in FIG. In accordance with the embodiment shown in FIGS. 1A, 1B, and 1C, a tensile compression test was performed under the conditions 2, 3, and 4 shown in Table 2 (provided that the condition 4 is tensile only), and the treatment shown in FIG. A stress-strain history curve representing the relationship between true stress and true strain was obtained. In addition, the contact part of the measurement part of the extensometer 2 and the side part of the test piece 1 was fixed with an adhesive (Aron Alpha).
(Example 2)
As Example 2, a test piece collected from a thin steel plate having a thickness of 1.6 mm and a TS = 980 MPa class in accordance with the dimension of level S5 in Table 1 is shown in FIGS. 1, 1A, 1B, and 1C. According to the embodiment as described, a tensile compression test is performed under the conditions 2, 3 and 4 shown in Table 2 (provided that the condition 4 is tensile only), and the relationship between the true stress and the true strain shown in FIG. A stress-strain history curve was obtained. In addition, the contact part of the measurement part of the extensometer 2 and the side part of the test piece 1 was fixed with an adhesive (Aron Alpha).

図4に示されるとおり、条件2、条件3(何れも此処では本発明例である)、条件4(参考例である)とも、ひずみ及び応力は精度よく計測できた。
尚、前記実施例1及び実施例2では、本発明例として引張・圧縮の負荷繰り返し試験の場合を示したが、これ以外の、圧縮・引張の負荷繰り返し試験の場合においても本発明を適用して同様の高精度のひずみ計測ができることを確認済みである。
(従来例)
従来例として、前記伸び計の使用に代えてひずみゲージを試験片に貼って、図1Cのベース治具3、4および座屈防止治具7を付帯していない従来の引張圧縮試験機を用いて実施例1及び実施例2と同様の条件の試験を試みた。その結果、条件2では2回目の引張(ひずみ+10%)負荷途上、条件3では1回目の引張(ひずみ+10%)負荷途上、条件4では1回のみの引張(ひずみ+15%)負荷途上で、何れもひずみゲージが壊れてひずみ計測ができなかった。また、条件2では圧縮(ひずみ−5%)負荷時に試験片が撓んで、試験片長手(L)方向に圧縮ひずみが正確に加わらなかった。
(実施例3)
実施例3として、引張圧縮試験装置を横置きで使用した場合を示す。水平方向に変位を生じるアクチュエータを利用し、図1Aに示すように引張圧縮試験装置を横置きにして引張圧縮試験を実施した。図1B(c)に示すように伸び計2の計測部と試験片1の側面部にすべりを生じ難くするため、接着剤(アロンアルファ)を用いて固定した。板厚1.4mm、TS=980MPa級の薄鋼板から表1の水準S5の寸法に合わせて採取した試験片を用い、図1、図1A、図1B、および図1Cに示したとおりの実施形態に従い、表2に示す条件1および条件4で引張圧縮試験を行い、図5に示す処の、真応力と真ひずみの関係を表す応力−ひずみ履歴曲線を得た。なお、実施例3においては、引張圧縮試験装置を横置きで使用したが、縦置きで使用する場合と同様のひずみ量での引張・圧縮繰り返し試験が可能である。
(比較例)
比較例として、図1Aに示すように引張圧縮試験装置を横置きで使用し、かつ図1B(c)の伸び計2の計測部と試験片1の側面部の接触部に接着剤を塗布するすべり対策を行なわずに引張圧縮試験を実施した。板厚1.4mm、TS=980MPa級の薄鋼板から表1の水準S5の寸法に合わせて採取した試験片を用い、図1、図1A、図1B、および図1Cに示したとおりの実施形態に従い、表2に示す条件1で引張試験を行った。比較例では、伸び計2の計測部と試験片1の側面部との間にすべりが生じたため、正しい試験結果が得られなかった。
As shown in FIG. 4, strain and stress were measured with high accuracy under both conditions 2 and 3 (both are examples of the present invention) and condition 4 (a reference example).
In Examples 1 and 2, the example of the present invention is the case of the tensile / compressive load repetition test. However, the present invention is applied to the case of other compression / tensile load repeated tests. It has been confirmed that the same highly accurate strain measurement can be performed.
(Conventional example)
As a conventional example, instead of using the extensometer, a conventional tension / compression tester in which a strain gauge is attached to a test piece and the base jigs 3 and 4 and the buckling prevention jig 7 of FIG. Then, a test under the same conditions as in Example 1 and Example 2 was attempted. As a result, in condition 2, during the second tensile (strain + 10%) loading, in condition 3, during the first tensile (strain + 10%) loading, and in condition 4, during the first tensile (strain + 15%) loading, In either case, the strain gauge was broken and strain measurement was not possible. In condition 2, the test piece was bent at the time of compression (strain-5%) load, and the compressive strain was not accurately applied in the longitudinal direction (L) of the test piece.
Example 3
As Example 3, the case where the tension / compression test apparatus is used horizontally is shown. Using an actuator that generates a displacement in the horizontal direction, a tensile / compression test was performed with the tensile / compression test apparatus placed horizontally as shown in FIG. 1A. As shown in FIG. 1B (c), in order to make it difficult for the measuring part of the extensometer 2 and the side part of the test piece 1 to slip, it was fixed using an adhesive (Aron Alpha). Embodiment as shown in FIG. 1, FIG. 1A, FIG. 1B, and FIG. 1C using the test piece extract | collected from the thin steel plate of thickness 1.4mm and TS = 980MPa class according to the dimension of the level S5 of Table 1. Thus, a tensile compression test was performed under the conditions 1 and 4 shown in Table 2 to obtain a stress-strain history curve representing the relationship between the true stress and the true strain shown in FIG. In Example 3, the tension / compression test apparatus was used in a horizontal position, but a tensile / compression repeated test with the same strain amount as that used in a vertical position is possible.
(Comparative example)
As a comparative example, as shown in FIG. 1A, a tensile / compression test apparatus is used in a horizontal position, and an adhesive is applied to the contact portion between the measuring portion of the extensometer 2 and the side portion of the test piece 1 in FIG. Tensile and compression tests were conducted without taking measures against slipping. Embodiment as shown in FIG. 1, FIG. 1A, FIG. 1B, and FIG. 1C using the test piece extract | collected from the thin steel plate of thickness 1.4mm and TS = 980MPa class according to the dimension of the level S5 of Table 1. Thus, a tensile test was performed under the condition 1 shown in Table 2. In the comparative example, since a slip occurred between the measurement part of the extensometer 2 and the side part of the test piece 1, a correct test result could not be obtained.

Figure 2015017927
Figure 2015017927

1 試験片
2 伸び計
3、4 座屈防止ベース治具
7 座屈防止治具
8 座屈押さえ
9A バネ
9 バネ付ボルト
10 弾性体
11 伸び計保持金具
100 試験治具
200 試験治具ベース
300 ボールベアリング
400 スライド軸
500 接地用治具
600 アクチュエータ連結用の軸
DESCRIPTION OF SYMBOLS 1 Test piece 2 Extensometer 3, 4 Buckling prevention base jig | tool 7 Buckling prevention jig | tool 8 Buckling presser 9A Spring 9 Bolt with spring 10 Elastic body 11 Extensometer holding metal fitting 100 Test jig 200 Test jig base 300 Ball Bearing 400 Slide shaft 500 Grounding jig 600 Actuator connection shaft

Claims (2)

試験片1の試験部に引張から圧縮へと、圧縮から引張へとの負荷繰り返し試験を行なう引張圧縮試験方法であって、
試験片1の試験部長さLと試験部幅Wの関係をL/W≧4.0とし、試験部肩RをR≦2.0mmとし、試験片1の側面に抵抗溶接にて接合した伸び計保持金具11に伸び計2を弾性体10で固定し、伸び計2の測定部と試験片1の側面の接触部に接着剤を塗布し、試験片1をその厚さ方向両側から座屈防止治具7と座屈防止ベース治具3、4とで挟み、バネ9Aで座屈に抵抗する力を発生させた状態下で、ストローク速度が一定となるようにアクチュエータを駆動し、伸び計の出力を目標値として、前記試験部に前記負荷繰り返し試験を施すことを特徴とする引張圧縮試験方法。
A tensile compression test method for performing a load repetition test from tension to compression and from compression to tension on the test portion of the test piece 1,
Elongation in which the relationship between the test part length L and the test part width W of the test piece 1 is L / W ≧ 4.0, the test part shoulder R is R ≦ 2.0 mm, and is joined to the side surface of the test piece 1 by resistance welding. The extensometer 2 is fixed to the gauge holder 11 with the elastic body 10, the adhesive is applied to the contact part between the measurement part of the extensometer 2 and the side surface of the test piece 1, and the test piece 1 is buckled from both sides in the thickness direction. The extensometer is driven by the actuator so that the stroke speed is constant under the condition that the force between the prevention jig 7 and the buckling prevention base jigs 3 and 4 is generated and the spring 9A resists buckling. A tensile and compression test method, wherein the load repetition test is performed on the test section with the output of the target as a target value.
試験片1の試験部に引張から圧縮へと、圧縮から引張へとの負荷繰り返し試験を行なう引張圧縮試験装置であって、
試験片1の試験部長さLと試験部幅Wの関係をL/W≧4.0とし、試験部肩RをR≦2.0mmとし、試験片1の側面に抵抗溶接にて接合した伸び計保持金具11に伸び計2を弾性体10で固定し、伸び計2の測定部と試験片1の側面の接触部に接着剤を塗布し、試験片1をその厚さ方向両側から座屈防止治具7と座屈防止ベース治具3、4とで挟み、バネ9Aで座屈に抵抗する力を発生させる構成とされた試験治具100を、試験治具ベース200のボールベアリング300付きスライド軸400によるスライド機構である高剛性スライド機構に組み込んでなり、高剛性スライド機構全体を接地用治具500に組み付け、スライド軸を水平方向となしうることを特徴とする引張圧縮試験装置。
A tensile and compression test apparatus for performing a load repetition test from tension to compression and from compression to tension on the test portion of the test piece 1,
Elongation in which the relationship between the test part length L and the test part width W of the test piece 1 is L / W ≧ 4.0, the test part shoulder R is R ≦ 2.0 mm, and is joined to the side surface of the test piece 1 by resistance welding. The extensometer 2 is fixed to the gauge holder 11 with the elastic body 10, the adhesive is applied to the contact part between the measurement part of the extensometer 2 and the side surface of the test piece 1, and the test piece 1 is buckled from both sides in the thickness direction. The test jig 100 that is sandwiched between the prevention jig 7 and the buckling prevention base jigs 3 and 4 and generates a force that resists buckling by the spring 9A is attached to the ball bearing 300 of the test jig base 200. A tensile / compression test apparatus characterized in that it is incorporated in a high-rigidity slide mechanism that is a slide mechanism using a slide shaft 400, the entire high-rigidity slide mechanism is assembled in a grounding jig 500, and the slide shaft can be set in the horizontal direction.
JP2013146106A 2013-07-12 2013-07-12 Tension compression test method and apparatus Active JP5991278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013146106A JP5991278B2 (en) 2013-07-12 2013-07-12 Tension compression test method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013146106A JP5991278B2 (en) 2013-07-12 2013-07-12 Tension compression test method and apparatus

Publications (2)

Publication Number Publication Date
JP2015017927A true JP2015017927A (en) 2015-01-29
JP5991278B2 JP5991278B2 (en) 2016-09-14

Family

ID=52439043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013146106A Active JP5991278B2 (en) 2013-07-12 2013-07-12 Tension compression test method and apparatus

Country Status (1)

Country Link
JP (1) JP5991278B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535417A (en) * 2014-12-01 2015-04-22 芜湖恒美电热器具有限公司 Apparatus for detecting welding performance of steel pipe
CN109060518A (en) * 2018-10-29 2018-12-21 常熟正昊电子科技有限公司 A kind of tensile test fixture of long test specimen
CN110954404A (en) * 2019-12-26 2020-04-03 哈尔滨工业大学 Buckling-restrained device and method suitable for plate-shaped test piece compression test
CN111678793A (en) * 2020-06-18 2020-09-18 江苏方测建筑工程技术有限公司 Assembled building quality detection method
CN111751229A (en) * 2020-06-23 2020-10-09 武汉钢铁有限公司 Metal sheet constant amplitude circulation fatigue performance test control method
CN112763318A (en) * 2020-12-29 2021-05-07 中国航空工业集团公司西安飞机设计研究所 Metal material residual stress simulation test device and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596286B (en) * 2016-12-27 2019-07-02 中国航发南方工业有限公司 High temperature axial strain fatigue test spends lateral force stably measured device
CN112129632B (en) * 2020-09-24 2021-11-09 东北大学 Method for calibrating creep damage and fracture surface of rock by using high-density resistivity
JP7211461B1 (en) 2021-09-03 2023-01-24 Jfeスチール株式会社 Method for Predicting Tension-Compression Reversal Load Behavior of Metal Materials

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102851U (en) * 1984-12-10 1986-06-30
JPS6381244A (en) * 1986-09-24 1988-04-12 Fuji Electric Co Ltd Fatigue testing method
JPS63168533A (en) * 1986-12-22 1988-07-12 アトミツク エナジー オブ カナダ リミテツド Extensometer
JPS63229339A (en) * 1987-03-18 1988-09-26 Toshiba Corp Method for measuring stress magnifying coefficient and apparatus for monitoring residual life of cracked member
JPH11108816A (en) * 1997-09-30 1999-04-23 Ube Ind Ltd Tension testing device for resin
JP2001208662A (en) * 2000-01-26 2001-08-03 Saginomiya Seisakusho Inc Control method for material testing device and material testing device
JP2001330541A (en) * 2000-05-18 2001-11-30 Hitachi Ltd Tensile tester
JP2002107278A (en) * 2000-09-29 2002-04-10 Shimadzu Corp Material testing device
JP2009257885A (en) * 2008-04-15 2009-11-05 Cem Kenkyusho:Kk Test piece holding apparatus
JP2010216883A (en) * 2009-03-13 2010-09-30 Ihi Corp Method for leading out and evaluating non-linear fracture mechanics parameter
JP2012083115A (en) * 2010-10-07 2012-04-26 Hitachi-Ge Nuclear Energy Ltd Stress corrosion cracking test method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102851U (en) * 1984-12-10 1986-06-30
JPS6381244A (en) * 1986-09-24 1988-04-12 Fuji Electric Co Ltd Fatigue testing method
JPS63168533A (en) * 1986-12-22 1988-07-12 アトミツク エナジー オブ カナダ リミテツド Extensometer
JPS63229339A (en) * 1987-03-18 1988-09-26 Toshiba Corp Method for measuring stress magnifying coefficient and apparatus for monitoring residual life of cracked member
JPH11108816A (en) * 1997-09-30 1999-04-23 Ube Ind Ltd Tension testing device for resin
JP2001208662A (en) * 2000-01-26 2001-08-03 Saginomiya Seisakusho Inc Control method for material testing device and material testing device
JP2001330541A (en) * 2000-05-18 2001-11-30 Hitachi Ltd Tensile tester
JP2002107278A (en) * 2000-09-29 2002-04-10 Shimadzu Corp Material testing device
JP2009257885A (en) * 2008-04-15 2009-11-05 Cem Kenkyusho:Kk Test piece holding apparatus
JP2010216883A (en) * 2009-03-13 2010-09-30 Ihi Corp Method for leading out and evaluating non-linear fracture mechanics parameter
JP2012083115A (en) * 2010-10-07 2012-04-26 Hitachi-Ge Nuclear Energy Ltd Stress corrosion cracking test method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535417A (en) * 2014-12-01 2015-04-22 芜湖恒美电热器具有限公司 Apparatus for detecting welding performance of steel pipe
CN109060518A (en) * 2018-10-29 2018-12-21 常熟正昊电子科技有限公司 A kind of tensile test fixture of long test specimen
CN110954404A (en) * 2019-12-26 2020-04-03 哈尔滨工业大学 Buckling-restrained device and method suitable for plate-shaped test piece compression test
CN110954404B (en) * 2019-12-26 2021-06-25 哈尔滨工业大学 Buckling-restrained device and method suitable for plate-shaped test piece compression test
CN111678793A (en) * 2020-06-18 2020-09-18 江苏方测建筑工程技术有限公司 Assembled building quality detection method
CN111751229A (en) * 2020-06-23 2020-10-09 武汉钢铁有限公司 Metal sheet constant amplitude circulation fatigue performance test control method
CN111751229B (en) * 2020-06-23 2023-11-10 武汉钢铁有限公司 Method for testing and controlling constant-amplitude cyclic fatigue performance of metal sheet
CN112763318A (en) * 2020-12-29 2021-05-07 中国航空工业集团公司西安飞机设计研究所 Metal material residual stress simulation test device and method
CN112763318B (en) * 2020-12-29 2024-04-09 中国航空工业集团公司西安飞机设计研究所 Metal material residual stress simulation test device and method

Also Published As

Publication number Publication date
JP5991278B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5991278B2 (en) Tension compression test method and apparatus
JP5991055B2 (en) Tension compression test method and apparatus
JP2016003951A (en) Method and device for tension-compression test
EP2153916B1 (en) Thin plate press molding device and thin plate press molding method
Sato et al. Effect of material properties of advanced high strength steels on bending crash performance of hat-shaped structure
JP2013116492A5 (en)
JP2014228290A (en) Biaxial tensile testing method
Bae et al. Tension/compression test of auto-body steel sheets with the variation of the pre-strain and the strain rate
JP2018036191A (en) Fatigue testing device and fatigue testing method
Lăzărescu et al. Determination of material parameters of sheet metals using the hydraulic bulge test
WO2010035883A1 (en) Method for forming deformed cross-section and formed article of quadrilateral cross-section exhibiting excellent spot weldability
JP2009257885A (en) Test piece holding apparatus
Wagner et al. Experimental issues in the instrumented 3 point bending VDA238-100 test
Kim et al. Asymmetric hardening behavior of az31b magnesium alloy sheet with large strain at various strain rates
JP6246074B2 (en) Tensile compression test method for high strength steel sheet
Maeda et al. Experimental verification of the tension-compression asymmetry of the flow stresses of a high strength steel sheet
CN106404553B (en) Three-point bending sample ductile fracture toughness JIC auxiliary test device and test method
CN104089840A (en) Testing device for friction wear property of automobile stamping die material
Reddy et al. Optimization of the forming parameters in U-bending for punch force and springback using Taguchi method
Deole et al. Analysis of fracture in sheet bending and roll forming
CN109716100B (en) Material sample and method for determining the geometry of a sample
Pepelnjak et al. Computer-assisted engineering determination of the formability limit for thin sheet metals by a modified Marciniak method
JP6874803B2 (en) Gnawing resistance evaluation method
Roemer et al. Design of a continuous-bending-under-tension machine and initial experiments on Al-6022-T4
EP4112201A1 (en) Press forming method and shape evaluation method for press formed article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5991278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250