JP2015017823A - Hot long object length measurement method - Google Patents

Hot long object length measurement method Download PDF

Info

Publication number
JP2015017823A
JP2015017823A JP2013143393A JP2013143393A JP2015017823A JP 2015017823 A JP2015017823 A JP 2015017823A JP 2013143393 A JP2013143393 A JP 2013143393A JP 2013143393 A JP2013143393 A JP 2013143393A JP 2015017823 A JP2015017823 A JP 2015017823A
Authority
JP
Japan
Prior art keywords
length
hot
long object
exposure time
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013143393A
Other languages
Japanese (ja)
Inventor
和宏 三上
Kazuhiro Mikami
和宏 三上
児玉 俊文
Toshibumi Kodama
俊文 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013143393A priority Critical patent/JP2015017823A/en
Publication of JP2015017823A publication Critical patent/JP2015017823A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a length measurement method capable of preventing a detection error of an end position which often occurs in length measurement of a hot long object by image processing, and improving accuracy of length measurement.SOLUTION: A hot long object (steel pipe 1) is imaged by a camera 4 as a subject, then based on an end position in a longitudinal direction of luminance profile derived from luminance distribution information of image data, the length of the hot long object is measured by image processing for calculating the length. Exposure time of the camera is set to proper exposure time derived from correlation information of predetermined subject temperature-proper exposure time according to the subject temperature of the long object.

Description

本発明は、熱間の長尺物体の測長方法に関し、特に、熱間の鋼管、棒鋼、形鋼等の長尺材の撮像データに画像処理を施して長さを算出する、熱間長尺物体の測長方法に関する。   The present invention relates to a method for measuring a hot long object, and in particular, calculates a length by performing image processing on imaged data of a long material such as a hot steel pipe, steel bar, and shaped steel. The present invention relates to a method for measuring a length object.

画像処理を用いた熱間の長尺物体例えば鋼管の測長方法に関する従来技術として以下のものがある。
<1> 測長すべき熱間の長尺物体の両端部を複数台のカメラで撮像し、その取り込んだ画像の画像処理から得られたデータと、カメラ間の離間距離データとから前記長尺物体を測長する方法(特許文献1)。
<2> 熱間の長尺物体の一端は非接触式の端センサにより端検出し、他端部のみカメラで画像を取り込み、その画像処理結果とセンサ-カメラ間の離間距離データから前記長尺物体を測長する方法(特許文献2,3)。
<3> 熱間の長尺物体の後端部のヤリ形状による測定誤差を低減させるべく前記端センサを後端検出用、先端検出用に複数台ずつ配置し、且つ1台のカメラを配置して、これらを用いて測長する方式(特許文献4)。
As a conventional technique relating to a method for measuring a long hot object such as a steel pipe using image processing, there is the following.
<1> Both ends of a hot long object to be measured are imaged with a plurality of cameras, and the long image is obtained from data obtained from image processing of the captured image and separation distance data between the cameras. A method for measuring an object (Patent Document 1).
<2> One end of a hot object is detected by a non-contact type end sensor, an image is captured by the camera only at the other end, and the long image is obtained from the image processing result and sensor-camera separation distance data. A method for measuring an object (Patent Documents 2 and 3).
<3> A plurality of the end sensors are arranged for detecting the rear end and for detecting the front end, and one camera is arranged in order to reduce a measurement error due to the shape of the file at the rear end of the hot long object. A method of measuring the length using these (Patent Document 4).

特開平04-184205号公報Japanese Patent Laid-Open No. 04-184205 特開昭57-022507号公報Japanese Patent Laid-Open No. 57-022507 特開平06-201330号公報Japanese Patent Laid-Open No. 06-201330 特開平10-082617号公報Japanese Patent Laid-Open No. 10-082617

前述の従来技術によると、測長精度を確保するには、前記カメラを複数個、個別に設置して用いるか、もしくは前記カメラを1個及び前記端センサを複数個、個別に設置して用いるか、の二者択一または二者組み合わせを採るしかないが、何れを採るにしても前記カメラや前記端センサの設置個数が多くなり、設備費が嵩むと云う難点がある。
この難点を克服する為に、本発明者らは、1個の端センサ(例えばHMD)と1個のカメラ(CCDカメラ)とで熱間の長尺物体の全長に亘って輝度プロファイルを一括撮像し、これを画像処理して長さを算出する手段を、特願2012−200379で提案した。
According to the above-described prior art, in order to ensure the measurement accuracy, a plurality of the cameras are individually installed and used, or one camera and a plurality of the end sensors are individually installed. However, there is a problem that the installation cost increases because the number of cameras and the end sensors is increased.
In order to overcome this difficulty, the present inventors collectively imaged the luminance profile over the entire length of a hot object with one end sensor (for example, HMD) and one camera (CCD camera). In Japanese Patent Application No. 2012-200379, a means for image processing to calculate the length was proposed.

ところで、前記提案した手段及び、先述の従来技術のうちカメラを使用する測長技術において、熱間の長尺物体例えば鋼管の輝度プロファイルから先端位置、後端位置の何れか一方又は両方を画像処理で同定(検出)するには、基本的に、CCDで受光する輝度レベルに管体領域判別条件を適用して輝度プロファイルを導出し、該輝度プロファイルの管端位置に基づき長さを算出する。斯かる画像処理による測長方法では、管端位置の検出精度が、測長結果に大きく影響するので、管端位置を正しく同定(検出)することが重要である。例えば同一長さに圧延した熱間鋼管であるにもかかわらず圧延後の状態によって該鋼管の管端位置の検出結果が大きく変動するようなことがあってはならない。   By the way, in the length measurement technique using a camera among the above-mentioned proposed means and the prior art described above, one or both of the front end position and the rear end position is processed from the luminance profile of a hot long object such as a steel pipe. In order to identify (detect), basically, a luminance profile is derived by applying a tube region discrimination condition to the luminance level received by the CCD, and the length is calculated based on the tube end position of the luminance profile. In such a length measurement method using image processing, the accuracy of tube end position detection greatly affects the length measurement result, so it is important to correctly identify (detect) the tube end position. For example, the detection result of the pipe end position of the steel pipe should not vary greatly depending on the state after the rolling even though it is a hot steel pipe rolled to the same length.

然るに、実際の圧延後の熱間鋼管(特に、長尺材と呼ばれる、長さが例えば7000〜8000mmと比較的長い鋼管)では長手方向の温度分布が様々なパターンを呈する。これは熱間鋼管の種々の製品仕様(材質、外径、肉厚)により加熱圧延条件が変化するためである。
とりわけ、肉厚が薄い(例えば、肉厚=10〜20mm)長尺材に関しては、圧延後搬送中の空冷時間が比較的長い先端部において、胴体部、後端部よりも表面温度低下が著しく大きくなる(胴体部、後端部に比べ、例えば最大で50℃程度余計に冷える)、所謂先端冷え現象が起り易い。尚、熱間圧延後の長尺物体において、先端部、後端部とは夫々先端、後端からロール投影接触弧長の2倍程度の長さ領域のことであり、胴体部とは前記先端部、後端部を除いた残りの長さ領域のことである。
However, in the hot-rolled steel pipe after actual rolling (in particular, a long steel pipe having a relatively long length of, for example, 7000 to 8000 mm), the temperature distribution in the longitudinal direction exhibits various patterns. This is because the hot rolling conditions vary depending on various product specifications (material, outer diameter, thickness) of the hot steel pipe.
In particular, for long materials having a thin wall thickness (for example, wall thickness = 10 to 20 mm), the surface temperature is significantly lower at the front end than at the body and rear end at the front end where the air cooling time during conveyance after rolling is relatively long. A so-called cooling phenomenon at the front end is likely to occur which becomes larger (compared to the body part and the rear end part, for example, by about 50 ° C.). Note that, in a long object after hot rolling, the front end portion and the rear end portion are the front end and the length region about twice the roll projected contact arc length from the rear end, and the body portion is the front end. It is the remaining length area excluding the rear and rear end portions.

前記先端冷えが発生すると、先端部の輝度レベルの低下が大きく、管体領域判別条件に当てはまる部位が、先端以外の長さ部位に位置するようになり、斯かる先端以外の部位を先端位置と同定してしまうという誤検出が生じる場合がある。この場合、実際の長さよりかなり短い測長結果となり、後工程への誤情報伝達による操業トラブルを招く問題があるが、このような問題は、従来全く考慮されていない。   When the tip cools down, the brightness level at the tip is greatly reduced, and the part that satisfies the tube region determination condition is located at a part other than the tip, and the part other than the tip is defined as the tip position. There is a case where a false detection of identification occurs. In this case, the length measurement result is considerably shorter than the actual length, and there is a problem of causing an operation trouble due to erroneous information transmission to the subsequent process. However, such a problem has not been considered at all.

以上の様に、従来、熱間長尺物体の輝度レベルの画像処理による測長技術では、熱間長尺物体の温度低下に伴う輝度レベル低下により端位置を誤検出し、実物体長さから外れた測長結果となる場合が発生すると云う課題があった。   As described above, in the conventional length measurement technology based on the image processing of the brightness level of a hot long object, the edge position is erroneously detected due to the decrease in the brightness level accompanying the temperature decrease of the hot long object, and the actual object length deviates. There is a problem that the case where the measurement result is obtained may occur.

本発明者らは前記課題を解決する為に鋭意検討及び実験を重ね、次の知見を得た。
(i) 管体領域判別条件のうち輝度レベルの閾値を下げ過ぎると輝度ノイズが大きくなる等により、輝度変化率が正で最大、負で最小になる各位置として検出される管端の検出精度が悪化するから、或る輝度レベル以上の閾値は確保されねばならない。
(ii) 前記先端冷えによる輝度レベル低下は、カメラの露光時間調整或いはゲイン調整により回避できると考えられる。但しゲイン調整はノイズ発生の要因となるから、カメラの露光時間を調整する方法によるのが望ましい。
(iii) 前記露光時間調整では、予め露光時間を一律に長時間側に設定すれば、先端冷えの悪影響を無視できる程度に小さくしうるのであるが、その反面、輝度のハレーションが発生し、先端部、後端部が膨らんだ(ぼやけた)輝度画像となり、その結果、実鋼管長より長い測長結果になりがちとなる。
(iv) 胴体部との温度差で最大50℃程度の先端冷えがあっても、長さ方向の輝度分布から算出した端位置が実物体の端位置と整合する様な輝度分布情報を有する撮像データが得られるところのカメラの適正露光時間が、熱間長尺物体の温度に応じて実在する。従って、カメラの露光時間を、熱間長尺物体の温度に応じて、予め実験等で求めておいた前記適正露光時間に設定する事が有効な解決策である。これにより、端位置の誤検出を有効に防止でき、測長精度が向上する。
In order to solve the above-mentioned problems, the present inventors have conducted extensive studies and experiments and obtained the following knowledge.
(I) Detection accuracy of the tube end detected as each position where the luminance change rate becomes positive maximum and negative minimum because the luminance noise becomes large if the threshold of the luminance level is excessively lowered among the tube region determination conditions. Therefore, a threshold value exceeding a certain luminance level must be secured.
(Ii) It is considered that the decrease in the luminance level due to the cooling of the tip can be avoided by adjusting the exposure time or gain of the camera. However, since gain adjustment causes noise, it is desirable to use a method of adjusting the exposure time of the camera.
(Iii) In the exposure time adjustment, if the exposure time is uniformly set to a long time side in advance, the adverse effect of the cooling of the tip can be reduced to a negligible level. As a result, the measurement result tends to be longer than the actual steel pipe length.
(Iv) Imaging having luminance distribution information such that the end position calculated from the luminance distribution in the length direction matches the end position of the real object even if there is a maximum cooling of about 50 ° C. due to the temperature difference from the body part. The appropriate exposure time of the camera from which data is obtained actually exists according to the temperature of the hot long object. Therefore, it is an effective solution to set the exposure time of the camera to the appropriate exposure time obtained in advance by experiments or the like according to the temperature of the hot long object. Thereby, erroneous detection of the end position can be effectively prevented, and the length measurement accuracy is improved.

前記知見に基づいてなされた本発明は以下の通りである。
(1) 熱間の長尺物体を被写体としてカメラで撮像し、該撮像データの輝度分布情報から導出した輝度プロファイルの長さ方向端位置に基づき長さを算出する画像処理による熱間長尺物体の測長方法において、前記カメラの露光時間を、前記長尺物体の被写体温度に応じて、予め定めたところの被写体温度対適正露光時間の相関情報から導出した適正露光時間に設定することを特徴とする熱間長尺物体の測長方法。
(2) 前記被写体が熱間圧延の被圧延材であり、前記被写体温度は、前記熱間圧延の直前時点の被圧延材の実測表面温度と前記熱間圧延の圧延条件とから伝熱計算により算出した、前記撮像の時点での前記被圧延材の胴体部の計算表面温度であることを特徴とする前記(1)に記載の熱間長尺物体の測長方法。
The present invention made based on the above findings is as follows.
(1) A hot long object by image processing in which a hot long object is imaged with a camera as a subject and the length is calculated based on the end position in the length direction of the luminance profile derived from the luminance distribution information of the imaged data In the length measuring method, the exposure time of the camera is set to an appropriate exposure time derived from a predetermined correlation information between the object temperature and the appropriate exposure time according to the object temperature of the long object. Measuring method for hot long objects.
(2) The subject is a material to be rolled by hot rolling, and the temperature of the subject is calculated by heat transfer from the measured surface temperature of the material to be rolled immediately before the hot rolling and the rolling conditions of the hot rolling. The method for measuring a hot long object according to (1), wherein the calculated surface temperature of the body portion of the material to be rolled at the time of imaging is calculated.

本発明によれば、熱間長尺物体の画像処理による測長において発生しがちな端位置の誤検出を有効に防止できて測長精度が向上する。   ADVANTAGE OF THE INVENTION According to this invention, the erroneous detection of the end position which tends to generate | occur | produce in the length measurement by the image process of a hot elongate object can be prevented effectively, and the length measurement precision improves.

本発明の実施形態を例示する概略図である。It is the schematic which illustrates embodiment of this invention. 輝度プロファイルの導出方法を示す概略図である。It is the schematic which shows the derivation method of a brightness | luminance profile. 被写体温度と適正露光時間との相関情報を示すテーブル図である。It is a table figure which shows the correlation information of object temperature and appropriate exposure time.

図1は、測長対象かつ被写体である熱間の長尺物体として、鋼製の丸ビレット(図示せず)を加熱炉(図示せず)で例えば鋼種及びサイズ等に応じて1000〜1300℃程度に加熱し次いでピアサーミル2で穿孔圧延して最大圧延長が例えば約8mになるホローシェルとなす穿孔圧延工程においてピアサーミル2の出側を圧延方向3に走行中の前記ホローシェルである鋼管1を用いた場合を例に挙げて、本発明の実施形態を例示する概略図である。   FIG. 1 shows a steel long billet (not shown) as a long object to be measured and a subject in a heating furnace (not shown), for example, 1000 to 1300 ° C. according to the steel type and size. The steel pipe 1 that is the hollow shell running in the rolling direction 3 on the exit side of the piercer mill 2 was used in a piercing and rolling process in which the pierced rolling process was performed by piercing and rolling the piercer mill 2 to obtain a hollow shell having a maximum rolling length of, for example, about 8 m. It is the schematic which illustrates embodiment of this invention, giving a case as an example.

鋼管1はカメラ4で一度に長さ方向全域を撮像される。カメラ4は、CCDを撮像素子とした視野角が最大で約80度のカメラ視野5を有するエリアカメラを鋼管1の側面視での全体が前記視野内に収まる適宜の位置に設置したものである。カメラ4の撮像トリガ信号には、ピアサーミル2の出側の適宜の位置に設置したHMD(熱塊検出器)6が鋼管1の後端を検出して出力する信号であるHMD立下がり信号を用いる。該HMD立下がり信号はKPEV(計装用)ケーブル13、シーケンサー8、光ケーブル15、演算パソコン10、画像ボード12、光ケーブル16、画像ボード11を順次経由してカメラ4へと伝送される。カメラ4で撮像して得た撮像データは、カメラ視野5内の輝度分布情報を有し、画像ボード11、光ケーブル16、画像ボード12を順次経由して演算パソコン10へと伝送される。   The steel pipe 1 is imaged by the camera 4 over the entire length direction. In the camera 4, an area camera having a camera field of view 5 having a maximum viewing angle of about 80 degrees using a CCD as an image sensor is installed at an appropriate position so that the whole of the steel pipe 1 in a side view is within the field of view. . As an imaging trigger signal of the camera 4, an HMD falling signal, which is a signal output by detecting the rear end of the steel pipe 1 by an HMD (hot mass detector) 6 installed at an appropriate position on the exit side of the piercer mill 2, is used. . The HMD falling signal is transmitted to the camera 4 via the KPEV (instrumentation) cable 13, the sequencer 8, the optical cable 15, the arithmetic personal computer 10, the image board 12, the optical cable 16, and the image board 11 in this order. Imaging data obtained by imaging with the camera 4 has luminance distribution information in the camera visual field 5 and is transmitted to the computing personal computer 10 via the image board 11, the optical cable 16, and the image board 12 in order.

演算パソコン10は、前記撮像データの輝度分布情報から導出した輝度プロファイルの長さ方向端位置に基づき長さを算出する画像処理を行う。この画像処理について、前記先端冷えがない正常な場合の図2(a)を参照して説明する。前記輝度分布情報は、演算パソコン10のディスプレイ画面内の各画素の輝度レベルを与えるものである。前記ディスプレイ画面内の各画素は、画面横方向であるX方向と画面縦方向であるY方向とが夫々、鋼管長さ方向と鋼管径方向とに対応し、画面中心がほぼ鋼管長さ方向中央部に対応するように設定したXY座標系の座標点で特定される。そこで、まず輝度に関する閾値を用いたY方向スキャンにより、画面中心のX座標点における各Y座標点の輝度レベルであるY輝度が前記閾値以上となるY座標領域を特定Y領域として算出する。次に輝度微分値に関する判定基準を用いたX方向内の圧延方向3とは逆向きのスキャンにより、前記特定Y領域の中心のY座標点における各X座標点の輝度レベルであるX輝度の輝度微分値が正で最大となるX座標点(X0点とする)と前記輝度微分値が負で最小となるX座標点(X1点とする)とを算出し、X0点からX1点までのX座標領域を特定X領域として算出する。そして、特定X領域と特定Y領域とがなす矩形領域を輝度プロファイル20として算出し、輝度プロファイル20のX方向両端点であるX0点、X1点夫々のX座標値X0、X1、及び実寸換算係数K(このKは、画面X方向単位長さ当たりの実長さのことであり、予め設定される)を用い、L=K×|X0−X1|、なる式の値Lを鋼管長さとして算出する。前記先端冷えがない正常な場合は、図2(a)の如く、X0点、X1点が夫々実先端LE、実後端TEにほぼ整合するから、鋼管長さLもほぼ正しく算出される。   The computing personal computer 10 performs image processing for calculating the length based on the end position in the length direction of the luminance profile derived from the luminance distribution information of the imaging data. This image processing will be described with reference to FIG. 2 (a) in a normal case where the tip is not cooled. The luminance distribution information gives the luminance level of each pixel in the display screen of the computing personal computer 10. For each pixel in the display screen, the X direction which is the horizontal direction of the screen and the Y direction which is the vertical direction of the screen correspond to the steel pipe length direction and the steel pipe radial direction, respectively, and the screen center is substantially the center in the steel pipe length direction. It is specified by the coordinate point of the XY coordinate system set so as to correspond to the part. Therefore, first, a Y coordinate area where the Y luminance, which is the luminance level of each Y coordinate point at the X coordinate point at the center of the screen, is equal to or greater than the threshold is calculated as a specific Y region by Y-direction scanning using a threshold relating to luminance. Next, the brightness of X brightness, which is the brightness level of each X coordinate point at the Y coordinate point at the center of the specific Y region, is scanned by scanning in the direction opposite to the rolling direction 3 in the X direction using the criterion for the brightness differential value. An X coordinate point where the differential value is positive and maximum (referred to as X0 point) and an X coordinate point where the differential luminance value is negative and minimum (referred to as X1 point) are calculated, and X from the X0 point to the X1 point is calculated. The coordinate area is calculated as the specific X area. Then, a rectangular area formed by the specific X area and the specific Y area is calculated as the luminance profile 20, and the X coordinate values X0 and X1 of the X0 point and the X1 point that are the X direction end points of the luminance profile 20 and the actual size conversion coefficient are calculated. K (where K is the actual length per unit length in the screen X direction and is preset), and the value L of the equation L = K × | X0−X1 | calculate. In the normal case where the tip is not cooled, as shown in FIG. 2 (a), the point X0 and the point X1 are substantially aligned with the actual tip LE and the actual rear end TE, respectively. Therefore, the steel pipe length L is also calculated almost correctly.

ところで従来はカメラ4の露光時間(シャッタスピードと同義)は定数を設定(一定値を設定)していたが、そこでは、前記先端冷えが発生すると、図2(b)のように、X輝度が先端側で立上がりを示すX方向範囲がかなり広く、かつ当該X方向範囲内の圧延方向3の下流側で立上がりの勾配が最大を示す輝度分布情報となる場合が発生し、その場合、X0点が実先端LEから胴体部側に偏って算出され、鋼管長さLは実長さよりもかなり短く算出される。かといって、鋼管温度によらず一律に露光時間を長くするのでは、後端側でハレーションを生じ、実長さより長い測長結果となりがちである。   Conventionally, the exposure time (synonymous with shutter speed) of the camera 4 has been set to a constant (set to a constant value). However, when the leading edge is cooled, the X brightness as shown in FIG. In the X direction range where the leading edge is rising is considerably wide, and there is a case where the brightness distribution information indicates the maximum rising slope on the downstream side in the rolling direction 3 within the X direction range. Is calculated biased from the actual tip LE toward the body portion, and the steel pipe length L is calculated to be considerably shorter than the actual length. However, if the exposure time is uniformly increased regardless of the steel pipe temperature, halation is likely to occur on the rear end side, and the measurement result tends to be longer than the actual length.

これに対し、本発明では、前記知見(iv)に基づき、カメラ4の露光時間を、予め実験等で定めたところの被写体温度対適正露光時間の相関情報から導出した適正露光時間に設定する。これにより、先端冷えが発生した場合でも、先端側、後端側とも、正常な場合の図2(a)と同様、X0点、X1点が夫々実先端LE、実後端TEにほぼ整合するから、鋼管長さLもほぼ正しく算出される。   On the other hand, in the present invention, based on the knowledge (iv), the exposure time of the camera 4 is set to the appropriate exposure time derived from the correlation information between the subject temperature and the appropriate exposure time determined in advance through experiments or the like. As a result, even when the leading edge cools down, both the leading end side and the trailing end side are substantially aligned with the actual leading end LE and the actual trailing end TE, respectively, as in the normal case of FIG. 2A. Therefore, the steel pipe length L is also calculated almost correctly.

前記相関情報は数式で与えてもよく、又、図1の実施形態で採用したところの、図3に示す様式のテーブルで与えてもよい。このテーブルでは被写体温度が1000℃未満の温度域では適正露光時間は最大値(例えば3.7ms)とされ、1000℃以上1300℃以下の温度域では適正露光時間は温度上昇につれて階段状に減少し1300℃で最小値(例えば3.1ms)に達するようにされている。尚、1000℃以上での温度分級幅は20℃としているが、これに限定されるものではない。又、何れかの隣り合う温度分級同士で適正露光時間が同じ値となる場合があってもよい。前記テーブルは演算パソコン10に格納してある。   The correlation information may be given by a mathematical expression, or may be given by a table having the format shown in FIG. 3 adopted in the embodiment of FIG. In this table, the appropriate exposure time is the maximum value (for example, 3.7 ms) in the temperature range where the subject temperature is less than 1000 ° C., and the appropriate exposure time decreases stepwise as the temperature rises in the temperature range of 1000 ° C. to 1300 ° C. The minimum value (for example, 3.1 ms) is reached at 1300 ° C. In addition, although the temperature classification width | variety above 1000 degreeC is 20 degreeC, it is not limited to this. In addition, the appropriate exposure time may be the same value in any adjacent temperature classification. The table is stored in the computing personal computer 10.

一方、図1において、ピアサーミル2の入側には穿孔圧延直前時点の被圧延材(前記丸ビレット)の表面温度を実測するために、例えば放射温度計からなる非接触式温度計7が設置してあり、これにより得られた実測表面温度データは温度計専用ケーブル14、シーケンサー8、光ケーブル15を順次経由して演算パソコン10へと伝送される。演算パソコン10は、前記伝送されてきた実測表面温度データと、上位コンピュータ(図示せず)から別途伝送されてきた圧延条件データとから伝熱計算により、前記撮像の時点での鋼管1の胴体部の計算表面温度を算出し、該算出した計算表面温度を前記テーブルの被写体温度と照合して適正露光時間を導出する演算機能を有しており、該演算機能により導出された適正露光時間は、画像ボード12、光ケーブル16、画像ボード11を順次経由してカメラ4へと伝送され、カメラ4の露光時間として設定される。   On the other hand, in FIG. 1, a non-contact type thermometer 7 composed of, for example, a radiation thermometer is installed on the entrance side of the piercer mill 2 in order to actually measure the surface temperature of the material to be rolled (round billet) immediately before piercing rolling. The actually measured surface temperature data thus obtained is transmitted to the computing personal computer 10 via the thermometer dedicated cable 14, the sequencer 8, and the optical cable 15 in this order. The calculation personal computer 10 calculates the body part of the steel pipe 1 at the time of imaging by heat transfer calculation from the transmitted measured surface temperature data and the rolling condition data separately transmitted from a host computer (not shown). The calculated surface temperature is calculated, and the calculated calculated surface temperature is collated with the subject temperature in the table to derive an appropriate exposure time, and the appropriate exposure time derived by the calculated function is The image is transmitted to the camera 4 via the image board 12, the optical cable 16, and the image board 11 in order, and is set as the exposure time of the camera 4.

尚、上述の実施形態は、長尺物体が鋼管であるケースでの実施形態であるが、本発明はこの場合に限定されるものではなく、長尺物体が他の鋼材例えば形鋼等であるケースでも適用できる事は云うまでも無い。   In addition, although the above-mentioned embodiment is an embodiment in the case where the long object is a steel pipe, the present invention is not limited to this case, and the long object is another steel material such as a shape steel. Needless to say, it can be applied to cases.

1000〜1300℃に加熱した丸ビレットをピアサーミルにて穿孔圧延してホローシェル(外径=138.5〜223.5mm、肉厚=10〜50mm、長さ=最大8m)となす継目無鋼管生産ラインにおいて、図1、図2、図3で述べた実施形態で本発明を実施した。カメラ4には東芝テリー製CSC12M25BMP19を使用した。
その結果、カメラ4の露光時間を一定値で与えていた従来では、薄肉長尺材の同一ロット圧延品(目標肉厚=10〜20mm、目標外径=138.5〜150.0mm、目標長さ=7〜8mで、加熱温度は1050〜1250℃の間で5水準を選択)の計1000本に対する測長結果の、目標圧延長さとの差で評価したばらつきが、−800mm〜+60mm程度であったのに対し、本発明の実施後は、前記ばらつきが、−50mm〜+10mm程度と大幅に低減し、本発明の効果が顕現した。
A seamless steel pipe production line in which round billets heated to 1000-1300 ° C are pierced and rolled in a piercer mill to form hollow shells (outer diameter = 138.5 to 223.5 mm, wall thickness = 10 to 50 mm, length = maximum 8 m) The present invention was implemented in the embodiment described with reference to FIGS. 1, 2, and 3. The camera 4 was Toshiba Terry CSC12M25BMP19.
As a result, in the conventional case where the exposure time of the camera 4 is given at a constant value, the same lot rolled product of thin and long materials (target thickness = 10 to 20 mm, target outer diameter = 138.5 to 150.0 mm, target length) The variation measured by the difference from the target rolling length of a total of 1000 measurement results for a total of 1000 samples with a thickness of 7 to 8 m and a heating temperature of 1050 to 1250 ° C. is about −800 mm to +60 mm. On the other hand, after the implementation of the present invention, the variation was greatly reduced to about −50 mm to +10 mm, and the effects of the present invention were manifested.

1 鋼管(熱間の長尺物体の一例)
2 ピアサーミル
3 圧延方向
4 カメラ
5 カメラ視野
6 HMD(熱塊検出器)
7 非接触式温度計
8 シーケンサー
10 演算パソコン
11,12 画像ボード
13 KPEV(計装用)ケーブル
14 温度計専用ケーブル
15,16 光ケーブル
20 輝度プロファイル
1 Steel pipe (an example of a hot long object)
2 Piercer mill 3 Rolling direction 4 Camera 5 Camera field of view 6 HMD (hot mass detector)
7 Non-contact type thermometer 8 Sequencer 10 Computer 11, 12 Image board 13 KPEV (for instrumentation) cable 14 Thermometer dedicated cable 15, 16 Optical cable 20 Brightness profile

Claims (2)

熱間の長尺物体を被写体としてカメラで撮像し、該撮像データの輝度分布情報から導出した輝度プロファイルの長さ方向端位置に基づき長さを算出する画像処理による熱間長尺物体の測長方法において、前記カメラの露光時間を、前記長尺物体の被写体温度に応じて、予め定めたところの被写体温度対適正露光時間の相関情報から導出した適正露光時間に設定することを特徴とする熱間長尺物体の測長方法。   Measuring a hot long object by image processing, which takes a hot long object as a subject and images it with a camera and calculates the length based on the end position in the length direction of the luminance profile derived from the luminance distribution information of the imaged data In the method, the exposure time of the camera is set to a proper exposure time derived from correlation information of a predetermined subject temperature to a proper exposure time according to the subject temperature of the long object. A method for measuring long objects. 前記被写体が熱間圧延の被圧延材であり、前記被写体温度は、前記熱間圧延の直前時点の被圧延材の実測表面温度と前記熱間圧延の圧延条件とから伝熱計算により算出した、前記撮像の時点での前記被圧延材の胴体部の計算表面温度であることを特徴とする請求項1に記載の熱間長尺物体の測長方法。   The subject is a material to be rolled by hot rolling, and the subject temperature was calculated by heat transfer calculation from the measured surface temperature of the material to be rolled immediately before the hot rolling and the rolling conditions of the hot rolling, The method for measuring a length of a hot long object according to claim 1, wherein the temperature is a calculated surface temperature of a body portion of the material to be rolled at the time of imaging.
JP2013143393A 2013-07-09 2013-07-09 Hot long object length measurement method Pending JP2015017823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143393A JP2015017823A (en) 2013-07-09 2013-07-09 Hot long object length measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143393A JP2015017823A (en) 2013-07-09 2013-07-09 Hot long object length measurement method

Publications (1)

Publication Number Publication Date
JP2015017823A true JP2015017823A (en) 2015-01-29

Family

ID=52438961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143393A Pending JP2015017823A (en) 2013-07-09 2013-07-09 Hot long object length measurement method

Country Status (1)

Country Link
JP (1) JP2015017823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105631873A (en) * 2015-12-25 2016-06-01 华中科技大学 Flexible membrane rolling quality visual detection method
CN107782242A (en) * 2017-09-26 2018-03-09 西安交通大学 Main shaft axial direction thermal stretching measurement apparatus and method based on image processing techniques

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105631873A (en) * 2015-12-25 2016-06-01 华中科技大学 Flexible membrane rolling quality visual detection method
CN107782242A (en) * 2017-09-26 2018-03-09 西安交通大学 Main shaft axial direction thermal stretching measurement apparatus and method based on image processing techniques

Similar Documents

Publication Publication Date Title
CN102159940B (en) Method for detecting defect in material and system for same
RU2562413C2 (en) Method and system identifying and determining geometrical, spatial and position characteristics of products transported by continuously acting conveyor, in particular unmachined, coarse profiled, coarse machined or partially machined steel products
CN106104262B (en) Steel pipe inspection method and device, manufacture system and method, rejected region determine method
CN103930233B (en) Monitoring arrangement, method, program and storage medium that seam weldering operates
US20150076117A1 (en) Method and device for longitudinal seam welding of profiled tubes on a tube welding system
JP2011173162A (en) Method and device for measuring length of hot long-size material
JP2016117098A (en) Camber measuring apparatus and method in hot rolling process
JP2015017823A (en) Hot long object length measurement method
JP2016087652A (en) Thick steel plate warpage detection method and device
JP2001321829A (en) Method and device for manufacturing steel sheet
JP2008292345A (en) Surface scratch inspection method and surface scratch inspection device for rolled material
JP2016194489A (en) Planar shape measurement device
JP6669111B2 (en) Tracking device and tracking method for hot rolled material
JP4854602B2 (en) Method for detecting the shape of rolled material
JP5375663B2 (en) Method and apparatus for measuring length of hot long material
KR101746991B1 (en) Apparatus for detecting cool region in material and method for detecting cool region in rod wire
JP2005207858A (en) Inspection method and inspection device for steel product surface defect
TWI633496B (en) Method for recognizing moving direction of object
JP5768477B2 (en) Method for measuring temperature of workpiece, method for manufacturing workpiece, and heating device for workpiece
JP2014055833A (en) Method and apparatus for measuring hot long material
JP2012173132A (en) Length measurement method and device for hot long material
JP2021182267A (en) Tracking device
TW201620632A (en) Method for checking a terminal of a metal plate and a rolling method using the same
KR101830514B1 (en) Apparatus and method for shearing in rolling process
Abdelgawad et al. A robust fuzzy logic-based real-time automatic camber detection and measurement in hot rolling mill