JP2015013233A - Film separation device operation method and film separation system - Google Patents

Film separation device operation method and film separation system Download PDF

Info

Publication number
JP2015013233A
JP2015013233A JP2013139846A JP2013139846A JP2015013233A JP 2015013233 A JP2015013233 A JP 2015013233A JP 2013139846 A JP2013139846 A JP 2013139846A JP 2013139846 A JP2013139846 A JP 2013139846A JP 2015013233 A JP2015013233 A JP 2015013233A
Authority
JP
Japan
Prior art keywords
membrane
water
flow rate
separation device
brine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013139846A
Other languages
Japanese (ja)
Inventor
育野 望
Nozomi Ikuno
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013139846A priority Critical patent/JP2015013233A/en
Priority to PCT/JP2014/066630 priority patent/WO2015002015A1/en
Priority to TW103122491A priority patent/TW201524587A/en
Publication of JP2015013233A publication Critical patent/JP2015013233A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film separation device operation method and an operation system capable of acquiring permeable water having good water quality from a large film separation device having a film element which is large in diameter, the diameter is 20 cm or more.SOLUTION: Provided is the film separation device operation method in which a film element 2 having diameter of 20 cm or more is installed in a cylindrical vessel 1. When a permeable water amount of the film separation device is a(m/h), a minimum aqueous brine amount of the film element 2 is b(m/h), and the number of film elements is n(n is 1 or more), water conduction is performed so that (a/n)/b becomes 0.1 to 0.2.

Description

本発明は、逆浸透膜分離装置、精密濾過装置などの膜分離装置の運転方法及び膜分離システムに関するものであり、特にスパイラル型膜分離装置の運転方法及び膜分離システムに関する。   The present invention relates to an operation method and a membrane separation system of a membrane separation device such as a reverse osmosis membrane separation device and a microfiltration device, and more particularly to an operation method and a membrane separation system of a spiral membrane separation device.

従来、海水の淡水化や、超純水、各種製造プロセス用水を得る方法として、例えば逆浸透膜(以下、RO膜と略称することもある。)やナノフィルトレーション膜(以下、NF膜と略称することもある。)を分離膜とするスパイラル型膜エレメントを用い、原水中からイオン成分や低分子成分を分離する方法が知られている。スパイラル型膜エレメントは、例えば、透過水スペーサーの両面に逆浸透膜を重ね合わせて3辺を接着することにより袋状膜を形成し、該袋状膜の開口部側を透過水集水管に取り付け、網状の原水スペーサーと共に、透過水集水管の外周面周りにスパイラル状に巻回することにより構成されている。そして、原水はスパイラル型膜エレメントの一方の端面側から供給され、原水スペーサーに沿って流れ、スパイラル型膜エレメントの他方の端面側から濃縮水として排出される。また、原水は、原水スペーサーに沿って流れる過程で、逆浸透膜を透過して透過水となり、この透過水は透過水スペーサーに沿って、中央に位置する透過水集水管の内部に流れ込み、透過水集水管の端部から排出される。このように、巻回された袋状膜間に配設される原水スペーサーにより原水経路が形成される(特許文献1〜3)。   Conventionally, as a method for obtaining seawater desalination, ultrapure water, and water for various production processes, for example, a reverse osmosis membrane (hereinafter sometimes abbreviated as RO membrane) or a nanofiltration membrane (hereinafter referred to as NF membrane). There are known methods for separating ionic and low molecular components from raw water using a spiral membrane element having a separation membrane. Spiral membrane elements, for example, form a bag-like membrane by overlaying reverse osmosis membranes on both sides of the permeate spacer and bonding three sides, and attach the opening side of the bag-like membrane to the permeate water collecting pipe Along with the net-like raw water spacer, the outer periphery of the permeate water collecting pipe is wound around in a spiral shape. The raw water is supplied from one end surface side of the spiral membrane element, flows along the raw water spacer, and is discharged as concentrated water from the other end surface side of the spiral membrane element. In the process of flowing along the raw water spacer, the raw water permeates through the reverse osmosis membrane to become permeated water, and this permeated water flows along the permeated water spacer into the permeated water collecting pipe located in the center and permeates. It is discharged from the end of the water collecting pipe. In this way, the raw water path is formed by the raw water spacer disposed between the wound bag-like membranes (Patent Documents 1 to 3).

逆浸透膜分離においては、膜表面における濃度分極によるスケールの発生や脱塩率の低下を抑制するために、濃縮液(ブライン)の流量が所定値以上となるように運転することが推奨されている(特許文献4の0033段落、特許文献5の0011段落、特許文献6の0003〜0004段落)。この所定値はミニマムブライン水量(最小濃縮水量)と称される。ミニマムブライン水量は、膜分離装置のメーカーによって型番に応じて示されている。   In reverse osmosis membrane separation, it is recommended to operate so that the flow rate of the concentrated liquid (brine) becomes a predetermined value or more in order to suppress the generation of scale due to concentration polarization on the membrane surface and the decrease in the desalination rate. (Paragraph 0033 of Patent Document 4, paragraph 0011 of Patent Document 5, and paragraphs 0003 to 0004 of Patent Document 6). This predetermined value is referred to as a minimum brine water amount (minimum concentrated water amount). The amount of minimum brine water is indicated according to the model number by the manufacturer of the membrane separator.

スパイラル型膜分離装置の膜エレメントの直径(外径)は、従来は8インチ(約20.32cm)が主流であったが、近年では16インチ(約40.64cm)の大型のものも使用されるようになってきている(特許文献2の0007段落)。外径8インチのスパイラル型膜エレメントを有する逆浸透膜分離装置(以下、8インチRO装置ということがある。)のミニマムブライン水量は大概3.6m/hである。外径16インチのスパイラル型膜エレメントを有する逆浸透膜分離装置(以下、16インチRO装置ということがある。)は、膜面積が8インチRO装置の4倍であるため、ミニマムブライン水量は通常14.4m/hとされている。 Conventionally, the diameter (outer diameter) of the membrane element of the spiral membrane separator has been mainly 8 inches (about 20.32 cm), but in recent years, a large size of 16 inches (about 40.64 cm) has been used. (Paragraph 0007, paragraph 0007). The amount of minimum brine in a reverse osmosis membrane separation device (hereinafter, also referred to as an 8-inch RO device) having a spiral membrane element having an outer diameter of 8 inches is generally 3.6 m 3 / h. A reverse osmosis membrane separation device (hereinafter, sometimes referred to as a 16-inch RO device) having a spiral membrane element having an outer diameter of 16 inches has a membrane area four times that of an 8-inch RO device. 14.4 m 3 / h.

特開2011−167667JP2011-167667A 特開2009−220104JP 2009-220104 A 特開2006−218341JP 2006-218341 A 特開2007−313445JP2007-31445A 特開平8−108048JP-A-8-108048 特開2011−136283JP2011-136283A

16インチRO装置においてミニマムブライン水量を14.4m/hで運転すると、同膜種・同運転条件における8インチRO装置に比べ脱塩率が低くなることがあった。これは、16インチRO装置は8インチRO装置に比べてエレメント直径が約2倍と大きいために、8インチRO装置のミニマムブライン水量の4倍量のミニマムブライン水量にて運転したときにはエレメント内部における流速分布が大きくなり、濃度分極が生じて脱塩率が低下するためであると考えられる。 When the minimum brine water amount was operated at 14.4 m 3 / h in the 16-inch RO device, the desalination rate might be lower than that in the 8-inch RO device under the same membrane type and operating conditions. This is because the element diameter of the 16-inch RO device is about twice as large as that of the 8-inch RO device. Therefore, when operating with the minimum brine water amount 4 times the minimum brine water amount of the 8-inch RO device, This is thought to be because the flow velocity distribution becomes large, concentration polarization occurs, and the desalination rate decreases.

本発明は、直径が20cm以上の大径の膜エレメントを有する大型の膜分離装置から良好な水質の透過水を得ることができる膜分離装置の運転方法及び運転システムを提供することを目的とする。   An object of the present invention is to provide an operation method and an operation system of a membrane separation device capable of obtaining permeated water having a good water quality from a large membrane separation device having a large-diameter membrane element having a diameter of 20 cm or more. .

本発明の膜分離装置の運転方法は、直径20cm以上の膜エレメントが円筒状のベッセル内にn個(nは1以上)設置されている膜分離装置を運転する方法であって、該膜分離装置の透過水量をa(m/h)、膜エレメントのミニマムブライン水量をb(m/h)とした場合、(a/n)/bが0.1〜0.2となるように通水することを特徴とするものである。 The operation method of the membrane separation device of the present invention is a method of operating a membrane separation device in which n (n is 1 or more) membrane elements having a diameter of 20 cm or more are installed in a cylindrical vessel. When the permeated water amount of the device is a (m 3 / h) and the minimum brine water amount of the membrane element is b (m 3 / h), (a / n) / b is 0.1 to 0.2. It is characterized by passing water.

本発明の膜分離システムは、円筒状のベッセル内に膜エレメントがn個(nは1以上)設置された膜分離装置と、該膜分離装置に供給される原水の流量調節手段と、該膜分離装置から流出するブラインの流量調節手段と、該膜分離装置から取り出される透過水の流量検出手段と、該流量検出手段によって検出される透過水量をa(m/h)、膜エレメントのミニマムブライン水量をb(m/h)とした場合、(a/n)/bが0.1〜0.2となるように該原水流量調節手段及びブライン流量調節手段を制御する制御手段と
を備えてなるものである。
The membrane separation system of the present invention comprises a membrane separation device in which n membrane elements (n is 1 or more) are installed in a cylindrical vessel, a flow rate adjusting means for raw water supplied to the membrane separation device, and the membrane The flow rate adjusting means for the brine flowing out from the separator, the flow rate detecting means for the permeated water taken out from the membrane separator, and the amount of permeated water detected by the flow rate detecting means a (m 3 / h), the minimum of the membrane element When the amount of brine water is b (m 3 / h), the raw water flow rate adjusting means and the control means for controlling the brine flow rate adjusting means so that (a / n) / b is 0.1 to 0.2 It is prepared.

本発明において、膜エレメントの直径は20〜50.8cmであることが好ましい。   In the present invention, the membrane element preferably has a diameter of 20 to 50.8 cm.

膜エレメントとしては逆浸透膜エレメントが好ましい。   A reverse osmosis membrane element is preferable as the membrane element.

膜エレメントは、軸心部に集水管を有したスパイラル型膜エレメントであり、複数の膜エレメントが前記ベッセル内に同軸状に配置され、隣接する膜エレメントの集水管が継手で接続されていることが好ましい。   The membrane element is a spiral type membrane element having a water collecting pipe in the axial center, a plurality of membrane elements are coaxially arranged in the vessel, and the water collecting pipes of adjacent membrane elements are connected by a joint. Is preferred.

本発明では、膜エレメント1個当りの透過水量(a/n)とミニマムブライン水量bとの比(a/n)/bを0.1〜0.2とするように膜分離装置に通水することにより、膜エレメントの除去率が高くなる。一般に、膜エレメントの膜に沿って被処理水が流れる場合、この膜面に沿う流速が小さくなると、濃度分極が生じ、透過水の水質が悪化する。膜面に沿う流速を大きくすると、濃度分極は解消されるが、採水率(透過水量/原水量)が低くなる。従って、濃度分極が生じない範囲で膜面流速を小さくすれば、良好な水質の透過水を多く採水することができる。   In the present invention, water is passed through the membrane separation apparatus so that the ratio (a / n) / b of the permeated water amount (a / n) per membrane element to the minimum brine water amount b is 0.1 to 0.2. By doing so, the removal rate of a membrane element becomes high. In general, when the water to be treated flows along the membrane of the membrane element, if the flow velocity along the membrane surface decreases, concentration polarization occurs and the quality of the permeated water deteriorates. When the flow velocity along the membrane surface is increased, concentration polarization is eliminated, but the water sampling rate (permeated water amount / raw water amount) is lowered. Therefore, if the membrane surface flow velocity is reduced within a range where concentration polarization does not occur, a large amount of permeated water having good water quality can be collected.

8インチRO装置の場合、ブライン水量がミニマムブライン水量(通常は3.6m/h程度)以上でかつミニマムブライン水量近傍の水量となるように通水することにより、良好な水質の透過水を高回収率(採水率)にて得ることができる。 In the case of an 8-inch RO device, by passing water so that the amount of brine water is equal to or greater than the minimum brine water amount (usually about 3.6 m 3 / h), the permeated water with good water quality can be obtained. It can be obtained at a high recovery rate (water sampling rate).

16インチRO装置の場合、ブライン水量を8インチRO装置のミニマムブライン水量の約4倍量3.6×4=14.4m/h又はそれよりも若干多い量で通水しても、濃度分極が生じて透過水水質が悪化し易い。これは、膜エレメントの直径が大きくなるために、膜面に沿う流速に分布が生じるためである。また、膜表面における濃度分極は、膜面に沿う流速だけでなく、膜透過流束にも影響されるので、ミニマムブライン水量だけに基づいて運転すると、濃度分極が生じて透過水水質が悪化するおそれもある。 In the case of a 16-inch RO device, the concentration of the brine water is about 4 times the minimum brine water amount of the 8-inch RO device 3.6 × 4 = 14.4 m 3 / h or slightly higher than that. Polarization occurs and the permeated water quality is likely to deteriorate. This is because the distribution of the flow velocity along the membrane surface occurs because the diameter of the membrane element increases. In addition, concentration polarization on the membrane surface is affected not only by the flow velocity along the membrane surface but also by the membrane permeation flux. Therefore, if operation is performed based only on the amount of minimum brine water, concentration polarization occurs and the quality of the permeate water deteriorates. There is also a fear.

本発明では、透過水量とミニマムブライン水量との双方を勘案して通水することにより、良好な水質の透過水を高回収率にて採水することができる。   In the present invention, the permeated water having a good water quality can be collected at a high recovery rate by passing water in consideration of both the permeated water amount and the minimum brine water amount.

膜分離装置の斜視図である。It is a perspective view of a membrane separator. 図1の一部の透視図である。FIG. 2 is a perspective view of a part of FIG. 1. 実施の形態に係る膜分離システムのフロー図である。It is a flowchart of the membrane separation system which concerns on embodiment. 実施例における膜分離システムのフロー図である。It is a flowchart of the membrane separation system in an Example.

以下、図1〜3を参照して実施の形態について説明する。   Hereinafter, embodiments will be described with reference to FIGS.

円筒形ベッセル1内に複数個(この実施の形態では3個)の膜エレメント2が同軸状に設置されている。膜エレメント2は、軸心部に孔あき管よりなる集水管3を有し、この集水管3の外周に袋状分離膜が原水流路スペーサを介して巻回したスパイラル型膜エレメントである。この実施の形態では各膜エレメント2の外径は20cm以上、好ましくは20〜50.8cmである。各膜エレメント2の膜巻回部の軸方向長さは外径の15〜50倍であることが好ましい。膜エレメント2の膜は逆浸透膜、精密濾過膜などのいずれでもよいが、逆浸透膜が好適である。   A plurality (three in this embodiment) of membrane elements 2 are coaxially installed in the cylindrical vessel 1. The membrane element 2 is a spiral membrane element having a water collecting pipe 3 made of a perforated pipe at the axial center, and a bag-like separation membrane wound around the outer circumference of the water collecting pipe 3 via a raw water flow path spacer. In this embodiment, the outer diameter of each membrane element 2 is 20 cm or more, preferably 20 to 50.8 cm. The axial length of the membrane winding portion of each membrane element 2 is preferably 15 to 50 times the outer diameter. The membrane of the membrane element 2 may be either a reverse osmosis membrane or a microfiltration membrane, but a reverse osmosis membrane is preferred.

隣接する膜エレメント2の集水管3同士は継手4によって接続されている。膜エレメントの数nは3〜6特に4〜6程度が好ましい。   The water collecting pipes 3 of the adjacent membrane elements 2 are connected by a joint 4. The number n of membrane elements is preferably 3 to 6, particularly about 4 to 6.

原水はポンプ5、流量調節弁6を介して配管8からベッセル1の一端側に導入され、各膜エレメント2の膜面に沿って流れる。この途中で水が膜を透過し、集水管3に流入し、流量計9を有した配管10を介して透過水として取り出される。膜を透過しなかった濃縮水(ブライン)は、ベッセル1の他端側に接続された配管11を介して流出する。この配管11には流量計12と流量調節弁13とが設けられている。   The raw water is introduced from the pipe 8 to one end side of the vessel 1 through the pump 5 and the flow rate control valve 6 and flows along the membrane surface of each membrane element 2. In the middle of this, water permeates the membrane, flows into the water collecting pipe 3, and is taken out as permeated water through a pipe 10 having a flow meter 9. The concentrated water (brine) that has not passed through the membrane flows out through the pipe 11 connected to the other end of the vessel 1. The pipe 11 is provided with a flow meter 12 and a flow control valve 13.

なお、この実施の形態では、図2の通り、ベッセル1の前記一端側の内周面に沿ってガイド15が延設されており、配管8から流入する原水が該ガイド15によりベッセル1内に周方向に周回しながら流入するように構成されている。これは原水を膜エレメント2の上流側の端面に万遍なく供給するためである。   In this embodiment, as shown in FIG. 2, a guide 15 is extended along the inner peripheral surface of the one end side of the vessel 1, and raw water flowing from the pipe 8 is introduced into the vessel 1 by the guide 15. It is configured to flow while circulating in the circumferential direction. This is because the raw water is uniformly supplied to the upstream end face of the membrane element 2.

流量計9,12の検出信号が制御器17に入力され、制御器17からの制御信号がポンプ5、流量調節弁6,13に与えられる。   Detection signals from the flow meters 9 and 12 are input to the controller 17, and a control signal from the controller 17 is applied to the pump 5 and the flow rate adjusting valves 6 and 13.

制御器17は、流量計9で検出される透過水量をa(m/h)、膜エレメントのミニマムブライン水量をb(m/h)及び膜エレメントの本数をn(nは1以上)とした場合、(a/n)/bが0.1〜0.2となるように流量調節弁6,13を制御する。(a/n)/bが0.1未満となるように運転するには膜本数を多くする必要があり実用的ではない。また(a/n)/bが0.2を超過すると透過水の電気伝導率などの水質が悪化するので好ましくない。 The controller 17 determines the amount of permeated water detected by the flow meter 9 as a (m 3 / h), the amount of minimum brine in the membrane element as b (m 3 / h), and the number of membrane elements as n (n is 1 or more). In this case, the flow rate regulating valves 6 and 13 are controlled so that (a / n) / b is 0.1 to 0.2. In order to operate so that (a / n) / b is less than 0.1, it is necessary to increase the number of films, which is not practical. Further, if (a / n) / b exceeds 0.2, the water quality such as the electric conductivity of the permeated water deteriorates, which is not preferable.

外径が16インチ(約40.64cm)で膜巻回部の軸方向長さが100cmの逆浸透膜エレメント2を3個(n=3)ベッセル1内に設置して図1に示す逆浸透膜分離装置を構成した。この逆浸透膜分離装置に対し図4の通り、原水タンク20を用いて通水した。図4のフローでは、原水として工業用水の膜濾過水を原水タンク20に導入し、該原水タンク20内の原水を図3と同様にポンプ5、流量調節弁6及び配管8を介して逆浸透膜分離装置に供給する。配管11から流出したブラインの一部を配管22、流量調節弁23を介して原水タンク20に戻す。配管11から流出したブラインの残部を配管21、流量調節弁13を介して系外に取り出す。図4のその他の構成は図3と同様であり、同一符号は同一部分を示している。   Three reverse osmosis membrane elements 2 (n = 3) having an outer diameter of 16 inches (about 40.64 cm) and a membrane winding portion having an axial length of 100 cm are installed in the vessel 1, and the reverse osmosis shown in FIG. A membrane separator was constructed. Water was passed through the reverse osmosis membrane separation apparatus using a raw water tank 20 as shown in FIG. In the flow of FIG. 4, industrial filtered membrane water is introduced into the raw water tank 20 as raw water, and the raw water in the raw water tank 20 is reverse osmosis through the pump 5, the flow control valve 6 and the pipe 8 as in FIG. 3. Supply to membrane separator. A part of the brine flowing out from the pipe 11 is returned to the raw water tank 20 through the pipe 22 and the flow rate control valve 23. The remaining portion of the brine that has flowed out of the pipe 11 is taken out of the system through the pipe 21 and the flow rate control valve 13. Other configurations in FIG. 4 are the same as those in FIG. 3, and the same reference numerals denote the same parts.

この逆浸透膜分離装置に対し原水タンク20から工業用水膜濾過水を12.25m/hにて供給すると共に、ブライン流量が表1の各値となるように流量調節弁13の開度を調節した。なお、制御器17による自動制御は行わず、流量調節弁13の開度制御を手動にて行った。 Industrial reverse water membrane filtered water is supplied from the raw water tank 20 to the reverse osmosis membrane separation device at 12.25 m 3 / h, and the opening of the flow rate control valve 13 is adjusted so that the brine flow rate becomes each value shown in Table 1. Adjusted. In addition, the automatic control by the controller 17 was not performed, but the opening degree control of the flow control valve 13 was performed manually.

このときの透過水の水質と水回収率を表1に示す。   Table 1 shows the quality of the permeated water and the water recovery rate.

Figure 2015013233
Figure 2015013233

表1の通り、(a/n)/bが0.1〜0.2となるように通水した場合、透過水の水質が良好となる。   As shown in Table 1, when water is passed so that (a / n) / b is 0.1 to 0.2, the quality of the permeated water is improved.

1 ベッセル
2 膜エレメント
3 集水管
4 継手
6,13 流量調節弁
9,12 流量計
DESCRIPTION OF SYMBOLS 1 Vessel 2 Membrane element 3 Water collecting pipe 4 Joint 6,13 Flow control valve 9,12 Flow meter

本発明の膜分離装置の運転方法は、直径20cm以上の膜エレメントが円筒状のベッセル内にn個(nは1以上)設置されている膜分離装置を運転する方法であって、前記膜エレメントは逆浸透膜エレメントかつ軸心部に集水管を有したスパイラル型膜エレメントであり、複数の膜エレメントが前記ベッセル内に同軸状に配置され、隣接する膜エレメントの集水管が継手で接続され、前記ベッセルの一端側から原水を供給する第1配管に設けられた第1流量調節弁と該ベッセルの他端側からブラインを流出させる第2配管に設けられた第2流量調節弁とを制御して、該膜分離装置の透過水量をa(m/h)、膜エレメントのミニマムブライン水量をb(m/h)とした場合、(a/n)/bが0.1〜0.2となるように通水することを特徴とするものである。 Method of operating a membrane separation apparatus of the present invention is a method of operating a membrane separation device or more membrane elements 20cm in diameter are n (n is 1 or more) in a cylindrical vessel is installed, the membrane element Is a spiral membrane element having a reverse osmosis membrane element and a water collecting pipe at the axial center, a plurality of membrane elements are arranged coaxially in the vessel, and the water collecting pipes of adjacent membrane elements are connected by a joint, A first flow control valve provided in a first pipe for supplying raw water from one end of the vessel and a second flow control valve provided in a second pipe for allowing brine to flow out from the other end of the vessel; When the permeated water amount of the membrane separation device is a (m 3 / h) and the minimum brine water amount of the membrane element is b (m 3 / h), (a / n) / b is 0.1-0. 2 to pass water It is characterized by.

本発明の膜分離システムは、円筒状のベッセル内に膜エレメントがn個(nは1以上)設置された膜分離装置と、該膜分離装置に供給される原水の流量調節手段と、該膜分離装置から流出するブラインの流量調節手段と、該膜分離装置から取り出される透過水の流量検出手段と、該流量検出手段によって検出される透過水量をa(m/h)、膜エレメントのミニマムブライン水量をb(m/h)とした場合、(a/n)/bが0.1〜0.2となるように該原水流量調節手段及びブライン流量調節手段を制御する制御手段とを備え、前記膜エレメントは逆浸透膜エレメントかつ軸心部に集水管を有したスパイラル型膜エレメントであり、複数の膜エレメントが前記ベッセル内に同軸状に配置され、隣接する膜エレメントの集水管が継手で接続されてなるものである。 The membrane separation system of the present invention comprises a membrane separation device in which n membrane elements (n is 1 or more) are installed in a cylindrical vessel, a flow rate adjusting means for raw water supplied to the membrane separation device, and the membrane The flow rate adjusting means for the brine flowing out from the separator, the flow rate detecting means for the permeated water taken out from the membrane separator, and the amount of permeated water detected by the flow rate detecting means a (m 3 / h), the minimum of the membrane element When the amount of brine water is b (m 3 / h), the raw water flow rate adjusting means and the control means for controlling the brine flow rate adjusting means so that (a / n) / b is 0.1 to 0.2 The membrane element is a reverse osmosis membrane element and a spiral membrane element having a water collection pipe at the axial center, a plurality of membrane elements are coaxially arranged in the vessel, and a water collection pipe of an adjacent membrane element is provided Fitting It is connected by .

Claims (5)

直径20cm以上の膜エレメントが円筒状のベッセル内にn個(nは1以上)設置されている膜分離装置を運転する方法であって、
該膜分離装置の透過水量をa(m/h)、膜エレメントのミニマムブライン水量をb(m/h)とした場合、(a/n)/bが0.1〜0.2となるように通水することを特徴とする膜分離装置の運転方法。
A method of operating a membrane separation apparatus in which n (n is 1 or more) membrane elements having a diameter of 20 cm or more are installed in a cylindrical vessel,
When the permeated water amount of the membrane separation device is a (m 3 / h) and the minimum brine water amount of the membrane element is b (m 3 / h), (a / n) / b is 0.1 to 0.2. A method for operating a membrane separation device, characterized in that the water is passed as described above.
請求項1において、膜エレメントの直径が20〜50.8cmであることを特徴とする膜分離装置の運転方法。   2. The method for operating a membrane separator according to claim 1, wherein the membrane element has a diameter of 20 to 50.8 cm. 請求項1又は2において、膜エレメントが逆浸透膜エレメントであることを特徴とする膜分離装置の運転方法。   3. A method for operating a membrane separation device according to claim 1, wherein the membrane element is a reverse osmosis membrane element. 請求項1ないし3のいずれか1項において、前記膜エレメントは軸心部に集水管を有したスパイラル型膜エレメントであり、複数の膜エレメントが前記ベッセル内に同軸状に配置され、隣接する膜エレメントの集水管が継手で接続されていることを特徴とする膜分離装置の運転方法。   The membrane element according to any one of claims 1 to 3, wherein the membrane element is a spiral membrane element having a water collecting pipe at an axial center portion, and a plurality of membrane elements are coaxially arranged in the vessel. A method for operating a membrane separation device, wherein the water collecting pipes of the elements are connected by a joint. 円筒状のベッセル内に膜エレメントがn個(nは1以上)設置された膜分離装置と、
該膜分離装置に供給される原水の流量調節手段と、
該膜分離装置から流出するブラインの流量調節手段と、
該膜分離装置から取り出される透過水の流量検出手段と、
該流量検出手段によって検出される透過水量をa(m/h)、膜エレメントのミニマムブライン水量をb(m/h)とした場合、(a/n)/bが0.1〜0.2となるように該原水流量調節手段及びブライン流量調節手段を制御する制御手段と
を備えてなる膜分離システム。
A membrane separator in which n membrane elements (n is 1 or more) are installed in a cylindrical vessel;
A flow rate adjusting means for raw water supplied to the membrane separator;
A flow rate adjusting means for brine flowing out of the membrane separator;
A flow rate detecting means for permeated water taken out from the membrane separator;
When the permeated water amount detected by the flow rate detection means is a (m 3 / h) and the minimum brine water amount of the membrane element is b (m 3 / h), (a / n) / b is 0.1 to 0. A membrane separation system comprising control means for controlling the raw water flow rate adjusting means and the brine flow rate adjusting means so as to be 2.
JP2013139846A 2013-07-03 2013-07-03 Film separation device operation method and film separation system Withdrawn JP2015013233A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013139846A JP2015013233A (en) 2013-07-03 2013-07-03 Film separation device operation method and film separation system
PCT/JP2014/066630 WO2015002015A1 (en) 2013-07-03 2014-06-24 Operating method for membrane separation device, and membrane separation system
TW103122491A TW201524587A (en) 2013-07-03 2014-06-30 Operating method for membrane separation device, and membrane separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139846A JP2015013233A (en) 2013-07-03 2013-07-03 Film separation device operation method and film separation system

Publications (1)

Publication Number Publication Date
JP2015013233A true JP2015013233A (en) 2015-01-22

Family

ID=52143594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139846A Withdrawn JP2015013233A (en) 2013-07-03 2013-07-03 Film separation device operation method and film separation system

Country Status (3)

Country Link
JP (1) JP2015013233A (en)
TW (1) TW201524587A (en)
WO (1) WO2015002015A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019018186A (en) * 2017-07-21 2019-02-07 オルガノ株式会社 Membrane filtration device
JP2019076838A (en) * 2017-10-25 2019-05-23 オルガノ株式会社 Membrane filtration device
JP2019103978A (en) * 2017-12-13 2019-06-27 オルガノ株式会社 Pure water production apparatus and method of operating the same
JP2022010263A (en) * 2017-07-21 2022-01-14 オルガノ株式会社 Membrane filtration device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113101807B (en) * 2021-04-06 2022-07-29 中芯恒润环境科技(北京)有限公司 Membrane module, membrane equipment with membrane module and membrane system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108048A (en) * 1994-10-12 1996-04-30 Toray Ind Inc Reverse osmosis separator and reverse osmosis separating method
JP2005081254A (en) * 2003-09-09 2005-03-31 Nippon Rensui Co Ltd Reverse osmosis membrane apparatus
JP2006305498A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Operating method of membrane filtration system
JP2011136283A (en) * 2009-12-28 2011-07-14 Uerushii:Kk Reverse osmosis membrane filter and reverse osmosis membrane filtration method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108048A (en) * 1994-10-12 1996-04-30 Toray Ind Inc Reverse osmosis separator and reverse osmosis separating method
JP2005081254A (en) * 2003-09-09 2005-03-31 Nippon Rensui Co Ltd Reverse osmosis membrane apparatus
JP2006305498A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Operating method of membrane filtration system
JP2011136283A (en) * 2009-12-28 2011-07-14 Uerushii:Kk Reverse osmosis membrane filter and reverse osmosis membrane filtration method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019018186A (en) * 2017-07-21 2019-02-07 オルガノ株式会社 Membrane filtration device
JP2022010263A (en) * 2017-07-21 2022-01-14 オルガノ株式会社 Membrane filtration device
JP7045814B2 (en) 2017-07-21 2022-04-01 オルガノ株式会社 Membrane filtration device
JP7303861B2 (en) 2017-07-21 2023-07-05 オルガノ株式会社 Membrane filtration device
JP2019076838A (en) * 2017-10-25 2019-05-23 オルガノ株式会社 Membrane filtration device
JP7017365B2 (en) 2017-10-25 2022-02-08 オルガノ株式会社 Membrane filtration device
JP2019103978A (en) * 2017-12-13 2019-06-27 オルガノ株式会社 Pure water production apparatus and method of operating the same
JP6994376B2 (en) 2017-12-13 2022-01-14 オルガノ株式会社 Pure water production equipment and its operation method

Also Published As

Publication number Publication date
TW201524587A (en) 2015-07-01
WO2015002015A1 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
WO2015002015A1 (en) Operating method for membrane separation device, and membrane separation system
KR102009550B1 (en) Multi-stage reverse osmosis membrane device, and operation method therefor
JP5828328B2 (en) Operation method of reverse osmosis membrane device and reverse osmosis membrane device
JP2013126636A (en) Reverse osmosis treatment apparatus
JP2016016384A (en) Evaluation device and evaluation method for osmosis membrane module
JP2015188786A (en) Positive permeation processing system
JP2012130839A (en) Reverse osmosis treatment apparatus
JP2014184402A (en) Hollow fiber membrane module
JP2020062620A (en) Water treatment system and water treatment method
JP2008237979A (en) Water treatment apparatus
JP2014184438A (en) Reverse osmosis treatment apparatus
JPWO2014010628A1 (en) Fresh water generation method and fresh water generation apparatus
JP2014171926A (en) Desalination method and desalination apparatus
JP6036808B2 (en) Fresh water generation method
JP6052866B2 (en) Water treatment method
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
JP2011020047A (en) Method and apparatus for detecting membrane defect, and membrane module
JP2010201335A (en) Water treatment system and water treatment method
JP6216847B2 (en) Reverse osmosis processing equipment
JP2007263942A (en) Method and apparatus for detecting membrane defect, and filtering device
JP2005270710A (en) Liquid treating apparatus and liquid treating method
JP2005195499A (en) Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane
JP2019022870A (en) Water treatment device and water treatment method
JP2018108550A (en) Salt concentration device and method for detecting the scale of the salt concentration device
WO2010113589A1 (en) Water treatment device and water treatment method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115