JP2015007219A - Polyimide and heat-resistant film - Google Patents

Polyimide and heat-resistant film Download PDF

Info

Publication number
JP2015007219A
JP2015007219A JP2014103250A JP2014103250A JP2015007219A JP 2015007219 A JP2015007219 A JP 2015007219A JP 2014103250 A JP2014103250 A JP 2014103250A JP 2014103250 A JP2014103250 A JP 2014103250A JP 2015007219 A JP2015007219 A JP 2015007219A
Authority
JP
Japan
Prior art keywords
formula
polyimide
group
represented
repeating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014103250A
Other languages
Japanese (ja)
Other versions
JP6462236B2 (en
Inventor
長谷川 匡俊
Masatoshi Hasegawa
匡俊 長谷川
淳一 石井
Junichi Ishii
淳一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Toho University
Original Assignee
Nissan Chemical Corp
Toho University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp, Toho University filed Critical Nissan Chemical Corp
Priority to JP2014103250A priority Critical patent/JP6462236B2/en
Publication of JP2015007219A publication Critical patent/JP2015007219A/en
Application granted granted Critical
Publication of JP6462236B2 publication Critical patent/JP6462236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a polyimide having low linear thermal expansion coefficient, high glass transition temperature and thermoplasticity.SOLUTION: This invention provides a polyimide having a repeating unit represented by formula (1-1), where Xrepresents, for example, a benzene-1,2,4,5-tetrayl group.

Description

本発明は、低い線熱膨張係数、高いガラス転移温度および優れた熱可塑性を兼ね備えたポリイミドおよびそのポリイミドからなる耐熱性フィルムに関する。   The present invention relates to a polyimide having a low coefficient of linear thermal expansion, a high glass transition temperature, and excellent thermoplasticity, and a heat resistant film made of the polyimide.

多層電子基板は、電子回路を高密度化することで電子機器の高性能化、高機能化および軽薄短小化を可能にする技術として極めて重要である。現行の多層基板では絶縁層としてガラス繊維とエポキシ樹脂との複合材料が主に用いられているが、絶縁層と金属導電層との間の線熱膨張係数(以後CTEとも言う。)の差に起因して熱応力が生じることが知られている。この問題を解決しないまま更に多層化すると層間接着不良や回路の断線といった、多層基板の信頼性を損なう重大な不具合が生じる恐れがあることが指摘されている。
現在、フレキシブルプリント基板等の回路基板用耐熱絶縁材料として、ハンダ耐熱性と銅箔並みの低CTEを併せ持つポリイミド樹脂が広く用いられているが、これを多層基板の絶縁層に適用することができれば、原理的には熱応力の問題を解決することができる。式(A)および(B)で例示されるような剛直で直線性の高い主鎖構造を有するポリイミドは、低熱膨張特性を示すが、通常非熱可塑性である(例えば非特許文献1及び2参照)。
A multilayer electronic substrate is extremely important as a technology that enables electronic devices to have higher performance, higher functionality, and lighter and shorter size by increasing the density of electronic circuits. In the current multilayer substrate, a composite material of glass fiber and epoxy resin is mainly used as an insulating layer, but the difference in linear thermal expansion coefficient (hereinafter also referred to as CTE) between the insulating layer and the metal conductive layer. It is known that thermal stress occurs due to this. It has been pointed out that if the number of layers is further increased without solving this problem, serious problems such as poor adhesion between layers and disconnection of circuits may occur that impair the reliability of the multilayer substrate.
Currently, polyimide resin having both solder heat resistance and low CTE comparable to copper foil is widely used as a heat-resistant insulating material for circuit boards such as flexible printed circuit boards. If this can be applied to an insulating layer of a multilayer board, In principle, the problem of thermal stress can be solved. A polyimide having a rigid and highly linear main chain structure as exemplified by the formulas (A) and (B) exhibits low thermal expansion characteristics, but is usually non-thermoplastic (for example, see Non-Patent Documents 1 and 2). ).

Figure 2015007219
Figure 2015007219

このため、従来の低熱膨張性ポリイミドを絶縁層に用いた場合、そのままでは積層困難であり、CTE値の高い従来の接着剤を使用せざるを得ない。一方、熱可塑性ポリイミド樹脂を絶縁層に適用することで、従来の接着剤を用いることなく、積層することが可能となるが、式(C)および(D)で例示されるような屈曲性の高い主鎖構造を有する熱可塑性ポリイミドは、通常低CTEを示さない(例えば非特許文献1、3参照)。   For this reason, when conventional low thermal expansion polyimide is used for the insulating layer, it is difficult to laminate as it is, and a conventional adhesive having a high CTE value must be used. On the other hand, by applying a thermoplastic polyimide resin to the insulating layer, it becomes possible to laminate without using a conventional adhesive, but it is flexible as exemplified by the formulas (C) and (D). Thermoplastic polyimides having a high main chain structure usually do not exhibit low CTE (see, for example, Non-Patent Documents 1 and 3).

Figure 2015007219
Figure 2015007219

このような状況から、従来のポリイミド樹脂を絶縁層に適用する限り、上記問題を根本的に解決することは極めて困難である。銅箔並みの低CTE、高いガラス転移温度(T)および優れた熱可塑性を兼ね備えたポリイミド樹脂があれば、従来の接着剤やガラス繊維/エポキシ樹脂複合材料を使用することなく、熱プレスによって回路基板を容易に多層化することが可能となるだけでなく、多層基板以外の様々な電子デバイスにも適用しうる従来にない極めて有益な耐熱絶縁材料を提供しうるが、低CTEと熱可塑性の両立は原理的に極めて困難であり、上記特性を兼ね備えたポリイミド樹脂は実際に知られていない。 From such a situation, as long as the conventional polyimide resin is applied to the insulating layer, it is extremely difficult to fundamentally solve the above problem. If there is a polyimide resin that has a low CTE comparable to copper foil, a high glass transition temperature (T g ), and excellent thermoplasticity, it can be hot pressed without using conventional adhesives or glass fiber / epoxy resin composites. Not only can the circuit board be easily multi-layered, but it can provide an unprecedented and extremely useful heat-resistant insulating material that can be applied to various electronic devices other than the multi-layer board, but has low CTE and thermoplasticity. In principle, it is extremely difficult to achieve both, and a polyimide resin having the above characteristics is not actually known.

Macromolecules,32,387−396(1999)Macromolecules, 32, 387-396 (1999). High Performance Polymers,21, 709−728(2009)High Performance Polymers, 21, 709-728 (2009) Reactive and Functional Polymers,71,109−120(2011)Reactive and Functional Polymers, 71, 109-120 (2011)

本発明は、上記事情に鑑みてなされたものであって、低い線熱膨張係数(CTE)、高いガラス転移温度及び熱可塑性を有し、特に、例えば多層電子基板といったデバイスの絶縁膜材料に適用することで、更に多層構造とすることができ、電子機器の高性能化、高機能化や小型化、軽量化に寄与し得る、ポリイミド樹脂を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a low coefficient of linear thermal expansion (CTE), a high glass transition temperature, and thermoplasticity. In particular, the present invention is applied to an insulating film material of a device such as a multilayer electronic substrate. Thus, it is an object to provide a polyimide resin that can have a multilayer structure and can contribute to high performance, high functionality, miniaturization, and weight reduction of an electronic device.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、所定のベンゾオキサゾール基を含むジアミン化合物と、所定の芳香族テトラカルボン酸二無水物から誘導されるポリイミドが、新規な多層電子基板の絶縁材料に要求される特性、即ち、低い線熱膨張係数(CTE)、高いガラス転移温度及び熱可塑性を同時に発現することを見出し、本発明を完成するに至った。
すなわち、本発明は、
1. 式(1−1)で表される繰り返し単位を有するポリイミド、

Figure 2015007219


〔式中、Xは、式(2)〜(6)のいずれかで表される4価の基を表す。
Figure 2015007219


(Rは、水素原子、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、またはハロゲン原子を表し、nは、0〜4の整数を表す。)〕
2. 式(1−1)で表される繰り返し単位と式(1−2)で表される繰り返し単位を有することを特徴とするポリイミドの共重合体、
Figure 2015007219


〔式中、Xは、式(2)〜(6)のいずれかで表される4価の基を表し、Xは、式(7)〜(11)のいずれかで表される2価の基を表す。
Figure 2015007219


(Rは、水素原子、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、またはハロゲン原子を表し、nは、0〜4の整数を表す。)〕
3. 前記式(1−1)で表される繰り返し単位の含有率が20.0〜99.9mol%である2のポリイミドの共重合体、
4. 1のポリイミドまたは2もしくは3のポリイミドの共重合体からなる耐熱性フィルム、
5. 膜厚が1〜100μmである4の耐熱性フィルム、
6. 線熱膨張係数が40ppm/K以下であり、ガラス転移温度が300℃以上であり、動的粘弾性曲線における、ガラス転移温度付近での貯蔵弾性率(E´)の減少率(−d logE´/ dT)が0.05以上であることを特徴とする4または5の耐熱性フィルム、
7. 電子回路の電気絶縁基板材料用である4〜6のいずれかの耐熱性フィルム、
8. 式(1−3)で表される繰り返し単位を有するポリイミド前駆体、
Figure 2015007219


〔式中、Xは、式(2)〜(6)のいずれかで表される4価の基を表す。
Figure 2015007219


(Rは、水素原子、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、またはハロゲン原子を表し、nは、0〜4の整数を表す。)〕
9. 式(1−3)で表される繰り返し単位および式(1−4)で表される繰り返し単位を有することを特徴とするポリイミド前駆体の共重合体、
Figure 2015007219



〔式中、Xは、式(2)〜(6)のいずれかで表される4価の基を表し、Xは、式(7)〜(11)のいずれかで表される2価の基を表す。
Figure 2015007219



(Rは、水素原子、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、またはハロゲン原子を表し、nは、0〜4の整数を表す。)〕
10.前記式(1−3)で表される繰り返し単位の含有率が20.0〜99.9mol%である9のポリイミド前駆体の共重合体、
11.0.5dL/g以上の固有粘度を有する、8のポリイミド前駆体または9もしくは10のポリイミド前駆体の共重合体、
12.8もしくは11のポリイミド前駆体、または9〜11のいずれかのポリイミド前駆体の共重合体を含む耐熱性フィルム形成用ワニス、
13.12の耐熱性フィルム形成用ワニスを用いることを特徴とする耐熱性フィルムの製造方法、
14.12の耐熱性フィルム形成用ワニスを基板上に塗布し、これを300℃以上で加熱することを特徴とする耐熱性フィルムの製造方法、
を提供する。 As a result of intensive studies to achieve the above object, the present inventors have found that a diamine compound containing a predetermined benzoxazole group and a polyimide derived from a predetermined aromatic tetracarboxylic dianhydride are novel. The inventors have found that the characteristics required for an insulating material of a multilayer electronic substrate, that is, a low coefficient of linear thermal expansion (CTE), a high glass transition temperature, and thermoplasticity are simultaneously developed, and the present invention has been completed.
That is, the present invention
1. A polyimide having a repeating unit represented by formula (1-1);
Figure 2015007219


[Wherein, X 1 represents a tetravalent group represented by any one of formulas (2) to (6).
Figure 2015007219


(R represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom, and n represents an integer of 0 to 4)]
2. A polyimide copolymer comprising a repeating unit represented by formula (1-1) and a repeating unit represented by formula (1-2);
Figure 2015007219


[Wherein, X 1 represents a tetravalent group represented by any one of formulas (2) to (6), and X 2 represents 2 represented by any one of formulas (7) to (11). Represents a valent group.
Figure 2015007219


(R represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom, and n represents an integer of 0 to 4)]
3. A polyimide copolymer of 2, wherein the content of the repeating unit represented by the formula (1-1) is 20.0 to 99.9 mol%,
4). A heat-resistant film comprising a polyimide of 1 or a copolymer of 2 or 3 polyimide,
5. 4 heat-resistant films having a thickness of 1 to 100 μm,
6). The linear thermal expansion coefficient is 40 ppm / K or less, the glass transition temperature is 300 ° C. or more, and the rate of decrease in storage elastic modulus (E ′) near the glass transition temperature in the dynamic viscoelastic curve (−d logE ′ / dT) of 4 or 5, characterized by being 0.05 or more,
7). Any one of the heat resistant films of 4 to 6 which is used for an electrically insulating substrate material of an electronic circuit
8). A polyimide precursor having a repeating unit represented by formula (1-3);
Figure 2015007219


[Wherein, X 1 represents a tetravalent group represented by any one of formulas (2) to (6).
Figure 2015007219


(R represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom, and n represents an integer of 0 to 4)]
9. A copolymer of a polyimide precursor having a repeating unit represented by formula (1-3) and a repeating unit represented by formula (1-4);
Figure 2015007219



[Wherein, X 1 represents a tetravalent group represented by any one of formulas (2) to (6), and X 2 represents 2 represented by any one of formulas (7) to (11). Represents a valent group.
Figure 2015007219



(R represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom, and n represents an integer of 0 to 4)]
10. A copolymer of 9 polyimide precursors, wherein the content of the repeating unit represented by the formula (1-3) is 20.0 to 99.9 mol%,
11. A copolymer of 8 polyimide precursors or 9 or 10 polyimide precursors having an intrinsic viscosity of 0.5 dL / g or more,
12.8 or 11 polyimide precursor, or a heat-resistant film-forming varnish containing a copolymer of any one of 9-11 polyimide precursors,
13. A method for producing a heat-resistant film, characterized by using a heat-resistant film-forming varnish of 12.12,
14. A method for producing a heat-resistant film, characterized in that a varnish for forming a heat-resistant film of 12
I will provide a.

本発明のポリイミドは、低い線熱膨張係数、高いガラス転移温度および熱可塑性を兼ね備えている。そのため、本発明のポリイミドは、近年重要性が急速に高まってきた、多層電子基板やフレキシブルプリント基板等の高密度実装回路基板材料に適しており、電子機器の高性能化、高機能以下、小型化および軽量化に寄与し得る。   The polyimide of the present invention has a low linear thermal expansion coefficient, a high glass transition temperature, and thermoplasticity. Therefore, the polyimide of the present invention is suitable for high-density mounting circuit board materials such as multilayer electronic boards and flexible printed boards, which have been rapidly increasing in importance in recent years. Can contribute to reduction in weight and weight.

実施例3に記載のポリイミド前駆体薄膜のFT−IRスペクトルである。4 is an FT-IR spectrum of a polyimide precursor thin film described in Example 3. 実施例3に記載のポリイミド薄膜のFT−IRスペクトルである。4 is an FT-IR spectrum of the polyimide thin film described in Example 3.

以下、本発明について詳細に説明する。
<ポリイミドおよび耐熱性フィルム>
本発明のポリイミドは、式(1−1)で表される繰り返し単位を有する。

Figure 2015007219

Hereinafter, the present invention will be described in detail.
<Polyimide and heat-resistant film>
The polyimide of this invention has a repeating unit represented by Formula (1-1).
Figure 2015007219

式(1−1)中、Xは、式(2)〜(6)のいずれかで表される4価の基を表す。

Figure 2015007219

In Formula (1-1), X 1 represents a tetravalent group represented by any one of Formulas (2) to (6).
Figure 2015007219

Rは、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、またはハロゲン原子を表す。
炭素数1〜12のアルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、1−エチルプロピル基、1,1−ジメチルプロピル基、1,2−ジメチルプロピル基、2,2−ジメチルプロピル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基等が挙げられるが、これらに限定されるわけではない。
炭素数1〜12のアルコキシ基の具体例としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基、n−ペントキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基等が挙げられるが、これらに限定されるわけではない。
ハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
とりわけ、Rとしては、炭素数1〜5のアルキル基が好ましく、炭素数1〜4のアルキル基がより好ましく、メチル基またはエチル基がより一層好ましく、メチル基が最適である。
nは、ベンゼン環に結合するRの数を示し、0〜4の整数であるが、0〜3が好ましく、0〜2がより好ましく、0または1がより一層好ましく、0が最適である。
なお、Rが複数存在する場合、Rは全て同一であっても、互いに異なっていてもよい。
R represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.
Specific examples of the alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, and n-pentyl group. 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, n-hexyl group , N-heptyl group, n-octyl group, n-nonyl group, n-decyl group and the like, but are not limited thereto.
Specific examples of the alkoxy group having 1 to 12 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, and n-pentoxy. Group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group and the like, but are not limited thereto.
Specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
In particular, R is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, still more preferably a methyl group or an ethyl group, and most preferably a methyl group.
n shows the number of R couple | bonded with a benzene ring, Although it is an integer of 0-4, 0-3 are preferable, 0-2 are more preferable, 0 or 1 is still more preferable, 0 is optimal.
In addition, when two or more R exists, all R may be the same or may mutually differ.

とりわけ、Xとしては、低熱膨張特性と優れた熱可塑性が得られる観点から、式(2)、(3)、(4)または(6)で表される4価の基が好ましく、更に低熱膨張化する観点から、式(2)、(3)または(4)で表される4価の基がより好ましい。 In particular, as X 1 , a tetravalent group represented by the formula (2), (3), (4) or (6) is preferable from the viewpoint of obtaining low thermal expansion characteristics and excellent thermoplasticity. From the viewpoint of expansion, a tetravalent group represented by the formula (2), (3) or (4) is more preferable.

本発明のポリイミドは、低熱膨張特性と優れた熱可塑性の観点から、式(1−1)で表される繰り返し単位のほかに、式(1−1)および式(1−2)で表される繰り返し単位を有する共重合体であってもよい。

Figure 2015007219

The polyimide of the present invention is represented by Formula (1-1) and Formula (1-2) in addition to the repeating unit represented by Formula (1-1) from the viewpoint of low thermal expansion characteristics and excellent thermoplasticity. It may be a copolymer having a repeating unit.
Figure 2015007219

式(1−2)中、Xは、式(7)〜(11)のいずれかで表される2価の基を表す。

Figure 2015007219

In Formula (1-2), X 2 represents a divalent group represented by any one of Formulas (7) to (11).
Figure 2015007219

とりわけ、Xとしては、低熱膨張特性と優れた熱可塑性が得られる観点から、式(7)、(10)または(11)で表される2価の基が好ましく、更に製造コストの観点から、式(7)で表される2価の基がより好ましい。 In particular, X 2 is preferably a divalent group represented by the formula (7), (10) or (11) from the viewpoint of obtaining low thermal expansion characteristics and excellent thermoplasticity, and from the viewpoint of production cost. The divalent group represented by the formula (7) is more preferable.

本発明のポリイミドの共重合体において、式(1−1)で表される繰り返し単位の含有率は、特に限定されるものではないが、好ましくは20.0〜99.9mol%である。   In the polyimide copolymer of the present invention, the content of the repeating unit represented by the formula (1-1) is not particularly limited, but is preferably 20.0 to 99.9 mol%.

本発明のポリイミドは、低い線熱膨張係数、高いガラス転移温度および熱可塑性を有していることから、多層電子基板やフレキシブルプリント基板等の高密度実装回路基板、特に電子回路の電気絶縁基板、に用いる耐熱性フィルムとして好適である。   Since the polyimide of the present invention has a low coefficient of linear thermal expansion, a high glass transition temperature and thermoplasticity, it is a high-density mounting circuit board such as a multilayer electronic board or a flexible printed circuit board, particularly an electrically insulating board of an electronic circuit, It is suitable as a heat resistant film used in

本発明のポリイミドからなる耐熱性フィルムは、後述の方法で得られるポリイミド前駆体を加熱して、脱水環化反応(イミド化反応)することで製造することができる。
すなわち、耐熱性フィルム(ポリイミドフィルム)は以下のようにして製造する。
本発明のポリイミド前駆体を含むワニスをガラス、銅、アルミニウム、ステンレス、シリコン等の基板上に流延し、オーブン中40〜180℃、好ましくは50〜150℃で乾燥する。
得られたポリイミド前駆体フィルムを基板上で真空中、窒素等の不活性ガス中、あるいは空気中、200〜450℃、好ましくは250〜430℃で加熱することで本発明のポリイミドからなるフィルムが得られる。
この際、加熱温度はイミド化反応を完結するという観点から200℃以上、生成したポリイミドフィルムの熱分解を抑制するという観点から450℃以下が好ましい。またイミド化は真空中あるいは不活性ガス中で行うことが望ましいが、イミド化温度が高すぎなければ空気中で行っても、差し支えない。
The heat-resistant film made of the polyimide of the present invention can be produced by heating a polyimide precursor obtained by the method described later and performing a dehydration cyclization reaction (imidation reaction).
That is, a heat resistant film (polyimide film) is produced as follows.
The varnish containing the polyimide precursor of the present invention is cast on a substrate of glass, copper, aluminum, stainless steel, silicon or the like and dried in an oven at 40 to 180 ° C., preferably 50 to 150 ° C.
By heating the obtained polyimide precursor film on a substrate in a vacuum, in an inert gas such as nitrogen, or in air at 200 to 450 ° C., preferably 250 to 430 ° C., a film made of the polyimide of the present invention is obtained. can get.
In this case, the heating temperature is preferably 200 ° C. or higher from the viewpoint of completing the imidization reaction and 450 ° C. or lower from the viewpoint of suppressing thermal decomposition of the produced polyimide film. The imidization is preferably performed in a vacuum or in an inert gas, but if the imidization temperature is not too high, it may be performed in air.

イミド化反応は、熱処理に代えて、ポリイミド前駆体フィルムをピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を含有する溶液に浸漬することによって行うことも可能である。また、これらの脱水環化試薬をあらかじめポリイミド前駆体を含むワニス中に室温で投入・攪拌し、それを上記基板上に流延・乾燥することで、部分的にイミド化したポリイミド前駆体フィルムを作製することもでき、これを更に上記のように熱処理することでポリイミドフィルムが得られる。
本発明のポリイミド前駆体のワニスを金属箔例えば銅箔上に塗付・乾燥後、上記の条件によりイミド化することで、金属層とポリイミド樹脂層の積層体を得ることができる。更に塩化第二鉄水溶液等のエッチング液を用いて金属層を所望する回路状にエッチングすることで、無接着剤型フレキシブルプリント基板を製造することができる。また、複数の上記積層体を熱プレスにより更に積層することもできる。
The imidization reaction can be performed by immersing the polyimide precursor film in a solution containing a dehydrating cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine instead of the heat treatment. In addition, these dehydrating cyclization reagents were previously charged and stirred at room temperature in a varnish containing a polyimide precursor, and cast and dried on the substrate to obtain a partially imidized polyimide precursor film. A polyimide film can be obtained by further heat-treating it as described above.
A laminate of a metal layer and a polyimide resin layer can be obtained by applying and drying the varnish of the polyimide precursor of the present invention on a metal foil such as a copper foil, followed by imidization under the above conditions. Furthermore, an adhesiveless flexible printed circuit board can be manufactured by etching the metal layer into a desired circuit shape using an etching solution such as an aqueous ferric chloride solution. A plurality of the above laminates can be further laminated by hot pressing.

本発明の耐熱性フィルム(ポリイミドフィルム)の厚さは、特に限定されるものではなく、使用目的に応じて適宜厚さを決定すればよいが、回路基板として用いる場合であれば、1〜100μm程度が好適である。   The thickness of the heat-resistant film (polyimide film) of the present invention is not particularly limited and may be appropriately determined according to the purpose of use, but if used as a circuit board, it is 1 to 100 μm. The degree is preferred.

また、本発明の耐熱性フィルム(ポリイミドフィルム)を高密度実装回路基板に用いる場合、線熱膨張係数は、好ましくは40ppm/K以下であり、より好ましくは35ppm/以下である。また、そのガラス転移温度は、好ましくは300℃以上であり、より好ましくは350℃以上である。そして、動的粘弾性曲線における、ガラス転移温度付近での貯蔵弾性率(E´)の減少率(−d logE´/ dT)は、好ましくは0.05以上であり、より好ましくは0.07以上である   Moreover, when using the heat resistant film (polyimide film) of this invention for a high-density mounting circuit board, Preferably a linear thermal expansion coefficient is 40 ppm / K or less, More preferably, it is 35 ppm / less. The glass transition temperature is preferably 300 ° C. or higher, and more preferably 350 ° C. or higher. In the dynamic viscoelasticity curve, the reduction rate (−d log E ′ / dT) of the storage elastic modulus (E ′) near the glass transition temperature is preferably 0.05 or more, more preferably 0.07. That's it

<ポリイミド前駆体>
本発明の式(1−1)で表される繰り返し単位を有するポリイミドは、式(1−3)で表される繰り返し単位を有するポリイミド前駆体から製造することができる。
<Polyimide precursor>
The polyimide which has a repeating unit represented by Formula (1-1) of this invention can be manufactured from the polyimide precursor which has a repeating unit represented by Formula (1-3).

Figure 2015007219



(式中、Xは、前記と同じ意味を示す。)
Figure 2015007219



(In the formula, X 1 has the same meaning as described above.)

また、本発明の式(1−1)で表される繰り返し単位および式(1−2)で表される繰り返し単位を有するポリイミドは、式(1−3)で表される繰り返し単位および式(1−4)で表される繰り返し単位を有するポリイミド前駆体の共重合体から製造することができる。

Figure 2015007219



(式中、XおよびXは、前記と同じ意味を示す。) Moreover, the polyimide which has a repeating unit represented by Formula (1-1) of this invention and a repeating unit represented by Formula (1-2) is a repeating unit represented by Formula (1-3) and a formula ( It can manufacture from the copolymer of the polyimide precursor which has a repeating unit represented by 1-4).
Figure 2015007219



(Wherein, X 1 and X 2 have the same meaning as described above.)

式(1−3)で表される繰り返し単位を有するポリイミド前駆体の製造方法は、特に限定されるものではないが、例えば、式(12)で表されるテトラカルボン酸二無水物と、式(13)で表されるジアミンとを反応させることで製造できる。   Although the manufacturing method of the polyimide precursor which has a repeating unit represented by Formula (1-3) is not specifically limited, For example, the tetracarboxylic dianhydride represented by Formula (12), and a formula It can manufacture by making the diamine represented by (13) react.

Figure 2015007219


(式中、Xは、前記と同じ意味を示す。)
Figure 2015007219


(In the formula, X 1 has the same meaning as described above.)

また、式(1−3)で表される繰り返し単位および式(1−4)で表される繰り返し単位を有するポリイミド前駆体の製造方法は、特に限定されるものではないが、例えば、式(12)で表されるテトラカルボン酸二無水物と、式(13)で表されるジアミンと、式(14)で表されるジアミンとを共重合反応させることで製造できる。   Moreover, although the manufacturing method of the polyimide precursor which has a repeating unit represented by Formula (1-3) and a repeating unit represented by Formula (1-4) is not specifically limited, For example, Formula ( It can be produced by copolymerizing a tetracarboxylic dianhydride represented by 12), a diamine represented by formula (13), and a diamine represented by formula (14).

Figure 2015007219


(式中、XおよびXは、前記と同じ意味を示す。)
Figure 2015007219


(Wherein, X 1 and X 2 have the same meaning as described above.)

式(12)で表される酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、ハイドロキノンビス(トリメリテートアンハイドライド)、または4,4’−ビフェノールビス(トリメリテートアンハイドライド)が挙げられる。   Examples of the acid dianhydride represented by the formula (12) include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,6,7-naphthalenetetra. Carboxylic acid dianhydride, hydroquinone bis (trimellitate anhydride), or 4,4′-biphenol bis (trimellitate anhydride).

式(13)で表されるジアミンとしては、式(13−1)、式(13−2)等で表されるジアミンが挙げられるが、これらに限定されるわけではない。   Examples of the diamine represented by formula (13) include, but are not limited to, diamines represented by formula (13-1), formula (13-2), and the like.

Figure 2015007219
Figure 2015007219

式(14)で表されるジアミンとしては、p−フェニレンジアミン、ベンジジン、4,4”−p−ターフェニレンジアミン、式(15)で表されるジアミン、または式(16)で表されるジアミンが挙げられる。   Examples of the diamine represented by the formula (14) include p-phenylenediamine, benzidine, 4,4 ″ -p-terphenylenediamine, a diamine represented by the formula (15), or a diamine represented by the formula (16). Is mentioned.

Figure 2015007219
Figure 2015007219

式(12)で表されるテトラカルボン酸二無水物、式(13)で表されるジアミンおよび式(14)で表されるジアミンは、それぞれ1種類単独で用いてもよく、2種類以上組み合わせて用いてもよい。    The tetracarboxylic dianhydride represented by the formula (12), the diamine represented by the formula (13) and the diamine represented by the formula (14) may be used alone or in combination of two or more. May be used.

上記各反応に使用される溶媒としてはN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホオキシド、3−メトキシN,N−ジメチルプロパンアミド、3−n−ブトキシN,N−ジメチルプロパンアミド、3−sec-ブトキシN,N−ジメチルプロパンアミド、3−t−ブトキシN,N−ジメチルプロパンアミド等の非プロトン性溶媒が好ましいが、原料モノマーと生成するポリイミド前駆体が溶解すれば問題はなく特にその構造には限定されない。例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド系溶媒、γ−プチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−プチロラクトン等の環状エステル系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、トリエチレングリコール等のグリコール系溶媒、m−クレゾール、p−クレゾール、3−クロロフェノール、4−クロロフエノール等のフェノール系溶媒、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが使用可能である。更にフェノール、o−クレゾール、酢酸ブチル、酢酸エチル、酢酸イソプチル、プロピレングリコールメチルアセテート、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン等の一般的な溶媒も部分的に使用してもよい。   Solvents used in the above reactions include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, 3-methoxy N, N-dimethylpropanamide, 3-n. Aprotic solvents such as -butoxy N, N-dimethylpropanamide, 3-sec-butoxy N, N-dimethylpropanamide, and 3-t-butoxy N, N-dimethylpropanamide are preferred, but they are formed with raw material monomers. There is no problem as long as the polyimide precursor is dissolved, and the structure is not particularly limited. For example, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, γ-ptyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, Cyclic ester solvents such as α-methyl-γ-ptyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4-chloro Phenol solvents such as phenol, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like can be used. Furthermore, phenol, o-cresol, butyl acetate, ethyl acetate, isoptyl acetate, propylene glycol methyl acetate, tetrahydrofuran, diethylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, methyl ethyl ketone, acetone, butanol, ethanol, xylene, toluene, chloro A general solvent such as benzene may be partially used.

上記各反応の反応温度は、通常0〜100℃であるが、好ましくは20〜60℃であり、反応時間は、通常0.5〜300時間であるが、好ましくは1〜72時間である。   The reaction temperature of each of the above reactions is usually 0 to 100 ° C., preferably 20 to 60 ° C., and the reaction time is usually 0.5 to 300 hours, preferably 1 to 72 hours.

式(1−3)で表される繰り返し単位を有するポリイミド前駆体の製造におけるジアミンおよびテトラカルボン酸二無水物の仕込みは、物質量比で、式(12)で表されるテトラカルボン酸二無水物1に対して、式(13)で表されるジアミンを0.8〜1.1とすることができるが、好ましくは0.9〜1.1であり、より好ましくは0.95〜1.05である。   In the production of the polyimide precursor having a repeating unit represented by the formula (1-3), the preparation of the diamine and the tetracarboxylic dianhydride is a substance amount ratio, and the tetracarboxylic dianhydride represented by the formula (12). Although the diamine represented by Formula (13) can be 0.8-1.1 with respect to the thing 1, Preferably it is 0.9-1.1, More preferably, it is 0.95-1. .05.

一方、式(1−3)で表される繰り返し単位および式(1−4)で表される繰り返し単位を有するポリイミド前駆体の共重合体の製造におけるジアミンおよびテトラカルボン酸二無水物の仕込みは、物質量比で、式(12)で表されるテトラカルボン酸二無水物1に対して、ジアミン成分(式(13)で表されるジアミンおよび式(14)で表されるジアミン)を0.8〜1.1とすることができるが、好ましくは0.9〜1.1であり、より好ましくは0.95〜1.05である。   On the other hand, the preparation of diamine and tetracarboxylic dianhydride in the production of a copolymer of a polyimide precursor having a repeating unit represented by formula (1-3) and a repeating unit represented by formula (1-4) The diamine component (the diamine represented by the formula (13) and the diamine represented by the formula (14)) is reduced to 0 with respect to the tetracarboxylic dianhydride 1 represented by the formula (12) by the substance amount ratio. 0.8 to 1.1, preferably 0.9 to 1.1, and more preferably 0.95 to 1.05.

上記各反応において、モノマー濃度(ジアミンおよび酸二無水物の濃度)は、5〜50重量%、好ましくは10〜40重量%である。このモノマー濃度範囲で重合を行うことにより、モノマー及びポリマーの溶解性を十分確保することができ、均一で高重合度のポリイミド前駆体溶液を得ることができ、その結果、より高い靭性を有するポリイミドフィルムを製造できる。
なお、ポリイミド前駆体の重合度が増加しすぎて、重合溶液が攪拌しにくくなった場合は、適宜同一溶媒で希釈することもできる。
In each of the above reactions, the monomer concentration (concentration of diamine and acid dianhydride) is 5 to 50% by weight, preferably 10 to 40% by weight. By carrying out the polymerization in this monomer concentration range, sufficient solubility of the monomer and the polymer can be secured, and a polyimide precursor solution having a uniform and high polymerization degree can be obtained. As a result, the polyimide having higher toughness A film can be manufactured.
In addition, when the polymerization degree of a polyimide precursor increases too much and it becomes difficult to stir a polymerization solution, it can also be suitably diluted with the same solvent.

ポリイミド前駆体(ポリイミド前駆体の共重合体を含む。)の固有濃度は、ポリイミドフィルムの靭性およびその前駆体ワニスのハンドリングの観点から、0.5dL/g以上であることが好ましく、0.5〜5.0dL/gの範囲内であることがより好ましい。   The intrinsic concentration of the polyimide precursor (including the copolymer of the polyimide precursor) is preferably 0.5 dL / g or more from the viewpoint of toughness of the polyimide film and handling of the precursor varnish, More preferably, it is in the range of -5.0 dL / g.

本発明において、式(12)で表されるテトラカルボン酸二無水物と共に、その他のテトラカルボン酸二無水物を用いてもよい。
そのような酸二無水物として、4,4’−オキシジフタリックアンハイドライド、ハイドロキノンジフタリックアンハイドライド、4,4’−ビフェノールジフタリックアンハイドライド、3,3’ ,4,4’−ベンゾフェノンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−アントラセンテトラカルボン酸二無水物等が挙げられ、これらは1種類単独で用いてもよく、2種類以上用いてもよい。
In this invention, you may use another tetracarboxylic dianhydride with the tetracarboxylic dianhydride represented by Formula (12).
Such acid dianhydrides include 4,4'-oxydiphthalic anhydride, hydroquinone diphthalic anhydride, 4,4'-biphenol diphthalic anhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic Acid dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride and the like may be mentioned, and these may be used alone. Two or more types may be used.

上記のその他のテトラカルボン酸二無水物の使用量は、テトラカルボン酸二無水物の種類等に応じて変わるため一概に規定できないが、概ね、全テトラカルボン酸二無水物に対して、30モル%未満が好ましく、20モル%未満がより好ましく、10モル%未満がより一層好ましく、5モル%未満がさらに好ましい。   The amount of other tetracarboxylic dianhydrides used varies depending on the type of tetracarboxylic dianhydride and cannot be defined unconditionally, but is generally 30 moles relative to the total tetracarboxylic dianhydride. % Is preferable, less than 20 mol% is more preferable, less than 10 mol% is still more preferable, and less than 5 mol% is still more preferable.

本発明において、式(13)で表されるジアミンと共に、あるいは、式(13)で表されるジアミンおよび式(14)で表されるジアミンと共に、その他のジアミンを用いてもよい。
そのようなジアミンとしては、m−フェニレンジアミン、o−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、2,4’−ジアミノジフェニルエーテル、2,2’−ジアミノジフェニルエーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル等が例として挙げられる。これらは2種類以上用いてもよい。
上記のその他ジアミンの使用量は、アミンの種類等に応じて変わるため一概に規定できないが、概ね、全ジアミンに対して、30モル%未満が好ましく、20モル%未満がより好ましく、10モル%未満がより一層好ましく、5モル%未満がさらに好ましい。
In the present invention, other diamines may be used together with the diamine represented by the formula (13), or the diamine represented by the formula (13) and the diamine represented by the formula (14).
Such diamines include m-phenylene diamine, o-phenylene diamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 2,4′-diaminodiphenyl ether, 2 , 2′-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4 ′ An example is -bis (4-aminophenoxy) biphenyl. Two or more of these may be used.
The amount of other diamines used depends on the type of amine and cannot be defined unconditionally, but is generally preferably less than 30 mol%, more preferably less than 20 mol%, and more preferably 10 mol% based on the total diamine. Less than is more preferable, and less than 5 mol% is further more preferable.

本発明のポリイミド前駆体はその重合溶液をそのまま、あるいは、大量の水やメタノール等の貧溶媒中への滴下・濾過・乾燥し、粉末として単離し、これを再度溶媒に溶解させたものを、本発明の耐熱性フィルムを製造するために用いてもよい。   The polyimide precursor of the present invention is the polymerization solution as it is, or dropped into a large amount of poor solvent such as water or methanol, filtered and dried, isolated as a powder, and dissolved in a solvent again. You may use in order to manufacture the heat resistant film of this invention.

<式(13)で表されるジアミンの合成>
式(13)で表されるジアミンは、出発原料として式(17)で表されるビス(o−アミノフェノール)またはその二塩酸塩を用いて合成される。
<Synthesis of Diamine Represented by Formula (13)>
The diamine represented by the formula (13) is synthesized using bis (o-aminophenol) represented by the formula (17) or a dihydrochloride thereof as a starting material.

Figure 2015007219
Figure 2015007219

以下、ビス(o−アミノフェノール)として3,3’−ジヒドロキシベンジジン(以下、p−HABという。)を用いた合成方法について例示するが、合成方法は特に限定されず、公知の方法を適用することができる。   Hereinafter, a synthesis method using 3,3′-dihydroxybenzidine (hereinafter referred to as p-HAB) as bis (o-aminophenol) will be exemplified, but the synthesis method is not particularly limited, and a known method is applied. be able to.

まず、3つ口フラスコ中、p−HABをよく脱水したアミド系溶媒に溶解し、これに脱酸剤としてピリジンを添加し、セプタムキャップでシールしてA液とする。
次に、ナス型フラスコ中、p−HABの2倍モル量の3−ニトロ安息香酸クロリドをA液と同様の溶媒に溶解し、セプタムキャップでシールしてB液とする。
そして、B液を氷浴中で冷却し、回転子で撹拌しながらシリンジにてA液をB液に少しずつ加え、添加終了後数時間撹拌を続け、ジアミド体を合成する。
First, p-HAB is dissolved in a well-dehydrated amide solvent in a three-necked flask, and pyridine is added thereto as a deoxidizer, which is then sealed with a septum cap to obtain liquid A.
Next, 2-nitromol chloride of 2-fold molar amount of p-HAB is dissolved in the same solvent as the liquid A in an eggplant type flask, and sealed with a septum cap to obtain a liquid B.
And B liquid is cooled in an ice bath, A liquid is added little by little with a syringe, stirring with a rotor, and stirring is continued for several hours after completion | finish of addition, and a diamide body is synthesize | combined.

次に、氷浴を外し、室温で12時間撹拌した後、脱水環化反応を完結させるためこの反応溶液に適当量のp−トルエンスルホン酸を加え、数時間還流を行う。
生成した沈殿物を濾別して水で繰り返し洗浄した後、真空乾燥して式(18)で表されるジニトロ体が得られる。
Next, after removing the ice bath and stirring at room temperature for 12 hours, an appropriate amount of p-toluenesulfonic acid is added to the reaction solution and refluxed for several hours in order to complete the dehydration cyclization reaction.
The produced precipitate is separated by filtration, washed repeatedly with water, and then vacuum-dried to obtain a dinitro compound represented by the formula (18).

Figure 2015007219
Figure 2015007219

次に3つ口フラスコ中、このジニトロ体をアミド系溶媒に溶解し、触媒として適当量のPd/Cを加え、水素雰囲気中還元反応を行う。反応の進行は薄層クロマトグラフィーによって追跡することができる。
反応終了後、濾過によりPd/Cを分離・除去した後、濾液を大量に水にゆっくりと滴下して生成物を析出させる。沈殿物を濾別して水で繰り返し洗浄した後、真空乾燥する。必要に応じて適当な溶媒から再結晶して更に高純度化することもできる。
このようにして本発明のポリイミド前駆体の重合に供することのできる式(19)で表されるジアミンが得られる。
Next, this dinitro compound is dissolved in an amide solvent in a three-necked flask, an appropriate amount of Pd / C is added as a catalyst, and a reduction reaction is performed in a hydrogen atmosphere. The progress of the reaction can be followed by thin layer chromatography.
After completion of the reaction, Pd / C is separated and removed by filtration, and then a large amount of the filtrate is slowly dropped into water to precipitate the product. The precipitate is filtered off, washed repeatedly with water and dried in vacuo. If necessary, it can be further purified by recrystallization from an appropriate solvent.
Thus, the diamine represented by the formula (19) that can be used for the polymerization of the polyimide precursor of the present invention is obtained.

Figure 2015007219
Figure 2015007219

以下、本発明を実施例により具体的に説明するが、これら実施例に限定されるものではない。なお、以下の例における物性値は、次の方法により測定した。また、「BO基」とは、ベンゾオキサゾール基を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, it is not limited to these Examples. The physical property values in the following examples were measured by the following methods. The “BO group” means a benzoxazole group.

<赤外線吸収スペクトル>
フーリエ変換赤外分光光度計(日本分光社製FT−IR4100)を用い、KBrプレート法にてジアミンの赤外線吸収スペクトルを測定した。また透過法にてポリイミド前駆体およびポリイミド薄膜(約5μm厚)の赤外線吸収スペクトルを測定した。
<Infrared absorption spectrum>
The infrared absorption spectrum of diamine was measured by a KBr plate method using a Fourier transform infrared spectrophotometer (FT-IR4100 manufactured by JASCO Corporation). Moreover, the infrared absorption spectrum of the polyimide precursor and the polyimide thin film (about 5 micrometers thickness) was measured with the transmission method.

H−NMRスペクトル>
日本電子社製NMR分光光度計(ECP400)を用い、重水素化ジメチルスルホキシド中でBO基含有ジアミンのH−NMRスペクトルを測定した。
<1 H-NMR spectrum>
Using an NMR spectrophotometer (ECP400) manufactured by JEOL Ltd., a 1 H-NMR spectrum of a BO group-containing diamine was measured in deuterated dimethyl sulfoxide.

<示差走査熱量分析(融点および融解曲線)>
BO基含有ジアミンの融点および融解曲線は、ブルカーエイエックス社製示差走査熱量分析装置(DSC3100)を用いて、窒素雰囲気中、昇温速度5℃/分で測定した。融点が高く融解ピークがシャープであるほど、高純度であることを示す。
<Differential scanning calorimetry (melting point and melting curve)>
The melting point and melting curve of the BO group-containing diamine were measured at 5 ° C./min in a nitrogen atmosphere using a differential scanning calorimeter (DSC3100) manufactured by Bruker Ax. The higher the melting point and the sharper the melting peak, the higher the purity.

<固有粘度>
0.5重量%のポリイミド前駆体溶液を、オストワルド粘度計を用いて30℃で測定した。
<Intrinsic viscosity>
A 0.5 wt% polyimide precursor solution was measured at 30 ° C. using an Ostwald viscometer.

<ガラス転移温度(T)>
ブルカーエイエックス社製熱機械分析装置(TMA4000)またはTAインスツルメンツ社製動的粘弾性測定装置(Q800)を用いて周波数0.1Hz、昇温速度5℃/分における損失ピーク温度からポリイミドフィルム(20μm厚)のガラス転移温度を求めた。尚、明瞭なガラス転移が観測されない場合は未検出(ND)と表記する。Tが高い程、より高温まで急激な軟化が抑制されていることを表し、本測定によりTが未検出の場合、フィルム試料の軟化は測定の全温度域で全く起こらないことを表す。
<Glass transition temperature (T g )>
Using a thermomechanical analyzer (TMA4000) manufactured by Bruker Ax or a dynamic viscoelasticity measuring apparatus (Q800) manufactured by TA Instruments, a polyimide film (20 μm) is obtained from a loss peak temperature at a frequency of 0.1 Hz and a heating rate of 5 ° C./min. Thickness) was determined. In addition, when clear glass transition is not observed, it describes as undetected (ND). As high T g, indicates that rapid softened to a higher temperature is suppressed, if T g by this measurement is undetected, softening of the film sample indicates that absolutely no full temperature range of the measurement.

<線熱膨張係数(CTE)>
ブルカーエイエックス社製熱機械分析装置(TMA4000)を用いて、熱機械分析により、荷重0.5g/膜厚1μm当たり、昇温速度5℃/分における試験片の伸びより、100〜200℃の範囲での平均値としてポリイミドフィルム(膜厚約20μm)のCTEを求めた。CTE値が0に近いほど熱工程に対する寸法安定性にすぐれていることを表す。
<Linear thermal expansion coefficient (CTE)>
By using a thermomechanical analyzer (TMA4000) manufactured by Bruker Ax, the elongation of the test piece at a heating rate of 5 ° C / min per load of 0.5g / film thickness of 1µm is 100-200 ° C. CTE of the polyimide film (film thickness of about 20 μm) was determined as an average value in the range. The closer the CTE value is to 0, the better the dimensional stability against the thermal process.

<熱可塑性>
熱可塑性の指標として、動的粘弾性曲線におけるT付近での貯蔵弾性率(E´)減少の傾き即ち、−d logE´/ dT を求めた。この値が大きいほど、ポリイミドフィルムの熱可塑性が高いことを表す。
<Thermoplasticity>
As an index of thermoplasticity, the slope of storage elastic modulus (E ′) decrease in the vicinity of T g in the dynamic viscoelastic curve, that is, −d logE ′ / dT was determined. It represents that the thermoplasticity of a polyimide film is so high that this value is large.

[合成例1]
<BO基含有ジアミンの合成>
3つ口フラスコ中、3,3’−ジヒドロキシベンジジン(以下、p−HABという。)(和歌山精化社製、4.33g、20mmol)をよく脱水したN−メチル−2−ピロリドン(NMP、80mL)に溶解し、これに脱酸剤としてピリジン(3.2mL、40mmol)を添加し、セプタムキャップでシールしてA液とした。次にナス型フラスコ中、3−ニトロ安息香酸クロリド(7.62g、42mmol)をNMP(67mL)に溶解し、セプタムキャップでシールしてB液とした。B液を氷浴中で冷却し、回転子で撹拌しながらシリンジにてA液をB液に少しずつ加え、添加終了後3時間撹拌し、更に室温で12時間撹拌してジアミド体を合成した。
[Synthesis Example 1]
<Synthesis of BO group-containing diamine>
In a three-necked flask, N-methyl-2-pyrrolidone (NMP, 80 mL) obtained by thoroughly dehydrating 3,3′-dihydroxybenzidine (hereinafter referred to as “p-HAB”) (manufactured by Wakayama Seika Co., Ltd., 4.33 g, 20 mmol). In this solution, pyridine (3.2 mL, 40 mmol) was added as a deoxidizing agent, which was then sealed with a septum cap to give solution A. Next, 3-nitrobenzoic acid chloride (7.62 g, 42 mmol) was dissolved in NMP (67 mL) in an eggplant-shaped flask and sealed with a septum cap to obtain a solution B. Liquid B was cooled in an ice bath, and liquid A was added to liquid B little by little with a syringe while stirring with a rotor. After completion of addition, the liquid was stirred for 3 hours and further stirred at room temperature for 12 hours to synthesize a diamide. .

次に脱水環化反応を完結させるため、この反応溶液にp−トルエンスルホン酸一水和物(2.38g、12mmol)を加え、窒素雰囲気中、200℃で3時間還流を行った。これを室温で静置し、生成した沈殿物を濾別してNMP、メタノールおよび水で洗浄した。この際、洗液に1%硝酸銀水溶液を適宜添加して白色沈殿が見られなくなるまで洗浄を繰り返し、塩化物イオンを完全に除去した。更にメタノールで洗浄後、100℃で12時間真空乾燥して収率41%で黄緑色粉末を得た。   Next, in order to complete the dehydration cyclization reaction, p-toluenesulfonic acid monohydrate (2.38 g, 12 mmol) was added to the reaction solution, and the mixture was refluxed at 200 ° C. for 3 hours in a nitrogen atmosphere. This was allowed to stand at room temperature, and the resulting precipitate was filtered off and washed with NMP, methanol and water. At this time, 1% silver nitrate aqueous solution was appropriately added to the washing solution, and washing was repeated until no white precipitate was observed, and chloride ions were completely removed. Further, after washing with methanol, vacuum drying was performed at 100 ° C. for 12 hours to obtain a yellowish green powder with a yield of 41%.

この生成物は重水素化ジメチルスルホオキシド(DMSO−d)やCDClに殆ど不溶であったため、H−NMR測定は実施できなかったが、示差走査熱量分析により321℃にシャープな融点を示した。この生成物の赤外線吸収スペクトルは、1626cm−1にBO基C=N伸縮振動バンド、1527/1351cm−1にニトロ基伸縮振動バンドを示し、アミドC=O伸縮振動バンドやフェノール性O−H伸縮振動バンドは見られなかった。これらの結果から生成物は目的とする式(18)で表されるジニトロ体であると考えられる。 Since this product was almost insoluble in deuterated dimethyl sulfoxide (DMSO-d 6 ) and CDCl 3 , 1 H-NMR measurement could not be carried out, but it showed a sharp melting point at 321 ° C. by differential scanning calorimetry. Indicated. Infrared absorption spectrum of the product, BO group C = N stretching vibration band at 1626cm -1, to 1527 / 1351cm -1 a nitro group stretching vibration band, amide C = O stretching vibration band or phenolic O-H stretching No vibration band was seen. From these results, the product is considered to be the target dinitro compound represented by the formula (18).

Figure 2015007219
Figure 2015007219

次に3つ口フラスコ中、このジニトロ体(10.22g、21.4mmol)をNMP(100mL)に溶解し、触媒としてPd/C(1.12g)を加え、水素雰囲気中110℃で5時間還元反応を行った。反応の進行は薄層クロマトグラフィーによって追跡した。 反応終了後、熱濾過によりPd/Cを分離した後、濾液を室温まで冷却し大量に水にゆっくりと滴下して生成物を析出させた。沈殿物を濾別し、水で繰り返し洗浄した後、100℃で12時間真空乾燥して収率93%で融点311℃の灰色粉末を得た。更にDMSOで再結晶した。   Next, this dinitro compound (10.22 g, 21.4 mmol) was dissolved in NMP (100 mL) in a three-necked flask, Pd / C (1.12 g) was added as a catalyst, and the reaction was performed at 110 ° C. for 5 hours in a hydrogen atmosphere. A reduction reaction was performed. The progress of the reaction was followed by thin layer chromatography. After completion of the reaction, Pd / C was separated by hot filtration, and then the filtrate was cooled to room temperature and dripped slowly into a large amount of water to precipitate the product. The precipitate was filtered off, washed repeatedly with water, and then vacuum dried at 100 ° C. for 12 hours to obtain a gray powder having a yield of 93% and a melting point of 311 ° C. Furthermore, it recrystallized with DMSO.

この生成物の赤外線吸収スペクトルは、3428/3341/3231cm−1にアミノ基N−H伸縮振動バンド、3054cm−1に芳香族C−H伸縮振動バンド、1632cm−1にBO基C=N伸縮振動バンドを示し、ニトロ基伸縮振動バンドやアミドC=O伸縮振動バンドは見られなかった。また、H−NMR測定の結果は、以下の通りとなった。これらの結果から、この生成物は目的とする式(19)で表されるBO基含有ジアミンであることが確認された。 Infrared absorption spectrum of the product, 3428/3341 / 3231cm amino group N-H stretching vibration band at -1, aromatic C-H stretching vibration band at 3054cm -1, BO group C = N stretching vibration 1632Cm -1 A band was shown, and neither a nitro group stretching vibration band nor an amide C═O stretching vibration band was observed. Moreover, the result of 1 H-NMR measurement was as follows. From these results, it was confirmed that this product was a BO group-containing diamine represented by the target formula (19).

H−NMRスペクトル(400MHz,DMSO−d,δ,ppm):8.18(s,2H,BO基)、7.88−7.81(m,4H,BO基)、7.47(s,2H,末端フェニル基)、7.37(d,2H,J=7.7Hz,末端フェニル基)、7.28−7.24(t,2H,末端フェニル基)、6.82(d,2H,J=8.0Hz,末端フェニル基)、5.51(s,4H,NH 1 H-NMR spectrum (400 MHz, DMSO-d 6 , δ, ppm): 8.18 (s, 2H, BO group), 7.88-7.81 (m, 4H, BO group), 7.47 ( s, 2H, terminal phenyl group), 7.37 (d, 2H, J = 7.7 Hz, terminal phenyl group), 7.28-7.24 (t, 2H, terminal phenyl group), 6.82 (d , 2H, J = 8.0 Hz, terminal phenyl group), 5.51 (s, 4H, NH 2 )

Figure 2015007219
Figure 2015007219

<ポリイミド前駆体の重合、イミド化およびポリイミドフィルムの特性評価>
[実施例1]
よく乾燥した攪拌機付密閉反応容器中に式(19)で表されるBO基含有ジアミン5mmolを入れ、モレキュラーシーブス4Aで十分に脱水したNMPを加えて撹拌した。この溶液に3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、(東京化成工業社製、以下BPDAと称する)粉末5mmolを加え、溶質濃度25重量%で重合を開始し、最終的には20重量%まで希釈し、室温で72時間攪拌して均一で粘稠な、ポリイミド前駆体を含む溶液を得た。NMP中、30℃、0.5重量%の濃度でオストワルド粘度計にて測定したポリイミド前駆体の還元粘度は0.85dL/gであった。このポリイミド前駆体を含む溶液をガラス基板に塗布し、熱風乾燥器中80℃で3時間乾燥してポリイミド前駆体フィルムを作製した。これをガラス基板ごと250℃で1時間、更に350℃で1時間真空中で熱イミド化を行った後、残留応力を除去するために基板から剥がして更に真空中320℃で1時間熱処理を行い、膜厚20μmの柔軟なポリイミドフィルムを得た。ポリイミドフィルム(膜厚20μm)について動的粘弾性測定(周波数0.1Hz)を行った結果、332℃に明瞭なガラス転移点が観測された。また線熱膨張係数は38.8ppm/Kと比較的低い値であった。更にこのポリイミドフィルムは、−d logE´/ dT=0.86と極めて高い値を示し、優れた熱可塑性を有していた。
<Polymerization of polyimide precursor, imidization and evaluation of characteristics of polyimide film>
[Example 1]
A well-dried sealed reaction vessel with a stirrer was charged with 5 mmol of a BO group-containing diamine represented by the formula (19), and NMP sufficiently dehydrated with Molecular Sieves 4A was added and stirred. To this solution, 5 mmol of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (Tokyo Chemical Industry Co., Ltd., hereinafter referred to as BPDA) powder was added, and polymerization was started at a solute concentration of 25% by weight. Specifically, the solution was diluted to 20% by weight and stirred at room temperature for 72 hours to obtain a uniform and viscous solution containing a polyimide precursor. The reduced viscosity of the polyimide precursor measured with an Ostwald viscometer at 30 ° C. and a concentration of 0.5% by weight in NMP was 0.85 dL / g. The solution containing this polyimide precursor was applied to a glass substrate and dried in a hot air dryer at 80 ° C. for 3 hours to prepare a polyimide precursor film. This was subjected to thermal imidization together with the glass substrate at 250 ° C. for 1 hour and further at 350 ° C. for 1 hour in vacuum, and then peeled off from the substrate to remove residual stress, and further heat treated at 320 ° C. for 1 hour in vacuum. A flexible polyimide film having a thickness of 20 μm was obtained. As a result of dynamic viscoelasticity measurement (frequency 0.1 Hz) for the polyimide film (film thickness 20 μm), a clear glass transition point was observed at 332 ° C. The linear thermal expansion coefficient was a relatively low value of 38.8 ppm / K. Furthermore, this polyimide film showed an extremely high value of −d logE ′ / dT = 0.86 and had excellent thermoplasticity.

[実施例2]
ジアミン成分として式(19)で表されるBO基含有ジアミン(2.5mmol)とp−フェニレンジアミン(以後PDAと称する)(2.5mmol)を併用し、テトラカルボン酸二無水物成分としてBPDA(5mmol)を用い、実施例1に記載した方法に従って重合を行い、均一で粘稠な、ポリイミド前駆体を含む溶液を得た。
NMP中、30℃、0.5重量%の濃度でオストワルド粘度計にて測定したポリイミド前駆体の還元粘度は0.82dL/gであった。また、得られたポリイミド前駆体ワニスを実施例1に記載した方法に従って製膜、熱イミド化、膜物性評価を行った。動的粘弾性測定(周波数0.1Hz)を行った結果、303℃に明瞭なガラス転移点が観測された。また線熱膨張係数は34.3ppm/Kと比較的低い値であった。更にこのポリイミドフィルムは、−d logE´/ dT=0.48と極めて高い値を示し、優れた熱可塑性を有していた。
[Example 2]
A BO group-containing diamine represented by the formula (19) (2.5 mmol) and p-phenylenediamine (hereinafter referred to as PDA) (2.5 mmol) are used in combination as a diamine component, and BPDA ( 5 mmol) was used for polymerization according to the method described in Example 1 to obtain a uniform and viscous solution containing the polyimide precursor.
The reduced viscosity of the polyimide precursor measured with an Ostwald viscometer in NMP at a concentration of 0.5% by weight at 30 ° C. was 0.82 dL / g. Further, the obtained polyimide precursor varnish was subjected to film formation, thermal imidization, and film property evaluation according to the method described in Example 1. As a result of dynamic viscoelasticity measurement (frequency 0.1 Hz), a clear glass transition point was observed at 303 ° C. The linear thermal expansion coefficient was a relatively low value of 34.3 ppm / K. Furthermore, this polyimide film showed an extremely high value of −d logE ′ / dT = 0.48 and had excellent thermoplasticity.

[実施例3]
ジアミン成分として式(19)で表されるBO基含有ジアミン(1.5mmol)とp−フェニレンジアミン(東京化成工業社製、以後PDAと称する)(3.5mmol)を併用し、テトラカルボン酸二無水物成分としてBPDA(5mmol)を用い、実施例1に記載した方法に従って共重合を行い、均一で粘稠な、ポリイミド前駆体を含む溶液を得た。NMP中、30℃、0.5重量%の濃度でオストワルド粘度計にて測定したポリイミド前駆体の還元粘度は1.15dL/gであった。図1に得られたポリイミド前駆体の薄膜の赤外線吸収スペクトルを示す。2600cm−1付近にブロードな吸収帯(水素結合性COOH基O−H伸縮振動バンド)、1712cm−1に水素結合性COOH基C=O伸縮振動バンド、1656cm−1および1560cm−1にアミド基C=O伸縮振動バンド、1516cm−1に1,4−フェニレン基伸縮振動バンドが観測され、モノマー由来のアミノ基N−H伸縮振動バンドやテトラカルボン酸二無水物の酸無水物基C=O伸縮振動バンドが見られないことから、目的とするポリイミド前駆体の生成が確認された。
また、得られたポリイミド前駆体を含むワニスを実施例1に記載した方法に従って製膜、熱イミド化した。図2に同一条件で別途作製されたポリイミド薄膜の赤外線吸収スペクトルを示す。3070cm−1に芳香族C−H伸縮振動バンド、1774m−1および1719cm−1にイミド基C=O伸縮振動バンド、1620cm−1にBO基C=N伸縮振動バンド、1516cm−1に1,4−フェニレン基伸縮振動バンド、1361cm−1にイミド基N−C(芳香族)伸縮振動バンドが観測され、COOH基やアミド基に由来する吸収帯が見られないことから、イミド化反応は完結しており、目的とするポリイミドの生成が確認された。
膜物性評価を行ったところ、動的粘弾性測定(周波数0.1Hz)を行った結果、311℃に明瞭なガラス転移点が観測された。また線熱膨張係数は23.5ppm/Kと比較的低い値であった。更にこのポリイミドフィルムは、−d logE´/ dT=0.05と比較的高い値を示し、剛直なPDAの含有量がかなり高いにもかかわらずなお熱可塑性を有していた。
[Example 3]
As a diamine component, a BO group-containing diamine represented by the formula (19) (1.5 mmol) and p-phenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as PDA) (3.5 mmol) are used in combination. Using BPDA (5 mmol) as an anhydride component, copolymerization was performed according to the method described in Example 1 to obtain a uniform and viscous solution containing a polyimide precursor. The reduced viscosity of the polyimide precursor measured with an Ostwald viscometer at 30 ° C. and a concentration of 0.5% by weight in NMP was 1.15 dL / g. FIG. 1 shows an infrared absorption spectrum of the thin film of the polyimide precursor obtained. Broad absorption band near 2600 cm −1 (hydrogen bonding COOH group OH stretching vibration band), 1712 cm −1 hydrogen bonding COOH group C═O stretching vibration band, 1656 cm −1 and 1560 cm −1 amide group C = O stretching vibration band, 1,4-phenylene group stretching vibration band is observed at 1516 cm −1 , monomer-derived amino group NH stretching vibration band and tetracarboxylic dianhydride acid anhydride group C═O stretching Since a vibration band was not seen, the production | generation of the target polyimide precursor was confirmed.
Moreover, the varnish containing the obtained polyimide precursor was formed into a film and thermally imidized according to the method described in Example 1. FIG. 2 shows an infrared absorption spectrum of a polyimide thin film separately prepared under the same conditions. Aromatic C-H stretching vibration band at 3070cm -1, 1774m -1 and 1719 cm -1 imide group C = O stretching vibration band, BO group C = N stretching vibration band at 1620 cm -1, to 1516cm -1 1,4 -The phenylene group stretching vibration band, the imide group N-C (aromatic) stretching vibration band is observed at 1361 cm -1 , and the absorption band derived from the COOH group or amide group is not seen, so the imidization reaction is completed. The production of the target polyimide was confirmed.
When film physical properties were evaluated, dynamic viscoelasticity measurement (frequency: 0.1 Hz) was performed. As a result, a clear glass transition point was observed at 311 ° C. The linear thermal expansion coefficient was a relatively low value of 23.5 ppm / K. Furthermore, this polyimide film showed a relatively high value of −d logE ′ / dT = 0.05, and was still thermoplastic despite the fairly high content of rigid PDA.

[実施例4]
ジアミン成分として式(19)で表されるBO基含有ジアミン(5mmol)と、テトラカルボン酸二無水物成分としてBPDAの代わりに2,3,6,7−ナフタレンテトラカルボン酸二無水物(5mmol、JFEケミカル社製、以下NTDAと称する)を用い、実施例1に記載した方法に従って重合を行い、均一で粘稠な、ポリイミド前駆体を含む溶液を得た。NMP中、30℃、0.5重量%の濃度でオストワルド粘度計にて測定したポリイミド前駆体の還元粘度は0.93dL/gであった。
また、得られたポリイミド前駆体ワニスを実施例1に記載した方法に従って製膜、熱イミド化、膜物性評価を行った。
動的粘弾性測定(周波数0.1Hz)を行った結果、414℃に明瞭なガラス転移点が観測された。また線熱膨張係数は31.6ppm/Kと比較的低い値であった。更にこのポリイミドフィルムは、−d logE´/ dT=0.29と極めて高い値を示し、優れた熱可塑性を有していた。
[Example 4]
BO group-containing diamine (5 mmol) represented by formula (19) as the diamine component, and 2,3,6,7-naphthalenetetracarboxylic dianhydride (5 mmol, instead of BPDA as the tetracarboxylic dianhydride component) Polymerization was performed according to the method described in Example 1 using JFE Chemical Co., Ltd. (hereinafter referred to as NTDA) to obtain a uniform and viscous solution containing a polyimide precursor. The reduced viscosity of the polyimide precursor measured with an Ostwald viscometer at 30 ° C. and a concentration of 0.5% by weight in NMP was 0.93 dL / g.
Further, the obtained polyimide precursor varnish was subjected to film formation, thermal imidization, and film property evaluation according to the method described in Example 1.
As a result of dynamic viscoelasticity measurement (frequency 0.1 Hz), a clear glass transition point was observed at 414 ° C. The linear thermal expansion coefficient was a relatively low value of 31.6 ppm / K. Furthermore, this polyimide film showed an extremely high value of −d logE ′ / dT = 0.29 and had excellent thermoplasticity.

[実施例5]
ジアミン成分として式(19)で表されるBO基含有ジアミン(3.5mmol)と式(16−1)で表されるジアミン(1.5mmol)を併用し、テトラカルボン酸二無水物成分としてNTDA(5mmol)を用い、実施例1に記載した方法に従って共重合を行い、均一で粘稠なBO基含有ポリイミド前駆体溶液を得た。
NMP中、30℃、0.5重量%の濃度でオストワルド粘度計にて測定したポリイミド前駆体の還元粘度は0.68dL/gであった。
また、得られたポリイミド前駆体ワニスを実施例1に記載した方法に従って製膜、熱イミド化、膜物性評価を行った。
動的粘弾性測定(周波数0.1Hz)を行った結果、384℃に明瞭なガラス転移点が観測された。また線熱膨張係数は12.7ppm/Kと比較的低い値であった。更にこのポリイミドフィルムは、−d logE´/ dT=0.23と極めて高い値を示し、優れた熱可塑性を有していた。
[Example 5]
A BO group-containing diamine represented by formula (19) (3.5 mmol) and a diamine (1.5 mmol) represented by formula (16-1) are used in combination as a diamine component, and NTDA is used as a tetracarboxylic dianhydride component. (5 mmol) was used for copolymerization according to the method described in Example 1 to obtain a uniform and viscous BO group-containing polyimide precursor solution.
The reduced viscosity of the polyimide precursor measured with an Ostwald viscometer at 30 ° C. and a concentration of 0.5% by weight in NMP was 0.68 dL / g.
Further, the obtained polyimide precursor varnish was subjected to film formation, thermal imidization, and film property evaluation according to the method described in Example 1.
As a result of dynamic viscoelasticity measurement (frequency 0.1 Hz), a clear glass transition point was observed at 384 ° C. The linear thermal expansion coefficient was a relatively low value of 12.7 ppm / K. Furthermore, this polyimide film showed an extremely high value of −d logE ′ / dT = 0.23 and had excellent thermoplasticity.

Figure 2015007219
Figure 2015007219

[実施例6]
ジアミン成分として式(19)で表されるBO基含有ジアミン(5mmol)と、テトラカルボン酸二無水物成分としてBPDAの代わりにピロメリット酸二無水物(5mmol、東京化成工業社製)を用い、実施例1に記載した方法に従って重合を行い、均一で粘稠なBO基含有ポリイミド前駆体溶液を得た。
NMP中、30℃、0.5重量%の濃度でオストワルド粘度計にて測定したポリイミド前駆体の還元粘度は0.90dL/gであった。
また、得られたポリイミド前駆体ワニスを実施例1に記載した方法に従って製膜、熱イミド化、膜物性評価を行った。動的粘弾性測定(周波数0.1Hz)を行った結果、378℃に明瞭なガラス転移点が観測された。また線熱膨張係数は32.2ppm/Kと比較的低い値であった。更にこのポリイミドフィルムは、−d logE´/ dT=0.076と比較的高い値を示し、熱可塑性を有していた。
[Example 6]
Using a BO group-containing diamine (5 mmol) represented by the formula (19) as a diamine component, and pyromellitic dianhydride (5 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) instead of BPDA as a tetracarboxylic dianhydride component, Polymerization was performed according to the method described in Example 1 to obtain a uniform and viscous BO group-containing polyimide precursor solution.
The reduced viscosity of the polyimide precursor measured with an Ostwald viscometer at 30 ° C. and a concentration of 0.5% by weight in NMP was 0.90 dL / g.
Further, the obtained polyimide precursor varnish was subjected to film formation, thermal imidization, and film property evaluation according to the method described in Example 1. As a result of dynamic viscoelasticity measurement (frequency 0.1 Hz), a clear glass transition point was observed at 378 ° C. The linear thermal expansion coefficient was a relatively low value of 32.2 ppm / K. Furthermore, this polyimide film showed a relatively high value of −d logE ′ / dT = 0.076 and had thermoplasticity.

[実施例7]
ジアミン成分として式(19)で表されるBO基含有ジアミン(3.5mmol)と式(16−1)で表されるジアミン(1.5mmol)を併用し、テトラカルボン酸二無水物成分としてPMDA(5mmol)を用い、実施例1に記載した方法に従って共重合を行い、均一で粘稠なBO基含有ポリイミド前駆体溶液を得た。
NMP中、30℃、0.5重量%の濃度でオストワルド粘度計にて測定したポリイミド前駆体の還元粘度は1.12dL/gであった。
また、得られたポリイミド前駆体ワニスを実施例1に記載した方法に従って製膜、熱イミド化、膜物性評価を行った。
動的粘弾性測定(周波数0.1Hz)を行った結果、372℃に明瞭なガラス転移点が観測された。また線熱膨張係数は21.0ppm/Kと低い値であった。更にこのポリイミドフィルムは、−d logE´/ dT=0.30と極めて高い値を示し、優れた熱可塑性を有していた。また、5%重量減少温度は窒素雰囲気中で570℃、空気雰囲気中で554℃であり、このポリイミドフィルムは優れた熱安定性も有していた。
[Example 7]
A BO group-containing diamine represented by the formula (19) (3.5 mmol) and a diamine (1.5 mmol) represented by the formula (16-1) are used in combination as a diamine component, and PMDA as a tetracarboxylic dianhydride component. (5 mmol) was used for copolymerization according to the method described in Example 1 to obtain a uniform and viscous BO group-containing polyimide precursor solution.
The reduced viscosity of the polyimide precursor measured with an Ostwald viscometer at 30 ° C. and a concentration of 0.5% by weight in NMP was 1.12 dL / g.
Further, the obtained polyimide precursor varnish was subjected to film formation, thermal imidization, and film property evaluation according to the method described in Example 1.
As a result of dynamic viscoelasticity measurement (frequency 0.1 Hz), a clear glass transition point was observed at 372 ° C. The linear thermal expansion coefficient was a low value of 21.0 ppm / K. Furthermore, this polyimide film showed an extremely high value of −d logE ′ / dT = 0.30 and had excellent thermoplasticity. The 5% weight loss temperature was 570 ° C. in a nitrogen atmosphere and 554 ° C. in an air atmosphere, and this polyimide film also had excellent thermal stability.

[比較例1]
テトラカルボン酸二無水物成分としてBPDA、ジアミン成分としてPDAを用い、実施例1に記載した方法に従って重合、製膜、熱イミド化してポリイミドフィルムを作製した。このポリイミドフィルムは非常に高いT(370℃)および非常に低いCTE(10.7ppm/K)を有していたが、−d logE´/ dT=0.016と低い値を示し、殆ど熱可塑性を示さなかった。
[Comparative Example 1]
Using BPDA as the tetracarboxylic dianhydride component and PDA as the diamine component, polymerization, film formation, and thermal imidization were performed according to the method described in Example 1 to prepare a polyimide film. This polyimide film had a very high T g (370 ° C.) and a very low CTE (10.7 ppm / K), but showed a low value of −d logE ′ / dT = 0.016, almost no heat It did not show plasticity.

[比較例2]
テトラカルボン酸二無水物成分としてNTDA、ジアミン成分として式(16−1)で表されるジアミン用い、実施例1に記載した方法に準じて重合、製膜、熱イミド化、膜物性評価を行った。このポリイミドフィルムは非常に高いT(437℃)および非常に低いCTE(8.4ppm/K)を有していたが、−d logE´/ dT=0.008と低い値を示し、殆ど熱可塑性を示さなかった。
[Comparative Example 2]
Using NTDA as the tetracarboxylic dianhydride component and the diamine represented by the formula (16-1) as the diamine component, polymerization, film formation, thermal imidization, and film physical property evaluation were performed according to the method described in Example 1. It was. This polyimide film had a very high T g (437 ° C.) and a very low CTE (8.4 ppm / K), but showed a low value of −d logE ′ / dT = 0.008, almost no heat. It did not show plasticity.

Claims (14)

式(1−1)で表される繰り返し単位を有するポリイミド。
Figure 2015007219


〔式中、Xは、式(2)〜(6)のいずれかで表される4価の基を表す。
Figure 2015007219


(Rは、水素原子、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、またはハロゲン原子を表し、nは、0〜4の整数を表す。)〕
A polyimide having a repeating unit represented by formula (1-1).
Figure 2015007219


[Wherein, X 1 represents a tetravalent group represented by any one of formulas (2) to (6).
Figure 2015007219


(R represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom, and n represents an integer of 0 to 4)]
式(1−1)で表される繰り返し単位と式(1−2)で表される繰り返し単位を有することを特徴とするポリイミドの共重合体。
Figure 2015007219


〔式中、Xは、式(2)〜(6)のいずれかで表される4価の基を表し、Xは、式(7)〜(11)のいずれかで表される2価の基を表す。
Figure 2015007219


(Rは、水素原子、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、またはハロゲン原子を表し、nは、0〜4の整数を表す。)〕
A polyimide copolymer comprising a repeating unit represented by formula (1-1) and a repeating unit represented by formula (1-2).
Figure 2015007219


[Wherein, X 1 represents a tetravalent group represented by any one of formulas (2) to (6), and X 2 represents 2 represented by any one of formulas (7) to (11). Represents a valent group.
Figure 2015007219


(R represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom, and n represents an integer of 0 to 4)]
前記式(1−1)で表される繰り返し単位の含有率が20.0〜99.9mol%である請求項2記載のポリイミドの共重合体。   The polyimide copolymer according to claim 2, wherein the content of the repeating unit represented by the formula (1-1) is 20.0 to 99.9 mol%. 請求項1記載のポリイミドまたは請求項2もしくは3記載のポリイミドの共重合体からなる耐熱性フィルム。   A heat-resistant film comprising the polyimide according to claim 1 or a copolymer of polyimide according to claim 2 or 3. 膜厚が1〜100μmである請求項4記載の耐熱性フィルム。   The heat resistant film according to claim 4, wherein the film thickness is 1 to 100 μm. 線熱膨張係数が40ppm/K以下であり、ガラス転移温度が300℃以上であり、動的粘弾性曲線における、ガラス転移温度付近での貯蔵弾性率(E´)の減少率(−d logE´/ dT)が0.05以上であることを特徴とする請求項4または5記載の耐熱性フィルム。   The linear thermal expansion coefficient is 40 ppm / K or less, the glass transition temperature is 300 ° C. or more, and the rate of decrease in storage elastic modulus (E ′) near the glass transition temperature in the dynamic viscoelastic curve (−d logE ′ 6. The heat resistant film according to claim 4 or 5, wherein / dT) is 0.05 or more. 電子回路の電気絶縁基板材料用である請求項4〜6のいずれか1項記載の耐熱性フィルム。   The heat resistant film according to any one of claims 4 to 6, which is used for an electrically insulating substrate material of an electronic circuit. 式(1−3)で表される繰り返し単位を有するポリイミド前駆体。
Figure 2015007219


〔式中、Xは、式(2)〜(6)のいずれかで表される4価の基を表す。
Figure 2015007219


(Rは、水素原子、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、またはハロゲン原子を表し、nは、0〜4の整数を表す。)〕
A polyimide precursor having a repeating unit represented by formula (1-3).
Figure 2015007219


[Wherein, X 1 represents a tetravalent group represented by any one of formulas (2) to (6).
Figure 2015007219


(R represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom, and n represents an integer of 0 to 4)]
式(1−3)で表される繰り返し単位および式(1−4)で表される繰り返し単位を有することを特徴とするポリイミド前駆体の共重合体。
Figure 2015007219



〔式中、Xは、式(2)〜(6)のいずれかで表される4価の基を表し、Xは、式(7)〜(11)のいずれかで表される2価の基を表す。
Figure 2015007219



(Rは、水素原子、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、またはハロゲン原子を表し、nは、0〜4の整数を表す。)〕
A copolymer of a polyimide precursor having a repeating unit represented by formula (1-3) and a repeating unit represented by formula (1-4).
Figure 2015007219



[Wherein, X 1 represents a tetravalent group represented by any one of formulas (2) to (6), and X 2 represents 2 represented by any one of formulas (7) to (11). Represents a valent group.
Figure 2015007219



(R represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom, and n represents an integer of 0 to 4)]
前記式(1−3)で表される繰り返し単位の含有率が20.0〜99.9mol%である請求項9記載のポリイミド前駆体の共重合体。   The copolymer of the polyimide precursor of Claim 9 whose content rate of the repeating unit represented by the said Formula (1-3) is 20.0-99.9 mol%. 0.5dL/g以上の固有粘度を有する、請求項8記載のポリイミド前駆体または請求項9もしくは10記載のポリイミド前駆体の共重合体。   The polyimide precursor according to claim 8 or a copolymer of the polyimide precursor according to claim 9 or 10, which has an intrinsic viscosity of 0.5 dL / g or more. 請求項8もしくは11記載のポリイミド前駆体、または請求項9〜11のいずれか1項記載のポリイミド前駆体の共重合体を含む耐熱性フィルム形成用ワニス。   A heat-resistant film-forming varnish comprising the polyimide precursor according to claim 8 or 11 or the copolymer of the polyimide precursor according to any one of claims 9 to 11. 請求項12記載の耐熱性フィルム形成用ワニスを用いることを特徴とする耐熱性フィルムの製造方法。   A method for producing a heat resistant film, wherein the varnish for forming a heat resistant film according to claim 12 is used. 請求項12記載の耐熱性フィルム形成用ワニスを基板上に塗布し、これを300℃以上で加熱することを特徴とする耐熱性フィルムの製造方法。   A method for producing a heat resistant film, comprising applying the varnish for forming a heat resistant film according to claim 12 on a substrate and heating the varnish at 300 ° C or higher.
JP2014103250A 2013-05-28 2014-05-19 Polyimide and heat resistant film Active JP6462236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014103250A JP6462236B2 (en) 2013-05-28 2014-05-19 Polyimide and heat resistant film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013112401 2013-05-28
JP2013112401 2013-05-28
JP2014103250A JP6462236B2 (en) 2013-05-28 2014-05-19 Polyimide and heat resistant film

Publications (2)

Publication Number Publication Date
JP2015007219A true JP2015007219A (en) 2015-01-15
JP6462236B2 JP6462236B2 (en) 2019-01-30

Family

ID=52337710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103250A Active JP6462236B2 (en) 2013-05-28 2014-05-19 Polyimide and heat resistant film

Country Status (1)

Country Link
JP (1) JP6462236B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017105873A1 (en) 2016-03-25 2017-09-28 Fanuc Corporation Motor control with a function to reduce vibration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621076A (en) * 1969-08-11 1971-11-16 Walter F De Winter Block polyheterocyclic polyimide elastomers having high thermal resistance
JPH02251584A (en) * 1988-11-16 1990-10-09 Asahi Chem Ind Co Ltd Heterocyclic ring-containing polyimide composite
JP2010228190A (en) * 2009-03-26 2010-10-14 Asahi Kasei E-Materials Corp Polyimide-metal laminated plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621076A (en) * 1969-08-11 1971-11-16 Walter F De Winter Block polyheterocyclic polyimide elastomers having high thermal resistance
JPH02251584A (en) * 1988-11-16 1990-10-09 Asahi Chem Ind Co Ltd Heterocyclic ring-containing polyimide composite
JP2010228190A (en) * 2009-03-26 2010-10-14 Asahi Kasei E-Materials Corp Polyimide-metal laminated plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PRESTON,J. ET AL.: "New High-Temperature Polymers. VIII. Ordered Benzoxazole- and Benzothiazole-Imide Copolymers", JOURNAL OF POLYMER SCIENCE PART A-1: POLYMER CHEMISTRY, vol. vol.7, JPN6018007484, 1969, pages 283 - 296 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017105873A1 (en) 2016-03-25 2017-09-28 Fanuc Corporation Motor control with a function to reduce vibration

Also Published As

Publication number Publication date
JP6462236B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
Hsiao et al. Synthesis and characterization of novel fluorinated polyimides derived from 1, 3-bis (4-amino-2-trifluoromethylphenoxy) naphthalene and aromatic dianhydrides
US6320019B1 (en) Method for the preparation of polyamic acid and polyimide
JP6293457B2 (en) Polyimide and heat resistant film
Hsiao et al. Preparation and properties of new polyimides and polyamides based on 1, 4‐bis (4‐amino‐2‐trifluoromethylphenoxy) naphthalene
JP2009286868A (en) Linear polyimide precursor, linear polyimide, thermally cured product thereof, production method, adhesive and copper-clad laminate
JP6304494B2 (en) Polyimide and heat-resistant material
JP2008239820A (en) Polyamic acid&#39;s imidized polymer electrical insulation film and film-forming composition and method for producing the composition
JP3859984B2 (en) Polyimide and method for producing the same
WO2005066242A1 (en) Aromatic polyamic acid and polyimide
TW202140622A (en) Resin film, metal-clad laminate and circuit board wherein the resin film includes a liquid crystal polymer layer, a first adhesive layer, and a second adhesive layer
CN111253744B (en) Polyimide film and preparation method and application thereof
KR20150112628A (en) Fluorinated polyimide film
JP6980228B2 (en) Thermocrosslinkable polyimide, its thermosetting material and interlayer insulating film
TWI602853B (en) Polyadimide containing adamantane imine preparation
US20100147564A1 (en) Asymmetric linear polyimides and their polyimide precursors, and their manufacturing methods
KR20160094551A (en) Polyamic acid composition and polyimide substrate
JP6462236B2 (en) Polyimide and heat resistant film
JP2011148901A (en) Phosphorus-containing diamine and phosphorus-containing polyimide obtained therefrom
TW201930257A (en) Dimer diamine composition, method for producing the same and resin film having high transparency and low degree of coloring while using dimer diamine
JP5941429B2 (en) Polyamic acid and polyimide
JP6765093B2 (en) Polyimide
JP2002060488A (en) Method for manufacturing polyamic acid and polyimide, and adhesive tape obtained by using them
TWI841168B (en) Liquid crystal-like diamine monomer and method for manufacuturing the same, modified polyimide and method for manufacuturing the same
WO2024050891A1 (en) Benzoxazine resin, preparation method, and adhesive
JP5570793B2 (en) Phosphorus-containing tetracarboxylic dianhydride and flame retardant polyimide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181227

R150 Certificate of patent or registration of utility model

Ref document number: 6462236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150