JP2015011860A - Oxide superconductive wire rod and production method thereof - Google Patents

Oxide superconductive wire rod and production method thereof Download PDF

Info

Publication number
JP2015011860A
JP2015011860A JP2013136257A JP2013136257A JP2015011860A JP 2015011860 A JP2015011860 A JP 2015011860A JP 2013136257 A JP2013136257 A JP 2013136257A JP 2013136257 A JP2013136257 A JP 2013136257A JP 2015011860 A JP2015011860 A JP 2015011860A
Authority
JP
Japan
Prior art keywords
layer
metal
oxide superconducting
tape
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013136257A
Other languages
Japanese (ja)
Inventor
哲雄 竹本
Tetsuo Takemoto
哲雄 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2013136257A priority Critical patent/JP2015011860A/en
Publication of JP2015011860A publication Critical patent/JP2015011860A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide superconductive wire rod which prevents deterioration of an internal oxide superconductive material by reducing the width dimensional tolerance of the oxide superconductive material to form a structure capable of suppressing invasion of moisture and its production method.SOLUTION: In an oxide superconductive wire rod, a tape-shaped oxide superconductive conductor A is formed by providing a middle layer 4, an oxide superconductive layer 1 and a protective layer 6 on the surface of a tape-like substrate 3, and a metal stabilizing layer 2 composed of a metal tape 2A is formed around the oxide superconductive conductor so as to cover the protective layer side and both side-surface sides of the tape-like oxide superconductive conductor and at least partially the back-surface side of the substrate. An inner low-melting-point metal layer 7a and an outer low-melting-point metal layer 7b are formed on the inner-surface side of the metal stabilization layer, and the metal stabilization layer is joined with the oxide superconductive conductor through the inner low-melting-point metal layer. Both outer surface parts of the metal stabilization layer is polished to remove the outer low-melting-point metal layer partially or entirely so as to form a polished surface in which both outer surface parts of the metal stabilization layer are exposed.

Description

本発明は、酸化物超電導線材とその製造方法に関する。   The present invention relates to an oxide superconducting wire and a method for producing the same.

RE−123系酸化物超電導体(REBaCu7−X:REは希土類元素)は、液体窒素温度で超電導性を示し、電流損失が低いため、これを超電導線材に加工して電力供給用の超電導導体あるいは超電導コイルを製造することがなされている。この酸化物超電導体を線材に加工するための方法として、金属テープからなる基板上に中間層を介し酸化物超電導層を形成し、この酸化物超電導層の上に金属安定化層を形成した構造が採用されている。 The RE-123 oxide superconductor (REBa 2 Cu 3 O 7-X : RE is a rare earth element) exhibits superconductivity at liquid nitrogen temperature and has low current loss. Therefore, it is processed into a superconducting wire to supply power. For example, a superconducting conductor or a superconducting coil is manufactured. As a method for processing this oxide superconductor into a wire, a structure in which an oxide superconducting layer is formed on a substrate made of metal tape via an intermediate layer, and a metal stabilizing layer is formed on this oxide superconducting layer Is adopted.

従来一般的な酸化物超電導線材として、前記基材上に中間層を介し形成した酸化物超電導層上に薄い銀の保護層を形成し、その上に銅などの良導電性金属材料からなる厚い安定3化層を設けた構造が採用されている。前記銀の保護層は、酸化物超電導層を酸素熱処理する際に酸素量の変動を調節する目的のためにも設けられており、銅の保護層は、酸化物超電導層が超電導状態から常電導状態に遷移しようとしたとき、該酸化物超電導層に流れている電流を転流させるバイパスとして機能させるために設けられている。   As a conventional general oxide superconducting wire, a thin silver protective layer is formed on the oxide superconducting layer formed on the base material through an intermediate layer, and a thick conductive metal material such as copper is formed thereon. A structure provided with a stable tri-layer is employed. The silver protective layer is also provided for the purpose of adjusting fluctuations in the amount of oxygen when the oxide superconducting layer is subjected to oxygen heat treatment, and the copper protective layer is formed from the superconducting state to the normal conducting state. It is provided in order to function as a bypass for commutating the current flowing in the oxide superconducting layer when trying to change to a state.

銅の保護層で酸化物超電導層を覆う構成の酸化物超電導線材の一例として、金属テープからなる補強テープ線によってテープ状の基材とその上の酸化物超電導層及び保護層を横断面C字型に包み込むように覆った構造が提案されている(特許文献1参照)。   As an example of an oxide superconducting wire configured to cover an oxide superconducting layer with a copper protective layer, a tape-like base material, an oxide superconducting layer and a protective layer thereon are cross-sectionally C-shaped by a reinforcing tape wire made of a metal tape. A structure that is covered so as to be wrapped in a mold has been proposed (see Patent Document 1).

特開2011−3494号公報JP2011-3494A

ところで、RE−123系酸化物超電導体の特定組成のものは水分により劣化しやすく、酸化物超電導線材を水分の多い環境に保管した場合、あるいは、酸化物超電導線材に水分を付着させたまま放置した場合、酸化物超電導層に水分が浸入すると、超電導特性が低下する要因となるおそれがある。従って、酸化物超電導線材の長期的信頼性を確保するためには、酸化物超電導層の全周を何らかの層で保護する構造を採用する必要がある。   By the way, the RE-123 oxide superconductor having a specific composition is easily deteriorated by moisture, and when the oxide superconducting wire is stored in an environment with a lot of moisture, or left with the moisture attached to the oxide superconducting wire. In such a case, if moisture enters the oxide superconducting layer, the superconducting characteristics may be deteriorated. Therefore, in order to ensure long-term reliability of the oxide superconducting wire, it is necessary to employ a structure in which the entire circumference of the oxide superconducting layer is protected by some layer.

上述のRE−123系酸化物超電導線材は、金属テープの基材上に中間層を介し酸化物超電導層を積層し、薄い銀の保護層を積層しているが、この保護層は酸素熱処理時の酸素量変動を調節できるように薄く形成されるので、ピンホールが存在している場合がある。また、銀の保護層はスパッタ法などの成膜法により形成されているため、長尺の超電導線材を製造する場合に剥離や欠けなどを生じ易い問題がある。更に、酸化物超電導層の表面を銀の保護層で覆ってはいるものの、酸化物超電導層の側面側を何らかの層で覆っている訳ではないので、側面側からの水分の浸入に対策を講じる必要がある。   In the RE-123 oxide superconducting wire described above, an oxide superconducting layer is laminated on a base material of a metal tape via an intermediate layer, and a thin silver protective layer is laminated. Since it is formed thin so as to be able to adjust the oxygen amount fluctuation, pinholes may exist. Further, since the silver protective layer is formed by a film forming method such as sputtering, there is a problem that peeling or chipping is likely to occur when a long superconducting wire is manufactured. Furthermore, although the surface of the oxide superconducting layer is covered with a silver protective layer, the side of the oxide superconducting layer is not covered with any layer, so measures are taken to prevent moisture from entering from the side. There is a need.

このため、上述の特許文献1に示す如く折り曲げた金属テープで酸化物超電導線材を囲む構造が有望と思われる。ところが、テープ状の酸化物超電導線材を金属テープなどで取り囲み、酸化物超電導線材と金属テープとの間に半田層を設けて両者を一体化しようとした場合、以下に説明する問題を生じることがあった。
半田で固定する構造の場合、金属テープと酸化物超電導線材の界面の半田密着性が問題となり、長尺の超電導線材の全長において、わずかでも隙間が生じているとその隙間部分から水分の浸入を許すおそれがある。このため、十分な量の半田を半田めっき層として予め金属テープに付着形成し、この金属テープを折り曲げ加工して酸化物超電導線材を覆う必要がある。ところが、金属テープに形成する半田量が多すぎると、金属テープの折り曲げ部分やエッジ部分において半田が外側にだれる部分を生じ易く、半田が、ばりのように外側に突出して固着することで凹凸部分が形成され、酸化物超電導線材の幅寸法公差が大きくばらつく問題がある。
For this reason, a structure in which the oxide superconducting wire is surrounded by a metal tape bent as shown in Patent Document 1 is considered promising. However, if the tape-shaped oxide superconducting wire is surrounded by a metal tape or the like and a solder layer is provided between the oxide superconducting wire and the metal tape to integrate them, the following problems may occur. there were.
In the case of a structure that is fixed with solder, solder adhesion at the interface between the metal tape and the oxide superconducting wire becomes a problem, and if there is even a slight gap in the entire length of the long superconducting wire, moisture will enter through the gap. There is a risk of forgiveness. For this reason, it is necessary to attach a sufficient amount of solder to the metal tape in advance as a solder plating layer, and to bend the metal tape to cover the oxide superconducting wire. However, if the amount of solder formed on the metal tape is too large, it is easy to produce a portion where the solder is bent outward at the bent portion or edge portion of the metal tape. There is a problem that the portion is formed and the width tolerance of the oxide superconducting wire varies greatly.

酸化物超電導線材に通常要求される寸法公差として金属テープで覆っていない元の酸化物超電導線材の幅に対し±0.1mmがJIS規格として知られているため、金属テープのエッジ部分などに半田が、ばりのように付着して凹凸部分を形成している場合、寸法公差を守ることが難しい問題がある。
また、金属テープのエッジ部分に半田による凹凸部分が存在している場合、その形状を制御することは困難であり、後工程において酸化物超電導線材の表面に電極付けを行う場合に問題を生じることがある。例えば、エッジ部分に既に突出するように付着されている半田によって酸化物超電導線材の側面側や裏面側に電極付けに用いる半田が流れてしまい、半田付け作業性が悪くなる問題がある。
また、半田を構成する錫がテープ状の酸化物超電導線材の両側面側に厚く存在していると、液体窒素などにより低温に冷却して使用する酸化物超電導線材において錫の脆化が起こり易くなり、防水性能が低下するおそれがある。
As the dimensional tolerance normally required for oxide superconducting wires, ± 0.1mm is known as the JIS standard with respect to the width of the original oxide superconducting wire not covered with metal tape. However, when the irregularities are formed by adhering like a flash, there is a problem that it is difficult to keep the dimensional tolerance.
Also, if there are uneven parts due to solder on the edge part of the metal tape, it is difficult to control the shape, which causes problems when attaching electrodes to the surface of the oxide superconducting wire in the subsequent process There is. For example, there is a problem in that solder used for electrode attachment flows to the side surface and the back surface of the oxide superconducting wire due to the solder already attached so as to protrude from the edge portion, resulting in poor soldering workability.
In addition, if the tin that constitutes the solder is thick on both sides of the tape-shaped oxide superconducting wire, tin embrittlement is likely to occur in the oxide superconducting wire that is cooled to a low temperature with liquid nitrogen or the like. The waterproof performance may be reduced.

本発明は、以上のような従来の背景に鑑みなされたもので、酸化物超電導線材の幅寸法公差が少なく、水分の浸入を抑制できる構造として内部の酸化物超電導層を劣化させないようにした酸化物超電導線材を提供することを目的とする。また、超電導コイル用などのために酸化物超電導線材をコイル状に巻き付ける場合、巻き乱れを生じ難い酸化物超電導線材を提供することを目的とする。   The present invention has been made in view of the conventional background as described above. The oxide superconducting wire has a small width tolerance, and has a structure capable of suppressing the ingress of moisture so as not to deteriorate the internal oxide superconducting layer. The object is to provide a superconducting wire. It is another object of the present invention to provide an oxide superconducting wire that hardly causes turbulence when the oxide superconducting wire is wound into a coil for superconducting coils.

本発明の酸化物超電導線材は、テープ状の基材の表面上に中間層と酸化物超電導層と保護層を備えてテープ状の酸化物超電導導体が構成され、該酸化物超電導導体の周囲に金属テープからなる金属安定化層が前記テープ状の酸化物超電導導体の保護層側と両側面側を覆い基材裏面側の少なくとも一部を覆うように形成され、前記金属安定化層の内面側に内側低融点金属層、外側に外側低融点金属層が形成され、前記金属安定化層が前記内側低融点金属層により前記酸化物超電導導体に接合され、前記金属安定化層の両外側面部分が研磨されて外側低融点金属層の一部または全部が除去され、前記金属安定化層の両外側面部分を露出させた研磨面が形成されたことを特徴とする。   The oxide superconducting wire of the present invention comprises a tape-like oxide superconducting conductor comprising an intermediate layer, an oxide superconducting layer, and a protective layer on the surface of a tape-like substrate, and the oxide superconducting conductor is formed around the oxide superconducting conductor. A metal stabilizing layer made of a metal tape is formed so as to cover the protective layer side and both side surfaces of the tape-shaped oxide superconducting conductor and to cover at least a part of the back surface of the base material, and the inner surface side of the metal stabilizing layer An inner low-melting-point metal layer and an outer low-melting-point metal layer on the outer side, and the metal stabilization layer is joined to the oxide superconducting conductor by the inner low-melting-point metal layer, and both outer side surface portions of the metal stabilization layer Is polished to remove a part or all of the outer low-melting-point metal layer, thereby forming a polished surface exposing both outer surface portions of the metal stabilizing layer.

本発明によれば、酸化物超電導導体を取り囲む金属テープからなる金属安定化層の両外側面側の外側低融点金属層を除去して研磨面を形成した構造であるので、酸化物超電導線材の両側面を構成する金属安定化層の両外側面部分に低融点金属のばりなどに起因する凹凸部分を生じない。このため、酸化物超電導線材としての幅公差を小さくできる。従って、超電導コイルを構成するためにコイル加工した場合であっても巻き乱れの生じ難い酸化物超電導線材を提供できる。
また、酸化物超電導導体とその周囲の金属テープからなる金属安定化層との間に設けられている内側低融点金属層が酸化物超電導導体の周囲を覆う構造となっているので、金属安定化層で囲われた酸化物超電導導体の内側に位置する酸化物超電導層に対し外部からの水分の浸入を防止でき、水分による劣化を生じ難い酸化物超電導線材を提供することができる。
According to the present invention, since the outer low melting point metal layer on both outer side surfaces of the metal stabilizing layer made of the metal tape surrounding the oxide superconducting conductor is removed to form a polished surface, the oxide superconducting wire Concavities and convexities due to low melting point metal flashes are not formed on both outer side surface portions of the metal stabilizing layer constituting both side surfaces. For this reason, the width | variety tolerance as an oxide superconducting wire can be made small. Therefore, an oxide superconducting wire that is less likely to cause turbulence even when coiled to form a superconducting coil can be provided.
In addition, the inner low melting point metal layer provided between the oxide superconductor and the metal stabilization layer made of the surrounding metal tape covers the periphery of the oxide superconductor. It is possible to provide an oxide superconducting wire that can prevent moisture from entering the oxide superconducting layer located inside the oxide superconducting conductor surrounded by the layer and hardly deteriorate due to moisture.

本発明の酸化物超電導線材において、前記研磨面に低融点金属層の残留層が形成された構成にしても良い。
金属安定化層外面側の両側面部分に外側低融点金属層が研磨により除去されて一部残留層として残っていても幅公差に影響を与えない程度であれば幅交差を抑えるという面で問題が生じない。
The oxide superconducting wire of the present invention may be configured such that a residual layer of a low melting point metal layer is formed on the polished surface.
If the outer low-melting-point metal layer is removed by polishing on both sides of the outer side of the metal stabilization layer and remains as a residual layer, it does not affect the width tolerance. Does not occur.

本発明の酸化物超電導線材において、前記研磨面に外側低融点金属層を構成する元素と前記金属安定化層を構成する元素の合金からなる残留合金層が形成された構成にしても良い。
外側低融点金属層を研磨により除去した構造の場合、外側低融点金属層の一部が金属安定化層を構成する金属と一部合金化する場合があり、この場合、外側低融点金属層を研磨により除去した場合に残留合金層の一部が残っていても、残留合金層は薄いので幅交差に影響はない。
The oxide superconducting wire of the present invention may be configured such that a residual alloy layer made of an alloy of an element constituting the outer low melting point metal layer and an element constituting the metal stabilizing layer is formed on the polished surface.
In the case of a structure in which the outer low-melting-point metal layer is removed by polishing, a part of the outer low-melting-point metal layer may be partly alloyed with the metal constituting the metal stabilizing layer. Even if a part of the residual alloy layer remains when removed by polishing, the residual alloy layer is thin and does not affect the width crossing.

本発明の酸化物超電導線材において、前記研磨面に残留されている外側低融点金属層の厚さが2μm以下であることが好ましい。
金属安定化層の両側面の研磨面に残留されている外側低融点金属層の厚さが2μm以下であれば、コイル加工時に巻き乱れを生じるおそれが少なく、寸法精度の良好な酸化物超電導線材を提供できるとともに、低温に冷却した場合に低融点金属の脆化が伝搬するおそれがない。特に、低融点金属が錫を含む半田であるならば、錫の低温脆化が仮に生じても他の低融点金属に伝搬しないので、低融点金属の脆化の進行を抑制できる。このため、金属安定化層の内部側に存在する低融点金属層に低温脆化の影響が及ぶおそれが無い。
In the oxide superconducting wire of the present invention, the thickness of the outer low melting point metal layer remaining on the polished surface is preferably 2 μm or less.
If the thickness of the outer low-melting-point metal layer remaining on the polished surface on both sides of the metal stabilizing layer is 2 μm or less, the oxide superconducting wire with good dimensional accuracy is less likely to cause turbulence during coil processing. In addition, there is no possibility of embrittlement of the low melting point metal when cooled to a low temperature. In particular, if the low melting point metal is a solder containing tin, even if low temperature embrittlement of tin occurs, it does not propagate to other low melting point metals, so that the progress of embrittlement of the low melting point metal can be suppressed. For this reason, there is no possibility that the low melting point metal layer existing on the inner side of the metal stabilizing layer is affected by low temperature embrittlement.

本発明の酸化物超電導線材の製造方法において、テープ状の基材の表面上に酸化物超電導層と保護層を備えてなるテープ状の酸化物超電導導体に対し、この酸化物超電導導体より幅広で両面に低融点金属層を備えた金属テープを用い、この金属テープで前記酸化物超電導導体の保護層側と両側面側と基材裏面側の少なくとも端縁側とを覆うように前記金属テープを折り曲げて前記酸化物超電導導体を覆った後、前記低融点金属層を加熱溶融させて前記酸化物超電導導体に前記金属テープを接合し、次いで前記酸化物超電導導体の両側面側を覆った前記金属テープの両外側面部分を研磨して両外側面部分に存在している低融点金属層の一部又は全部を除去して研磨面を形成し金属安定化層を形成する。   In the method for producing an oxide superconducting wire of the present invention, a tape-shaped oxide superconducting conductor comprising an oxide superconducting layer and a protective layer on the surface of a tape-shaped substrate is wider than the oxide superconducting conductor. Using a metal tape having a low melting point metal layer on both sides, the metal tape is bent with this metal tape so as to cover the protective layer side, both side surfaces, and at least the edge side of the substrate back side of the oxide superconductor. After covering the oxide superconductor, the low melting metal layer is heated and melted to join the metal tape to the oxide superconductor, and then the both sides of the oxide superconductor are covered. The both outer surface portions are polished to remove part or all of the low melting point metal layer present on both outer surface portions to form a polished surface to form a metal stabilizing layer.

本発明の製造方法によれば、酸化物超電導線材の両側面を構成する金属安定化層の両側面部分に低融点金属のばりなどに起因する凹凸部分を生じていない酸化物超電導線材を提供できる。また、両側面に低融点金属による凹凸部分を有していないので、コイル加工した場合であっても巻き乱れの生じ難い酸化物超電導線材を提供できる。   According to the manufacturing method of the present invention, it is possible to provide an oxide superconducting wire in which uneven portions due to a low melting point metal flash or the like are not formed on both side portions of the metal stabilizing layer constituting both side surfaces of the oxide superconducting wire. . In addition, since there are no uneven portions made of a low melting point metal on both side surfaces, an oxide superconducting wire that hardly causes turbulence even when coiled can be provided.

本発明の酸化物超電導線材の製造方法において、前記金属テープの両外側面部分に存在している低融点金属層を研磨により除去することで金属安定化層の両外側面部分に残留する低融点金属層の厚さを2μm以下とすることが好ましい。
金属安定化層の両外側面側に存在する低融点金属層の厚さを2μm以下とするならば、コイル加工時に巻き乱れを生じるおそれが少なく、寸法精度の良好な酸化物超電導線材を提供できるとともに、低温に冷却した場合に低融点金属層が脆化しても低融点金属層の脆化が他の部分の低融点金属層に伝搬しない。
In the method for producing an oxide superconducting wire according to the present invention, the low melting point remaining on both outer surface portions of the metal stabilizing layer by removing the low melting point metal layer present on both outer surface portions of the metal tape by polishing. The thickness of the metal layer is preferably 2 μm or less.
If the thickness of the low melting point metal layer present on both outer side surfaces of the metal stabilizing layer is 2 μm or less, an oxide superconducting wire with good dimensional accuracy can be provided with little risk of winding disturbance during coil processing. At the same time, even when the low melting point metal layer becomes brittle when cooled to a low temperature, the embrittlement of the low melting point metal layer does not propagate to other low melting point metal layers.

本発明によれば、酸化物超電導導体を取り囲む金属テープからなる金属安定化層の両外側面側の外側低融点金属層を除去して研磨面とされた構造であり、酸化物超電導線材の両側面を構成する金属安定化層の両外側面部分に低融点金属のばりなどに起因する凹凸部分を生じないので、金属テープの金属安定化層で覆った構成の酸化物超電導線材としての幅公差を小さくすることができる。このため、超電導コイルを構成するためコイル加工した場合であっても巻き乱れの生じ難い酸化物超電導線材を提供できる。
また、酸化物超電導導体とその周囲の金属テープからなる金属安定化層との間に設けられている内側低融点金属層が酸化物超電導導体の周囲を覆っている構造となっているので、金属安定化層で囲われた酸化物超電導導体の内側に位置する酸化物超電導層に対し外部からの水分の浸入を防止でき、水分による劣化を生じ難い酸化物超電導線材を提供することができる。
According to the present invention, the outer low melting point metal layer on both outer side surfaces of the metal stabilizing layer made of a metal tape surrounding the oxide superconducting conductor is removed to form a polished surface, and both sides of the oxide superconducting wire are formed. Width tolerance as an oxide superconducting wire with a structure covered with a metal stabilization layer on a metal tape, because there are no irregularities due to low melting point metal flashes on both outer surface parts of the metal stabilization layer constituting the surface Can be reduced. For this reason, even if it is a case where a coil process is carried out in order to comprise a superconducting coil, the oxide superconducting wire which cannot produce winding disorder easily can be provided.
In addition, since the inner low melting point metal layer provided between the oxide superconductor and the metal stabilization layer made of the metal tape surrounding the oxide superconductor covers the periphery of the oxide superconductor, the metal It is possible to provide an oxide superconducting wire that can prevent moisture from entering from the outside to the oxide superconducting layer positioned inside the oxide superconducting conductor surrounded by the stabilization layer and hardly cause deterioration due to moisture.

本発明に係る第1実施形態の酸化物超電導線材の一部を横断面とした斜視図。The perspective view which made a part of oxide superconducting wire of a 1st embodiment concerning the present invention a cross section. 図1に示す酸化物超電導線材に設けられている酸化物超電導導体の一例を示す部分断面斜視図。The partial cross section perspective view which shows an example of the oxide superconducting conductor provided in the oxide superconducting wire shown in FIG. 図1に示す酸化物超電導線材の製造方法を示すもので、図3(a)は酸化物超電導導体に銅テープを沿わせた状態を示す断面図、図3(b)は酸化物超電導導体に沿わせた銅テープを折り曲げた状態の一例を示す断面図、図3(c)は酸化物超電導導体に銅テープを半田付けした状態を示す断面図。FIG. 3A shows a manufacturing method of the oxide superconducting wire shown in FIG. 1. FIG. 3A is a cross-sectional view showing a state in which a copper tape is placed on the oxide superconducting conductor, and FIG. 3B shows the oxide superconducting conductor. Sectional drawing which shows an example of the state which bent the copper tape along which it was along, FIG.3 (c) is sectional drawing which shows the state which soldered the copper tape to the oxide superconducting conductor.

以下、本発明に係る酸化物超電導線材について、図面に基づいて説明する。
図1は本発明に係る第1実施形態の酸化物超電導線材の一部を断面とした斜視図であり、この実施形態の酸化物超電導線材Aは、内部に設けられたテープ状の酸化物超電導導体1を銅などの導電材料製の金属テープからなる金属安定化層2で覆って構成されている。
この例の酸化物超電導導体1は、図2に示すようにテープ状の基材3の上方に、中間層4と酸化物超電導層5と保護層6をこの順に積層してなる。
前記基材3は、可撓性を有する超電導線材とするためにテープ状であることが好ましく、耐熱性の金属からなるものが好ましい。各種耐熱性金属の中でも、ニッケル合金からなることが好ましい。なかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適である。基材3の厚さは、通常は、10〜500μmである。また、基材3として、ニッケル合金に集合組織を導入した配向Ni−W合金テープ基材等を適用することもできる。
Hereinafter, an oxide superconducting wire according to the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view in which a part of the oxide superconducting wire according to the first embodiment of the present invention is shown in cross section, and the oxide superconducting wire A of this embodiment is a tape-shaped oxide superconducting provided inside. The conductor 1 is covered with a metal stabilization layer 2 made of a metal tape made of a conductive material such as copper.
The oxide superconducting conductor 1 of this example is formed by laminating an intermediate layer 4, an oxide superconducting layer 5, and a protective layer 6 in this order above a tape-shaped base 3 as shown in FIG.
The substrate 3 is preferably in the form of a tape in order to obtain a flexible superconducting wire, and is preferably made of a heat-resistant metal. Among various refractory metals, a nickel alloy is preferable. Especially, if it is a commercial item, Hastelloy (US Haynes Corporation brand name) is suitable. The thickness of the base material 3 is usually 10 to 500 μm. Moreover, as the base material 3, an oriented Ni—W alloy tape base material in which a texture is introduced into a nickel alloy can also be applied.

中間層4は、以下に説明する拡散防止層及びベッド層と配向層とキャップ層からなる構造を一例として適用できる。
配向層の下地とするのは、以下に説明する拡散防止層とベッド層の複層構造あるいは、これらのうちどちらか1層からなる構造とすることができる。
拡散防止層を設ける場合、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)、あるいは、GZO(GdZr)等から構成される単層構造あるいは複層構造の層が望ましく、厚さは例えば10〜400nmである。
ベッド層を設ける場合、ベッド層は、耐熱性が高く、界面反応性を低減し、その上に配される膜の配向性を得るために用いる。このようなベッド層は、例えば、イットリア(Y)などの希土類酸化物であり、より具体的には、Er、CeO、Dy、Ho、La等を例示することができ、これらの材料からなる単層構造あるいは複層構造を採用できる。ベッド層の厚さは例えば10〜100nmである。また、拡散防止層とベッド層の結晶性は特に問われないので、通常のスパッタ法等の成膜法により形成すれば良い。
The intermediate layer 4 can be applied as an example of a diffusion prevention layer, a bed layer, an alignment layer, and a cap layer described below.
The base of the alignment layer can be a multi-layer structure of a diffusion prevention layer and a bed layer, which will be described below, or a structure composed of one of these layers.
When providing the diffusion prevention layer, a single layer structure composed of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), GZO (Gd 2 Zr 2 O 7 ), or the like. Or the layer of a multilayer structure is desirable, and thickness is 10-400 nm, for example.
In the case of providing a bed layer, the bed layer has high heat resistance, reduces interfacial reactivity, and is used for obtaining the orientation of a film disposed thereon. Such a bed layer is, for example, a rare earth oxide such as yttria (Y 2 O 3 ), and more specifically, Er 2 O 3 , CeO 2 , Dy 2 O 3 , Ho 2 O 3 , La 2. O 3 and the like can be exemplified, and a single layer structure or a multilayer structure composed of these materials can be adopted. The thickness of the bed layer is, for example, 10 to 100 nm. Further, the crystallinity of the diffusion preventing layer and the bed layer is not particularly limited, and may be formed by a film forming method such as a normal sputtering method.

配向層は、その上に形成する酸化物超電導層5の結晶配向性を制御するバッファー層として機能し、酸化物超電導層と格子整合性の良い金属酸化物からなることが好ましい。配向層の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示できる。配向層は、単層でも良いし、複層構造でも良い。
配向層をIBAD(Ion-Beam-Assisted Deposition)法により良好な2軸配向性で成膜するならば、キャップ層の結晶配向性を良好にすることができ、その上に成膜する酸化物超電導層5の結晶配向性を良好にして優れた超電導特性を発揮できる。
キャップ層は、上述の配向層の表面に成膜されて結晶粒が面内方向に自己配向し得る材料からなり、具体的には、CeO、Y、Al、Gd、ZrO、YSZ、Ho、Nd、LaMnO等からなる。
中でもCeO層は、PLD法(パルスレーザー蒸着法)、スパッタリング等により大きな成膜速度で形成でき、良好な結晶配向性を得ることができる。キャップ層の膜厚は50〜5000nm、好ましくは300〜800nm程度の範囲に形成できる。
The alignment layer functions as a buffer layer for controlling the crystal orientation of the oxide superconducting layer 5 formed thereon, and is preferably made of a metal oxide having good lattice matching with the oxide superconducting layer. Specifically, preferred materials for the alignment layer include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O. 3 , metal oxides such as Zr 2 O 3 , Ho 2 O 3 and Nd 2 O 3 can be exemplified. The alignment layer may be a single layer or a multilayer structure.
If the alignment layer is deposited with a good biaxial orientation by the IBAD (Ion-Beam-Assisted Deposition) method, the crystal orientation of the cap layer can be improved, and the oxide superconductivity formed thereon The crystal orientation of the layer 5 can be improved and excellent superconducting properties can be exhibited.
The cap layer is formed on the surface of the above-described alignment layer and is made of a material that allows crystal grains to self-orient in the in-plane direction. Specifically, CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3, ZrO 2, YSZ, Ho 2 O 3, Nd 2 O 3, consist of LaMnO 3 like.
Among them, the CeO 2 layer can be formed at a high film formation rate by PLD method (pulse laser deposition method), sputtering or the like, and good crystal orientation can be obtained. The cap layer can be formed to a thickness of 50 to 5000 nm, preferably about 300 to 800 nm.

酸化物超電導層5は通常知られている組成の酸化物超電導体からなるものを広く適用することができ、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のもの、具体的には、Y123(YBaCu)又はGd123(GdBaCu)を例示することができる。また、その他の酸化物超電導体、例えば、BiSrCan−1Cu4+2n+δなる組成等に代表される臨界温度の高い他の酸化物超電導体からなるものを用いても良いのは勿論である。酸化物超電導層5の厚みは、0.5〜5μm程度であって、均一な厚みであることが好ましい。 The oxide superconducting layer 5 can be widely applied with an oxide superconductor having a generally known composition, and REBa 2 Cu 3 O y (RE is Y, La, Nd, Sm, Er, Gd, etc.). A material made of a material that represents a rare earth element, specifically, Y123 (YBa 2 Cu 3 O y ) or Gd123 (GdBa 2 Cu 3 O y ) can be exemplified. Further, other oxide superconductors, for example, Bi 2 Sr 2 Ca n- 1 Cu n for O 4 + 2n + δ becomes may be used in compositions such as those made of other oxide superconductors having high critical temperatures representative Of course. The oxide superconducting layer 5 has a thickness of about 0.5 to 5 μm and preferably a uniform thickness.

酸化物超電導層5は高温超電導体として公知のもので良く、具体的には、REBaCu(REはSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうち、1種または2種以上の希土類元素を示す)なる材質のものを例示できる。この酸化物超電導層5として、Y123(YBaCu7−X)又はGd123(GdBaCu7−X)などを例示できる。
酸化物超電導層5は、スパッタ法、真空蒸着法、レーザー蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等の物理的蒸着法、熱塗布分解法(MOD法)等で積層することができ、なかでも生産性の観点から、PLD(パルスレーザー蒸着)法、TFA−MOD法(トリフルオロ酢酸塩を用いた有機金属堆積法、塗布熱分解法)又はCVD法を用いることができる。酸化物超電導層5の厚みは、0.5〜5μm程度であって、均一な厚みであることが好ましい。
The oxide superconducting layer 5 may be a known high-temperature superconductor, specifically, REBa 2 Cu 3 O y (RE is Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Examples thereof include materials made of Tb, Dy, Ho, Er, Tm, Yb, and Lu (indicating one or more rare earth elements). Examples of the oxide superconducting layer 5 include Y123 (YBa 2 Cu 3 O 7-X ) and Gd123 (GdBa 2 Cu 3 O 7-X ).
The oxide superconducting layer 5 is laminated by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), or thermal coating decomposition (MOD). In particular, from the viewpoint of productivity, the PLD (pulse laser deposition) method, the TFA-MOD method (organic metal deposition method using trifluoroacetate, coating pyrolysis method) or the CVD method may be used. it can. The oxide superconducting layer 5 has a thickness of about 0.5 to 5 μm and preferably a uniform thickness.

保護層6はAgまたはAg合金などの良電導性かつ酸化物超電導層5と接触抵抗が低くなじみの良い層として形成される。なお、保護層6をAgまたはAg合金から構成する理由として、酸化物超電導層5に酸素をドープする酸素アニール工程において酸素を酸化物超電導層5側に透過し易くする点を挙げることができる。成膜法により製造する酸化物超電導層の母物質は絶縁体であるが、酸素アニール処理により酸素を取り込むことで結晶構造の整った酸化物超電導層となり、超電導特性を示す。保護層6を成膜するには、スパッタ法などの成膜法を採用し、その厚さを1〜30μm程度に形成できる。   The protective layer 6 is formed as a layer having good conductivity, such as Ag or an Ag alloy, having a low contact resistance with the oxide superconducting layer 5 and being familiar. The reason why the protective layer 6 is made of Ag or an Ag alloy is that oxygen can be easily transmitted to the oxide superconducting layer 5 side in the oxygen annealing step of doping the oxide superconducting layer 5 with oxygen. The base material of the oxide superconducting layer manufactured by the film formation method is an insulator. However, when oxygen is incorporated by oxygen annealing, the oxide superconducting layer has a well-structured crystal structure and exhibits superconducting properties. In order to form the protective layer 6, a film forming method such as a sputtering method is employed, and the thickness can be formed to about 1 to 30 μm.

前記酸化物超電導導体1において、保護層6の表面と両側面、及びその下の酸化物超電導積層5の両側面、中間層4の両側面、基材3の両側面を覆うとともに、基材3の裏面側の両端部3aを覆うように導電性材料製の金属テープからなる金属安定化層2が設けられている。
金属安定化層2は、一例として導電性の金属材料からなり、酸化物超電導層5が超電導状態から常電導状態に転移した時に、保護層6とともに、電流を転流するバイパスとして機能する。金属安定化層2を構成する材料としては、導電性を有するものであればよく、特に限定されないが、銅、黄銅(Cu−Zn合金)、Cu−Ni合金等の銅合金、Al、Cu−Al合金等の比較的安価な材質からなるものを用いることが好ましく、中でも高い導電性を有し、安価であることがら銅からなることが好ましい。なお、酸化物超電導線材Aを超電導限流器用途に使用する場合、金属安定化層2は高抵抗金属材料より構成され、例えば、Ni−Cr等のNi系合金などからなる。金属安定化層2の厚さは特に限定されず、適宜調整可能であるが、50〜300μmとすることが好ましい。
In the oxide superconducting conductor 1, the surface and both side surfaces of the protective layer 6, both side surfaces of the underlying oxide superconducting laminate 5, both side surfaces of the intermediate layer 4, and both side surfaces of the base material 3 are covered. A metal stabilization layer 2 made of a metal tape made of a conductive material is provided so as to cover both end portions 3a on the back surface side of the metal plate.
The metal stabilization layer 2 is made of a conductive metal material as an example, and functions as a bypass for commutating current together with the protective layer 6 when the oxide superconducting layer 5 transitions from the superconducting state to the normal conducting state. The material constituting the metal stabilizing layer 2 is not particularly limited as long as it has conductivity, but is not limited to copper, brass (Cu—Zn alloy), copper alloys such as Cu—Ni alloy, Al, Cu— It is preferable to use a material made of a relatively inexpensive material such as an Al alloy. Among them, it is preferable that the material is made of copper because it has high conductivity and is inexpensive. When the oxide superconducting wire A is used for a superconducting fault current limiter, the metal stabilizing layer 2 is made of a high resistance metal material, and is made of, for example, a Ni-based alloy such as Ni—Cr. The thickness of the metal stabilization layer 2 is not particularly limited and can be adjusted as appropriate, but is preferably 50 to 300 μm.

前記金属安定化層2の表面と裏面の両方には低融点金属層(半田層)7が形成されている。
金属安定化層2と低融点金属層7について詳しく説明すると、金属安定化層2は、横断面略C字型に折り曲げられ、表面壁2aと側壁2bと裏面壁2c、2cとからなり、酸化物超電導導体1の保護層6側から基材3の裏面両端部3aまでが金属安定化層2により覆われている。即ち、保護層6の表面と両側面、酸化物超電導層5の両側面、中間層4の両側面、基材3の両側面、基材3の裏面両端部3aが金属安定化層2に覆われている。
前記金属安定化層2の内面側全面に内側低融点金属層7aが形成され、酸化物超電導導体1の周面のうち、金属安定化層2により囲まれている部分が前記内側低融点金属層7aにより覆われている。また、金属安定化層2の表面壁2aの外面側に第1の外側低融点金属層7bが形成され、金属安定化層2の側壁2bの外面側に低融点金属層を研磨により除去して側壁2bの外面を露出させた研磨面2eが形成され、金属安定化層2の裏面壁2c、2cの外面側に第2の外側低融点金属層7dが形成されている。
A low melting point metal layer (solder layer) 7 is formed on both the front and back surfaces of the metal stabilizing layer 2.
The metal stabilizing layer 2 and the low melting point metal layer 7 will be described in detail. The metal stabilizing layer 2 is bent into a substantially C-shaped cross section, and includes a front wall 2a, a side wall 2b, and back walls 2c and 2c. The metal superconducting conductor 1 covers the metal stabilizing layer 2 from the protective layer 6 side to the back end portions 3a of the substrate 3. That is, the surface and both sides of the protective layer 6, both sides of the oxide superconducting layer 5, both sides of the intermediate layer 4, both sides of the substrate 3, and both ends 3 a of the back surface of the substrate 3 are covered with the metal stabilizing layer 2. It has been broken.
An inner low melting point metal layer 7a is formed on the entire inner surface of the metal stabilization layer 2, and a portion of the peripheral surface of the oxide superconducting conductor 1 surrounded by the metal stabilization layer 2 is the inner low melting point metal layer. 7a. Also, a first outer low melting point metal layer 7b is formed on the outer surface side of the surface wall 2a of the metal stabilization layer 2, and the low melting point metal layer is removed by polishing on the outer surface side of the side wall 2b of the metal stabilization layer 2. A polished surface 2e exposing the outer surface of the side wall 2b is formed, and a second outer low-melting-point metal layer 7d is formed on the outer surface side of the back wall 2c, 2c of the metal stabilizing layer 2.

また、金属安定化層2の裏面壁2c、2cの先端縁側には低融点金属からなる被覆部7cが形成され、この被覆部7cが裏面壁2cの先端縁から若干膨出するように肉厚に形成され、金属安定化層2の裏面壁2cの先端部と基材3の裏面との間の隙間を閉じるように設けられている。
内側低融点金属層7aは、金属安定化層2と酸化物超電導導体1の間を埋めるようにこれらの間に形成されている。また、前記基材3の裏面側幅方向中央部は金属安定化層2の裏面壁2c、2cにより覆われていない領域であるので、基材3の裏面中央部上であって金属安定化層2の裏面壁2c、2c間には溝部2dが設けられている。
Also, a coating portion 7c made of a low melting point metal is formed on the front edge side of the back surface walls 2c, 2c of the metal stabilizing layer 2, and the coating portion 7c is thick so that it slightly bulges from the front edge of the back wall 2c. And is provided so as to close a gap between the tip of the back wall 2c of the metal stabilizing layer 2 and the back surface of the base material 3.
The inner low melting point metal layer 7a is formed between the metal stabilizing layer 2 and the oxide superconducting conductor 1 so as to be filled therebetween. Moreover, since the center part of the back surface side width direction of the said base material 3 is an area | region which is not covered with the back surface walls 2c and 2c of the metal stabilization layer 2, it is on the back surface center part of the base material 3, and is a metal stabilization layer. A groove 2d is provided between the two back walls 2c and 2c.

前記研磨面2eは以下のように形成されている。図1に示すように横断面C字状に曲げ加工して金属安定化層2とする前の金属テープの状態で表裏両面に溶融半田層を形成しておき、金属テープを図1に示すように横断面C字状に曲げ加工した後、両側面を研磨し、両側面の低融点金属層を除去することで形成された面である。従って、研磨の状態によっては一部に低融点金属層が残留層2fとして残っていても差し支えない。また、金属テープの外面に溶融半田層を形成した際、溶融半田層の形成温度に応じて金属安定化層2表面の構成元素との合金化がなされ、合金層が形成されている場合がある。この場合、研磨面2eには合金層の一部が残留することがあるので、このような残留合金層2gが残留した研磨面2eであっても差し支えない。勿論、研磨面2eに残留層2fや残留合金層2gが全くない研磨面であっても良い。   The polishing surface 2e is formed as follows. As shown in FIG. 1, a molten solder layer is formed on both the front and back surfaces of the metal tape before bending into a C-shaped cross section to form the metal stabilizing layer 2, and the metal tape is as shown in FIG. After bending into a C-shaped cross section, both sides are polished and the low melting point metal layers on both sides are removed. Therefore, depending on the state of polishing, the low melting point metal layer may partially remain as the residual layer 2f. Further, when the molten solder layer is formed on the outer surface of the metal tape, alloying with the constituent elements on the surface of the metal stabilization layer 2 may be performed depending on the formation temperature of the molten solder layer, and an alloy layer may be formed. . In this case, since a part of the alloy layer may remain on the polished surface 2e, the polished surface 2e on which such a residual alloy layer 2g remains may be used. Of course, the polishing surface may be a polishing surface having no residual layer 2f or residual alloy layer 2g on the polishing surface 2e.

テープ状の酸化物超電導線材Aにおいて、その両側面に位置する金属安定化層2の表面部分を研磨面2eとして低融点金属層を除去している研磨面2eであるならば、研磨面2eに低融点金属の残留物によるだれや凸部に起因する凹凸部分は既に除去されているので、幅交差の小さい幅方向寸法精度の高い酸化物超電導線材Aを提供できる。
このように幅交差の小さい酸化物超電導線材Aをコイル巻き加工する場合、形成された超電導コイルに大きな段差を生じることがなく、コイル巻き加工時の巻き乱れも生じ難い特徴を有する。
なお、金属テープを曲げ加工して金属安定化層2を形成後、両外側面を研磨して酸化物超電導線材Aを製造する方法については後に説明する。
In the tape-shaped oxide superconducting wire A, if the surface portion of the metal stabilizing layer 2 located on both sides of the tape-like oxide superconducting wire A is the polishing surface 2e and the polishing surface 2e is removing the low melting point metal layer, the polishing surface 2e Since uneven portions due to drooping or convex portions due to the low melting point metal residue have already been removed, the oxide superconducting wire A having a small width crossing and high dimensional accuracy in the width direction can be provided.
In this way, when the oxide superconducting wire A having a small width crossing is coiled, a large step does not occur in the formed superconducting coil, and there is a feature that winding disturbance does not easily occur during coil winding.
A method of manufacturing the oxide superconducting wire A by bending the metal tape to form the metal stabilizing layer 2 and then polishing both outer surfaces will be described later.

前述の低融点金属層7(7a、7b、7c、7d)は、この実施形態では半田から形成されているが、低融点金属として、融点150〜400℃の金属、例えば、Sn、Sn合金、インジウム等からなるものでも良い。半田を用いる場合、Sn−Pb系、Pb−Sn−Sb系、Sn−Pb−Bi系、Bi−Sn系、Sn−Cu系、Sn−Pb−Cu系、Sn−Ag系などのいずれの半田を用いても良い。なお、低融点金属層7を溶融させる場合、その融点が高いと、酸化物超電導層5の超電導特性に悪影響を及ぼすので、低融点金属層7の融点は低い方が好ましく、この点、融点350℃以下、より好ましくは150〜300℃前後の融点を有する材料が望ましい。
低融点金属層7の厚さは1μm〜10μmの範囲が好ましく、1μm〜6μmの範囲がより好ましい。低融点金属層7の厚さが1μm未満の場合、酸化物超電導導体1と金属安定化層2の間の隙間を完全に充填できずに隙間を生じるおそれがあり、更に、低融点金属を溶融させている間に低融点金属層7の構成元素が拡散して金属安定化層2とAgの保護層6との間に合金層を生成してしまうおそれがある。逆に、低融点金属層7を10μm超えの厚さに形成すると、ロールにより加熱加圧して低融点金属を溶融し、低融点金属により一体化する際、金属安定化層2の裏面壁2cの先端側から外側にはみ出す低融点金属の量が多くなり、被覆部7cの厚さが必要以上に大きくなる結果、酸化物超電導線材Aの巻回時に巻き乱れを生じる原因となる可能性が高くなる。なお、ロールによる加熱加圧工程においては、条件や位置によって10〜20μmも溶融半田がはみ出す場合がある。
The low-melting-point metal layer 7 (7a, 7b, 7c, 7d) is formed of solder in this embodiment. As the low-melting-point metal, a metal having a melting point of 150 to 400 ° C., for example, Sn, Sn alloy, It may be made of indium or the like. When using solder, any solder such as Sn—Pb, Pb—Sn—Sb, Sn—Pb—Bi, Bi—Sn, Sn—Cu, Sn—Pb—Cu, Sn—Ag, etc. May be used. In the case where the low melting point metal layer 7 is melted, if the melting point is high, the superconducting properties of the oxide superconducting layer 5 are adversely affected. Therefore, the melting point of the low melting point metal layer 7 is preferably low. A material having a melting point of not higher than ° C., more preferably around 150 to 300 ° C. is desirable.
The thickness of the low melting point metal layer 7 is preferably in the range of 1 μm to 10 μm, and more preferably in the range of 1 μm to 6 μm. If the thickness of the low melting point metal layer 7 is less than 1 μm, the gap between the oxide superconducting conductor 1 and the metal stabilizing layer 2 may not be completely filled, and a gap may be formed. During the process, the constituent elements of the low melting point metal layer 7 may diffuse to form an alloy layer between the metal stabilizing layer 2 and the Ag protective layer 6. Conversely, when the low melting point metal layer 7 is formed to a thickness exceeding 10 μm, the low melting point metal is melted by heating and pressurizing with a roll and integrated with the low melting point metal. The amount of the low melting point metal that protrudes from the tip side to the outside increases, and the thickness of the covering portion 7c becomes larger than necessary. As a result, there is a high possibility of causing turbulence when the oxide superconducting wire A is wound. . In the heating and pressurizing process using a roll, the molten solder may protrude as much as 10 to 20 μm depending on conditions and positions.

図1に示す構造の酸化物超電導線材Aは、酸化物超電導導体1とその周囲の金属安定化層2との間に充填された内側低融点金属層7aが酸化物超電導導体1の周囲を隙間無く覆っているので、金属安定化層2の内側に位置する酸化物超電導層5に対し外部からの水分浸入を阻止できる。
また、基材3の裏面側に被せられた金属安定化層2の裏面壁2cから外部に突出するように低融点金属により肉厚に形成された被覆部7cで金属テープ2の両端縁部と基材3の裏面との隙間を覆っているので金属安定化層2の端縁部側において金属安定化層2の内側への水分の浸入を確実に防止できる効果がある。
In the oxide superconducting wire A having the structure shown in FIG. 1, an inner low melting point metal layer 7 a filled between the oxide superconducting conductor 1 and the metal stabilizing layer 2 around the oxide superconducting conductor 1 has a gap around the oxide superconducting conductor 1. Since it is covered without water, it is possible to prevent moisture from entering the oxide superconducting layer 5 located inside the metal stabilizing layer 2 from the outside.
Further, both end edges of the metal tape 2 are covered with a covering portion 7c formed of a low melting point metal so as to protrude outside from the back wall 2c of the metal stabilizing layer 2 placed on the back surface of the substrate 3. Since the gap with the back surface of the base material 3 is covered, there is an effect that moisture can be surely prevented from entering the inside of the metal stabilizing layer 2 on the edge side of the metal stabilizing layer 2.

前記金属安定化層2の裏面壁2cの端縁部から外部にはみ出した低融点金属からなる被覆部7cは金属安定化層2の両端縁部間の溝部2d側に多少はみ出ている程度であり、金属安定化層2の厚さに比べこのはみ出し部分の厚みが特に大きくなっている訳ではない。また、金属安定化層2の研磨面2e側においても低融点金属のばりやはみ出しによる凹凸部分は除去されている。このため、研磨面2eを有し、被覆部7cを基材3の裏面側に備えた酸化物超電導線材Aであっても、コイル巻き加工する場合、大きな段差を生じることなく、コイル巻き加工ができ、巻き乱れも生じ難い特徴を有する。   The covering portion 7c made of a low melting point metal that protrudes outside from the edge of the back wall 2c of the metal stabilizing layer 2 slightly protrudes toward the groove 2d between the both edges of the metal stabilizing layer 2. The thickness of the protruding portion is not particularly large compared to the thickness of the metal stabilizing layer 2. Further, even on the polished surface 2e side of the metal stabilizing layer 2, the uneven portion due to the flashing or protruding of the low melting point metal is removed. For this reason, even if it is the oxide superconducting wire A which has the grinding | polishing surface 2e and was equipped with the coating | coated part 7c in the back surface side of the base material 3, when coil winding is carried out, coil winding processing does not produce a big level | step difference. It has a characteristic that it is possible to prevent winding disturbance.

図1に示す構造の酸化物超電導線材Aを製造するには、図3(a)に示すように基材3と中間層4と酸化物超電導層5と保護層6を積層したテープ状の酸化物超電導導体1を用意し、この酸化物超電導導体1の保護層6を下にしてその下方に金属テープ2Aを配置する。ここで用いる金属テープ2Aの表裏面にはめっきにより低融点金属層8、9を形成したものを用いる。これらの低融点金属層8、9は2μm〜6μm程度の厚さとすることが好ましい。
酸化物超電導導体1の中央下部に金属テープ2Aの幅方向中央部を位置合わせして配置したならば、フォーミングロールなどを用いて金属テープ2Aを整形して基材3の両端側に沿って図3(b)に示すように金属テープ2Aの両端側を上方に折り曲げ、基材3の両端部分に沿って図3(c)に示すように更に折り曲げ加工して金属テープ2Aにより基材3の裏面両端部側を包むように加工し、金属テープ2Aを横断面C字状に折り曲げ加工することで金属安定化層を形成する。
In order to manufacture the oxide superconducting wire A having the structure shown in FIG. 1, a tape-like oxidation in which a substrate 3, an intermediate layer 4, an oxide superconducting layer 5 and a protective layer 6 are laminated as shown in FIG. An object superconducting conductor 1 is prepared, and a metal tape 2 </ b> A is disposed below the protective layer 6 of the oxide superconducting conductor 1. The metal tape 2 </ b> A used here has a low melting point metal layer 8 or 9 formed by plating on the front and back surfaces. These low melting point metal layers 8 and 9 are preferably about 2 μm to 6 μm thick.
If the center portion in the width direction of the metal tape 2A is aligned and arranged at the center lower portion of the oxide superconductor 1, the metal tape 2A is shaped using a forming roll or the like along both end sides of the substrate 3. As shown in FIG. 3B, both ends of the metal tape 2A are bent upward, and further bent along the both ends of the substrate 3 as shown in FIG. A metal stabilizing layer is formed by processing so as to wrap both ends of the back surface and bending the metal tape 2A into a C-shaped cross section.

この状態から加熱炉で全体を低融点金属層8、9の溶融温度以上に加熱し、続いて低融点金属層8、9の溶融温度から50℃程度低い温度に加熱した加圧ロールを用いてC字状に曲げ加工した金属安定化層2と酸化物超電導導体1を加圧する。ここで用いる低融点金属層8、9の融点が一例として150℃〜350℃であるならば、該融点より50℃低い100℃〜300℃の範囲の温度を選択できる。
以上の処理により、溶融した低融点金属層8、9は酸化物超電導導体1と金属安定化層2の間を完全に埋めるように溶融して拡がり、それらの間の間隙を充填した状態となる。この後、全体を冷却し、溶融している低融点金属を固化させると、図3(c)に示すように低融点金属層7を備えた構造の酸化物超電導線材A1を得ることができる。
From this state, the whole is heated to a temperature higher than or equal to the melting temperature of the low melting point metal layers 8 and 9 in a heating furnace, and then heated using a pressure roll heated to a temperature about 50 ° C. lower than the melting temperature of the low melting point metal layers 8 and 9. The metal stabilizing layer 2 and the oxide superconducting conductor 1 bent into a C shape are pressurized. If the melting points of the low melting point metal layers 8 and 9 used here are 150 ° C. to 350 ° C. as an example, a temperature in the range of 100 ° C. to 300 ° C. which is 50 ° C. lower than the melting point can be selected.
By the above processing, the melted low melting point metal layers 8 and 9 are melted and spread so as to completely fill the space between the oxide superconductor 1 and the metal stabilizing layer 2, and the gap between them is filled. . Thereafter, when the whole is cooled to solidify the molten low melting point metal, an oxide superconducting wire A1 having a structure having the low melting point metal layer 7 as shown in FIG. 3C can be obtained.

この酸化物超電導線材A1を得たならば、その両側面を紙ヤスリ等の研磨具により研磨して両側面に付着残留している低融点金属層7eを除去し、研磨面2eを形成することにより、図1に示す断面構造の酸化物超電導線材Aを得ることができる。低融点金属層7eはそれ自体の硬度も低く紙ヤスリ等の研磨具により簡単に除去することができる。
研磨具により低融点金属層7eを除去する場合、低融点金属層7eがほぼ無くなって下地の金属安定化層2の面が露出して目視できる程度の状態まで研磨しておけば良い。例えば、Cuからなる金属安定化層2の場合は低融点金属層7eとは明らかに異なる色である銅色を呈するので、この銅色が認められるようになった段階で研磨終了とすることができる。なお、研磨面2eを形成する手段は紙ヤスリ等による研磨に限るものではなく、酸化物超電導線材Aをダイスに通して両側面の低融点金属層7eを除去して研磨面とする方法を採用しても良い。
なお、紙ヤスリで研磨する方法の一例として、テープ状の酸化物超電導線材Aの上面あるいは下面の一方から、両側面に跨るように帯状の紙ヤスリをU字形あるいは逆U字形に掛け渡し、紙ヤスリを上下させて酸化物超電導線材Aの両面を同時に研磨する方法を採用できる。勿論、紙ヤスリで研磨する方法はこの方法に限るものではなく、2枚の紙ヤスリを対向させて弾性を有する治具等に支持しておき、対向する紙ヤスリの間に酸化物超電導線材Aを複数回走行させて研磨するなど、いずれの方法を採用しても良い。
Once this oxide superconducting wire A1 is obtained, both side surfaces thereof are polished with a polishing tool such as a paper file to remove the low melting point metal layer 7e remaining on both side surfaces to form the polished surface 2e. Thus, the oxide superconducting wire A having the cross-sectional structure shown in FIG. 1 can be obtained. The low melting point metal layer 7e itself has a low hardness and can be easily removed with a polishing tool such as a paper file.
When the low melting point metal layer 7e is removed by a polishing tool, the low melting point metal layer 7e may be removed so that the surface of the underlying metal stabilization layer 2 is exposed and visible. For example, in the case of the metal stabilization layer 2 made of Cu, since the copper color which is clearly different from the low melting point metal layer 7e is exhibited, the polishing may be finished when the copper color is recognized. it can. The means for forming the polished surface 2e is not limited to polishing with a paper file or the like, but a method is adopted in which the oxide superconducting wire A is passed through a die to remove the low-melting point metal layers 7e on both sides to form a polished surface. You may do it.
In addition, as an example of a method of polishing with a paper file, a belt-shaped paper file is spanned in a U-shape or an inverted U-shape so as to straddle both side surfaces from one of the upper surface and the lower surface of the tape-shaped oxide superconducting wire A. A method of simultaneously polishing both surfaces of the oxide superconducting wire A by moving the file up and down can be employed. Of course, the method of polishing with a paper file is not limited to this method, and two paper files are made to face each other and supported by an elastic jig or the like, and the oxide superconducting wire A between the opposed paper files. Any method may be employed, such as polishing by running a plurality of times.

このように下地の金属安定化層2が露出するまで研磨した研磨面2eであるならば、酸化物超電導線材Aの両側面側に低融点金属層に起因するだれや凸部からなる凹凸部を有していないので、幅交差の小さい寸法精度の高い酸化物超電導線材Aを得ることができる。また、研磨面2eにおいて残留層2fが一部残留していたり、残留合金層2gが一部残留していても、酸化物超電導線材Aの両側面の凹凸部が除去されているので、幅寸法公差に悪影響はない。   Thus, if the ground surface 2e is polished until the underlying metal stabilizing layer 2 is exposed, uneven portions made of anyone or convex portions due to the low melting point metal layer are formed on both side surfaces of the oxide superconducting wire A. Since it does not have, the oxide superconducting wire A with a small crossing width and high dimensional accuracy can be obtained. Further, even if the residual layer 2f remains on the polished surface 2e or the residual alloy layer 2g partially remains, the uneven portions on both sides of the oxide superconducting wire A are removed. There is no negative impact on tolerance.

なお、酸化物超電導線材Aを巻き枠に巻回してコイル化する場合、酸化物超電導線材Aの両側面部分には張力が印加されないので、両側面部分に仮に錫を含む半田の塊が存在すると液体窒素温度以下に冷却した場合に錫を含む半田が低温で脆化しやすい。この半田の脆化が進行すると、両側面部分以外に設けられている錫を含む半田にも脆化が伝搬するおそれがある。
例えば、酸化物超電導線材Aをコイル化した場合、酸化物超電導線材Aの線材表裏面はコイル化時の張力によって圧縮応力を受けているので、脆化を抑制できる。しかし、酸化物超電導線材Aの両側面側にはコイル化時の張力の印加は生じないので、錫を含む半田が脆化するおそれが高い。酸化物超電導線材Aの両側面側に位置する半田に脆化が生じると、脆化した半田に接触している半田にも脆化が伝搬するおそれがある。
例えば、Snは低温で脆化すると体積膨張するので、β−Snからα−Snになる脆化が伝搬すると金属安定化層2の側面以外に形成されているSnを含む半田にも悪影響を及ぼす。
この面からみて酸化物超電導線材Aの両外側面側の半田を除去しておくならば、半田脆化の伝搬を抑制できる。この半田脆化の面から鑑み、酸化物超電導線材Aの両外側面側に残留する半田の厚さを0〜2μmの範囲としておくならば、半田の低温脆化の影響を排除できる。
なお、半田の厚さを2μm以下と規定する場合、金属安定化層2の外側面全面に均一に半田が存在しているわけではなく、研磨後に島状に半田が残留して残留した分の厚さが2μm以下の状態である。
In addition, when the oxide superconducting wire A is wound around a winding frame to form a coil, since tension is not applied to both side portions of the oxide superconducting wire A, if there is a lump of solder containing tin on both side portions, When cooled below the liquid nitrogen temperature, solder containing tin tends to become brittle at low temperatures. As the solder becomes more brittle, there is a risk that the brittleness may propagate to the solder containing tin provided at portions other than both side portions.
For example, when the oxide superconducting wire A is coiled, the front and back surfaces of the oxide superconducting wire A are subjected to compressive stress due to the tension at the time of coiling, so that embrittlement can be suppressed. However, since no tension is applied to the both side surfaces of the oxide superconducting wire A during coiling, there is a high possibility that the solder containing tin becomes brittle. When embrittlement occurs in the solder located on both side surfaces of the oxide superconducting wire A, the embrittlement may propagate to the solder in contact with the embrittled solder.
For example, since Sn expands when embrittled at a low temperature, if embrittlement from β-Sn to α-Sn propagates, it also adversely affects the solder containing Sn formed on the side surfaces of the metal stabilization layer 2. .
If the solder on both outer side surfaces of the oxide superconducting wire A is removed from this surface, the propagation of solder embrittlement can be suppressed. In view of this solder embrittlement, if the thickness of the solder remaining on both outer side surfaces of the oxide superconducting wire A is set in the range of 0 to 2 μm, the influence of low temperature embrittlement of the solder can be eliminated.
When the thickness of the solder is specified to be 2 μm or less, the solder is not uniformly present on the entire outer surface of the metal stabilizing layer 2, but the amount of residual solder remaining in an island shape after polishing. The thickness is 2 μm or less.

以下、実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
ハステロイC−276(米国ヘインズ社商品名)からなる厚さ100μm、幅5mm、長さ50mのテープ状の基材上に、Alの拡散防止層(厚さ80nm)と、Yのベッド層(厚さ30nm)と、イオンビームアシスト蒸着法によるMgOの中間層(厚さ10nm)と、PLD法によるCeOのキャップ層(厚さ300nm)と、YBaCu7−xで示される組成の酸化物超電導層(厚さ1μm)と、DCスパッタ法によるAgの保護層(厚さ10μm)を積層したテープ状の酸化物超電導導体を用意した。
また、厚さ20μm、幅18mm、長さ50mであり、両面にSnめっき層(厚さ2〜4μm)を形成したSnめっき付き金属テープを用意した。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to these Examples.
An Al 2 O 3 diffusion prevention layer (thickness 80 nm), Y 2 O on a tape-shaped substrate made of Hastelloy C-276 (trade name of US Haynes Co., Ltd.) having a thickness of 100 μm, a width of 5 mm, and a length of 50 m 3 bed layer (thickness 30 nm), an intermediate layer of MgO (thickness 10 nm) by ion beam assisted deposition, a CeO 2 cap layer (thickness 300 nm) by PLD method, and YBa 2 Cu 3 O 7− A tape-shaped oxide superconducting conductor was prepared by laminating an oxide superconducting layer (thickness 1 μm) having a composition represented by x and an Ag protective layer (thickness 10 μm) by DC sputtering.
Further, a metal tape with Sn plating having a thickness of 20 μm, a width of 18 mm, and a length of 50 m and having an Sn plating layer (thickness of 2 to 4 μm) formed on both surfaces was prepared.

前記酸化物超電導導体に対しロールフォーミングにより銅テープを折り曲げつつ連続してC字状に成形し、テープ状の酸化物超電導導体を銅テープの成形体からなる金属安定化層で覆った構造の被覆超電導導体を形成した。前記ロールフォーミングによる加工後、成形用ロールの後段に備えた加熱ヒーターで250℃に加熱しつつ加熱ロールで加圧し、Snめっき層を溶融させ、酸化物超電導導体にC字型の銅テープを圧着後、全体を冷却して図3(c)に示す構造の酸化物超電導線材を得、この酸化物超電導線材を巻取リールに巻き取った。   Covering the oxide superconducting conductor in a continuous C-shape while bending the copper tape by roll forming, and covering the tape-shaped oxide superconducting conductor with a metal stabilization layer made of a molded product of copper tape A superconducting conductor was formed. After processing by the roll forming, pressurizing with a heating roll while heating to 250 ° C. with a heater provided at the subsequent stage of the forming roll, melting the Sn plating layer, and crimping a C-shaped copper tape to the oxide superconductor Thereafter, the whole was cooled to obtain an oxide superconducting wire having a structure shown in FIG. 3C, and the oxide superconducting wire was wound on a take-up reel.

この後、巻取リールの側面リール板を巻き枠から取り外し、巻き枠に巻き付けられている酸化物超電導線材のリール体の側面部分を#400の紙やすりを用いて研磨した(ばり取りを行った試料)。酸化物超電導線材の側面を研磨完了とする目安は、銅テープからなる金属安定化層の側面を覆っているSn半田層がすり減って下地の銅色が見えた時点を研磨完了とした。
得られた酸化物超電導線材の幅寸法は、両側面に厚さ20μmの銅安定化層が存在することから、理論的には幅5.04mmである。
以上の工程により得られたばり取り有りの酸化物超電導線材について、幅寸法を5mm間隔で測定した際の寸法解析データを以下の表1に示す。
また、上述と同等の条件で製造し、紙やすりによる両側面のばり取りを行っていないばり取り無しの酸化物超電導線材試料についても同様に寸法測定を行った。その結果を表1に示す。
Thereafter, the side reel plate of the take-up reel was removed from the reel, and the side portion of the oxide superconducting wire wound around the reel was polished with a # 400 sandpaper (deburred). sample). As a guideline for completing the polishing of the side surface of the oxide superconducting wire, the polishing was completed when the Sn solder layer covering the side surface of the metal stabilizing layer made of copper tape was worn down and the underlying copper color was seen.
The width dimension of the obtained oxide superconducting wire is theoretically 5.04 mm in width because a copper stabilizing layer having a thickness of 20 μm exists on both side surfaces.
Table 1 below shows dimensional analysis data when the width dimension of the oxide superconducting wire with deburring obtained by the above process is measured at intervals of 5 mm.
In addition, the dimensional measurement was similarly performed on a non-deburred oxide superconducting wire sample which was manufactured under the same conditions as described above and was not deburred on both sides by sandpaper. The results are shown in Table 1.

Figure 2015011860
Figure 2015011860

表1に示す試験結果から、ばり取りを行い、両側面にSnめっき層を有していない酸化物超電導線材とすることにより、幅交差の小さい、幅寸法精度の高い酸化物超電導線材を製造できることが明らかになった。   From the test results shown in Table 1, it is possible to produce an oxide superconducting wire with a small width crossing and a high width dimensional accuracy by deburring and making an oxide superconducting wire having no Sn plating layer on both sides. Became clear.

前記構造の酸化物超電導線材の低温冷却時の影響を調べるための加速試験を行った。
前記実施例1の構造と同等構造の酸化物超電導線材を複数用意し、これらの両外側面に研磨後に残留する半田層の厚さを変更した試料を複数用意した。
酸化物超電導線材を製造する場合に用いた銅テープの表面側に形成する錫半田層(4NSn層)の厚さを8μm、6μm、4μm、2μm、0μmとした試料を用意した。Sn半田層の厚さとして、8μm、6μm、4μmの試料は、それぞれの厚さの半田層を形成後、研磨していない試料とした。
半田層の厚さ2μmの試料は、4μmの半田層を形成後、紙ヤスリによる研磨により半田層の厚さが2μmになるように研磨した試料、半田層の厚さ0μmの試料は、4μmの半田層を形成後、紙ヤスリによる研磨により半田層の厚さが0μmになるように研磨した試料である。
An accelerated test was conducted to examine the effect of the oxide superconducting wire having the above structure upon cooling at a low temperature.
A plurality of oxide superconducting wires having the same structure as that of Example 1 were prepared, and a plurality of samples were prepared by changing the thickness of the solder layer remaining after polishing on both outer surfaces.
Samples were prepared in which the thickness of the tin solder layer (4NSn layer) formed on the surface side of the copper tape used for manufacturing the oxide superconducting wire was 8 μm, 6 μm, 4 μm, 2 μm, and 0 μm. Samples with Sn solder layer thicknesses of 8 μm, 6 μm, and 4 μm were unpolished samples after the solder layers having the respective thicknesses were formed.
A sample having a solder layer thickness of 2 μm is formed by forming a solder layer having a thickness of 4 μm, and polishing with a paper file so that the solder layer has a thickness of 2 μm. A sample having a solder layer thickness of 0 μm is 4 μm This sample was formed by polishing with a paper file to form a solder layer of 0 μm after the solder layer was formed.

加速試験は、各金属安定化層の半田層形成部分にα−Snを接触させ、最も脆化の進行が早いとされる−45℃の環境下で行った。4N−Sn単体で同じ加速試験を行った場合、環境にもよるが一般的には10〜15日で脆化することが知られている。以下の試験結果において、脆化する、脆化しないの判定は、体積の膨張による割れの有無と目視による表面の変色観察による判定とした。
半田層厚さ(0μm):脆化せず(60日後)
半田層厚さ(2μm):脆化せず(60日後)
半田層厚さ(4μm):60日で脆化
半田層厚さ(6μm):30日で脆化
半田層厚さ(8μm):21日で脆化
この試験結果から、Snの半田層を研磨面に2μm以下残留させるならば、Sn脆化の影響は受けないと想定できる。
なお、金属安定化層表面の錫半田層の厚さを薄くする程、Sn脆化の進行を抑制できる結果となった。このため、金属安定化層の外面側に研磨面を形成した場合、残留している半田層の厚さとして2μm以下とすることが、Sn脆化を抑制する上で好ましい。錫半田層が厚くなるとCuの拡散が届かずSnの純度が高い部分が生じ、Sn脆化が発生し易くなると考えられる。
The accelerated test was performed in an environment of −45 ° C. where α-Sn was brought into contact with the solder layer forming portion of each metal stabilizing layer and the progress of embrittlement was considered to be the fastest. When the same acceleration test is performed with 4N—Sn alone, it is generally known that the material becomes brittle in 10 to 15 days, depending on the environment. In the following test results, the determination of embrittlement or not embrittlement was determined by the presence or absence of cracks due to volume expansion and by visual observation of surface discoloration.
Solder layer thickness (0 μm): No embrittlement (after 60 days)
Solder layer thickness (2 μm): No embrittlement (after 60 days)
Solder layer thickness (4 μm): embrittled in 60 days Solder layer thickness (6 μm): embrittled in 30 days Solder layer thickness (8 μm): embrittled in 21 days From this test result, the Sn solder layer was polished If 2 μm or less is left on the surface, it can be assumed that it is not affected by Sn embrittlement.
As the thickness of the tin solder layer on the surface of the metal stabilizing layer was reduced, the progress of Sn embrittlement could be suppressed. For this reason, when a polishing surface is formed on the outer surface side of the metal stabilization layer, the thickness of the remaining solder layer is preferably 2 μm or less in order to suppress Sn embrittlement. When the tin solder layer is thick, it is considered that Cu diffusion does not reach and a portion with high Sn purity occurs, and Sn embrittlement is likely to occur.

本発明技術は、例えば超電導用送電線、超電導モータ、限流器など、各種電力機器に用いられる酸化物超電導線材に利用できる。   The technology of the present invention can be used for oxide superconducting wires used in various power devices such as superconducting power transmission lines, superconducting motors, and current limiters.

A…酸化物超電導線材、1…酸化物超電導導体、2…金属安定化層、2A…金属テープ、2a…正面壁、2b…側壁、2c…裏面壁、2e…研磨面、3…基材、3a…裏面両端部、4…中間層、5…酸化物超電導層、6…保護層、7…低融点金属層(半田層)、7a…内側低融点金属層、7b、7d、7e…外側低融点金属層、8、9…Snめっき層。   A ... oxide superconducting wire, 1 ... oxide superconducting conductor, 2 ... metal stabilizing layer, 2A ... metal tape, 2a ... front wall, 2b ... side wall, 2c ... back wall, 2e ... polished surface, 3 ... substrate, 3a ... both ends of the back surface, 4 ... intermediate layer, 5 ... oxide superconducting layer, 6 ... protective layer, 7 ... low melting metal layer (solder layer), 7a ... inner low melting metal layer, 7b, 7d, 7e ... outer low Melting point metal layer, 8, 9... Sn plating layer.

Claims (6)

テープ状の基材の表面上に中間層と酸化物超電導層と保護層を備えてテープ状の酸化物超電導導体が構成され、該酸化物超電導導体の周囲に金属テープからなる金属安定化層が前記テープ状の酸化物超電導導体の保護層側と両側面側を覆い基材裏面側の少なくとも一部を覆うように形成され、
前記金属安定化層の内面側に内側低融点金属層、外側に外側低融点金属層が形成され、前記金属安定化層が前記内側低融点金属層により前記酸化物超電導導体に接合され、前記金属安定化層の両外側面部分が研磨されて外側低融点金属層の一部または全部が除去され、前記金属安定化層の両外側面部分を露出させた研磨面が形成されたことを特徴とする酸化物超電導線材。
A tape-shaped oxide superconducting conductor is formed by providing an intermediate layer, an oxide superconducting layer, and a protective layer on the surface of the tape-shaped substrate, and a metal stabilizing layer made of a metal tape is formed around the oxide superconducting conductor. Covering the protective layer side and both side surfaces of the tape-shaped oxide superconducting conductor is formed so as to cover at least a part of the substrate back side,
An inner low melting point metal layer is formed on the inner surface side of the metal stabilization layer, and an outer low melting point metal layer is formed on the outer side, and the metal stabilization layer is joined to the oxide superconducting conductor by the inner low melting point metal layer, The outer side surface portions of the stabilizing layer are polished to remove a part or the whole of the outer low-melting point metal layer, and a polished surface exposing both outer side surface portions of the metal stabilizing layer is formed. Oxide superconducting wire.
前記研磨面に低融点金属層の残留層が形成されたことを特徴とする請求項1に記載の酸化物超電導線材。   2. The oxide superconducting wire according to claim 1, wherein a residual layer of a low melting point metal layer is formed on the polished surface. 前記研磨面に低融点金属層を構成する元素と前記金属安定化層を構成する元素の合金からなる残留合金層が形成されことを特徴とする請求項1または請求項2に記載の酸化物超電導線材。   The oxide superconductivity according to claim 1 or 2, wherein a residual alloy layer made of an alloy of an element constituting the low melting point metal layer and an element constituting the metal stabilizing layer is formed on the polished surface. wire. 前記金属安定化層の両側面に残留されている低融点金属層の厚さが2μm以下であることを特徴とする請求項1〜3のいずれか一項に記載の酸化物超電導線材。   The oxide superconducting wire according to any one of claims 1 to 3, wherein a thickness of the low melting point metal layer remaining on both side surfaces of the metal stabilizing layer is 2 µm or less. テープ状の基材の表面上に中間層と酸化物超電導層と保護層を備えてなるテープ状の酸化物超電導導体に対し、この酸化物超電導導体より幅広で両面に低融点金属層を備えた金属テープを用い、この金属テープで前記酸化物超電導導体の保護層側と両側面側と基材裏面側の少なくとも端縁側とを覆うように前記金属テープを折り曲げて前記酸化物超電導導体を覆った後、前記低融点金属層を加熱溶融させて前記酸化物超電導導体に前記金属テープを接合し、次いで前記酸化物超電導導体の両側面側を覆った前記金属テープの両外側面部分を研磨して両外側面部分に存在している低融点金属層の一部または全部を除去して研磨面を形成し金属安定化層を形成することを特徴とする酸化物超電導線材の製造方法。   A tape-shaped oxide superconducting conductor comprising an intermediate layer, an oxide superconducting layer, and a protective layer on the surface of a tape-shaped substrate, and having a low melting point metal layer wider than the oxide superconducting conductor and on both sides. Using a metal tape, the metal tape was folded to cover the oxide superconductor with the metal tape so as to cover the protective layer side, both side surfaces, and at least the edge side of the back surface of the base material. Then, the low melting point metal layer is heated and melted to join the metal tape to the oxide superconductor, and then both outer side surfaces of the metal tape covering both side surfaces of the oxide superconductor are polished. A method for producing an oxide superconducting wire, characterized in that a metal stabilizing layer is formed by removing a part or all of a low melting point metal layer present on both outer surface portions to form a polished surface. 前記金属テープの両外側面部分に存在している低融点金属層を研磨により除去することで前記金属安定化層の両外側面部分に残留する低融点金属層の厚さを2μm以下とすることを特徴とする請求項5に記載の酸化物超電導線材の製造方法。   The thickness of the low melting point metal layer remaining on both outer side surface portions of the metal stabilizing layer is reduced to 2 μm or less by removing the low melting point metal layer present on both outer side surface portions of the metal tape by polishing. The method for producing an oxide superconducting wire according to claim 5.
JP2013136257A 2013-06-28 2013-06-28 Oxide superconductive wire rod and production method thereof Pending JP2015011860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013136257A JP2015011860A (en) 2013-06-28 2013-06-28 Oxide superconductive wire rod and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136257A JP2015011860A (en) 2013-06-28 2013-06-28 Oxide superconductive wire rod and production method thereof

Publications (1)

Publication Number Publication Date
JP2015011860A true JP2015011860A (en) 2015-01-19

Family

ID=52304856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136257A Pending JP2015011860A (en) 2013-06-28 2013-06-28 Oxide superconductive wire rod and production method thereof

Country Status (1)

Country Link
JP (1) JP2015011860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104297A1 (en) * 2015-12-18 2017-06-22 株式会社フジクラ Oxide super-conducting wire production method and super-conducting coil production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104297A1 (en) * 2015-12-18 2017-06-22 株式会社フジクラ Oxide super-conducting wire production method and super-conducting coil production method

Similar Documents

Publication Publication Date Title
JP5933781B2 (en) Oxide superconducting wire
EP3046116B1 (en) Superconductor and method of manufacturing same
RU2606959C1 (en) Oxide superconducting wire
JP6012658B2 (en) Oxide superconducting wire and manufacturing method thereof
WO2013153973A1 (en) Oxide superconducting wire having reinforcing materials
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP5775785B2 (en) Oxide superconducting wire and method for producing the same
JP2014220194A (en) Oxide superconductive wire material and production method thereof
JP6688914B1 (en) Oxide superconducting wire and superconducting coil
JP2015011860A (en) Oxide superconductive wire rod and production method thereof
JP6743262B1 (en) Oxide superconducting wire
JP6743233B1 (en) Oxide superconducting wire
JP6002602B2 (en) Oxide superconducting wire connection structure and manufacturing method thereof
JP6461776B2 (en) Superconducting wire and method of manufacturing superconducting wire
JP5775810B2 (en) Manufacturing method of oxide superconducting wire
JP2012252825A (en) Substrate for oxide superconductive wire material and oxide superconductive wire material
JP6743232B1 (en) Oxide superconducting wire
JP5723553B2 (en) Oxide superconducting wire manufacturing apparatus and oxide superconducting wire manufacturing method
JP2012209189A (en) Oxide superconducting wire material and method for manufacturing the same
JP2012150914A (en) High-resistance material composite oxide superconducting wire material
JP2017091808A (en) Method for producing oxide superconducting wire rod and method for producing superconducting coil
WO2015098934A1 (en) Oxide superconducting wire material and oxide superconducting wire material manufacturing method
WO2020212194A1 (en) Sealed superconductor tape
JP2017183038A (en) Method for manufacturing superconducting wire rod and superconducting wire rod