JP2015001734A - Method of manufacturing self-alignment optical coupling self-organization waveguide - Google Patents

Method of manufacturing self-alignment optical coupling self-organization waveguide Download PDF

Info

Publication number
JP2015001734A
JP2015001734A JP2013139239A JP2013139239A JP2015001734A JP 2015001734 A JP2015001734 A JP 2015001734A JP 2013139239 A JP2013139239 A JP 2013139239A JP 2013139239 A JP2013139239 A JP 2013139239A JP 2015001734 A JP2015001734 A JP 2015001734A
Authority
JP
Japan
Prior art keywords
self
light
optical
optical waveguide
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013139239A
Other languages
Japanese (ja)
Inventor
吉村 徹三
Tetsuzo Yoshimura
徹三 吉村
誠 飯田
Makoto Iida
誠 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013139239A priority Critical patent/JP2015001734A/en
Publication of JP2015001734A publication Critical patent/JP2015001734A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a self-organization optical waveguide including a luminescent material.SOLUTION: A luminescent target 4 is disposed in an active section of an optical device, and excitation light is radiated to the luminescent target 4 to generate a luminescence 6. The luminescence 6 serves as writing light, and a self-alignment optical waveguide of a SOLNET is formed. A process is provided in which an LP-SOLNET using a formed luminescent target and a luminescent target/wavelength filter are formed in a self-alignment manner using an outgoing beam coming from the active section.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は,発光物質を使用した自己組織化光導波路(SOLNET)の作製方法に係り,特に,活性部に発光性ターゲットを設けた複数個の光デバイスを,発光性ターゲットからのルミネッセンスの照射により屈折率が増加する材料(PRI材料)を挟んで設置し,発光性ターゲットに励起光を照射して光デバイス間にセルフアライン光導波路を形成する方法,活性部に発光性ターゲットを設けた光デバイスと活性部に波長フィルタを設けた光デバイスをPRI材料を挟んで設置し,発光性ターゲットに励起光を照射して光デバイス間にセルフアライン光導波路を形成する方法,活性部に波長フィルタを設けた複数個の光デバイスを,発光物質を添加したPRI材料を挟んで設置し,PRI材料に励起光を照射して光デバイス間にセルフアライン光導波路を形成する方法,発光性ターゲットおよび/または波長フィルタを,活性部からの出射光を利用してセルフアライン的に形成して光デバイス間にセルフアライン光導波路を形成する方法,活性部に設けた発光性ターゲットおよび/または波長フィルタの一部または全部を,活性部の反対側の端面に配置した発光体および/または反射体で置き換えて光デバイス間にセルフアライン光導波路を形成する方法に関する。  The present invention relates to a method of manufacturing a self-organized optical waveguide (SOLNET) using a luminescent material, and in particular, a plurality of optical devices provided with a luminescent target in an active portion by luminescence irradiation from the luminescent target. A method of forming a self-aligned optical waveguide between optical devices by irradiating a light emitting target with excitation light by placing a material (PRI material) having an increased refractive index, and an optical device having a light emitting target in an active portion And a method of forming a self-aligned optical waveguide between the optical devices by irradiating the luminescent target with excitation light, and installing a wavelength filter in the active part. A plurality of optical devices are installed with a PRI material added with a luminescent material sandwiched between them. A method for forming an optical waveguide, a method for forming a self-aligning optical waveguide between optical devices by forming a light emitting target and / or a wavelength filter in a self-aligned manner using light emitted from the active portion, an active portion A method of forming a self-aligned optical waveguide between optical devices by replacing a part or all of a luminescent target and / or a wavelength filter provided on the substrate with a light emitter and / or a reflector disposed on an end face opposite to an active portion About.

従来のSOLNETでは,セルフアライン光導波路を形成する際に,光デバイスから書込み光を出射させる必要がある。この場合,書込み光を光デバイスから出射できないような構造ではセルフアライン光導波路の形成が不可能になるという問題がある。また,光デバイス活性部への発光ターゲットや波長フィルタの形成は,光デバイス作製プロセスの一環として,フォトリソプロセスにより行うことが知られている。さらなる低コスト化のためには,より簡便な方法が望まれる.また,光デバイス活性部への発光ターゲットや波長フィルタの形成が困難である場合,セルフアライン光導波路の形成が不可能になるという問題がある。  In the conventional SOLNET, it is necessary to emit write light from an optical device when forming a self-aligned optical waveguide. In this case, there is a problem that it is impossible to form a self-aligned optical waveguide in a structure in which writing light cannot be emitted from the optical device. In addition, it is known that the formation of the light emitting target and the wavelength filter in the optical device active part is performed by a photolithography process as part of the optical device manufacturing process. A simpler method is desired for further cost reduction. Further, when it is difficult to form a light emitting target or a wavelength filter on the optical device active portion, there is a problem that it is impossible to form a self-aligned optical waveguide.

発明が解決しようとする課題Problems to be solved by the invention

本発明の一つの目的は,発光性ターゲットからのルミネッセンスを書込み光として用いることにより,書込み光を光デバイスから出射できないような構造でもセルフアライン光導波路の形成を可能にすることにある。また,本発明の他の目的は,活性部からの出射光を利用することにより,活性部への発光性ターゲットや波長フィルタの形成をより簡便にすることにある。また,本発明の他の目的は,活性部への発光ターゲットや波長フィルタの形成を行わなくても,セルフアライン光導波路の形成を可能にすることにある。  One object of the present invention is to enable the formation of a self-aligned optical waveguide even in a structure in which writing light cannot be emitted from an optical device by using luminescence from a light emitting target as writing light. Another object of the present invention is to make it easier to form a light-emitting target or a wavelength filter on the active part by using the light emitted from the active part. Another object of the present invention is to make it possible to form a self-aligned optical waveguide without forming a light emitting target or a wavelength filter in the active portion.

課題を解決するための手段Means for solving the problem

本発明に係るSOLNETの作製方法は,活性部に発光性ターゲットを設けた複数個の光デバイスを,該発光性ターゲットからのルミネッセンスの照射により屈折率が増加するPRI材料が中間領域の一部または全部を満たすように設置し,該発光性ターゲットに励起光を照射してルミネッセンスを発生させることを特徴とする。これにより,光デバイスからの書込み光なしで,光デバイス間にセルフアライン光導波路を形成することができる。  In the SOLNET manufacturing method according to the present invention, a PRI material whose refractive index is increased by irradiation of luminescence from the luminescent target in a plurality of optical devices provided with a luminescent target in an active part is a part of the intermediate region or It is installed so that all may be filled, and it emits luminescence by irradiating this luminescent target with excitation light, It is characterized by the above-mentioned. Thereby, a self-aligned optical waveguide can be formed between optical devices without writing light from the optical device.

本発明に係るもう一つのSOLNETの作製方法は,活性部に発光性ターゲットを設けた光デバイスと,活性部に該発光性ターゲットからのルミネッセンスを反射するような波長フィルタを設けた光デバイスを,該発光性ターゲットからのルミネッセンスの照射により屈折率が増加するPRI材料が中間領域の一部または全部を満たすように設置し,該発光性ターゲットに励起光を照射してルミネッセンスを発生させることを特徴とする。これにより,光デバイスからの書込み光なしで,光デバイス間にセルフアライン光導波路を形成することができる。  Another SOLNET manufacturing method according to the present invention includes an optical device in which an active part is provided with a luminescent target, and an optical device in which an active part is provided with a wavelength filter that reflects luminescence from the luminescent target. The PRI material whose refractive index is increased by irradiation of luminescence from the luminescent target is installed so as to fill a part or all of the intermediate region, and the luminescent target is irradiated with excitation light to generate luminescence. And Thereby, a self-aligned optical waveguide can be formed between optical devices without writing light from the optical device.

本発明に係るもう一つのSOLNETの作製方法は,PRI材料に発光物質を添加し,活性部に該発光物質からのルミネッセンスを反射するような波長フィルタを設けた複数個の光デバイスを,該発光物質からのルミネッセンスの照射により屈折率が増加する該PRI材料が中間領域の一部または全部を満たすように設置し,該PRI材料に励起光を照射してルミネッセンスを発生させることを特徴とする。これにより,光デバイスからの書込み光なしで,光デバイス間にセルフアライン光導波路を形成することができる。  Another method for manufacturing SOLNET according to the present invention is to add a light-emitting substance to a PRI material, and to provide a plurality of optical devices provided with a wavelength filter that reflects luminescence from the light-emitting substance in an active part. The PRI material whose refractive index is increased by irradiation of luminescence from a substance is installed so as to fill a part or all of the intermediate region, and luminescence is generated by irradiating the PRI material with excitation light. Thereby, a self-aligned optical waveguide can be formed between optical devices without writing light from the optical device.

本発明に係るもう一つのSOLNETの作製方法は,発光性ターゲットおよび/または波長フィルタを,活性部からの出射光を利用してセルフアライン的に形成することを特徴とする。これにより,活性部への発光ターゲットや波長フィルタの形成をより簡便にすることができる。  Another SOLNET manufacturing method according to the present invention is characterized in that a light emitting target and / or a wavelength filter are formed in a self-aligning manner using light emitted from an active portion. Thereby, formation of the light emission target and wavelength filter to an active part can be made simpler.

本発明に係るもう一つのSOLNETの作製方法は,活性部に発光性ターゲットを設けた光デバイスと書込み光を活性部から出射する光デバイスを,該書込み光と該発光性ターゲットからのルミネッセンスの照射により屈折率が増加するPRI材料が中間領域の一部または全部を満たすように設置し,該書込み光を光デバイスから出射させてルミネッセンスを発生させることにより,光デバイス間にセルフアライン光導波路を形成する自己組織化光導波路の作製方法において,該発光性ターゲットを,活性部からの出射光を利用してセルフアライン的に形成することを特徴とする。これにより,活性部への発光ターゲットの形成をより簡便にすることができる。  Another SOLNET manufacturing method according to the present invention includes an optical device in which an active part is provided with a light-emitting target and an optical device that emits write light from the active part, and irradiation of luminescence from the write light and the light-emitting target. The self-aligned optical waveguide is formed between the optical devices by setting the PRI material whose refractive index increases by filling the intermediate region so as to fill a part or all of the intermediate region and emitting the writing light from the optical device to generate luminescence. The self-organizing optical waveguide manufacturing method is characterized in that the luminescent target is formed in a self-aligning manner using light emitted from the active portion. Thereby, formation of the light emission target to an active part can be made simpler.

本発明に係るもう一つのSOLNETの作製方法は,活性部に波長フィルタを設けた光デバイスと書込み光を活性部から出射する光デバイスを,該書込み光により屈折率が増加するPRI材料が中間領域の一部または全部を満たすように設置し,該書込み光を光デバイスから出射させて反射光を発生させることにより,光デバイス間にセルフアライン光導波路を形成する自己組織化光導波路の作製方法において,該波長フィルタを,活性部からの出射光を利用してセルフアライン的に形成することを特徴とする。これにより,活性部への波長フィルタの形成をより簡便にすることができる。  Another SOLNET manufacturing method according to the present invention includes an optical device in which a wavelength filter is provided in an active portion and an optical device that emits write light from the active portion, and a PRI material whose refractive index is increased by the write light is an intermediate region. In a method for producing a self-organized optical waveguide, the self-aligned optical waveguide is formed between the optical devices by installing a part or all of the optical device and generating reflected light by emitting the writing light from the optical device. The wavelength filter is formed in a self-aligning manner using light emitted from the active portion. This makes it easier to form the wavelength filter on the active part.

本発明に係るもう一つのSOLNETの作製方法は,活性部に設けた発光性ターゲットおよび/または波長フィルタの一部または全部を,活性部の反対側の端面に配置した発光体および/または反射体で置き換えたことを特徴とする。これにより,活性部への発光ターゲットや波長フィルタの形成を行わなくても,セルフアライン光導波路の形成を可能にすることができる。  Another SOLNET manufacturing method according to the present invention includes a light emitter and / or a reflector in which part or all of a light emitting target and / or a wavelength filter provided in an active portion is disposed on an end face on the opposite side of the active portion. It is characterized by having been replaced with. Thereby, it is possible to form a self-aligned optical waveguide without forming a light emitting target or a wavelength filter in the active portion.

以下に,本実施の形態を,図面を参照して説明する。各図において,同一の符号をふされたものは同様の要素を示しており,重複した説明は省略される。以下の記載は本発明が適用可能な実施形態を説明するものであって,本発明の範囲がこの記載に限定されるものではない。説明の明確化のため,以下の記載は,適宜,省略および簡略化がなされている。また,当業者であれば,以下の実施形態の各要素を,本発明の範囲において容易に変更,追加,変換することが可能であろう。  The present embodiment will be described below with reference to the drawings. In each figure, the same reference numerals indicate the same elements, and duplicate descriptions are omitted. The following description explains an embodiment to which the present invention is applicable, and the scope of the present invention is not limited to this description. For clarity of explanation, the following descriptions are omitted and simplified as appropriate. Further, those skilled in the art will be able to easily change, add, and convert each element of the following embodiments within the scope of the present invention.

図1は,従来型のReflective SOLNET(R−SOLNET)with luminescent targetの原理図である。2つの光デバイス1と2がPRI材料3を挟むような形で対峙している。一方の光デバイスの活性部には,発光性ターゲット4が配置されている。光デバイスの例としては,光ファイバ,光導波路,光変調器,光スイッチ,可変波長フィルタ,レーザダイオード(LD),面発光レーザ(VCSEL),フォトディテクタ(PD)などが挙げられる。ここで,図では,導波路コアや発光部に相当する光デバイスの活性部のみを図示した.光デバイスのその他の部分は省略してある。活性部は,光ファイバ・光導波路・光変調器・光スイッチ・可変波長フィルタの場合は端面の導波路コア部に,LD・VCSELの場合は発光部に,また,PDの場合は受光部に対応する。  FIG. 1 is a diagram illustrating the principle of a conventional reflective SOLNET (R-SOLNET) with luminescent target. The two optical devices 1 and 2 are opposed to each other so as to sandwich the PRI material 3. A light emitting target 4 is disposed in the active part of one optical device. Examples of the optical device include an optical fiber, an optical waveguide, an optical modulator, an optical switch, a variable wavelength filter, a laser diode (LD), a surface emitting laser (VCSEL), and a photodetector (PD). Here, only the active part of the optical device corresponding to the waveguide core and the light emitting part is shown in the figure. Other parts of the optical device are omitted. In the case of optical fibers, optical waveguides, optical modulators, optical switches, variable wavelength filters, the active part is in the waveguide core part of the end face, in the case of LD / VCSEL, in the light emitting part, and in the case of PD, in the light receiving part. Correspond.

PRI材料は,書込み光が照射されると屈折率が増加するという特性を持つ。フォトポリマ,光硬化性樹脂,感光性ガラス,フォトリフラクティブ結晶などがその例である。書込み光5を光デバイス1からPRI材料に入射させると,発光性ターゲットがそれを吸収しルミネッセンス6を発生する.書込み光とルミネッセンスが重なる領域で屈折率がより大きく増加し,セルフフォーカスが生じる。最終的に光デバイスをつなぐSOLNET7のセルフアライン光導波路が形成される.光デバイス間にある程度の位置ずれ,角度ずれ,モードサイズの差異があっても許容されるため,光はんだの機能が実現できる。  The PRI material has a characteristic that the refractive index increases when the writing light is irradiated. Examples include photopolymers, photocurable resins, photosensitive glass, and photorefractive crystals. When the writing light 5 is incident on the PRI material from the optical device 1, the luminescent target absorbs it and generates luminescence 6. In the region where writing light and luminescence overlap, the refractive index increases more and self-focusing occurs. Finally, a SOLNET7 self-aligned optical waveguide that connects the optical devices is formed. Even if there is a certain amount of misalignment, angular misalignment, and mode size difference between optical devices, the function of optical solder can be realized.

PRI材料の感度スペクトルの一例を図2に模式的に示した。ここでは色素増感PRI材料の例を示してある。短波長側の母体吸収による感度ピークとともに,長波長側の色素吸収による感度ピークが現れている。書込み光を母体で,ルミネッセンスを色素で吸収することにより,両者に対する感度バランスを適正にすることができる。場合によっては,書込み光とルミネッセンスを共に色素で吸収することもできる。また,色素増感を施さないPRI材料でも使用可能である。この場合は,書込み光,ルミネッセンスともに,母体の光吸収を利用する。  An example of the sensitivity spectrum of the PRI material is schematically shown in FIG. Here, an example of a dye-sensitized PRI material is shown. A sensitivity peak due to dye absorption on the long wavelength side appears along with a sensitivity peak due to matrix absorption on the short wavelength side. By absorbing the writing light with the matrix and the luminescence with the dye, the sensitivity balance between the two can be made appropriate. In some cases, both writing light and luminescence can be absorbed by the dye. It is also possible to use a PRI material not subjected to dye sensitization. In this case, both the writing light and luminescence use the light absorption of the matrix.

図3(a)は,本発明によるLuminescence−Assisted SOLNET(LA−SOLNET)Iの原理図である。図1のSOLNET with luminescent targetにおいて,すべての光デバイスの活性部に発光性ターゲットを配置したものである。これらの発光性ターゲットに励起光8を照射し,ルミネッセンスを発生させる。ルミネッセンスが書込み光の役目を果たし,SOLNETのセルフアライン光導波路が形成される。  FIG. 3A is a principle diagram of Luminescence-Assisted SOLNET (LA-SOLNET) I according to the present invention. In the SOLNET with luminous target of FIG. 1, a light emitting target is arranged in the active part of all the optical devices. These luminescent targets are irradiated with excitation light 8 to generate luminescence. Luminescence plays the role of writing light, and a SOLNET self-aligned optical waveguide is formed.

ここで,励起光は,発光性ターゲットに局所的に照射することが望ましい。これにより励起光によるPRI材料の屈折率変動を抑えることができる。一方,図4に示すように,PRI材料に増感を施し,感度スペクトルに低感度波長領域の窓を形成するとともに,発光性ターゲットの光吸収スペクトルと発光スペクトルを適正に設計することにより,励起光を全体に照射することが可能となる。すなわち,発光性ターゲットの光吸収帯がPRI材料の低感度波長領域にかかるようにし,かつルミネッセンスが感度スペクトルの長波長側ピークにかかるようにすることにより,励起光に対しては低感度,ルミネッセンスに対しては高感度という状況を作り出すことができ,励起光の全面照射が可能となる。  Here, it is desirable to locally irradiate the luminescent target with the excitation light. Thereby, the refractive index fluctuation | variation of PRI material by excitation light can be suppressed. On the other hand, as shown in FIG. 4, the sensitization is performed on the PRI material, a window in the low sensitivity wavelength region is formed in the sensitivity spectrum, and the light absorption spectrum and emission spectrum of the luminescent target are designed appropriately. It becomes possible to irradiate the whole light. That is, the light absorption band of the luminescent target is applied to the low sensitivity wavelength region of the PRI material, and the luminescence is applied to the long wavelength side peak of the sensitivity spectrum. Therefore, it is possible to create a high sensitivity situation, and it is possible to irradiate the entire surface with excitation light.

図3(b)は,LA−SOLNET IIの原理図である。図3(a)のLA−SOLNET Iにおいて,光デバイスの活性部に配置された発光性ターゲットを,一部波長フィルタ9で置き換えたものである。波長フィルタには,ルミネッセンスは反射し,信号光は透過するという特性を持たせる。発光性ターゲットに励起光を照射し,ルミネッセンスを発生させると,波長フィルタがそれを反射し,ルミネッセンスと反射光10でSOLNETのセルフアライン光導波路が形成される。  FIG. 3B is a principle diagram of LA-SOLNET II. In the LA-SOLNET I of FIG. 3A, the luminescent target disposed in the active part of the optical device is partially replaced with a wavelength filter 9. The wavelength filter has a characteristic that luminescence is reflected and signal light is transmitted. When the luminescent target is irradiated with excitation light and luminescence is generated, the wavelength filter reflects the luminescence target, and a SOLNET self-aligned optical waveguide is formed by the luminescence and the reflected light 10.

図3(c)は,LA−SOLNET IIIの原理図である。発光物質添加PRI材料11を使用する。光デバイスの活性部には,波長フィルタが設置されている。PRI材料に励起光を照射し,ルミネッセンスを発生させると,波長フィルタがそれを反射し,反射光でSOLNETのセルフアライン光導波路が形成される。  FIG. 3C is a principle diagram of LA-SOLNET III. The luminescent substance-added PRI material 11 is used. A wavelength filter is installed in the active part of the optical device. When the PRI material is irradiated with excitation light to generate luminescence, the wavelength filter reflects it, and a SOLNET self-aligned optical waveguide is formed by the reflected light.

材料としては,例えば,PRI材料は,日産化学工業製の有機/無機ゾルゲル材料SUNCONNECT,Norland社製の光学接着剤NOAシリーズ,その他各種感光性材料など,増感材料はcrystal violet(CV),brilliant green(BG)などの色素,また,発光物質は,クマリン系やスチルベン系などの有機材料,tris(8−hydroxyquinolinato)aluminum(Alq3)などの有機金属錯体,その他各種材料を用いることができる.  As materials, for example, the PRI material is an organic / inorganic sol-gel material SUNCONNECT made by Nissan Chemical Industries, the optical adhesive NOA series made by Norland, and other various photosensitive materials. The sensitizing materials are crystal violet (CV), brilliant, etc. As a dye such as green (BG) and a light emitting substance, a coumarin-based or stilbene-based organic material, an organic metal complex such as tris (8-hydroxyquinolinato) aluminum (Alq3), or other various materials can be used.

上記のLA−SOLNET I,II,およびIIIにおいて,発光性ターゲットおよび波長フィルタは,通常,光デバイス作製プロセスの一環として,フォトリソグラフィーを用いて光デバイス活性部に選択的に形成することができる。本発明では,さらに簡便な作製プロセスを提供する。  In the above-described LA-SOLNETs I, II, and III, the luminescent target and the wavelength filter can be selectively formed on the optical device active portion by using photolithography, usually as part of the optical device manufacturing process. The present invention provides a simpler manufacturing process.

図5(a)は発光性ターゲット作製プロセスの例である。光導波路をもつ光デバイス20の端面に,コア21を覆うように感光性の発光物質添加材料22をディッピング法などでコーティングする。コアを通して光23を照射し,コア部にある感光性の発光物質添加材料を選択的に硬化させる。有機溶剤などにより,未露光部分を除去し,硬化部24を残す.これが発光性ターゲット25となる.図5(b)は波長フィルタ作製プロセスの例である。光導波路をもつ光デバイス20の端面に,コア21を覆うようにフォトレジスト26をディッピング法などでコーティングする。コアを通して光を照射し,コア部にあるフォトレジストを選択的に露光し,露光部27を現像液などでエッチングし,窓とする。つぎに,誘電体多層膜などの波長フィルタ膜28をデポした後,周りのフォトレジストをリフトオフプロセスにより除去して,波長フィルタ29が得られる。以上のような,光デバイスの活性部に蛍光体ターゲットや波長フィルタを形成する手法は,LA−SOLNET I,II,IIIのみならず,従来のR−SOLNET with luminescent targetやR−SOLNET with wavelength filterにも適用することができる。また,上記のようなプロセスは,導波路コアを通した光のかわりに,発光デバイスからの発光そのものを用いて実行することもできる.  FIG. 5A shows an example of a luminescent target manufacturing process. A photosensitive luminescent material additive material 22 is coated on the end face of the optical device 20 having an optical waveguide so as to cover the core 21 by dipping or the like. Light 23 is irradiated through the core to selectively cure the photosensitive luminescent material-added material in the core. The unexposed part is removed with an organic solvent or the like, and the cured part 24 is left. This becomes the luminescent target 25. FIG. 5B shows an example of a wavelength filter manufacturing process. A photoresist 26 is coated on the end face of the optical device 20 having an optical waveguide by a dipping method or the like so as to cover the core 21. Light is irradiated through the core, the photoresist in the core portion is selectively exposed, and the exposed portion 27 is etched with a developer or the like to form a window. Next, after depositing the wavelength filter film 28 such as a dielectric multilayer film, the surrounding photoresist is removed by a lift-off process, and the wavelength filter 29 is obtained. As described above, the method of forming the phosphor target and the wavelength filter in the active part of the optical device is not limited to LA-SOLNET I, II, III, but also conventional R-SOLNET with luminous target and R-SOLNET with wavelength filter. It can also be applied to. The above process can also be carried out using the light emitted from the light emitting device instead of the light through the waveguide core.

具体的な実施例を以下に記す。光デバイス1および2として,マルチモード光ファイバを用いる.PRI材料にはSUNCONNECTを用いる。また,発光性ターゲットには,Coumarin481を添加したSUNCONNECTを用いる。一方の光ファイバ(ファイバB)の端面に,Coumarin481を添加したSUNCONNECTをディッピングによりコーティングする。光ファイバの反対側から高圧水銀灯の光をコアに入射させ,伝搬した光によりコアの位置にあるCoumarin481添加のSUNCONNECTを硬化させる。有機溶媒により未露光部分を除去し,発光性ターゲットを形成する。光ファイバBともう一方の光ファイバ(ファイバA)を対向させてSUNCONNECT中に配置し,ファイバAから波長448nmの光を出射させた結果,光ファイバAのコアと光ファイバBのコアを結ぶSOLNETのセルフアライン光導波路が形成された。2つのファイバ間の結合効率は95%以上であった。PL−SOLNET I,II,およびIIIについても,448nmの光を励起光として用いることにより,同様の材料・プロセスを適用することができる。  Specific examples are described below. Multimode optical fibers are used as optical devices 1 and 2. SUNCONNECT is used as the PRI material. As the luminescent target, SUNCONNECT to which Coumarin 481 is added is used. One end of one optical fiber (fiber B) is coated by dipping with SUNCONNECT to which Coumarin 481 is added. The light from the high-pressure mercury lamp is made incident on the core from the opposite side of the optical fiber, and the CUNCORIN 481-added SUNCONNECT at the core is cured by the propagated light. An unexposed portion is removed with an organic solvent to form a luminescent target. As a result of arranging the optical fiber B and the other optical fiber (fiber A) facing each other in the SUNCONNECT and emitting light having a wavelength of 448 nm from the fiber A, SOLNET connecting the core of the optical fiber A and the core of the optical fiber B A self-aligned optical waveguide was formed. The coupling efficiency between the two fibers was 95% or more. The same material and process can be applied to PL-SOLNETs I, II, and III by using 448 nm light as excitation light.

SOLNETを固定化するためには,SOLNETコア周辺のPRI材料を有機溶剤などで除去する。SOLNETコアの硬化が不十分な場合は,ポストベークや露光により,硬化を進める。さらにSOLNETコアをクラッド材料で覆うこともできる。  In order to fix SOLNET, the PRI material around the SOLNET core is removed with an organic solvent or the like. If the SOLNET core is not sufficiently cured, it is cured by post-baking or exposure. Furthermore, the SOLNET core can be covered with a clad material.

PL−SOLNET I,II,IIIでは,図4に示すようなスペクトルの位置関係で実施することがより望ましい。そのために,増感色素などをPRI材料に添加し,PRI材料の増感を行うことが有効である。具体的な実施例を以下に記す。光デバイス1および2として,マルチモード光ファイバを用いる.PRI材料にはSUNCONNECTを用いる。また,発光性ターゲットには,Coumarin481を添加したSUNCONNECTを用いる。一方の光ファイバ(ファイバB)の端面に,Coumarin481を添加したSUNCONNECTをディッピングによりコーティングする。光ファイバの反対側から高圧水銀灯の光をコアに入射させ,伝搬した光によりコアの位置にあるCoumarin481添加のSUNCONNECTを硬化させる。有機溶媒により未露光部分を除去し,発光性ターゲットを形成する。光ファイバBともう一方の光ファイバ(ファイバA)を対向させてCVを0.1wt%添加したSUNCONNECT中に配置し,ファイバAから波長448nmの光を出射させた結果,光ファイバAのコアと光ファイバBのコアを結ぶSOLNETのセルフアライン光導波路が形成された。PL−SOLNET I,II,およびIIIについても同様の材料・プロセスを適用することができる。  In PL-SOLNET I, II, and III, it is more preferable to carry out with the spectral positional relationship as shown in FIG. Therefore, it is effective to add a sensitizing dye or the like to the PRI material to sensitize the PRI material. Specific examples are described below. Multimode optical fibers are used as optical devices 1 and 2. SUNCONNECT is used as the PRI material. As the luminescent target, SUNCONNECT to which Coumarin 481 is added is used. One end of one optical fiber (fiber B) is coated by dipping with SUNCONNECT to which Coumarin 481 is added. The light from the high-pressure mercury lamp is made incident on the core from the opposite side of the optical fiber, and the CUNCORIN 481-added SUNCONNECT at the core is cured by the propagated light. An unexposed portion is removed with an organic solvent to form a luminescent target. As a result of placing optical fiber B and the other optical fiber (fiber A) facing each other in SUNCONNECT with 0.1% CV added, and emitting light with a wavelength of 448 nm from fiber A, the core of optical fiber A A SOLNET self-aligned optical waveguide connecting the cores of the optical fibers B was formed. Similar materials and processes can be applied to PL-SOLNET I, II, and III.

具体的なもう一つの実施例を以下に記す。光デバイス1および2として,マルチモード光ファイバを用いる.PRI材料にはNORLAND社の光学接着剤NOA81とNOA65を重量比2:1で混合した材料を用いる。この中に,増感分子として,CV0.1wt%を添加した。Alq3からなる発光性ターゲットを光ファイバBの端面に形成した。光ファイバAと光ファイバBを対向させてPRI材料中に配置し,ファイバAから波長405nmの光を出射させた結果,光ファイバAとBを結ぶSOLNETのセルフアライン光導波路が形成された。  Another specific example will be described below. Multimode optical fibers are used as optical devices 1 and 2. As the PRI material, a material in which optical adhesives NOA81 and NOA65 manufactured by NORLAND are mixed at a weight ratio of 2: 1 is used. In this, CV0.1wt% was added as a sensitizing molecule. A luminescent target made of Alq3 was formed on the end face of the optical fiber B. The optical fiber A and the optical fiber B were placed facing each other in the PRI material, and light having a wavelength of 405 nm was emitted from the fiber A. As a result, a SOLNET self-aligned optical waveguide connecting the optical fibers A and B was formed.

上記のような多成分系のPRI材料を用いた場合は,そのまま全面露光,ベーキングなどによりSOLNETを固定化できる。場合によっては,SOLNETコア周辺のPRI材料を有機溶剤などで除去する。SOLNETコアの硬化が不十分な場合は,ポストベークや露光により,硬化を進める。さらにSOLNETコアをクラッド材料で覆うこともできる。  When the multi-component PRI material as described above is used, the SOLNET can be fixed as it is by exposing the whole surface, baking, or the like. In some cases, the PRI material around the SOLNET core is removed with an organic solvent or the like. If the SOLNET core is not sufficiently cured, it is cured by post-baking or exposure. Furthermore, the SOLNET core can be covered with a clad material.

図6は,光デバイス活性部の発光性ターゲット,波長フィルタのかわりに,コア反対側に発光体12,波長フィルタ13,あるいは反射体14を置いて代用させた例である。  FIG. 6 shows an example in which the light emitter 12, the wavelength filter 13, or the reflector 14 is placed on the opposite side of the core instead of the light emitting target and the wavelength filter of the optical device active portion.

従来型のReflective SOLNET(R−SOLNET)with luminescent targetの原理図である。  It is a principle diagram of a conventional reflective SOLNET (R-SOLNET) with luminescent target. PRI材料の感度スペクトルの一例である。  It is an example of the sensitivity spectrum of PRI material. (a)本発明によるLA−SOLNET Iの原理図である。(b)本発明によるLA−SOLNET IIの原理図である。(c)本発明によるLA−SOLNET IIIの原理図である。  (A) It is a principle figure of LA-SOLNET I by this invention. (B) It is a principle figure of LA-SOLNET II by this invention. (C) It is a principle figure of LA-SOLNET III by this invention. 本発明によるLA−SOLNET I,II,IIIに用いるPRI材料の感度スペクトル,発光体の光吸収スペクトル・発光スペクトルの望ましい形の一例を表す模式図である。  It is a schematic diagram showing an example of the desirable form of the sensitivity spectrum of PRI material used for LA-SOLNET I, II, III by this invention, and the light absorption spectrum and emission spectrum of a light-emitting body. (a)本発明による,発光性ターゲット作製プロセスの例である。(b)本発明による,波長フィルタ作製プロセスの例である。  (A) It is an example of the luminescent target preparation process by this invention. (B) It is an example of the wavelength filter preparation process by this invention. 本発明による,発光性ターゲット,波長フィルタのかわりに,コア反対側に発光体,波長フィルタ,反射体を置いて代用させた例である。  In this example, a light emitter, wavelength filter, and reflector are placed on the opposite side of the core instead of the light emitting target and wavelength filter according to the present invention.

光デバイス1,光デバイス2,PRI材料3,発光性ターゲット4,書込み光5,ルミネッセンス6,SOLNET7,励起光8,波長フィルタ9,反射光10,発光物質添加PRI材料11,発光体12,波長フィルタ13,反射体14,光デバイス20,コア21,発光物質添加材料22,光23,硬化部24,発光性ターゲット25,フォトレジスト26,露光部27,波長フィルタ膜28,波長フィルタ29  Optical device 1, optical device 2, PRI material 3, luminescent target 4, writing light 5, luminescence 6, SOLNET 7, excitation light 8, wavelength filter 9, reflected light 10, luminescent substance added PRI material 11, light emitter 12, wavelength Filter 13, reflector 14, optical device 20, core 21, luminescent material additive material 22, light 23, curing part 24, luminescent target 25, photoresist 26, exposure part 27, wavelength filter film 28, wavelength filter 29

Claims (8)

活性部に発光性ターゲットを設けた複数個の光デバイスを,該発光性ターゲットからのルミネッセンスの照射により屈折率が増加する材料(PRI材料)が中間領域の一部または全部を満たすように設置し,該発光性ターゲットに励起光を照射してルミネッセンスを発生させることにより,複数の光デバイス間にセルフアライン光導波路を形成することを特徴とする自己組織化光導波路の作製方法。  A plurality of optical devices provided with a luminescent target in the active part are installed so that a material (PRI material) whose refractive index increases by luminescence irradiation from the luminescent target fills part or all of the intermediate region. A method for producing a self-organized optical waveguide, wherein a self-aligned optical waveguide is formed between a plurality of optical devices by generating luminescence by irradiating the luminescent target with excitation light. 活性部に発光性ターゲットを設けた光デバイスと,活性部に該発光性ターゲットからのルミネッセンスを反射するような波長フィルタを設けた光デバイスを,該発光性ターゲットからのルミネッセンスの照射により屈折率が増加するPRI材料が中間領域の一部または全部を満たすように設置し,該発光性ターゲットに励起光を照射してルミネッセンスを発生させることにより,複数の光デバイス間にセルフアライン光導波路を形成することを特徴とする自己組織化光導波路の作製方法。  An optical device in which an active part is provided with a luminescent target, and an optical device in which an active part is provided with a wavelength filter that reflects luminescence from the luminescent target, the refractive index of the luminescent target from the luminescent target is increased. A self-aligned optical waveguide is formed between a plurality of optical devices by installing the increasing PRI material so as to fill a part or all of the intermediate region and irradiating the luminescent target with excitation light to generate luminescence. A method for producing a self-organized optical waveguide characterized by the above. PRI材料に発光物質を添加し,活性部に該発光物質からのルミネッセンスを反射するような波長フィルタを設けた複数個の光デバイスを,該発光物質からのルミネッセンスの照射により屈折率が増加する該PRI材料が中間領域の一部または全部を満たすように設置し,該PRI材料に励起光を照射してルミネッセンスを発生させることにより,複数の光デバイス間にセルフアライン光導波路を形成することを特徴とする自己組織化光導波路の作製方法。  A plurality of optical devices in which a luminescent material is added to a PRI material and a wavelength filter that reflects luminescence from the luminescent material is provided in an active portion, the refractive index is increased by irradiation of luminescence from the luminescent material. A self-aligned optical waveguide is formed between a plurality of optical devices by installing the PRI material so as to fill a part or all of the intermediate region, and irradiating the PRI material with excitation light to generate luminescence. A method for producing a self-assembled optical waveguide. 請求項1,2,3に記載の自己組織化光導波路の作製方法において,発光性ターゲットおよび/または波長フィルタを,活性部からの出射光を利用してセルフアライン的に形成することを特徴とする自己組織化光導波路の作製方法。  4. The method for manufacturing a self-organized optical waveguide according to claim 1, wherein the light-emitting target and / or the wavelength filter are formed in a self-aligned manner using light emitted from an active portion. A method for manufacturing a self-assembled optical waveguide. 活性部に発光性ターゲットを設けた光デバイスと書込み光を活性部から出射する光デバイスを,該書込み光と該発光性ターゲットからのルミネッセンスの照射により屈折率が増加するPRI材料が中間領域の一部または全部を満たすように設置し,該書込み光を光デバイスから出射させてルミネッセンスを発生させることにより,光デバイス間にセルフアライン光導波路を形成する自己組織化光導波路の作製方法において,該発光性ターゲットを,活性部からの出射光を利用してセルフアライン的に形成することを特徴とする自己組織化光導波路の作製方法。  An optical device in which an active part is provided with a light emitting target and an optical device that emits writing light from the active part are composed of a PRI material whose refractive index increases by irradiation of luminescence from the writing light and the light emitting target in the middle region. In a method for producing a self-organized optical waveguide, the self-aligned optical waveguide is formed between the optical devices by emitting the writing light from the optical device and generating luminescence by emitting the writing light from the optical device. A method for producing a self-organized optical waveguide, wherein a self-aligning target is formed in a self-aligning manner using light emitted from an active portion. 活性部に波長フィルタを設けた光デバイスと書込み光を活性部から出射する光デバイスを,該書込み光の照射により屈折率が増加するPRI材料が中間領域の一部または全部を満たすように設置し,該書込み光を光デバイスから出射させて波長フィルタからの反射光を生じさせることにより,光デバイス間にセルフアライン光導波路を形成する自己組織化光導波路の作製方法において,該波長フィルタを,活性部からの出射光を利用してセルフアライン的に形成することを特徴とする自己組織化光導波路の作製方法。  An optical device having a wavelength filter in the active part and an optical device that emits write light from the active part are installed so that the PRI material whose refractive index increases by irradiation of the write light fills part or all of the intermediate region. , In a method of manufacturing a self-organized optical waveguide in which a self-aligned optical waveguide is formed between optical devices by emitting the writing light from the optical device and generating reflected light from the wavelength filter. A method for producing a self-organized optical waveguide, wherein the light is emitted in a self-aligned manner using light emitted from a portion. 請求項1,2,3,4,5,6に記載の自己組織化光導波路の作製方法において,活性部に設けた発光性ターゲットおよび/または波長フィルタの一部または全部を,活性部の反対側の端面に配置した発光体および/または反射体で置き換えたことを特徴とする自己組織化光導波路の作製方法。  7. The method for manufacturing a self-organized optical waveguide according to claim 1, 2, 3, 4, 5, 6, wherein a part or all of the light emitting target and / or the wavelength filter provided in the active part is opposite to the active part. A method for producing a self-organized optical waveguide, characterized in that a light-emitting body and / or a reflector disposed on the side end face are replaced. 請求項1,2,3,4,5,6に記載の自己組織化光導波路の作製方法において,光デバイスの活性部が光ファイバのコア部,光デバイス内の光導波路コア部,光デバイス内の発光部,光デバイス内の受光部から選ばれたものであることを特徴とする自己組織化光導波路の作製方法。  7. The method of manufacturing a self-organized optical waveguide according to claim 1, 2, 3, 4, 5, 6, wherein the active portion of the optical device is an optical fiber core portion, an optical waveguide core portion in the optical device, and an optical device interior. A method for producing a self-organized optical waveguide, wherein the light-emitting portion is selected from a light-emitting portion and a light-receiving portion in an optical device.
JP2013139239A 2013-06-14 2013-06-14 Method of manufacturing self-alignment optical coupling self-organization waveguide Pending JP2015001734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013139239A JP2015001734A (en) 2013-06-14 2013-06-14 Method of manufacturing self-alignment optical coupling self-organization waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139239A JP2015001734A (en) 2013-06-14 2013-06-14 Method of manufacturing self-alignment optical coupling self-organization waveguide

Publications (1)

Publication Number Publication Date
JP2015001734A true JP2015001734A (en) 2015-01-05

Family

ID=52296266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139239A Pending JP2015001734A (en) 2013-06-14 2013-06-14 Method of manufacturing self-alignment optical coupling self-organization waveguide

Country Status (1)

Country Link
JP (1) JP2015001734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200138176A (en) 2019-05-28 2020-12-09 가부시키가이샤 알박 Sputtering device, thin film manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028786A1 (en) * 1993-06-10 1994-12-22 Optical Sensors Incorporated OPTICAL SENSORS FOR MEASURING pH IN FLUIDS
JPH08320422A (en) * 1994-06-22 1996-12-03 Fujitsu Ltd Production of optical waveguide system and optical device using the system
US5854868A (en) * 1994-06-22 1998-12-29 Fujitsu Limited Optical device and light waveguide integrated circuit
JP2003131063A (en) * 2001-10-29 2003-05-08 Ibiden Co Ltd Method for manufacturing optical waveguide
JP2004279687A (en) * 2003-03-14 2004-10-07 Tetsuzo Yoshimura Optoelectronic microsystem, waveguide element, variable well optical ic and optoelectronic micro/nanosystem
US20040203312A1 (en) * 2000-08-07 2004-10-14 Bortscheller Jacob C. LED cross-linkable phosphor coating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028786A1 (en) * 1993-06-10 1994-12-22 Optical Sensors Incorporated OPTICAL SENSORS FOR MEASURING pH IN FLUIDS
JPH08320422A (en) * 1994-06-22 1996-12-03 Fujitsu Ltd Production of optical waveguide system and optical device using the system
US5854868A (en) * 1994-06-22 1998-12-29 Fujitsu Limited Optical device and light waveguide integrated circuit
US20040203312A1 (en) * 2000-08-07 2004-10-14 Bortscheller Jacob C. LED cross-linkable phosphor coating
JP2003131063A (en) * 2001-10-29 2003-05-08 Ibiden Co Ltd Method for manufacturing optical waveguide
JP2004279687A (en) * 2003-03-14 2004-10-07 Tetsuzo Yoshimura Optoelectronic microsystem, waveguide element, variable well optical ic and optoelectronic micro/nanosystem

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015024474; 鈴木  善之  Y.  Suzuki: 'Reflective/Phosphor SOLNET(自己組織化光波ネットワーク)による光デバイス間' 2004年(平成16年)春季 第51回応用物理学関係連合講演会講演予稿集 第3分冊  Extended Abstrac 第3巻, 200403, p.1488, (社)応用物理学会 *
JPN7015001665; M.Seki, et al.: '"Reflective self-organizing lightwave network using a phosphor"' Optical Engineering Vol.51,No.7, 201207 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200138176A (en) 2019-05-28 2020-12-09 가부시키가이샤 알박 Sputtering device, thin film manufacturing method

Similar Documents

Publication Publication Date Title
US10054798B2 (en) Light-emitting device
EP2702438B1 (en) Waveguide apparatus for illumination systems
JP2005524958A (en) FEEDBACK ENHANCED LIGHT EMITTING DEVICE <Description of Related Applications> This application claims the benefit of US Provisional Application No. 60 / 379,141, filed May 8, 2002, which is hereby incorporated by reference in its entirety. To do. The present application is a US patent application entitled “LIGHTING DEVICESINGING BACKENHANCENEDLIGHTIGHTMITTINGIODEDE” filed on May 8, 2003, and “Feedback Enhanced Lighting Diode” filed on May 8, 2003. Is related to US Patent Application No. (which is incorporated herein by reference in its entirety), referred to as a DISPLAY DEVICE DEVICEING BACKENHANCENEDLIGHTINGIODE.
JP3556665B2 (en) Optical device package
US5390201A (en) Self-frequency-doubler laser element
JPH08320422A (en) Production of optical waveguide system and optical device using the system
ATE397227T1 (en) TUNABLE RESONANT GRID FILTER
TW589489B (en) Optical element
US6911674B2 (en) Feedback and coupling structures and methods
JP2007227573A (en) Light emitting device
WO2003065095A3 (en) Fabrication of chirped fiber bragg gratings of any desired bandwidth using frequency modulation
KR100390110B1 (en) Light-emitting device
JP5889807B2 (en) Lighting device and lighting method
JP2015001734A (en) Method of manufacturing self-alignment optical coupling self-organization waveguide
JP2006330697A (en) Optical coupling structure, substrate with built-in optical transmission function, and method for manufacturing such substrate
JP3786160B2 (en) EL device
JP2008107781A (en) Optical transmission substrate, method for manufacturing the same, opto-electronic consolidated panel, and optical module
JP4352944B2 (en) Optical circuit manufacturing method
JP2015114657A (en) Method of manufacturing self-alignment optical coupling self-organization waveguide using multiwavelength
JP2010145767A (en) Optical module
JP4024031B2 (en) Manufacturing method of optical waveguide
Horn et al. Two-photon fabrication of organic solid-state distributed feedback lasers in rhodamine 6G doped SU-8
JPH02187704A (en) Plastic fluorescent fiber
WO2012029370A1 (en) Optical transmission structure, method of manufacturing same, and optical transmission module
JP2019179632A (en) Luminaire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160517