JP2015003839A - Silica-adhering silicon, and sintered mixture raw material - Google Patents

Silica-adhering silicon, and sintered mixture raw material Download PDF

Info

Publication number
JP2015003839A
JP2015003839A JP2013129100A JP2013129100A JP2015003839A JP 2015003839 A JP2015003839 A JP 2015003839A JP 2013129100 A JP2013129100 A JP 2013129100A JP 2013129100 A JP2013129100 A JP 2013129100A JP 2015003839 A JP2015003839 A JP 2015003839A
Authority
JP
Japan
Prior art keywords
silicon
particles
silica fine
fine particles
spherical silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013129100A
Other languages
Japanese (ja)
Other versions
JP5974986B2 (en
Inventor
中西 鉄雄
Tetsuo Nakanishi
鉄雄 中西
松村 和之
Kazuyuki Matsumura
和之 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013129100A priority Critical patent/JP5974986B2/en
Publication of JP2015003839A publication Critical patent/JP2015003839A/en
Application granted granted Critical
Publication of JP5974986B2 publication Critical patent/JP5974986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silica-adhering silicon suitable for producing silicon oxide as a raw material, in which silica particles are stably supplied by improving on fluidity in a process of producing a mixture of silicon particles and silicon dioxide particles, and a conversion and a reaction rate can be raised in a method of producing the silicon oxide by reducing silicon aggregates in the formed mixture, and provide a sintered mixture raw material.SOLUTION: The silica-adhering silicon used as a raw material silicon particle for producing silicon oxide by reacting a mixture of a silicon particle and a silicon oxide particle comprises a silicon core particle, and a spherical silica fine particle adhering on the surface of the silicon core particle and having a particle size of 5 nm-1.00 μm, a particle size distribution D/Dof not greater than 3, and an average circularity of 0.8-1.

Description

本発明は、包装用フィルム蒸着用、リチウムイオン二次電池負極活物質等として好適に使用される酸化珪素の製造に用いられる、酸化珪素製造用原料であるシリカ付着珪素粒子及び焼結混合原料に関するものである。   The present invention relates to silicon-adhered silicon particles and a sintered mixed raw material, which are raw materials for producing silicon oxide, used for producing silicon oxide suitably used for packaging film deposition, negative electrode active materials for lithium ion secondary batteries, and the like. Is.

従来、酸化珪素粒子の製造方法として、珪素粒子及び二酸化珪素粒子からなる混合原料を減圧非酸化性雰囲気中で熱処理し、SiO蒸気を発生させ、このSiO蒸気を気相中で凝縮させて、0.1μm以下の微細アモルファス状のSiO粒子を製造する方法(特許文献1:特開昭63−103815号公報参照)、及び原料珪素を加熱蒸発させて、表面組織を粗とした基体の表面に蒸着させる方法(特許文献2:特開平9−110412号公報参照)が知られており、いずれの方法においても、酸化珪素製造用原料は、二酸化珪素系酸化物粒子とそれを還元する物質、例えば、金属珪素、炭素との混合物が用いられていた。   Conventionally, as a method for producing silicon oxide particles, a mixed raw material composed of silicon particles and silicon dioxide particles is heat-treated in a reduced-pressure non-oxidizing atmosphere to generate SiO vapor, and this SiO vapor is condensed in the gas phase to produce 0 A method for producing fine amorphous SiO particles of 1 μm or less (see Patent Document 1: Japanese Patent Laid-Open No. 63-103815) and vapor deposition on the surface of a substrate having a rough surface structure by heating and evaporating raw silicon In any method, the raw material for producing silicon oxide is composed of silicon dioxide-based oxide particles and a substance that reduces the same, for example, A mixture of metallic silicon and carbon was used.

特開昭63−103815号公報JP-A 63-103815 特開平9−110412号公報JP-A-9-110412 特許第3824047号公報Japanese Patent No. 3824047

酸化珪素の製造は、いずれにしても下記式に示すような固・固反応により、酸化珪素を製造するものであり、反応には固体同士の接触面積を含む接触効率が重要である。
SiO2(s)+Si(s)→2SiO(g)
SiO2(s)+C(s)→SiO(g)+CO(g)
上記方法に示された代表的な酸化珪素製造方法において、原料の水分による装置部材の劣化及び配管閉塞、一方で原料の嵩密度が低いため反応器への充填量が少なく、生産性が低くなる等の問題があった。また、二酸化珪素粒子に比較して珪素粒子は付着性が強く、混合槽への安定した供給が難しく、混合物を成型した場合には珪素粒子の凝集物を生じやすく、このため反応性が低下するという問題があった。
In any case, silicon oxide is produced by a solid / solid reaction represented by the following formula, and contact efficiency including the contact area between solids is important for the reaction.
SiO 2 (s) + Si (s) → 2SiO (g)
SiO 2 (s) + C (s) → SiO (g) + CO (g)
In the representative silicon oxide production method shown in the above method, deterioration of equipment members due to moisture of the raw material and piping blockage, on the other hand, the bulk density of the raw material is low, so the filling amount into the reactor is small and the productivity is low. There was a problem such as. In addition, silicon particles have stronger adhesion than silicon dioxide particles, and it is difficult to stably supply them to the mixing tank, and when the mixture is molded, silicon particles are likely to be aggregated, resulting in decreased reactivity. There was a problem.

本発明は、珪素粒子及び二酸化珪素粒子の混合物を製造する過程において、珪素粒子の流動性を改良することで、珪素粒子を安定して供給できるとともに、成型した混合物中の珪素凝集物を低減し、上記酸化珪素の製造方法において、反応率と反応速度を上げることができる、上記酸化珪素製造の原料珪素粒子として好適なシリカ付着珪素粒子及び焼結混合原料を提供することを目的とする。   The present invention improves the fluidity of silicon particles in the process of producing a mixture of silicon particles and silicon dioxide particles, thereby enabling stable supply of silicon particles and reducing silicon agglomerates in the molded mixture. An object of the present invention is to provide silica-attached silicon particles and sintered mixed raw materials suitable as raw material silicon particles for manufacturing silicon oxide, which can increase the reaction rate and reaction rate in the method for manufacturing silicon oxide.

本発明者らは、上記目的を達成するため鋭意検討した結果、珪素粒子の表面にシリカ微粒子、特に疎水性球状シリカ微粒子が付着したシリカ付着珪素粒子を、珪素粒子及び二酸化珪素粒子の混合物を反応させ、酸化珪素を製造する方法の原料珪素粒子として用いることで、混合槽への安定的な原料供給が可能となり、さらに、混合物の成型物中の珪素凝集物を低減でき、上記酸化珪素の製造方法において、反応率と反応速度を上げることができることを知見し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above-mentioned object, the present inventors reacted silica-adhered silicon particles having silica fine particles, particularly hydrophobic spherical silica fine particles attached to the surface of silicon particles, with a mixture of silicon particles and silicon dioxide particles. And by using it as raw material silicon particles in the method for producing silicon oxide, it becomes possible to supply a stable raw material to the mixing tank, and further reduce silicon agglomerates in the molded product of the mixture, thereby producing the silicon oxide. In the method, it has been found that the reaction rate and reaction rate can be increased, and the present invention has been made.

従って、本発明は下記を提供する。
[1].珪素粒子及び二酸化珪素粒子の混合物を反応させ、酸化珪素を製造する方法の原料珪素粒子として用いるシリカ付着珪素粒子であって、珪素核粒子と、珪素核粒子表面に付着し、平均粒子径が5nm〜1.00μm、粒度分布D90/D10の値が3以下であり、平均円形度が0.8〜1である球状シリカ微粒子とを有するシリカ付着珪素粒子。
[2].球状シリカ微粒子の付着量が、珪素核粒子に対して0.01〜5質量%である[1]記載のシリカ付着珪素粒子。
[3].球状シリカ微粒子が、疎水性球状シリカ微粒子である[1]又は[2]記載のシリカ付着珪素粒子。
[4].疎水性球状シリカ微粒子が、4官能性シラン化合物、その部分加水分解縮合生成物又はそれらの組み合わせを、加水分解・縮合することによって得られた、SiO2単位からなる親水性球状シリカ微粒子の表面に、R1SiO3/2単位(式中、R1は置換又は非置換の炭素原子数1〜20の1価炭化水素基である。)を導入する工程と、次いでR2 3SiO1/2単位(式中、R2は同一又は異種の、置換又は非置換の炭素原子数1〜6の1価炭化水素基である。)を導入する工程とを含む疎水化処理をして得られた疎水性球状シリカ微粒子である[3]記載のシリカ付着珪素粒子。
[5].疎水性球状シリカ微粒子が、
(A1):親水性球状シリカ微粒子の調製工程
下記一般式(I)
Si(OR34 (I)
(式中、R3は同一又は異種の炭素原子数1〜6の1価炭化水素基である。)
で表わされる4官能性シラン化合物、その部分加水分解生成物又はこれらの混合物を、塩基性物質の存在下、親水性有機溶媒と水との混合溶媒中で加水分解・縮合することによって、SiO2単位からなる親水性球状シリカ微粒子が分散した混合溶媒分散液を得、
(A2):3官能性シラン化合物による第1疎水化表面処理工程
(A1)で得られた分散液に、下記一般式(II)
1Si(OR43 (II)
(式中、R1は置換又は非置換の炭素原子数1〜20の1価炭化水素基、R4は同一又は異種の炭素原子数1〜6の1価炭化水素基である。)で表わされる3官能性シラン化合物、その部分加水分解生成物又はこれらの混合物を添加して、上記親水性球状シリカ微粒子を表面処理し、その表面にR1SiO3/2単位(式中、R1は上記と同じである。)が導入された球状シリカ微粒子が分散した混合溶媒分散液を得、
(A3):濃縮工程
(A2)で得られた分散液から、親水性有機溶媒と水の一部とを除去し、濃縮することにより、濃縮分散液を得、
(A4):1官能性シラン化合物による第2疎水化表面処理工程
(A3)で得られた濃縮分散液に、下記一般式(III)
2 3SiNHSiR2 3 (III)
(式中、R2は、同一又は異種の、置換又は非置換の炭素原子数1〜6の1価炭化水素基である。)
で表わされるシラザン化合物、下記一般式(IV):
2 3SiX (IV)
(式中、R2は上記と同じであり、XはOH基又は加水分解性基である。)で表わされる1官能性シラン化合物又はこれらの混合物を添加し、上記R1SiO3/2単位が導入された球状シリカ微粒子を表面処理し、その表面にR2 3SiO1/2単位(式中、R2は上記と同じである。)を導入することにより得られた疎水性球状シリカ微粒子である、[3]又は[4]記載のシリカ付着珪素粒子。
[6].珪素粒子及び二酸化珪素粒子の混合物を反応させ、酸化珪素を製造する方法の原料として用いるものであって、[1]〜[5]のいずれかに記載のシリカ付着珪素粒子と二酸化珪素粒子との焼結混合原料。
Accordingly, the present invention provides the following.
[1]. Silica-attached silicon particles used as raw material silicon particles in a method of producing silicon oxide by reacting a mixture of silicon particles and silicon dioxide particles, the silicon core particles adhering to the surface of the silicon core particles, the average Silica-attached silicon particles having spherical silica fine particles having a particle diameter of 5 nm to 1.00 μm, a particle size distribution D 90 / D 10 of 3 or less, and an average circularity of 0.8 to 1.
[2] The silica-attached silicon particles according to [1], wherein the adhesion amount of the spherical silica fine particles is 0.01 to 5% by mass with respect to the silicon core particles.
[3] The silica-attached silicon particles according to [1] or [2], wherein the spherical silica fine particles are hydrophobic spherical silica fine particles.
[4]. Hydrophilic spherical silica composed of SiO 2 units, obtained by hydrolyzing and condensing a hydrophobic spherical silica fine particle with a tetrafunctional silane compound, a partially hydrolyzed condensation product thereof, or a combination thereof. A step of introducing R 1 SiO 3/2 units (wherein R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms) onto the surface of the fine particles, and then R 2 3 And a step of introducing a SiO 1/2 unit (wherein R 2 is the same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms). The silica-adhered silicon particles according to [3], which are hydrophobic spherical silica fine particles obtained in the above manner.
[5] Hydrophobic spherical silica fine particles
(A1): Step of preparing hydrophilic spherical silica fine particles The following general formula (I)
Si (OR 3 ) 4 (I)
(In the formula, R 3 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms.)
By hydrolyzing and condensing a tetrafunctional silane compound represented by the formula, a partial hydrolysis product thereof, or a mixture thereof in a mixed solvent of a hydrophilic organic solvent and water in the presence of a basic substance, SiO 2 A mixed solvent dispersion in which hydrophilic spherical silica fine particles composed of units are dispersed is obtained,
(A2): First hydrophobizing surface treatment step with trifunctional silane compound (A1), the dispersion obtained in the following general formula (II)
R 1 Si (OR 4 ) 3 (II)
(Wherein R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms). The above-mentioned hydrophilic spherical silica fine particles are surface-treated by adding a trifunctional silane compound, a partial hydrolysis product thereof, or a mixture thereof, and R 1 SiO 3/2 units (wherein R 1 is The same as the above) to obtain a mixed solvent dispersion in which spherical silica fine particles introduced are dispersed,
(A3): Concentration step From the dispersion obtained in (A2), the hydrophilic organic solvent and a part of water are removed and concentrated to obtain a concentrated dispersion.
(A4): Second hydrophobized surface treatment step with a functional silane compound (A3) The concentrated dispersion obtained in (A3) is added to the following general formula (III)
R 2 3 SiNHSiR 2 3 (III)
(In the formula, R 2 is the same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms.)
A silazane compound represented by the following general formula (IV):
R 2 3 SiX (IV)
(Wherein R 2 is the same as above, X is an OH group or a hydrolyzable group), and a monofunctional silane compound or a mixture thereof is added, and the R 1 SiO 3/2 unit is added. Hydrophobic spherical silica fine particles obtained by surface-treating spherical silica fine particles into which R 2 is introduced and introducing R 2 3 SiO 1/2 units (wherein R 2 is the same as above) onto the surface thereof The silica-attached silicon particles according to [3] or [4].
[6]. Used as a raw material for a method of producing silicon oxide by reacting a mixture of silicon particles and silicon dioxide particles, wherein the silica-adhered silicon particles and the carbon dioxide according to any one of [1] to [5] Sintered mixed raw material with silicon particles.

本発明によれば、珪素粒子及び二酸化珪素粒子の混合物を製造する過程において、珪素粒子の流動性を改良することで、珪素粒子を安定して供給できるとともに、成型した混合物中の珪素凝集物を低減し、上記酸化珪素の製造方法において、反応率と反応速度を上げることができる、上記酸化珪素製造の原料珪素粒子として好適なシリカ付着珪素粒子及び焼結混合原料を提供することができる。   According to the present invention, in the process of producing a mixture of silicon particles and silicon dioxide particles, the silicon particles can be stably supplied by improving the fluidity of the silicon particles, and the silicon agglomerates in the molded mixture can be supplied. It is possible to provide silica-adhered silicon particles and sintered mixed raw materials suitable as raw silicon particles for producing silicon oxide, which can be reduced and increase the reaction rate and reaction rate in the method for producing silicon oxide.

実施例2で得られた、シリカ付着珪素粒子の電子顕微鏡写真である。2 is an electron micrograph of silica-adhered silicon particles obtained in Example 2. FIG. 実施例4で得られた、シリカ付着珪素粒子の電子顕微鏡写真である。4 is an electron micrograph of silica-attached silicon particles obtained in Example 4. FIG. 比較例5で得られた、珪素粒子の電子顕微鏡写真である。6 is an electron micrograph of silicon particles obtained in Comparative Example 5.

以下、本発明について詳細に説明する。
本発明のシリカ付着珪素粒子は、珪素粒子及び二酸化珪素粒子の混合物を反応させ、酸化珪素を製造する方法の原料珪素粒子として用いるものであって、あらかじめ珪素核粒子の表面に、平均粒子径が5nm〜1.00μm、粒度分布D90/D10の値が3以下であり、平均円形度が0.8〜1である球状シリカ微粒子を付着させた、珪素核粒子とその珪素核粒子の表面に付着した球状シリカ微粒子とを有する、二次粒子を形成するものである。
Hereinafter, the present invention will be described in detail.
The silica-adhered silicon particles of the present invention are used as raw material silicon particles in a method for producing silicon oxide by reacting a mixture of silicon particles and silicon dioxide particles, and the average particle diameter is previously formed on the surface of silicon core particles. Silicon core particles and spherical silicon particle surfaces on which spherical silica particles having an average circularity of 0.8 to 1 and having a value of 5 nm to 1.00 μm, a particle size distribution D 90 / D 10 of 3 or less are attached Secondary particles having spherical silica fine particles attached to the surface.

[珪素核粒子]
珪素については特に制限されることはなく、単結晶でも多結晶でもよく、金属不純物濃度が各々1ppm以下の高純度シリコン粒子、塩酸で洗浄したのちフッ化水素酸及びフッ化水素酸と硝酸の混合物で処理することで金属不純物を取り除いたケミカルグレードのシリコン粒子、冶金的に精製された金属珪素を粒子状に加工したもの、さらにそれらの合金等を用いることができる。これらは1種単独で又は2種以上を適宜組み合わせて用いることができる。
[Silicon core particles]
Silicon is not particularly limited and may be single crystal or polycrystal, high purity silicon particles each having a metal impurity concentration of 1 ppm or less, hydrofluoric acid and a mixture of hydrofluoric acid and nitric acid after washing with hydrochloric acid. It is possible to use chemical grade silicon particles from which metal impurities have been removed by treating with metal, metallurgically refined metal silicon processed into particles, and alloys thereof. These can be used individually by 1 type or in combination of 2 or more types.

珪素核粒子は、レーザー回折散乱式粒度分布における累積50%体積径(D50):平均粒子径は0.01〜30μmが好ましく、0.1〜10μmがより好ましく、0.5〜6μmがさらに好ましい。D50が0.01μm未満だと、製造方法が限定され高コストになるおそれがあり、30μmを超えると酸化珪素製造時の反応性が低下するおそれがある。なお、レーザー回折散乱式粒度分布における累積50%体積径(D50)とは、レーザー回折散乱式粒度分布測定法による粒度分布において、累積50体積%に相当する粒子径をいう。 The silicon core particles have a cumulative 50% volume diameter (D 50 ) in the laser diffraction / scattering particle size distribution: the average particle diameter is preferably 0.01 to 30 μm, more preferably 0.1 to 10 μm, and further 0.5 to 6 μm. preferable. If D 50 is less than 0.01 μm, the production method is limited and the cost may increase. If it exceeds 30 μm, the reactivity during silicon oxide production may be reduced. The cumulative 50% volume diameter (D 50 ) in the laser diffraction / scattering particle size distribution refers to the particle diameter corresponding to the cumulative 50% by volume in the particle size distribution by the laser diffraction / scattering particle size distribution measurement method.

また、窒素吸着1点法で測定したBET比表面積が、0.5〜20m2/gが好ましく、1〜10m2/gがより好ましい。比表面積が0.5m2/g未満であると、酸化珪素製造時の反応性が低下するおそれがあり、20m2/gを超えると製造コストが高くつき不利になるおそれがある。 Moreover, 0.5-20 m < 2 > / g is preferable and, as for the BET specific surface area measured by the nitrogen adsorption 1 point method, 1-10 m < 2 > / g is more preferable. If the specific surface area is less than 0.5 m 2 / g, the reactivity during the production of silicon oxide may be reduced, and if it exceeds 20 m 2 / g, the production cost may be increased and disadvantageous.

[球状シリカ微粒子]
珪素粒子の表面に付着している球状シリカ微粒子は、その平均粒子径が通常5nm〜1.00μmであり、10〜300nmが好ましく、30〜200nmがより好ましく、30〜100nmがさらに好ましい。この粒子径が5nmより小さいと、珪素粒子及び二酸化珪素粒子の混合物の凝集が激しく、取り扱いがしにくい場合があり、一方、1.00μmよりも大きいと、珪素粒子に良好な流動性や充填性を付与できないおそれがある。なお、本発明において、球状シリカ微粒子の平均粒子径とは、レーザー回折散乱式粒度分布測定法による粒度分布において、体積基準メジアン径をいう。
[Spherical silica fine particles]
The spherical silica fine particles adhering to the surface of the silicon particles usually have an average particle diameter of 5 nm to 1.00 μm, preferably 10 to 300 nm, more preferably 30 to 200 nm, and further preferably 30 to 100 nm. If the particle diameter is smaller than 5 nm, the mixture of silicon particles and silicon dioxide particles is agglomerated and may be difficult to handle. On the other hand, if the particle diameter is larger than 1.00 μm, the silicon particles have good fluidity and filling properties. May not be granted. In the present invention, the average particle diameter of the spherical silica fine particles means a volume-based median diameter in the particle size distribution by the laser diffraction / scattering particle size distribution measuring method.

粒度分布の指標であるD90/D10の値が3以下であり、2.9以下がより好ましい。D90、D10はいずれもレーザー回折散乱式粒度分布測定法による粒度分布において、小さい側から累積体積10%となる粒子径をD10、小さい側から累積体積90%となる粒子径をD90という。このD90/D10が3以下であるとは、その粒度分布はシャープであることを示すものである。このように、粒度分布がシャープな粒子であると、珪素粒子の流動性を制御することが容易になる。 The value of D 90 / D 10 that is an index of particle size distribution is 3 or less, and more preferably 2.9 or less. In D 90 and D 10, in the particle size distribution obtained by the laser diffraction / scattering particle size distribution measurement method, D 10 represents the particle diameter that is 10% of the cumulative volume from the smaller side, and D 90 represents the particle diameter that is the 90% cumulative volume from the smaller side. That's it. The D 90 / D 10 being 3 or less indicates that the particle size distribution is sharp. Thus, if the particle size distribution is sharp, it becomes easy to control the fluidity of the silicon particles.

本発明において、「球状」とは真球だけでなく、若干歪んだ球も含み、平均円形度が0.8〜1の範囲にあるものをいい、0.92〜1が好ましい。なお、円形度とは、(粒子面積と等しい円の周囲長)/(粒子周囲長)であり、電子顕微鏡等で得られる粒子像を画像解析することにより測定することができる。また、良好な流動性の付与の点から、一次粒子が好ましい。   In the present invention, “spherical” means not only a true sphere but also a slightly distorted sphere, and an average circularity in the range of 0.8 to 1, preferably 0.92 to 1. The circularity is (peripheral length of circle equal to the particle area) / (peripheral length of particle), and can be measured by image analysis of a particle image obtained with an electron microscope or the like. Further, from the viewpoint of imparting good fluidity, primary particles are preferable.

球状シリカ微粒子としては、本発明の効果の点から、疎水性球状シリカ微粒子が好ましい。球状シリカ微粒子は、例えば、4官能性シラン化合物の加水分解・縮合によって得られる、小粒径ゾルゲル法シリカ原体に、特定の疎水化表面処理を行い、疎水化処理後の微粒子が、シリカ原体の一次粒子を維持した小粒径であり、凝集しておらず、良好な流動性を付与可能な疎水性球状シリカ微粒子が得られるものである。   As the spherical silica fine particles, hydrophobic spherical silica fine particles are preferable from the viewpoint of the effect of the present invention. Spherical silica fine particles are obtained by, for example, subjecting a small particle size sol-gel method silica base material obtained by hydrolysis / condensation of a tetrafunctional silane compound to a specific hydrophobized surface treatment. Hydrophobic spherical silica fine particles that have a small particle size that maintains the primary particles of the body, are not agglomerated, and can be given good fluidity can be obtained.

より具体的には、4官能性シラン化合物、その部分加水分解縮合生成物又はそれらの組み合わせを、加水分解・縮合することによって得られた、SiO2単位からなる親水性球状シリカ微粒子の表面に、R1SiO3/2単位(式中、R1は置換又は非置換の炭素原子数1〜20の1価炭化水素基である。)を導入する工程と、次いでR2 3SiO1/2単位(式中、R2は同一又は異種の、置換又は非置換の炭素原子数1〜6の1価炭化水素基である。)を導入する工程とを含む疎水化処理をして得られた疎水性球状シリカ微粒子が好ましい。このような疎水化処理をして得られた疎水性球状シリカ微粒子の構造は、非晶質(アモルファス)な疎水性の真球状に近いシリカ微粒子である。 More specifically, on the surface of hydrophilic spherical silica fine particles composed of SiO 2 units, obtained by hydrolyzing and condensing a tetrafunctional silane compound, a partial hydrolysis condensation product thereof, or a combination thereof, A step of introducing R 1 SiO 3/2 units (wherein R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms), and then R 2 3 SiO 1/2 units (Wherein R 2 is the same or different, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms). Spherical silica fine particles are preferred. The structure of the hydrophobic spherical silica fine particles obtained by such a hydrophobization treatment is a silica fine particle close to an amorphous hydrophobic spherical shape.

本発明において、親水性球状シリカ微粒子が「SiO2単位からなる」とは、この微粒子は、基本的にSiO2単位から構成されているが、少なくとも表面に通常知られているようにシラノール基を有することを意味する。また、場合によっては、原料である一般式(I)で表わされる4官能性シラン化合物、その部分加水分解縮合生成物(以下、合わせて4官能性シラン化合物等と略す場合がある。)に由来する加水分解性基(ヒドロカルビルオキシ基)が、一部シラノール基に転化されずに若干量そのまま微粒子表面や内部に残存していてもよいことを意味する。 In the present invention, the hydrophilic spherical silica fine particle “consists of SiO 2 units” means that the fine particles are basically composed of SiO 2 units, but have at least a silanol group as is generally known on the surface. It means having. In some cases, the raw material is derived from the tetrafunctional silane compound represented by the general formula (I) as a raw material and a partial hydrolysis-condensation product thereof (hereinafter sometimes abbreviated as a tetrafunctional silane compound or the like in some cases). This means that some amount of the hydrolyzable group (hydrocarbyloxy group) may remain on the fine particle surface or inside without being partially converted into a silanol group.

以下、疎水性球状シリカ微粒子の製造方法の一つについて以下に詳細に説明する。
<製造方法(A)>
(A1):親水性球状シリカ微粒子の調製工程
(A2):3官能性シラン化合物による第1疎水化表面処理工程
(A3):濃縮工程
(A4):1官能性シラン化合物による第2疎水化表面処理工程
Hereinafter, one method for producing hydrophobic spherical silica fine particles will be described in detail.
<Manufacturing method (A)>
(A1): Preparation step of hydrophilic spherical silica fine particles (A2): First hydrophobized surface treatment step with trifunctional silane compound (A3): Concentration step (A4): Second hydrophobized surface with monofunctional silane compound Processing process

(A1):親水性球状シリカ微粒子の調製工程
下記一般式(I)
Si(OR34 (I)
(式中、R3は同一又は異種の炭素原子数1〜6の1価炭化水素基である。)
で表わされる4官能性シラン化合物、その部分加水分解生成物又はこれらの混合物を、塩基性物質の存在下、親水性有機溶媒と水との混合溶媒中で加水分解・縮合することによって、SiO2単位からなる親水性球状シリカ微粒子が分散した混合溶媒分散液を得る。
(A1): Step of preparing hydrophilic spherical silica fine particles The following general formula (I)
Si (OR 3 ) 4 (I)
(In the formula, R 3 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms.)
By hydrolyzing and condensing a tetrafunctional silane compound represented by the formula, a partial hydrolysis product thereof, or a mixture thereof in a mixed solvent of a hydrophilic organic solvent and water in the presence of a basic substance, SiO 2 A mixed solvent dispersion in which hydrophilic spherical silica fine particles composed of units are dispersed is obtained.

一般式(I)中、R3は同一又は異種の炭素原子数1〜6、好ましくは1〜4、より好ましくは1〜2の1価炭化水素基である。R3で表わされる1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、フェニル基等が挙げられ、メチル基、エチル基、プロピル基、ブチル基が好ましく、メチル基、エチル基がより好ましい。 In the general formula (I), R 3 is the same or different monovalent hydrocarbon group having 1 to 6, preferably 1 to 4, more preferably 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 3 include a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group, and a methyl group, an ethyl group, a propyl group, and a butyl group are preferable, and a methyl group An ethyl group is more preferable.

一般式(I)で表わされる4官能性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン、テトラフェノキシシラン等が挙げられ、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランが好ましく、テトラメトキシシラン、テトラエトキシシランがより好ましい。粒子径の小さい球状シリカ微粒子を得るためには、テトラアルコキシシランのアルコキシ基炭素原子数が小さいシランを用いることが好ましい。   Examples of the tetrafunctional silane compound represented by the general formula (I) include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, tetraphenoxysilane, and the like. , Tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane are preferable, and tetramethoxysilane and tetraethoxysilane are more preferable. In order to obtain spherical silica fine particles having a small particle diameter, it is preferable to use a silane having a small number of alkoxy group carbon atoms of tetraalkoxysilane.

4官能性シラン化合物の部分加水分解生成物としては、例えば、メチルシリケート、エチルシリケート等が挙げられる。   Examples of the partial hydrolysis product of the tetrafunctional silane compound include methyl silicate and ethyl silicate.

親水性有機溶媒としては、一般式(I)で示される4官能性シラン化合物と、この部分加水分解縮合生成物と、水とを溶解するものであれば特に制限されず、例えば、アルコール類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、酢酸セロソルブ等のセロソルブ類、アセトン、メチルエチルケトン等のケトン類、ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられ、1種単独で又は2種以上を適宜選択して用いることができる。中でも、アルコール類、セロソルブ類が好ましく、アルコール類がより好ましい。   The hydrophilic organic solvent is not particularly limited as long as it dissolves the tetrafunctional silane compound represented by the general formula (I), the partial hydrolysis-condensation product, and water. For example, alcohols, Examples include cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, and cellosolve acetate, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and tetrahydrofuran, and the like. Can do. Among these, alcohols and cellosolves are preferable, and alcohols are more preferable.

アルコール類としては、下記一般式(V):
5OH (V)
(式中、R5は炭素原子数1〜6の1価炭化水素基である。)
で表わされるアルコールが挙げられる。
As alcohols, the following general formula (V):
R 5 OH (V)
(In the formula, R 5 is a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
The alcohol represented by is mentioned.

一般式(V)中、R5は炭素原子数1〜6、好ましくは1〜4、より好ましくは1〜2の1価炭化水素基である。R5としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等が挙げられ、メチル基、エチル基、プロピル基、イソプロピル基が好ましく、メチル基、エチル基がより好ましい。一般式(V)で表わされるアルコールとしては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等が挙げられ、メタノール、エタノールが好ましい。アルコールの炭素原子数が増えると、得られる球状シリカ微粒子の粒子径が大きくなるため、粒子径の小さい球状シリカ微粒子を得るためには、メタノールが好ましい。 In general formula (V), R 5 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms. Examples of R 5 include an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. A methyl group, an ethyl group, a propyl group, and an isopropyl group are preferable, and a methyl group and an ethyl group are preferable. More preferred. Examples of the alcohol represented by the general formula (V) include methanol, ethanol, propanol, isopropanol, butanol and the like, and methanol and ethanol are preferable. As the number of carbon atoms in the alcohol increases, the particle diameter of the resulting spherical silica particles increases, and therefore methanol is preferred in order to obtain spherical silica particles having a small particle diameter.

混合溶媒中の水の量は、4官能性シラン化合物等のヒドロカルビルオキシ基の合計1モルに対して、0.5〜5モルであることが好ましく、0.6〜2モルであることがより好ましく、0.7〜1モルであることが特に好ましい。水に対する親水性有機溶媒の比率は、質量比で0.5〜10が好ましく、3〜9がより好ましく、5〜8がさらに好ましい。このとき、親水性有機溶媒の量を多くすることで、得られる球状シリカ微粒子の粒子径が小さくなる。   The amount of water in the mixed solvent is preferably 0.5 to 5 mol and more preferably 0.6 to 2 mol with respect to a total of 1 mol of hydrocarbyloxy groups such as a tetrafunctional silane compound. Preferably, it is 0.7-1 mol. The ratio of the hydrophilic organic solvent to water is preferably 0.5 to 10, more preferably 3 to 9, and still more preferably 5 to 8 in terms of mass ratio. At this time, by increasing the amount of the hydrophilic organic solvent, the particle diameter of the obtained spherical silica fine particles is reduced.

塩基性物質としては、アンモニア、ジメチルアミン、ジエチルアミン等が挙げられ、1種単独で又は2種以上を適宜選択して用いることができる。中でも、アンモニア、ジエチルアミンが好ましく、アンモニアがより好ましい。塩基性物質は、所要量を水に溶解した後、得られた水溶液(塩基性)を、上記親水性有機溶媒と混合すればよい。   Examples of the basic substance include ammonia, dimethylamine, diethylamine and the like, and one kind alone or two or more kinds can be appropriately selected and used. Among these, ammonia and diethylamine are preferable, and ammonia is more preferable. The basic substance may be obtained by dissolving a required amount in water and then mixing the obtained aqueous solution (basic) with the hydrophilic organic solvent.

塩基性物質の量は、4官能性シラン化合物等のヒドロカルビルオキシ基の合計1モルに対して、0.01〜2モルであることが好ましく、0.02〜0.5モルであることがより好ましく、0.04〜0.12モルであることが特に好ましい。このとき、塩基性物質の量を少なくすることにより、得られる球状シリカ微粒子の粒子径が小さくなる。   The amount of the basic substance is preferably 0.01 to 2 mol and more preferably 0.02 to 0.5 mol with respect to 1 mol in total of hydrocarbyloxy groups such as a tetrafunctional silane compound. Preferably, it is 0.04 to 0.12 mol. At this time, by reducing the amount of the basic substance, the particle diameter of the obtained spherical silica fine particles is reduced.

4官能性シラン化合物等の加水分解・縮合は、公知の方法、つまり塩基性物質を含む親水性有機溶媒と水との混合溶媒に、4官能性シラン化合物等を添加することにより得ることができる。反応温度5〜60℃、反応時間0.5〜10時間が好ましい。その加水分解・縮合温度を高くすることにより、得られる球状シリカ微粒子の粒子径が小さくなる。   Hydrolysis / condensation of the tetrafunctional silane compound and the like can be obtained by a known method, that is, by adding the tetrafunctional silane compound and the like to a mixed solvent of a hydrophilic organic solvent containing a basic substance and water. . A reaction temperature of 5 to 60 ° C. and a reaction time of 0.5 to 10 hours are preferred. By increasing the hydrolysis / condensation temperature, the particle diameter of the obtained spherical silica fine particles is reduced.

加水分解・縮合で得られたSiO2単位からなる親水性球状シリカ微粒子は、混合溶媒中に分散し、その分散液(A1)中の濃度は、通常3〜15質量%であり、5〜10質量%が好ましい。 Hydrophilic spherical silica fine particles composed of SiO 2 units obtained by hydrolysis / condensation are dispersed in a mixed solvent, and the concentration in the dispersion (A1) is usually 3 to 15% by mass, and 5 to 10 Mass% is preferred.

(A2):3官能性シラン化合物による第1疎水化表面処理工程
(A1)で得られた分散液に、下記一般式(II)
1Si(OR43 (II)
(式中、R1は置換又は非置換の炭素原子数1〜20の1価炭化水素基、R4は同一又は異種の炭素原子数1〜6の1価炭化水素基である。)で表わされる3官能性シラン化合物、その部分加水分解生成物又はこれらの混合物を添加して、上記親水性球状シリカ微粒子を表面処理し、その表面にR1SiO3/2単位(式中、R1は上記と同じである。)が導入された球状シリカ微粒子が分散した混合溶媒分散液を得る。
(A2): First hydrophobizing surface treatment step with trifunctional silane compound (A1), the dispersion obtained in the following general formula (II)
R 1 Si (OR 4 ) 3 (II)
(Wherein R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms). The above-mentioned hydrophilic spherical silica fine particles are surface-treated by adding a trifunctional silane compound, a partial hydrolysis product thereof, or a mixture thereof, and R 1 SiO 3/2 units (wherein R 1 is The same as above.) A mixed solvent dispersion liquid in which spherical silica fine particles introduced therein are dispersed is obtained.

本工程(A2)は、次の工程である濃縮工程(A3)において、球状シリカ微粒子の凝集を抑制するために不可欠である。凝集を抑制できないと、得られる疎水性球状シリカ微粒子は一次粒子径を維持できないため、珪素粒子に対する流動性付与能が悪くなる。   This step (A2) is indispensable for suppressing aggregation of spherical silica fine particles in the next concentration step (A3). If the aggregation cannot be suppressed, the resulting hydrophobic spherical silica fine particles cannot maintain the primary particle size, resulting in poor fluidity imparting ability to the silicon particles.

一般式(II)中、R1は置換又は非置換の炭素原子数1〜20、好ましくは1〜3、より好ましくは1〜2の1価炭化水素基である。R1は、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ヘキシル基等のアルキル基が挙げられ、メチル基、エチル基、n−プロピル基、イソプロピル基が好ましく、メチル基、エチル基がより好ましい。また、1価炭化水素基の水素原子の一部又は全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくはフッ素原子で置換されていてもよい。 In the general formula (II), R 1 is a substituted or unsubstituted 1 to 20 carbon atoms, preferably 1 to 3, more preferably 1 to 2 monovalent hydrocarbon group. Examples of R 1 include an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, and a hexyl group, and a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are preferable. Group and ethyl group are more preferred. In addition, some or all of the hydrogen atoms of the monovalent hydrocarbon group may be substituted with a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, preferably a fluorine atom.

一般式(II)中、R4は同一又は異種の炭素原子数1〜6、好ましくは1〜3、より好ましくは1〜2の1価炭化水素基である。R4で表わされる1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等のアルキル基等が挙げられ、メチル基、エチル基、プロピル基が好ましく、メチル基、エチル基がより好ましい。 In the general formula (II), R 4 is the same or different monovalent hydrocarbon group having 1 to 6, preferably 1 to 3, more preferably 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 4 include alkyl groups such as a methyl group, an ethyl group, a propyl group, and a butyl group. A methyl group, an ethyl group, and a propyl group are preferable, and a methyl group, an ethyl group, and the like. Groups are more preferred.

一般式(II)で示される3官能性シラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ヘキシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等のトリアルコキシシラン、その部分加水分解生成物等が挙げられ、1種単独で又は2種以上を適宜選択して用いることができる。中でも、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、その部分加水分解生成物が好ましく、メチルトリメトキシシラン、メチルトリエトキシシラン、その部分加水分解生成物がより好ましい。   Examples of the trifunctional silane compound represented by the general formula (II) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, and n-propyltriethoxy. Trialkoxysilanes such as silane, isopropyltrimethoxysilane, isopropyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, etc. A decomposition product etc. are mentioned, 1 type can be used individually or 2 or more types can be selected suitably. Among them, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and partial hydrolysis products thereof are preferable, and methyltrimethoxysilane, methyltriethoxysilane, and partial hydrolysis products thereof are more preferable. .

これらの添加量は、使用された親水性球状シリカ微粒子のSi原子1モルに対して、0.001〜1モルが好ましく、0.01〜0.1モルがより好ましく、0.01〜0.05モルがさらに好ましい。添加量が0.001モルより少ないと、分散性が悪いため、珪素粒子への流動性付与効果が不十分となるおそれがあり、1モルより多いと(A2)工程において、球状シリカ微粒子の凝集が生じるおそれがある。   These addition amounts are preferably 0.001 to 1 mol, more preferably 0.01 to 0.1 mol, and more preferably 0.01 to 0.1 mol with respect to 1 mol of Si atoms in the used hydrophilic spherical silica fine particles. 05 mol is more preferable. If the amount added is less than 0.001 mol, the dispersibility is poor, so that the effect of imparting fluidity to silicon particles may be insufficient. If the amount added is more than 1 mol, aggregation of spherical silica fine particles in the step (A2). May occur.

(A1)で得られた分散液(A1)に、一般式(II)で表わされる3官能性シラン化合物、その部分加水分解生成物又はこれらの混合物(以下、3官能性シラン化合物等と略す場合がある。)を添加して、上記親水性球状シリカ微粒子を表面処理することで、その表面にR1SiO3/2単位(式中、R1は上記と同じである。)が導入された球状シリカ微粒子が得られる。 In the dispersion (A1) obtained in (A1), the trifunctional silane compound represented by the general formula (II), a partial hydrolysis product thereof, or a mixture thereof (hereinafter abbreviated as trifunctional silane compound, etc.) And the hydrophilic spherical silica fine particles are surface-treated to introduce R 1 SiO 3/2 units (wherein R 1 is the same as above) on the surface thereof. Spherical silica fine particles are obtained.

親水性球状シリカ微粒子の表面にR1SiO3/2単位が導入された球状シリカ微粒子は、混合溶媒中に分散し、その分散液(A2)中の濃度は、3質量%以上15質量%未満が好ましく、5〜10質量%がより好ましい。この量が低すぎると、生産性が低下するおそれがあり、高すぎると(A2)工程において、球状シリカ微粒子の凝集が生じるおそれがある。 The spherical silica fine particles having R 1 SiO 3/2 units introduced on the surface of the hydrophilic spherical silica fine particles are dispersed in a mixed solvent, and the concentration in the dispersion (A2) is 3% by mass or more and less than 15% by mass. Is preferable, and 5-10 mass% is more preferable. If this amount is too low, the productivity may decrease, and if it is too high, the spherical silica fine particles may be aggregated in the step (A2).

(A3):濃縮工程
(A2)で得られた分散液(A2)から、親水性有機溶媒と水の一部とを除去し、濃縮することにより、濃縮分散液を得る。
親水性有機溶媒と水の一部を除去する方法としては、例えば留去、減圧留去等が挙げられる。その温度は用いた親水性有機溶媒やその割合によって適宜選定されるが、60〜110℃程度である。この際、分散液(A2)に、予め又は濃縮中に疎水性溶媒を添加してもよい。使用する疎水性溶媒としては、炭化水素系、ケトン系溶媒が好ましく、1種単独で又は2種以上を適宜選択して用いることができる。具体的には、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン等が挙げられ、メチルイソブチルケトンが好ましい。
(A3): Concentration Step A concentrated dispersion is obtained by removing the hydrophilic organic solvent and a part of water from the dispersion (A2) obtained in (A2) and concentrating.
Examples of the method for removing a part of the hydrophilic organic solvent and water include distillation and distillation under reduced pressure. The temperature is appropriately selected depending on the hydrophilic organic solvent used and its ratio, but is about 60 to 110 ° C. At this time, a hydrophobic solvent may be added to the dispersion (A2) in advance or during concentration. As the hydrophobic solvent to be used, hydrocarbon solvents and ketone solvents are preferable, and one kind alone or two or more kinds can be appropriately selected and used. Specific examples include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, and the like, and methyl isobutyl ketone is preferred.

濃縮後の濃縮分散液(A3)中の球状シリカ微粒子濃度は、15〜40質量%が好ましく、20〜35質量%がより好ましく、25〜30質量%がさらに好ましい。15質量%以上とすることで、次工程(A4)が順調となり、40質量%より大きいと、(A3)工程において、球状シリカ微粒子の凝集が生じるおそれがある。   The concentration of spherical silica fine particles in the concentrated dispersion (A3) after concentration is preferably 15 to 40% by mass, more preferably 20 to 35% by mass, and even more preferably 25 to 30% by mass. When the content is 15% by mass or more, the next step (A4) becomes smooth, and when it is larger than 40% by mass, the spherical silica fine particles may be aggregated in the step (A3).

(A3)濃縮工程は、次の(A4)工程において、表面処理剤として使用される一般式(III)で表わされるシラザン化合物、一般式(IV)で表わされる1官能性シラン化合物又はこれらの混合物が、親水性有機溶媒や水と反応して表面処理が不十分となり、その後に乾燥を行った時に凝集を生じるため、得られる疎水性球状シリカ微粒子は一次粒子径を維持できないため、珪素粒子に対する流動性付与能が悪くなるといった不具合を抑制するために、不可欠な工程である。   (A3) The concentration step is a silazane compound represented by general formula (III), a monofunctional silane compound represented by general formula (IV) or a mixture thereof used as a surface treating agent in the next step (A4). However, since the surface treatment becomes insufficient by reacting with a hydrophilic organic solvent or water and aggregation occurs when drying is performed after that, the resulting hydrophobic spherical silica fine particles cannot maintain the primary particle size, so This is an indispensable process for suppressing problems such as poor fluidity imparting ability.

(A4):1官能性シラン化合物による第2疎水化表面処理工程
(A3)で得られた濃縮分散液に、下記一般式(III)
2 3SiNHSiR2 3 (III)
(式中、R2は、同一又は異種の、置換又は非置換の炭素原子数1〜6の1価炭化水素基である。)
で表わされるシラザン化合物、下記一般式(IV):
2 3SiX (IV)
(式中、R2は上記と同じであり、XはOH基又は加水分解性基である。)で表わされる1官能性シラン化合物又はこれらの混合物を添加し、上記R1SiO3/2単位が導入された球状シリカ微粒子を表面処理し、その表面にR2 3SiO1/2単位(式中、R2は上記と同じである。)を導入する。シラザン化合物、1官能性シラン化合物は1種単独で又は2種以上を適宜選択して用いることができる。
(A4): Second hydrophobized surface treatment step with a functional silane compound (A3) The concentrated dispersion obtained in (A3) is added to the following general formula (III)
R 2 3 SiNHSiR 2 3 (III)
(In the formula, R 2 is the same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms.)
A silazane compound represented by the following general formula (IV):
R 2 3 SiX (IV)
(Wherein R 2 is the same as above, X is an OH group or a hydrolyzable group), and a monofunctional silane compound or a mixture thereof is added, and the R 1 SiO 3/2 unit is added. Are treated, and R 2 3 SiO 1/2 units (wherein R 2 is the same as above) are introduced on the surface thereof. Silazane compounds and monofunctional silane compounds may be used alone or in combination of two or more.

一般式(III)及び(IV)中、R2は、同一又は異種の、置換又は非置換の炭素原子数1〜6、好ましくは1〜4、より好ましくは1〜2の1価炭化水素基である。R2としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等が挙げられ、メチル基、エチル基、プロピル基が好ましく、メチル基、エチル基がより好ましい。また、これらの1価炭化水素基の水素原子の一部又は全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくは、フッ素原子で置換されていてもよい。 In the general formulas (III) and (IV), R 2 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms. It is. Examples of R 2 include an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. A methyl group, an ethyl group, and a propyl group are preferable, and a methyl group and an ethyl group are more preferable. Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom, preferably fluorine atom.

Xで表わされる加水分解性基としては、例えば、塩素原子、アルコキシ基、アミノ基、アシルオキシ基等が挙げられ、アルコキシ基、アミノ基が好ましく、アルコキシ基がより好ましい。   Examples of the hydrolyzable group represented by X include a chlorine atom, an alkoxy group, an amino group, and an acyloxy group. An alkoxy group and an amino group are preferable, and an alkoxy group is more preferable.

一般式(III)で表わされるシラザン化合物としては、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン等が挙げられ、中でも、ヘキサメチルジシラザンが好ましい。   Examples of the silazane compound represented by the general formula (III) include hexamethyldisilazane and hexaethyldisilazane. Among them, hexamethyldisilazane is preferable.

一般式(IV)で表わされる1官能性シラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物、トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン、トリメチルアセトキシシラン等のモノアシルオキシシラン等が挙げられ、トリメチルシラノール、トリメチルメトキシシラン、トリメチルシリルジエチルアミンが好ましく、トリメチルシラノール、トリメチルメトキシシランがより好ましい。   Examples of the monofunctional silane compound represented by the general formula (IV) include monosilanol compounds such as trimethylsilanol and triethylsilanol, monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane, and monoalkoxy such as trimethylmethoxysilane and trimethylethoxysilane. Examples thereof include monoaminosilanes such as silane, trimethylsilyldimethylamine and trimethylsilyldiethylamine, and monoacyloxysilanes such as trimethylacetoxysilane. Trimethylsilanol, trimethylmethoxysilane and trimethylsilyldiethylamine are preferable, and trimethylsilanol and trimethylmethoxysilane are more preferable.

これらの添加量は、使用した親水性球状シリカ微粒子のSi原子1モルに対して、0.1〜0.5モルが好ましく、0.2〜0.4モルがより好ましく、0.25〜0.35モルがさらに好ましい。添加量が0.1モルより少ないと、分散性が悪いため、珪素粒子への流動性付与効果が不十分となるおそれがあり、0.5モルより多いと経済的不利が生じるおそれがある。   The amount of addition is preferably 0.1 to 0.5 mol, more preferably 0.2 to 0.4 mol, and more preferably 0.25 to 0, with respect to 1 mol of Si atoms in the used hydrophilic spherical silica fine particles. More preferred is .35 moles. If the amount added is less than 0.1 mol, the dispersibility is poor, so that the effect of imparting fluidity to the silicon particles may be insufficient, and if it is more than 0.5 mol, there may be an economic disadvantage.

(A3)で得られた濃縮分散液(A3)に、一般式(III)で表わされるシラザン化合物、一般式(IV)で表わされる1官能性シラン化合物又はこれらの混合物を添加して、上記R1SiO3/2単位が導入された球状シリカ微粒子を表面処理することで、その表面に、R2 3SiO1/2単位がさらに導入された、疎水性球状シリカ微粒子が得られる。 To the concentrated dispersion (A3) obtained in (A3), a silazane compound represented by the general formula (III), a monofunctional silane compound represented by the general formula (IV) or a mixture thereof is added, and the above R By subjecting the spherical silica fine particles introduced with 1 SiO 3/2 units to surface treatment, hydrophobic spherical silica fine particles further introduced with R 2 3 SiO 1/2 units are obtained.

疎水性球状シリカ微粒子は混合溶媒中に分散し、その分散液(A4)中の濃度は、15〜40質量%が好ましい。疎水性球状シリカ微粒子は、常圧乾燥、減圧乾燥等により、粉体として得ることができる。   The hydrophobic spherical silica fine particles are dispersed in a mixed solvent, and the concentration in the dispersion (A4) is preferably 15 to 40% by mass. Hydrophobic spherical silica fine particles can be obtained as a powder by normal pressure drying, reduced pressure drying or the like.

[シリカ付着珪素粒子]
シリカ付着珪素粒子は、珪素核粒子とその珪素核粒子の表面に付着した球状シリカ微粒子とを有し、二次粒子である。なお、本発明において、「付着」とは珪素核粒子に球状シリカ微粒子を添加し、珪素核粒子表面上に物理吸着させて付着させることよりなるものであり、珪素核粒子の表面の一部又は全部に球状シリカ微粒子が付着した状態、その表面を被覆した状態を含むものである。
[Silicon-attached silicon particles]
Silica-attached silicon particles have silicon core particles and spherical silica fine particles attached to the surface of the silicon core particles, and are secondary particles. In the present invention, “adhesion” means that spherical silica fine particles are added to silicon core particles and physically adsorbed on the surface of the silicon core particles, and are attached to a part of the surface of the silicon core particles or This includes a state in which spherical silica fine particles are attached to the entire surface and a state in which the surface is coated.

珪素核粒子への球状シリカ微粒子の付着量(添加量)は、珪素核粒子に対して0.01〜5.0質量%が好ましく、0.1〜3.0質量%がより好ましく、0.6〜3.0質量%がさらに好ましい。0.01質量%より少ないと流動性が変化しない場合があり、コストの点から、5.0質量%以下が好ましい。   The adhesion amount (addition amount) of the spherical silica fine particles to the silicon core particles is preferably 0.01 to 5.0% by mass, more preferably 0.1 to 3.0% by mass with respect to the silicon core particles. 6-3.0 mass% is more preferable. If it is less than 0.01% by mass, the fluidity may not change. From the viewpoint of cost, 5.0% by mass or less is preferable.

珪素核粒子に疎水性シリカ微粒子を配合するには公知の方法によればよく、ヘンシェルミキサー、V型ブレンダー、リボンブレンダー、らいかい機、ニーダーミキサー、バタフライミキサー、あるいは通常のプロペラ攪拌子による混合機を用いて各成分の所定量を均一に混合すればよい。以上の方法によって簡単に珪素粒子に付着させることができる。   In order to mix the hydrophobic silica fine particles with the silicon core particles, a known method can be used. A predetermined amount of each component may be uniformly mixed using It can be easily attached to silicon particles by the above method.

付着の状況や、二次粒子が形成されていることは、電子顕微鏡により確認することができる。また、シリカ付着珪素粒子のレーザー回折散乱式粒度分布における累積50%体積径(D50)は0.01〜30μmが好ましく、0.1〜10μmがより好ましく、0.5〜6μmがさらに好ましい。また、窒素吸着1点法で測定したBET比表面積は、0.1
〜300m2/gが好ましく、より好ましくは0.5〜150m2/g、さらに好ましくは1.0〜100m2/gである。
The state of adhesion and the formation of secondary particles can be confirmed with an electron microscope. In addition, the cumulative 50% volume diameter (D 50 ) in the laser diffraction / scattering particle size distribution of the silica-attached silicon particles is preferably 0.01 to 30 μm, more preferably 0.1 to 10 μm, and even more preferably 0.5 to 6 μm. Further, the BET specific surface area measured by the nitrogen adsorption one-point method is 0.1.
-300 m < 2 > / g is preferable, More preferably, it is 0.5-150 m < 2 > / g, More preferably, it is 1.0-100 m < 2 > / g.

[酸化珪素製造用の焼結混合原料]
本発明のシリカ付着珪素粒子は、珪素粒子及び二酸化珪素粒子の混合物を反応させ、酸化珪素を製造する方法において、酸化珪素製造用原料として用いるものである。さらに、もう一つの原料である二酸化珪素粒子との焼結混合原料を製造してもよい。
[Sintered mixed raw material for silicon oxide production]
The silica-attached silicon particles of the present invention are used as a raw material for producing silicon oxide in a method for producing silicon oxide by reacting a mixture of silicon particles and silicon dioxide particles. Furthermore, you may manufacture a sintering mixed raw material with the silicon dioxide particle which is another raw material.

本発明に用いる二酸化珪素粒子は、レーザー回折散乱式粒度分布における累積50%体積径(D50)が、0.01〜30μmが好ましく、0.1〜10μmがより好ましい。BET1点法で測定した比表面積は、0.2〜350m2/gが好ましく、0.7〜40m2/gがより好ましい。 The silicon dioxide particles used in the present invention preferably have a cumulative 50% volume diameter (D 50 ) in the laser diffraction / scattering particle size distribution of 0.01 to 30 μm, more preferably 0.1 to 10 μm. Specific surface area measured by BET1 point method is preferably 0.2~350m 2 / g, 0.7~40m 2 / g is more preferable.

酸化珪素製造用の焼結混合原料は、シリカ付着珪素粒子と二酸化珪素粒子との混合物を、非酸化雰囲気下1,000〜1,400℃で焼結する方法によって成型される。焼結温度は1,100〜1350℃が好ましく、1,200〜1,350℃がより好ましい。温度が1,000℃未満では二酸化珪素の溶融が不十分で、ゆるめ嵩密度の増加が見込めず、一方、1,400℃を超えると珪素の溶融が始まり、酸化珪素製造時の反応性が低下するおそれがある。混合物中の珪素と二酸化珪素との配合量は、珪素:二酸化珪素(モル比)が、1.0〜1.3:1の範囲が好ましい。非酸化雰囲気下は、珪素の酸化を防止し、原料コンプレックス中の酸化珪素製造用原料の珪素と二酸化珪素の比率を崩さないために必要であり、アルゴンやヘリウム等の不活性ガスが挙げられる。焼結の時間は特に限定されず、1〜3時間程度である。さらに、焼結に使用する装置に特に制限はなく、常圧、非酸化性雰囲気で所定の温度まで昇温可能であればよい。   The sintered mixed raw material for producing silicon oxide is molded by a method of sintering a mixture of silica-adhered silicon particles and silicon dioxide particles at 1,000 to 1,400 ° C. in a non-oxidizing atmosphere. The sintering temperature is preferably 1,100 to 1350 ° C, more preferably 1,200 to 1,350 ° C. If the temperature is less than 1,000 ° C, the melting of silicon dioxide is insufficient and the increase in loose bulk density cannot be expected. On the other hand, if the temperature exceeds 1,400 ° C, the melting of silicon starts and the reactivity during the production of silicon oxide decreases. There is a risk. As for the compounding quantity of silicon and silicon dioxide in the mixture, silicon: silicon dioxide (molar ratio) is preferably in the range of 1.0 to 1.3: 1. The non-oxidizing atmosphere is necessary to prevent oxidation of silicon and to keep the ratio of silicon and silicon dioxide as raw materials for producing silicon oxide in the raw material complex, and includes inert gases such as argon and helium. The time for sintering is not particularly limited, and is about 1 to 3 hours. Furthermore, there is no restriction | limiting in particular in the apparatus used for sintering, What is necessary is just to be able to heat up to predetermined temperature in a normal pressure and non-oxidizing atmosphere.

さらに、焼結前に、シリカ付着珪素粒子と二酸化珪素粒子との混合物を圧密化することで、ゆるめ嵩密度の増加が可能になる。さらに、圧密化された混合物を焼結前に乾燥するとよい。混合物の圧密化としては、機械圧、ガス圧又は水圧等で圧密化し、混合物に水を添加し、その吸着力により圧密化した後、造粒する方法等が挙げられる。圧密化された混合物の乾燥方法は特に限定されないが、120〜500℃で10〜30時間が好ましい。圧密化及び乾燥後のゆるめ嵩密度は0.2〜0.6g/cm3が好ましく、0.4〜0.6g/cm3がより好ましい。 Furthermore, before the sintering, the mixture of silica-adhered silicon particles and silicon dioxide particles is consolidated to increase the loose bulk density. Furthermore, the consolidated mixture may be dried before sintering. Examples of consolidation of the mixture include a method in which the mixture is compacted by mechanical pressure, gas pressure, water pressure, or the like, water is added to the mixture, and the mixture is compacted by its adsorption force and then granulated. The method for drying the consolidated mixture is not particularly limited, but is preferably 120 to 500 ° C. and 10 to 30 hours. Loose bulk density after compaction and drying is preferably 0.2~0.6g / cm 3, 0.4~0.6g / cm 3 is more preferable.

焼結後の焼結混合原料のゆるめ嵩密度は、0.3〜2.0g/cm3が好ましく、0.4〜1.0g/cm3がより好ましい。焼結混合原料の形状は特に限定されないが、酸化珪素製造時の反応性、ハンドリング及び連続供給時の配管閉塞防止の点から、造粒等により、円柱状、板状、角状、アーモンド状、タブレット状、フレーク等の形にするとよい。特に、連続生産を行なう際の原料供給の点から、円柱状又はアーモンド状が好ましい。大きさは、長径10〜30mm、好ましくは12〜25mm、短径2〜15mm、好ましくは6〜12mm、アスペクト比(長径/短径)は、1.5〜10、好ましくは2〜5のペレットが好適である。 Loose bulk density of the sintered material mixture after sintering is preferably 0.3~2.0g / cm 3, 0.4~1.0g / cm 3 is more preferable. The shape of the sintered mixed raw material is not particularly limited, but from the viewpoint of reactivity during silicon oxide production, prevention of piping clogging during handling and continuous supply, by granulation, etc., cylindrical shape, plate shape, square shape, almond shape, It may be in the form of a tablet or flakes. In particular, a columnar shape or an almond shape is preferable from the viewpoint of supplying raw materials when performing continuous production. Pellets with a major axis of 10-30 mm, preferably 12-25 mm, a minor axis of 2-15 mm, preferably 6-12 mm, and an aspect ratio (major axis / minor axis) of 1.5-10, preferably 2-5 Is preferred.

ゆるめ嵩密度とは、疎充填の状態の嵩密度をいい、本発明における「ゆるめ嵩密度」の測定方法は下記方法による。試料を、ロートを用いて200mLビーカー(直径67mm×高さ90mmのガラス製)に自由落下させる。ロート排出口からビーカーが設置された面までの高さは270mmとする。試料を200mL(cm3)まで自由落下させたときの試料質量を1mgの桁まで測定する。この値から、下記式によりゆるめ嵩密度を算出する。試験は3回行い、平均値を小数点以下1位で示す。なお、自由落下後の試料表面が斜めである場合は、表面を平にするが、測定の際にタッピングは行わない。
ゆるめ嵩密度(g/cm3)=試料の質量(g)/体積(cm3
The loose bulk density refers to the bulk density in a loosely packed state, and the “relaxed bulk density” in the present invention is measured by the following method. The sample is dropped freely into a 200 mL beaker (made of glass having a diameter of 67 mm and a height of 90 mm) using a funnel. The height from the funnel outlet to the surface on which the beaker is installed is 270 mm. The sample mass is measured to the order of 1 mg when the sample is freely dropped to 200 mL (cm 3 ). From this value, the loose bulk density is calculated by the following formula. The test is performed three times, and the average value is shown in the first decimal place. When the sample surface after free fall is oblique, the surface is flattened, but tapping is not performed during measurement.
Loose bulk density (g / cm 3 ) = Sample mass (g) / Volume (cm 3 )

[酸化珪素の製造方法]
酸化珪素は、珪素と二酸化珪素との混合物を加熱して生成するSiOガスを冷却し、酸化珪素固体として析出させて得られる非晶質珪素酸化物であり、一般式SiOxで表わされ、xの範囲は1.0≦x<1.2が好ましく、1.0≦x≦1.05がより好ましい。上記焼結混合原料を、減圧下で加熱して生成するSiOガスを冷却し、酸化珪素固体として析出させる方法が好ましい。
[Method for producing silicon oxide]
Silicon oxide is an amorphous silicon oxide obtained by cooling a SiO gas produced by heating a mixture of silicon and silicon dioxide and precipitating it as a silicon oxide solid, represented by the general formula SiO x , The range of x is preferably 1.0 ≦ x <1.2, and more preferably 1.0 ≦ x ≦ 1.05. A method in which the sintered mixed raw material is heated under reduced pressure to cool the generated SiO gas and precipitate as a silicon oxide solid is preferable.

具体的には、焼結混合原料を3,000Pa以下、好適には0.1〜100Paの減圧下、1,200〜1,500℃、好ましくは1,300〜1,500℃で反応させて発生するSiOガスを冷却して酸化珪素固体として析出させる。この時の減圧度が3,000Paを超えると、SiOガスが発生しないおそれがある。また、反応温度が1,200℃未満ではSiOガスが発生しないおそれがあり、1,500℃を超えると、原料中の珪素が溶融して反応性が悪化するだけでなく、炉を損傷することになる可能性がある。反応時間は特に限定されず、原料の仕込み量に合わせ適宜選定される。   Specifically, the sintered mixed raw material is reacted at 1,200 to 1,500 ° C., preferably 1,300 to 1,500 ° C. under a reduced pressure of 3,000 Pa or less, preferably 0.1 to 100 Pa. The generated SiO gas is cooled and deposited as a silicon oxide solid. If the degree of vacuum at this time exceeds 3,000 Pa, SiO gas may not be generated. In addition, if the reaction temperature is less than 1,200 ° C, SiO gas may not be generated. If the reaction temperature exceeds 1,500 ° C, the silicon in the raw material will melt and the reactivity will deteriorate, and the furnace will be damaged. There is a possibility. The reaction time is not particularly limited and is appropriately selected according to the amount of raw material charged.

得られた酸化珪素は包装用フィルム蒸着用、リチウムイオン二次電池負極活物質等に用いることができ、特にリチウムイオン二次電池負極活物質として好適である。リチウムイオン二次電池負極活物質として用いる場合は、粉砕して酸化珪素粒子とするとよく、レーザー回折散乱式粒度分布における累積50%体積径(D50)が0.1〜50μmが好ましく、1〜20μmがより好ましい。 The obtained silicon oxide can be used for packaging film deposition, a lithium ion secondary battery negative electrode active material, and the like, and is particularly suitable as a lithium ion secondary battery negative electrode active material. When used as a negative electrode active material for a lithium ion secondary battery, it may be pulverized into silicon oxide particles, and the cumulative 50% volume diameter (D 50 ) in the laser diffraction scattering type particle size distribution is preferably 0.1 to 50 μm. 20 μm is more preferable.

以下、合成例、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
〈疎水性球状シリカ微粒子の合成〉
[合成例1]
・工程(A1):親水性球状シリカ微粒子の調製工程
攪拌機と、滴下ロートと、温度計とを備えた3リットルのガラス製反応器にメタノール989.5g(水に対する質量比5.4)と、水135.5g(水の量はテトラメトキシシランに対して3.6mol比)、28質量%アンモニア水66.5g(アンモニアの量はテトラメトキシシランに対して0.38mol比)とを入れて混合した。この溶液を35℃となるように調整し、攪拌しながらテトラメトキシシラン436.5g(2.87モル)を6時間かけて滴下した。この滴下が終了した後も、さらに0.5時間攪拌を継続して加水分解を行うことにより、親水性球状シリカ微粒子の懸濁液を得た。
EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
<Synthesis of hydrophobic spherical silica fine particles>
[Synthesis Example 1]
Step (A1): Step of preparing hydrophilic spherical silica fine particles 989.5 g of methanol (mass ratio to water: 5.4) in a 3 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer, 135.5 g of water (the amount of water is 3.6 mol ratio with respect to tetramethoxysilane) and 66.5 g of 28 mass% aqueous ammonia (the amount of ammonia is 0.38 mol ratio with respect to tetramethoxysilane) are mixed. did. This solution was adjusted to 35 ° C., and 436.5 g (2.87 mol) of tetramethoxysilane was added dropwise over 6 hours while stirring. Even after the completion of the dropwise addition, the suspension was further stirred for 0.5 hours for hydrolysis to obtain a suspension of hydrophilic spherical silica fine particles.

・工程(A2):3官能性シラン化合物による第1疎水化表面処理工程
上で得られた懸濁液に室温でメチルトリメトキシシラン4.4g(0.03モル、親水性球状シリカ微粒子のSi原子に対して0.01mol比)を0.5時間かけて滴下し、滴下後も12時間攪拌を継続し、シリカ微粒子表面を疎水化処理することにより、疎水性球状シリカ微粒子分散液を得た。分散液中の疎水性球状シリカ微粒子濃度は、11質量%であった。
Step (A2): First hydrophobizing surface treatment step with trifunctional silane compound 4.4 g of methyltrimethoxysilane (0.03 mol, Si of hydrophilic spherical silica fine particles) was added to the suspension obtained above at room temperature. Was added dropwise over a period of 0.5 hours, and stirring was continued for 12 hours after the addition, and the surface of the silica fine particles was hydrophobized to obtain a hydrophobic spherical silica fine particle dispersion. . The hydrophobic spherical silica fine particle concentration in the dispersion was 11% by mass.

・工程(A3):濃縮工程
次いで、ガラス製反応器にエステルアダプターと冷却管とを取り付け、前工程で得られた分散液を60〜70℃に加熱してメタノールと水の混合物1,021gを留去し、疎水性球状シリカ微粒子混合溶媒濃縮分散液を得た。このとき、濃縮分散液中の疎水性球状シリカ微粒子濃度は28質量%であった。
-Step (A3): Concentration step Next, an ester adapter and a condenser tube were attached to a glass reactor, and the dispersion obtained in the previous step was heated to 60 to 70 ° C to obtain a mixture of methanol and water (1,021 g). Distilled off to obtain a concentrated dispersion of hydrophobic spherical silica fine particles. At this time, the concentration of the hydrophobic spherical silica fine particles in the concentrated dispersion was 28% by mass.

・工程(A4):1官能性シラン化合物による第2疎水化表面処理工程
前工程で得られた濃縮分散液に、室温において、ヘキサメチルジシラザン138.4g(0.86モル、親水性球状シリカ微粒子のSi原子に対して0.3mol比)を添加した後、この分散液を50〜60℃に加熱し、9時間反応させることにより、分散液中のシリカ微粒子をトリメチルシリル化した。次いで、この分散液中の溶媒を130℃、減圧下(6,650Pa)で留去することにより、疎水性球状シリカ微粒子(1)186gを得た。
Step (A4): Second hydrophobizing surface treatment step with a functional silane compound 138.4 g (0.86 mol, hydrophilic spherical silica) of hexamethyldisilazane was added to the concentrated dispersion obtained in the previous step at room temperature. Then, the dispersion was heated to 50-60 ° C. and reacted for 9 hours to trimethylsilylate the silica particles in the dispersion. Subsequently, the solvent in this dispersion was distilled off at 130 ° C. under reduced pressure (6,650 Pa) to obtain 186 g of hydrophobic spherical silica fine particles (1).

工程(A1)で得られた親水性球状シリカ微粒子について下記の測定方法1に従って測定を行った。また、上記の工程(A1)〜(A4)の各段階を経て得られた疎水性球状シリカ微粒子について、下記の測定方法1〜3に従って測定を行った。なお、得られた結果を表1に示す。   The hydrophilic spherical silica fine particles obtained in the step (A1) were measured according to the following measuring method 1. Moreover, it measured according to the following measuring methods 1-3 about the hydrophobic spherical silica fine particle obtained through each step of said process (A1)-(A4). The obtained results are shown in Table 1.

〈シリカ微粒子測定方法〉
1.工程(A1)で得られた親水性球状シリカ微粒子の平均粒子径測定
メタノールにシリカ微粒子懸濁液を、シリカ微粒子が0.5質量%となるように添加し、10分間超音波にかけることにより、該微粒子を分散させた。このように処理した微粒子の粒度分布を、動的光散乱法/レーザードップラー法ナノトラック粒度分布測定装置(日機装株式会社製、商品名:UPA−EX150)により測定し、その体積基準メジアン径を平均粒子径とした。なお、メジアン径とは粒度分布を累積分布として表した時の累積50%に相当する粒子径である。
<Silica fine particle measurement method>
1. Measurement of average particle diameter of hydrophilic spherical silica fine particles obtained in step (A1) By adding a silica fine particle suspension to methanol so that the silica fine particles are 0.5% by mass, and applying ultrasonic waves for 10 minutes. The fine particles were dispersed. The particle size distribution of the fine particles treated in this way was measured by a dynamic light scattering method / laser Doppler nanotrack particle size distribution measuring apparatus (trade name: UPA-EX150, manufactured by Nikkiso Co., Ltd.), and the volume-based median diameter was averaged. The particle diameter was taken. The median diameter is a particle diameter corresponding to 50% cumulative when the particle size distribution is expressed as a cumulative distribution.

2.工程(A4)において得られた疎水性球状シリカ微粒子の平均粒子径測定及び粒度分布D90/D10の測定
メタノールにシリカ微粒子を、0.5質量%となるように添加し、10分間超音波にかけることにより、該微粒子を分散させた。このように処理した微粒子の粒度分布を、動的光散乱法/レーザードップラー法ナノトラック粒度分布測定装置(日機装株式会社製、商品名:UPA−EX150)により測定し、その体積基準メジアン径を平均粒子径とした。
また粒度分布D90/D10の測定は、上記粒子径測定した際の分布において小さい側から累積が10%となる粒子径をD10、小さい側から累積が90%となる粒子径をD90とし測定された値からD90/D10を計算した。
2. Measurement of average particle size of hydrophobic spherical silica fine particles obtained in step (A4) and measurement of particle size distribution D 90 / D 10 Silica fine particles are added to methanol so as to be 0.5 mass%, and ultrasonic waves are applied for 10 minutes. The fine particles were dispersed by applying to. The particle size distribution of the fine particles treated in this way was measured by a dynamic light scattering method / laser Doppler nanotrack particle size distribution measuring apparatus (trade name: UPA-EX150, manufactured by Nikkiso Co., Ltd.), and the volume-based median diameter was averaged. The particle diameter was taken.
The granulometry of the distribution D 90 / D 10 is the particle diameter D 10 of the particle size of which cumulative is 10% smaller side in the distribution when measured, smaller particle size of which cumulative from the side is 90% D 90 D 90 / D 10 was calculated from the measured values.

3.疎水性球状シリカ微粒子の形状測定
電子顕微鏡(日立製作所製、商品名:S−4700型、倍率:10万倍)によって観察を行い、形状を確認した。「球状」とは、真球だけでなく、若干歪んだ球も含む。なおこのような粒子の形状は、粒子を二次元に投影した時の円形度で評価し、円形度が0.8〜1の範囲にあるものとする。ここで円形度とは、(粒子面積と等しい円の周囲長)/(粒子周囲長)である。
3. Shape measurement of hydrophobic spherical silica fine particles The shape was confirmed by observation with an electron microscope (manufactured by Hitachi, Ltd., trade name: S-4700 type, magnification: 100,000 times). The term “spherical” includes not only a true sphere but also a slightly distorted sphere. Note that the shape of such particles is evaluated by the circularity when the particles are projected two-dimensionally, and the circularity is in the range of 0.8 to 1. Here, the circularity is (peripheral length of a circle equal to the particle area) / (peripheral length of particle).

[合成例2]
合成例1において、工程(A1)でメタノール、水、及び28質量%アンモニア水の量をメタノール1045.7g、水112.6g、28質量%アンモニア水33.2gに変えたこと以外は同様にして、疎水性球状シリカ微粒子(2)188gを得た。この疎水性球状シリカ微粒子について合成例1と同様に測定した。この結果を表1に示す。
[Synthesis Example 2]
In Synthesis Example 1, the same procedure was performed except that the amounts of methanol, water, and 28% by mass ammonia water were changed to 1045.7 g of methanol, 112.6 g of water, and 33.2 g of 28% by mass ammonia water in Step (A1). 188 g of hydrophobic spherical silica fine particles (2) were obtained. The hydrophobic spherical silica fine particles were measured in the same manner as in Synthesis Example 1. The results are shown in Table 1.

[合成例3]
・工程(A1):親水性球状シリカ微粒子の調製工程
攪拌機、滴下ロート、温度計を備えた3リットルのガラス製反応器にメタノール623.7g、水41.4g、28質量%アンモニア水49.8gを添加して混合した。この溶液を35℃に調整し、攪拌しながらテトラメトキシシラン1,163.7g及び5.4質量%アンモニア水418.1gを同時に添加開始し、前者は6時間、そして後者は4時間かけて滴
下した。テトラメトキシシラン滴下後も0.5時間攪拌を続け加水分解を行いシリカ微粒子の懸濁液を得た。
[Synthesis Example 3]
Step (A1): Preparation Step of Hydrophilic Spherical Silica Fine Particles A 3 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer was charged with 623.7 g of methanol, 41.4 g of water, and 49.8 g of 28% by mass ammonia water. Was added and mixed. The solution was adjusted to 35 ° C., and 1,163.7 g of tetramethoxysilane and 418.1 g of 5.4% by mass ammonia water were simultaneously added while stirring. The former was added dropwise over 6 hours and the latter over 4 hours. did. After the tetramethoxysilane was added dropwise, stirring was continued for 0.5 hour to effect hydrolysis to obtain a silica fine particle suspension.

・工程(A2):3官能性シラン化合物による第1疎水化表面処理工程
こうして得られた懸濁液に室温でメチルトリメトキシシラン11.6g(テトラメトキシシランに対してモル比で0.01相当量)を0.5時間かけて滴下し、滴下後も12時間攪拌しシリカ微粒子表面の処理を行った。
Step (A2): First hydrophobizing surface treatment step with a trifunctional silane compound 11.6 g of methyltrimethoxysilane (corresponding to a molar ratio of 0.01 with respect to tetramethoxysilane) was added to the suspension thus obtained at room temperature. Amount) was added dropwise over 0.5 hours, and after the addition, the surface of the silica fine particles was treated by stirring for 12 hours.

・工程(A3):濃縮工程
該ガラス製反応器にエステルアダプターと冷却管を取り付け、上記の表面処理を施したシリカ微粒子を含む分散液にメチルイソブチルケトン1,440gを添加した後、80〜110℃に加熱しメタノール水を7時間かけて留去した。
Step (A3): Concentration step An ester adapter and a condenser tube are attached to the glass reactor, and 1,440 g of methyl isobutyl ketone is added to the dispersion containing silica fine particles subjected to the above surface treatment, and then 80 to 110 The mixture was heated to 0 ° C. and methanol water was distilled off over 7 hours.

・工程(A4):1官能性シラン化合物による第2疎水化表面処理工程
こうして得られた分散液に室温でヘキサメチルジシラザン357.6gを添加し120℃に加熱し3時間反応させ、シリカ微粒子をトリメチルシリル化した。その後溶媒を減圧下で留去して球状疎水性シリカ微粒子(3)472gを得た。得られた疎水性球状シリカ微粒子について合成例1と同様に測定した。この結果を表1に示す。
Step (A4): Second hydrophobizing surface treatment step with a functional silane compound 357.6 g of hexamethyldisilazane was added to the dispersion thus obtained at room temperature, and the mixture was heated to 120 ° C. and allowed to react for 3 hours. Was trimethylsilylated. Thereafter, the solvent was distilled off under reduced pressure to obtain 472 g of spherical hydrophobic silica fine particles (3). The obtained hydrophobic spherical silica fine particles were measured in the same manner as in Synthesis Example 1. The results are shown in Table 1.

[合成例4]
シリカ微粒子の合成の際にテトラメトキシシランの加水分解温度を35℃の代りに20℃とした以外は合成例3と同様にして各工程を行ったところ、疎水性球状シリカ微粒子(4)469gを得た。得られた疎水性球状シリカ微粒子について合成例1と同様に測定した。この結果を表1に示す。
[Synthesis Example 4]
Each step was performed in the same manner as in Synthesis Example 3 except that the hydrolysis temperature of tetramethoxysilane was set to 20 ° C. instead of 35 ° C. during the synthesis of the silica fine particles. As a result, 469 g of hydrophobic spherical silica fine particles (4) were obtained. Obtained. The obtained hydrophobic spherical silica fine particles were measured in the same manner as in Synthesis Example 1. The results are shown in Table 1.

[合成例5]
攪拌機と温度計とを備えた0.3リットルのガラス製反応器に爆燃法シリカ(商品名:SOC1、アドマテクス社製)100gを仕込み、純水1gを攪拌下で添加し、密閉後、さらに60℃で10時間攪拌した。次いで、室温まで冷却した後、ヘキサメチルジシラザン2gを攪拌下で添加し、密閉後、さらに24時間攪拌した。120℃に昇温し、窒素ガスを通気しながら残存原料及び生成したアンモニアを除去し、疎水性球状シリカ微粒子(5)100gを得た。得られた球状シリカ微粒子について合成例1と同様に測定した。この結果を表1に示す。
[Synthesis Example 5]
A 0.3-liter glass reactor equipped with a stirrer and a thermometer was charged with 100 g of deflagration silica (trade name: SOC1, manufactured by Admatechs), 1 g of pure water was added under stirring, and after sealing, an additional 60 Stir at 0 ° C. for 10 hours. Subsequently, after cooling to room temperature, 2 g of hexamethyldisilazane was added with stirring, and after sealing, the mixture was further stirred for 24 hours. The temperature was raised to 120 ° C., and the remaining raw material and the produced ammonia were removed while ventilating nitrogen gas to obtain 100 g of hydrophobic spherical silica fine particles (5). The obtained spherical silica fine particles were measured in the same manner as in Synthesis Example 1. The results are shown in Table 1.

[合成例6]
攪拌機と温度計とを備えた0.3リットルのガラス製反応器に爆燃法シリカ(商品名:SOC1、アドマテクス社製)100gを仕込み、純水1gを攪拌下で添加し、密閉後、さらに60℃で10時間攪拌した。次いで、室温まで冷却した後、メチルトリメトキシシラン1gを攪拌下で添加し、密閉後、さらに24時間攪拌した。次にヘキサメチルジシラザン2gを攪拌下で添加し、密閉後、さらに24時間攪拌した。120℃に昇温し、窒素ガスを通気しながら残存原料及び生成したアンモニアを除去し、疎水性球状シリカ微粒子(6)101gを得た。得られたシリカ微粒子について合成例1と同様の試験を行った。結果を表1に示す。
[Synthesis Example 6]
A 0.3-liter glass reactor equipped with a stirrer and a thermometer was charged with 100 g of deflagration silica (trade name: SOC1, manufactured by Admatechs), 1 g of pure water was added under stirring, and after sealing, an additional 60 Stir at 0 ° C. for 10 hours. Subsequently, after cooling to room temperature, 1 g of methyltrimethoxysilane was added with stirring, and after sealing, the mixture was further stirred for 24 hours. Next, 2 g of hexamethyldisilazane was added with stirring. After sealing, the mixture was further stirred for 24 hours. The temperature was raised to 120 ° C., and the remaining raw material and generated ammonia were removed while ventilating nitrogen gas to obtain 101 g of hydrophobic spherical silica fine particles (6). The same test as in Synthesis Example 1 was performed on the obtained silica fine particles. The results are shown in Table 1.

平均粒子径1)工程(A1)で得られた親水性球状シリカ微粒子の平均粒子径
平均粒子径2)最終的に得られた球状シリカ微粒子の平均粒子径
Average particle diameter 1) Average particle diameter of hydrophilic spherical silica fine particles obtained in step (A1) Average particle diameter 2) Average particle diameter of finally obtained spherical silica fine particles

[実施例1〜5、比較例1〜4]
合成例で得られたシリカ微粒子を、表2に記載されている量で珪素核粒子(多結晶珪素、平均粒子径5.1μm)に添加し、サンプルミルにより3分攪拌混合を行った。得られたものは、シリカ微粒子が珪素核粒子表面に付着した二次粒子であり、以下の評価を行った。
[Examples 1 to 5, Comparative Examples 1 to 4]
The silica fine particles obtained in the synthesis example were added to silicon core particles (polycrystalline silicon, average particle size 5.1 μm) in the amounts shown in Table 2, and the mixture was stirred and mixed for 3 minutes by a sample mill. The obtained particles were secondary particles in which silica fine particles adhered to the surface of the silicon core particles, and the following evaluation was performed.

[比較例5]
珪素粒子(多結晶珪素、平均粒子径5.1μm、一次粒子)について、実施例と同様の評価を行った。
[Comparative Example 5]
The silicon particles (polycrystalline silicon, average particle diameter 5.1 μm, primary particles) were evaluated in the same manner as in the examples.

疎水性球状シリカ微粒子を添加し、珪素粒子表面に付着させた状態(実施例2:図1、実施例4:図2)及び疎水性球状シリカ微粒子を添加していない状態(比較例5:図3)の電子顕微鏡写真をそれぞれ図1〜3に示す。   A state in which hydrophobic spherical silica fine particles are added and adhered to the surface of silicon particles (Example 2: FIG. 1, Example 4: FIG. 2) and a state in which hydrophobic spherical silica fine particles are not added (Comparative Example 5: FIG. The electron micrographs of 3) are shown in FIGS.

実施例及び比較例で得られた珪素粒子について、下記測定及び評価を行った。
〈珪素粒子測定方法〉
1.平均粒子径D50
レ−ザー回折散乱法粒度分布の測定:マイクロトラックMT330(日機装(株)製)を使用して累積50%体積径D50を測定した。
2.BET比表面積
モデル1201((株)マウンテック製)を使用して窒素吸着1点法で測定した。
The silicon particles obtained in the examples and comparative examples were subjected to the following measurements and evaluations.
<Silicon particle measurement method>
1. Average particle size D 50
Measurement of Laser Diffraction Scattering Particle Size Distribution: A 50% cumulative volume diameter D 50 was measured using Microtrac MT330 (manufactured by Nikkiso Co., Ltd.).
2. Using a BET specific surface area model 1201 (manufactured by Mountec Co., Ltd.), measurement was performed by a nitrogen adsorption one point method.

上記得られた疎水性球状シリカ微粒子を表2にあるように珪素粒子に添加し、サンプルミルにより3分攪拌混合を行った。その時の珪素粒子組成物の粉体流動性の指標である基本流動性エネルギー測定を行った。詳細は以下の通りである。   The obtained hydrophobic spherical silica fine particles were added to silicon particles as shown in Table 2, and mixed and stirred for 3 minutes by a sample mill. Basic fluidity energy measurement, which is an index of powder fluidity of the silicon particle composition at that time, was performed. Details are as follows.

〈珪素粒子評価方法〉
1.流動性
粉体流動性の指標である基本流動性エネルギー測定を行った。
粉体流動性分析装置FT−4(シスメックス(株)製)を用いて測定した。この装置の測定原理を説明する。垂直に置かれた筒型容器に粉体を充填し、該粉体中を垂直な軸棒の先端に設けられた二枚の回転翼(ブレード)を回転させながら一定の距離(高さH1からH2まで)下降させる。このときに粉体から受ける力をトルク成分と荷重成分とに分けて測定することにより、ブレードがH1からH2まで下降するのに伴うそれぞれの仕事量(エネルギー)を求め、次いで両者のトータルエネルギー量を求める。こうして測定されたトータルエネルギー量が小さいほど粉体の流動性が良好であることを意味するので、粉体流動性の指標として使用する。この装置にて安定性試験も行なった。
<Silicon particle evaluation method>
1. Fluidity Basic fluidity energy measurement, which is an index of powder fluidity, was performed.
The measurement was performed using a powder fluidity analyzer FT-4 (manufactured by Sysmex Corporation). The measurement principle of this apparatus will be described. A cylindrical container placed vertically is filled with powder, and while rotating two rotary blades (blades) provided at the tip of a vertical shaft rod in the powder, a certain distance (from height H1) Down to H2. The force received from the powder at this time is measured separately for the torque component and the load component, so that each work (energy) associated with the blade descending from H1 to H2 is obtained, and then the total energy amount of both Ask for. The smaller the total energy measured in this way, the better the fluidity of the powder, so it is used as an index of powder fluidity. A stability test was also conducted with this apparatus.

容器:容積160mL(内径50mm、長さ79mm)のガラス製円筒型容器を使用した。
ブレード:円筒型容器内の中央に鉛直に装入されるステンレス製の軸棒の先端に水平に対向する形で二枚取り付けられている。ブレードは、直径48mmのものを使用する。H1からH2までの長さは69mmである。
Container: A glass cylindrical container having a volume of 160 mL (inner diameter: 50 mm, length: 79 mm) was used.
Blades: Two blades are mounted horizontally facing the tip of a stainless steel shaft rod inserted vertically into the center of the cylindrical container. A blade with a diameter of 48 mm is used. The length from H1 to H2 is 69 mm.

安定性試験:上記のようにして、測定容器に充填した粉体を静置した状態から流動させた場合の粉体流動特性をみる。ブレード先端の回転速度を100mm/secの条件とし、トータルエネルギー量を7回連続して測定する。7回目のトータルエネルギー量(最も安定した状態であるので基本流動性エネルギーと称される)を表2に示す。小さいほど流動性が高い。 Stability test: As described above, the powder flow characteristics when the powder filled in the measurement container is allowed to flow from a static state are observed. The total energy amount is measured seven times continuously under the condition that the rotational speed of the blade tip is 100 mm / sec. Table 2 shows the seventh total energy amount (referred to as basic fluidity energy because it is the most stable state). The smaller the value, the higher the fluidity.

流速変化試験:安定性試験に続いて、ブレードの回転速度を100mm/sec→70mm/sec→40mm/sec→10mm/secと変えた時のトータルエネルギー量を測定する。その時のFRI変動指数(Flow Rate Index)が1に近いほど流動速度に対して安定していると言える指標である。FRI=(10mm/sのデータ)/(100mm/sのデータ) Flow rate change test: Following the stability test, the total energy amount when the blade rotation speed is changed from 100 mm / sec → 70 mm / sec → 40 mm / sec → 10 mm / sec is measured. The FRI fluctuation index (Flow Rate Index) at that time is an index that can be said to be more stable with respect to the flow velocity as it approaches 1. FRI = (data of 10 mm / s) / (data of 100 mm / s)

本発明のシリカ付着珪素粒子は流動性に優れるのに対し、比較例のシリカ付着珪素粒子又はシリカでは流動性が悪かった。   The silica-attached silicon particles of the present invention were excellent in fluidity, whereas the silica-attached silicon particles or silica of the comparative example had poor fluidity.

[酸化珪素製造用の焼結混合原料]
珪素粒子(上記で得られた実施例1、比較例1,5で得られたもの)29kgとヒュームドシリカ粒子(平均粒子径D50 0.05μm、BET比表面積300m2/g)60kgとを、高速剪断型混合機を用いて粒子充填率30体積%,回転数500rpmの条件で30分混合した後、水89kgを混合した。これをロータリーファイングラニュレーター(ターボ工業製)を用いて造粒し、アーモンド状のペレットを得た。このペレットを150℃で5時間乾燥した。乾燥後のペレットを電気炉で常圧・アルゴン通気下、1,000℃で3時間保持し焼結し、焼結混合原料を得た。焼結混合原料のゆるめ嵩密度を、マルチテスターMT1000(セイシン企業製)を使用して測定した。
[Sintered mixed raw material for silicon oxide production]
29 kg of silicon particles (obtained in Example 1 obtained above and Comparative Examples 1 and 5) and 60 kg of fumed silica particles (average particle diameter D 50 0.05 μm, BET specific surface area 300 m 2 / g) After mixing for 30 minutes under the conditions of a particle filling rate of 30 vol% and a rotation speed of 500 rpm using a high-speed shearing type mixer, 89 kg of water was mixed. This was granulated using a rotary fine granulator (manufactured by Turbo Kogyo) to obtain almond-shaped pellets. The pellet was dried at 150 ° C. for 5 hours. The dried pellets were sintered in an electric furnace at 1,000 ° C. for 3 hours under normal pressure and argon flow to obtain a sintered mixed raw material. The loose bulk density of the sintered mixed raw material was measured using a multi-tester MT1000 (manufactured by Seishin Enterprise).

[酸化珪素の反応速度の確認]
上記で得られた焼結混合原料を使用して、下記方法で酸化珪素を製造した。
マッフル炉(カーボン成型+SiCコートで内寸φ500mm×H500mmの円筒形の縦型、内容積は約0.1m3)に、原料を充填し、真空ポンプを用いて炉内を10Pa以下に減圧した後、ヒーターに通電し、1,420℃の温度に昇温して5時間保持した。発生したSiOガスを冷却して酸化珪素固体として析出させた。反応率:98.5%、反応速度:17.3kg/Hrであった。
[Confirmation of reaction rate of silicon oxide]
Using the sintered mixed raw material obtained above, silicon oxide was produced by the following method.
After filling the muffle furnace (carbon molding + SiC coated cylindrical vertical shape with inner diameter φ500mm × H500mm, inner volume is about 0.1m 3 ) and reducing the pressure inside the furnace to 10 Pa or less using a vacuum pump The heater was energized, heated to a temperature of 1,420 ° C. and held for 5 hours. The generated SiO gas was cooled and precipitated as a silicon oxide solid. The reaction rate was 98.5%, and the reaction rate was 17.3 kg / Hr.

Claims (6)

珪素粒子及び二酸化珪素粒子の混合物を反応させ、酸化珪素を製造する方法の原料珪素粒子として用いるシリカ付着珪素粒子であって、珪素核粒子と、珪素核粒子表面に付着し、平均粒子径が5nm〜1.00μm、粒度分布D90/D10の値が3以下であり、平均円形度が0.8〜1である球状シリカ微粒子とを有するシリカ付着珪素粒子。 Silica-attached silicon particles used as raw material silicon particles in a method of producing silicon oxide by reacting a mixture of silicon particles and silicon dioxide particles, and attached to the silicon core particles and the surface of the silicon core particles, with an average particle diameter of 5 nm Silica-adhered silicon particles having ˜1.00 μm, spherical silica fine particles having a particle size distribution D 90 / D 10 of 3 or less and an average circularity of 0.8 to 1. 球状シリカ微粒子の付着量が、珪素核粒子に対して0.01〜5質量%である請求項1記載のシリカ付着珪素粒子。   2. The silica-attached silicon particles according to claim 1, wherein the amount of spherical silica fine particles attached is 0.01 to 5 mass% with respect to the silicon core particles. 球状シリカ微粒子が、疎水性球状シリカ微粒子である請求項1又は2記載のシリカ付着珪素粒子。   The silica-attached silicon particles according to claim 1 or 2, wherein the spherical silica fine particles are hydrophobic spherical silica fine particles. 疎水性球状シリカ微粒子が、4官能性シラン化合物、その部分加水分解縮合生成物又はそれらの組み合わせを、加水分解・縮合することによって得られた、SiO2単位からなる親水性球状シリカ微粒子の表面に、R1SiO3/2単位(式中、R1は置換又は非置換の炭素原子数1〜20の1価炭化水素基である。)を導入する工程と、次いでR2 3SiO1/2単位(式中、R2は同一又は異種の、置換又は非置換の炭素原子数1〜6の1価炭化水素基である。)を導入する工程とを含む疎水化処理をして得られた疎水性球状シリカ微粒子である請求項3記載のシリカ付着珪素粒子。 Hydrophobic spherical silica fine particles are formed on the surface of hydrophilic spherical silica fine particles composed of SiO 2 units obtained by hydrolyzing and condensing a tetrafunctional silane compound, a partial hydrolysis condensation product thereof, or a combination thereof. , R 1 SiO 3/2 unit (wherein R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms), and then R 2 3 SiO 1/2 And a step of introducing a unit (in the formula, R 2 is the same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms) 4. The silica-adhered silicon particles according to claim 3, which are hydrophobic spherical silica fine particles. 疎水性球状シリカ微粒子が、
(A1):親水性球状シリカ微粒子の調製工程
下記一般式(I)
Si(OR34 (I)
(式中、R3は同一又は異種の炭素原子数1〜6の1価炭化水素基である。)
で表わされる4官能性シラン化合物、その部分加水分解生成物又はこれらの混合物を、塩基性物質の存在下、親水性有機溶媒と水との混合溶媒中で加水分解・縮合することによって、SiO2単位からなる親水性球状シリカ微粒子が分散した混合溶媒分散液を得、
(A2):3官能性シラン化合物による第1疎水化表面処理工程
(A1)で得られた分散液に、下記一般式(II)
1Si(OR43 (II)
(式中、R1は置換又は非置換の炭素原子数1〜20の1価炭化水素基、R4は同一又は異種の炭素原子数1〜6の1価炭化水素基である。)で表わされる3官能性シラン化合物、その部分加水分解生成物又はこれらの混合物を添加して、上記親水性球状シリカ微粒子を表面処理し、その表面にR1SiO3/2単位(式中、R1は上記と同じである。)が導入された球状シリカ微粒子が分散した混合溶媒分散液を得、
(A3):濃縮工程
(A2)で得られた分散液から、親水性有機溶媒と水の一部とを除去し、濃縮することにより、濃縮分散液を得、
(A4):1官能性シラン化合物による第2疎水化表面処理工程
(A3)で得られた濃縮分散液に、下記一般式(III)
2 3SiNHSiR2 3 (III)
(式中、R2は、同一又は異種の、置換又は非置換の炭素原子数1〜6の1価炭化水素基である。)
で表わされるシラザン化合物、下記一般式(IV):
2 3SiX (IV)
(式中、R2は上記と同じであり、XはOH基又は加水分解性基である。)で表わされる1官能性シラン化合物又はこれらの混合物を添加し、上記R1SiO3/2単位が導入された球状シリカ微粒子を表面処理し、その表面にR2 3SiO1/2単位(式中、R2は上記と同じである。)を導入することにより得られた疎水性球状シリカ微粒子である、請求項3又は4記載のシリカ付着珪素粒子。
Hydrophobic spherical silica fine particles
(A1): Step of preparing hydrophilic spherical silica fine particles The following general formula (I)
Si (OR 3 ) 4 (I)
(In the formula, R 3 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms.)
By hydrolyzing and condensing a tetrafunctional silane compound represented by the formula, a partial hydrolysis product thereof, or a mixture thereof in a mixed solvent of a hydrophilic organic solvent and water in the presence of a basic substance, SiO 2 A mixed solvent dispersion in which hydrophilic spherical silica fine particles composed of units are dispersed is obtained,
(A2): First hydrophobizing surface treatment step with trifunctional silane compound (A1), the dispersion obtained in the following general formula (II)
R 1 Si (OR 4 ) 3 (II)
(Wherein R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms). The above-mentioned hydrophilic spherical silica fine particles are surface-treated by adding a trifunctional silane compound, a partial hydrolysis product thereof, or a mixture thereof, and R 1 SiO 3/2 units (wherein R 1 is The same as the above) to obtain a mixed solvent dispersion in which spherical silica fine particles introduced are dispersed,
(A3): Concentration step From the dispersion obtained in (A2), the hydrophilic organic solvent and a part of water are removed and concentrated to obtain a concentrated dispersion.
(A4): Second hydrophobized surface treatment step with a functional silane compound (A3) The concentrated dispersion obtained in (A3) is added to the following general formula (III)
R 2 3 SiNHSiR 2 3 (III)
(In the formula, R 2 is the same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms.)
A silazane compound represented by the following general formula (IV):
R 2 3 SiX (IV)
(Wherein R 2 is the same as above, X is an OH group or a hydrolyzable group), and a monofunctional silane compound or a mixture thereof is added, and the R 1 SiO 3/2 unit is added. Hydrophobic spherical silica fine particles obtained by surface-treating spherical silica fine particles into which R 2 is introduced and introducing R 2 3 SiO 1/2 units (wherein R 2 is the same as above) onto the surface thereof The silica-attached silicon particles according to claim 3 or 4, wherein
珪素粒子及び二酸化珪素粒子の混合物を反応させ、酸化珪素を製造する方法の原料として用いるものであって、請求項1〜5のいずれか1項記載のシリカ付着珪素粒子と二酸化珪素粒子との焼結混合原料。   A method for producing silicon oxide by reacting a mixture of silicon particles and silicon dioxide particles, wherein the silica-adhered silicon particles and silicon dioxide particles according to any one of claims 1 to 5 are sintered. Bonded raw material.
JP2013129100A 2013-06-20 2013-06-20 Silica-attached silicon particles and sintered mixed raw material, and method for producing silica-attached silicon particles and hydrophobic spherical silica fine particles Active JP5974986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013129100A JP5974986B2 (en) 2013-06-20 2013-06-20 Silica-attached silicon particles and sintered mixed raw material, and method for producing silica-attached silicon particles and hydrophobic spherical silica fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013129100A JP5974986B2 (en) 2013-06-20 2013-06-20 Silica-attached silicon particles and sintered mixed raw material, and method for producing silica-attached silicon particles and hydrophobic spherical silica fine particles

Publications (2)

Publication Number Publication Date
JP2015003839A true JP2015003839A (en) 2015-01-08
JP5974986B2 JP5974986B2 (en) 2016-08-23

Family

ID=52300043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013129100A Active JP5974986B2 (en) 2013-06-20 2013-06-20 Silica-attached silicon particles and sintered mixed raw material, and method for producing silica-attached silicon particles and hydrophobic spherical silica fine particles

Country Status (1)

Country Link
JP (1) JP5974986B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3968343A2 (en) 2020-09-15 2022-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and silicon material particle
EP3984456A1 (en) 2020-10-13 2022-04-20 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, polymer compound, and composite
CN115298137A (en) * 2020-04-24 2022-11-04 株式会社德山 Method for producing surface-treated silica powder
CN117326563A (en) * 2023-09-28 2024-01-02 吉安豫顺新材料有限公司 Novel preparation method and system of low-impurity silicon micropowder for vehicle-mounted copper-clad plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220123A (en) * 2000-02-04 2001-08-14 Shin Etsu Chem Co Ltd Continuous manufacturing method and continuous manufacturing device of silicon oxide powder
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220123A (en) * 2000-02-04 2001-08-14 Shin Etsu Chem Co Ltd Continuous manufacturing method and continuous manufacturing device of silicon oxide powder
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298137A (en) * 2020-04-24 2022-11-04 株式会社德山 Method for producing surface-treated silica powder
CN115298137B (en) * 2020-04-24 2023-12-19 株式会社德山 Method for producing surface-treated silica powder
EP3968343A2 (en) 2020-09-15 2022-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and silicon material particle
EP3984456A1 (en) 2020-10-13 2022-04-20 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, polymer compound, and composite
CN117326563A (en) * 2023-09-28 2024-01-02 吉安豫顺新材料有限公司 Novel preparation method and system of low-impurity silicon micropowder for vehicle-mounted copper-clad plate
CN117326563B (en) * 2023-09-28 2024-03-22 吉安豫顺新材料有限公司 Preparation method and system of low-impurity silicon micro powder for vehicle-mounted copper-clad plate

Also Published As

Publication number Publication date
JP5974986B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5644789B2 (en) Powder composition
JP5967024B2 (en) Non-aqueous electrolyte secondary battery active material, negative electrode molded body, and non-aqueous electrolyte secondary battery
EP1606218B1 (en) Pyrogenic silicon dioxide powder and dispersion thereof
JP5489505B2 (en) Method for producing hydrophobic silica particles
JP5867426B2 (en) Method for producing boron nitride powder
JP5267758B2 (en) Method for producing hydrophobic silica powder
JP5974986B2 (en) Silica-attached silicon particles and sintered mixed raw material, and method for producing silica-attached silicon particles and hydrophobic spherical silica fine particles
WO2021215285A1 (en) Method for producing surface-treated silica powder
Lazareva et al. Synthesis of high-purity silica nanoparticles by sol-gel method
JPWO2021215285A5 (en)
JP5811620B2 (en) Method for producing silica particles
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP3760498B2 (en) Si-H bond-containing silica derivative fine particles and method for producing the same
JP6007867B2 (en) Grinding aid for non-aqueous electrolyte secondary battery active material and grinding method
JP7061000B2 (en) Method for producing silica particles or a dispersion thereof
JP5949695B2 (en) Polyimide powder composition having excellent fluidity and molded body thereof
JP5907092B2 (en) Method for producing metal silicon powder
JP7007982B2 (en) Colloidal silica
JP4683195B2 (en) Method for producing silicon carbide powder
JP3878113B2 (en) Method for producing silica-titania composite oxide
JP6968631B2 (en) Hydrophobic silica powder and toner resin particles
JP7470508B2 (en) Silica powder, method for producing silica powder, and method for producing calcined silica powder
WO2022215238A1 (en) Silicon-compound-coated metal magnesium particles
Venkatathri et al. Synthesis and characterization of silica nanosphere from octadecyltrimethoxy silane
JP2023083524A (en) Method for production of composite oxide powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R150 Certificate of patent or registration of utility model

Ref document number: 5974986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150