JP2015001470A - Substrate testing device - Google Patents

Substrate testing device Download PDF

Info

Publication number
JP2015001470A
JP2015001470A JP2013126741A JP2013126741A JP2015001470A JP 2015001470 A JP2015001470 A JP 2015001470A JP 2013126741 A JP2013126741 A JP 2013126741A JP 2013126741 A JP2013126741 A JP 2013126741A JP 2015001470 A JP2015001470 A JP 2015001470A
Authority
JP
Japan
Prior art keywords
unit
inspection
voltage
substrate
wiring pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013126741A
Other languages
Japanese (ja)
Inventor
山下 宗寛
Munehiro Yamashita
宗寛 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advance Technology Corp
Original Assignee
Nidec Read Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Read Corp filed Critical Nidec Read Corp
Priority to JP2013126741A priority Critical patent/JP2015001470A/en
Priority to KR1020140070473A priority patent/KR20140146535A/en
Priority to CN201410261002.6A priority patent/CN104237669A/en
Priority to TW103120590A priority patent/TW201500743A/en
Publication of JP2015001470A publication Critical patent/JP2015001470A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2806Apparatus therefor, e.g. test stations, drivers, analysers, conveyors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • G01R31/2812Checking for open circuits or shorts, e.g. solder bridges; Testing conductivity, resistivity or impedance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate testing device which accurately detects a spark phenomenon between wiring patterns occurred during an insulation test.SOLUTION: The substrate testing device performs an insulation test between a plurality of wiring patterns formed on a substrate. The substrate testing device includes: power supply means connected to a second testing unit and applying a voltage to the second testing unit in order to set a predetermined potential difference between a first testing unit and the second testing unit; detection means for detecting a voltage between the first testing unit and the second testing unit; and determination means for determining that a defect exists in the first testing unit and the second testing unit when a voltage drop occurs in the voltage detected by the detection means. Selection means includes a switching unit for making a conduction state to be on/off and a voltage dropping unit being connected to the switching unit in series. The detection means has one end conductively connected between the first testing unit and a resistance unit.

Description

本発明は、基板に形成される複数の配線パターン同士の絶縁検査に関し、特に絶縁検査時において発生する配線パターン間のスパーク現象を正確に検出する基板検査装置に関する。   The present invention relates to an insulation inspection between a plurality of wiring patterns formed on a substrate, and more particularly to a substrate inspection apparatus that accurately detects a spark phenomenon between wiring patterns that occurs during an insulation inspection.

基板上に形成される配線パターンは、この基板に載置されるICや半導体部品又はその他の電子部品に電気信号を送受信するために用いられる。このような配線パターンは、その基板の用途により種々に形成されている。このため、配線パターンが正確に且つ良好状態で形成されることを確認する電気的検査が実施されている。   The wiring pattern formed on the substrate is used for transmitting and receiving electrical signals to and from an IC, semiconductor component, or other electronic component mounted on the substrate. Such wiring patterns are variously formed depending on the use of the substrate. For this reason, an electrical inspection is performed to confirm that the wiring pattern is formed accurately and in a good state.

このような配線パターンの検査には、導通検査と絶縁検査が通常実施される。導通検査は、配線パターンが所定の二点間を電気的に接続していることを確認する検査であり、絶縁検査は、配線パターン同士が短絡していない状態を確認する検査である。   For inspection of such wiring patterns, continuity inspection and insulation inspection are usually performed. The continuity inspection is an inspection for confirming that the wiring pattern is electrically connected between two predetermined points, and the insulation inspection is an inspection for confirming that the wiring patterns are not short-circuited.

特に、絶縁検査では、配線パターン同士の絶縁性を検査するため、配線パターン間に所定の電圧を印加して、配線パターン間の抵抗値を算出することで、配線パターン間の絶縁性を検査する。   In particular, in the insulation inspection, in order to inspect the insulation between the wiring patterns, a predetermined voltage is applied between the wiring patterns, and a resistance value between the wiring patterns is calculated to inspect the insulation between the wiring patterns. .

このような絶縁検査では、上記の如き配線パターン間の抵抗値を算出するために、配線パターン間に電位差を生じさせるために電力を供給することになるが、配線パターン自体の細りや太り、または銅粉などの異物が存在する場合には、配線パターン間の抵抗値を測定する前に、一方の配線パターンから他方の配線パターンへ電荷の放電(スパーク現象)が生じる場合がある。このようなスパーク現象は、配線パターン間の不良として知られている。   In such an insulation test, in order to calculate the resistance value between the wiring patterns as described above, power is supplied to generate a potential difference between the wiring patterns. However, the wiring pattern itself is thinned or thickened, or When foreign matter such as copper powder is present, electric charge discharge (spark phenomenon) may occur from one wiring pattern to the other wiring pattern before measuring the resistance value between the wiring patterns. Such a spark phenomenon is known as a defect between wiring patterns.

このようなスパーク現象不良を検出するために、例えば、特許文献1の技術が知られている。この特許文献1に開示される技術では、配線パターン間の電圧を電圧印加開始から検査測定を実施する所定のタイミングまで検出するとともに、スパーク現象に起因する電圧降下の発生の有無を検出することで、スパーク現象を捉えようとするものである。   In order to detect such a defective spark phenomenon, for example, the technique of Patent Document 1 is known. In the technique disclosed in Patent Document 1, the voltage between the wiring patterns is detected from the start of voltage application to a predetermined timing at which inspection measurement is performed, and the presence / absence of occurrence of a voltage drop due to the spark phenomenon is detected. , Trying to capture the spark phenomenon.

一方、昨今の基板は、極めて小さくかつ複雑に製造されるようになっている。このため、配線パターン自体も複雑且つ微細に形成されるとともに、そのピッチも狭く形成される。更に、このように配線パターンが複雑且つ微細に形成されることにより、配線パターン上に設定される検査点も増大することになる。このため、基板検査装置は、検査点の増加に伴い、基板と基板検査装置を電気的に接続する基板検査治具などの浮遊容量が大きくなる問題を有していた。   On the other hand, recent substrates are extremely small and complicated. For this reason, the wiring pattern itself is complicated and finely formed, and the pitch is also narrowly formed. Further, since the wiring pattern is formed in a complicated and fine manner in this way, the inspection points set on the wiring pattern also increase. For this reason, the substrate inspection apparatus has a problem that the stray capacitance of a substrate inspection jig or the like for electrically connecting the substrate and the substrate inspection apparatus increases with an increase in inspection points.

上記の如く、基板の配線パターンの複雑化と微細化が進むにつれて、この基板の絶縁検査の精度向上も要求される。このような場合でも、配線パターン間絶縁検査を行うためには、配線パターン間のスパーク現象が問題となる。   As described above, as the wiring pattern of the substrate becomes more complicated and finer, it is required to improve the accuracy of the insulation inspection of the substrate. Even in such a case, the spark phenomenon between the wiring patterns becomes a problem in order to perform the insulation inspection between the wiring patterns.

しかしながら、特許文献1に開示される技術では、配線パターン間の電圧が所定の電圧となるまでの電圧印加開始から検査電圧に到達するまでの間のスパーク検査は問題無く検出することができるが、配線パターン間の電圧が検査電圧に到達してから、所定の検査タイミングとなるまでの間(電圧が定常状態の場合)の配線パターン間のスパーク現象を確実かつ正確にと捉えることができない場合があった。   However, in the technique disclosed in Patent Document 1, the spark inspection from the start of voltage application until the voltage between the wiring patterns reaches a predetermined voltage until the inspection voltage is reached can be detected without any problem. When the voltage between wiring patterns reaches the inspection voltage and before the predetermined inspection timing is reached (when the voltage is in a steady state), it may not be possible to accurately and accurately grasp the spark phenomenon between the wiring patterns. there were.

これは、基板の配線パターンの複雑化且つ微細化に伴って、スパーク現象の電圧降下が小さい場合が生じており、このような小さな電圧降下ではスパーク現象による電圧降下であるのか他の要因による電圧降下であるのかを正確に判定することできない問題が生じている。   This is due to the fact that the voltage drop of the spark phenomenon is small as the wiring pattern of the board becomes more complicated and finer. If such a small voltage drop is a voltage drop due to the spark phenomenon, it is a voltage due to other factors. There is a problem that it is not possible to accurately determine whether it is a descent.

特開2003−172757号公報JP 2003-172757 A

本発明は、このような実情に鑑みてなされたもので、微細化及び複雑化された基板の配線パターンの絶縁検査を実施する場合であっても、配線パターン間のスパーク現象を正確に検出することのできる基板検査装置を提供する。   The present invention has been made in view of such circumstances, and accurately detects a spark phenomenon between wiring patterns even when an insulation inspection of a wiring pattern of a substrate that has been miniaturized and complicated is performed. Provided is a substrate inspection apparatus capable of performing

請求項1記載の発明は、基板に形成される複数の配線パターン間の絶縁検査を行う基板検査装置であって、前記複数の配線パターンから検査対象となる一つの配線パターンを第一検査部として選出するとともに、該第一検査部以外の検査対象となる全ての配線パターンを第二検査部として選出する選出手段と、前記第一検査部と前記第二検査部との間に所定の電位差を設定するために、前記第二検査部に接続されるとともに該第二検査部に電圧を印加する電源手段と、前記第一検査部と第二検査部の間の電圧を検出する検出手段と、前記検出手段が検出する電圧に電圧降下の発生が生じた場合に、前記第一検査部と第二検査部に不良が存在するとして判定する判定手段を有し、前記選出手段は、導通状態をON/OFFとする切替部と、前記切替部と直列接続される電圧降下部を備えてなり、前記検出手段は、一方端が前記第一検査部と前記抵抗部との間に導通接続されていることを特徴とする基板検査装置を提供する。   The invention according to claim 1 is a substrate inspection apparatus that performs an insulation inspection between a plurality of wiring patterns formed on a substrate, wherein one wiring pattern to be inspected from the plurality of wiring patterns is used as a first inspection unit. A selection means for selecting all the wiring patterns to be inspected other than the first inspection part as the second inspection part, and a predetermined potential difference between the first inspection part and the second inspection part. In order to set, a power supply means connected to the second inspection part and applies a voltage to the second inspection part, a detection means for detecting a voltage between the first inspection part and the second inspection part, When a voltage drop occurs in the voltage detected by the detection unit, the first detection unit and the second inspection unit have a determination unit that determines that there is a defect, and the selection unit determines the conduction state. ON / OFF switching unit and the switching unit It comprises a voltage drop unit serially connected, said detecting means has one end to provide a substrate inspection apparatus characterized by being electrically connected between the resistor portion and the first inspection unit.

請求項1記載の発明によれば、第一検査部と第二検査部との間(検査対象間)に所定の電位差を設定し、第一検査部と第二検査部の間の電圧を検出する検出手段を設けることで、検出手段が検出する電圧の降下の発生が生じた場合に、検査対象間にスパーク現象が生じたことを検出することがきる。特に、この検出手段の一方端が、第一検査部と抵抗部との間に導通接続されているため、スパーク現象が生じた場合に流れる電流はこの抵抗部を介して、検査対象間を流れることになる。つまり、この抵抗部の両端に電圧降下が生じることになるとともに、検出手段はこの電圧降下を確実に検出することができる。したがって、検査時間を長くする必要もなく、スパーク現象を確実に捉えることができる。   According to the first aspect of the present invention, a predetermined potential difference is set between the first inspection unit and the second inspection unit (between inspection targets), and a voltage between the first inspection unit and the second inspection unit is detected. By providing the detection means for detecting the occurrence of the spark phenomenon between the inspection objects, it is possible to detect the occurrence of a drop in the voltage detected by the detection means. In particular, since one end of the detection means is conductively connected between the first inspection portion and the resistance portion, the current that flows when a spark phenomenon occurs flows between the inspection objects via the resistance portion. It will be. That is, a voltage drop occurs at both ends of the resistance portion, and the detection means can reliably detect this voltage drop. Therefore, it is not necessary to lengthen the inspection time, and the spark phenomenon can be reliably captured.

本発明にかかる基板検査装置の概略構成図であり、基板との関係を示している。It is a schematic block diagram of the board | substrate inspection apparatus concerning this invention, and has shown the relationship with a board | substrate. 本発明にかかる基板検査装置の動作を表す概略図である。It is the schematic showing operation | movement of the board | substrate inspection apparatus concerning this invention. 本発明にかかる基板検査装置が検出する電圧の変化を時系列に示した図である。It is the figure which showed the change of the voltage which the board | substrate inspection apparatus concerning this invention detects in time series.

本発明を実施するための最良の形態を説明する。
本発明は、基板上に形成される複数の配線パターンの絶縁検査を行う場合に発生するスパーク現象を検出するための基板検査装置及びその方法に関する。図1は、本発明に係る基板検査装置の一実施形態の概略構成図である。本発明に係る実施形態の基板検査装置1は、電力供給手段2、電圧検出手段3、電流検出手段4、制御手段6、切替手段7、電流供給端子8、電圧検出端子9、表示手段10を備えてなる。図1で示される一実施形態では、本発明の基板検査装置1と、検査対象となる基板CBと、基板検査装置1と基板CBとを電気的に接続するコタンクトプローブCPが示されている。
The best mode for carrying out the present invention will be described.
The present invention relates to a substrate inspection apparatus and method for detecting a spark phenomenon that occurs when performing an insulation inspection of a plurality of wiring patterns formed on a substrate. FIG. 1 is a schematic configuration diagram of an embodiment of a substrate inspection apparatus according to the present invention. A substrate inspection apparatus 1 according to an embodiment of the present invention includes a power supply unit 2, a voltage detection unit 3, a current detection unit 4, a control unit 6, a switching unit 7, a current supply terminal 8, a voltage detection terminal 9, and a display unit 10. Prepare. In one embodiment shown in FIG. 1, a substrate inspection apparatus 1 of the present invention, a substrate CB to be inspected, and a co-canto probe CP that electrically connects the substrate inspection device 1 and the substrate CB are shown. .

本発明の基板検査装置1では、後述する電流抵抗部SWrを用いることにより、電圧検出手段3が検出する電圧情報が、基板検査装置1の内部浮遊容量や内部部品等の影響を受けることなく、検査対象間の電圧変化を確実に捉えることができる。   In the substrate inspection apparatus 1 of the present invention, voltage information detected by the voltage detection means 3 is not affected by internal stray capacitance or internal components of the substrate inspection apparatus 1 by using a current resistance unit SWr described later, It is possible to reliably capture voltage changes between inspection targets.

図1に示される基板CBは、4つの配線パターンP1〜P4を有している。この基板CBが有する配線パターンは、設計される基板CBに応じてその数及び形状が適宜設定される。図1の基板CBでは、一の字状の配線パターンP1と、Tの字状の配線パターンP2と、十の字状の配線パターンP3とP4が示されている。   The substrate CB shown in FIG. 1 has four wiring patterns P1 to P4. The number and shape of the wiring patterns of the substrate CB are appropriately set according to the designed substrate CB. In the substrate CB of FIG. 1, a letter-shaped wiring pattern P1, a letter T-shaped wiring pattern P2, and a letter-shaped wiring pattern P3 and P4 are shown.

図1では、各配線パターンP1〜P4に電気的に接触する4本のコンタクトプローブCPが示されている。このコンタクトプローブCPは、基板検査装置1と基板CBを電気的に導通可能に接続する。また、このコンタクトプローブCPの配置位置や配置本数は、基板CBに形成される配線パターンに応じて適宜設定されることになる。尚、図1の実施形態では、後述する上流側及び下流側電流供給端子と上流側及び下流側電圧検出端子とを1本のコンタクトプローブCPで、配線パターン上に設けられる所定検査位置に導通可能に接触させているが、電流供給端子と電圧検出端子の夫々を別々の2本のコンタクトプローブCPで所定検査位置に導通可能に接触させてもよい。   In FIG. 1, four contact probes CP that are in electrical contact with the wiring patterns P1 to P4 are shown. The contact probe CP connects the substrate inspection apparatus 1 and the substrate CB so as to be electrically conductive. Further, the arrangement position and the number of the contact probes CP are appropriately set according to the wiring pattern formed on the substrate CB. In the embodiment of FIG. 1, the upstream and downstream current supply terminals and the upstream and downstream voltage detection terminals, which will be described later, can be electrically connected to a predetermined inspection position provided on the wiring pattern with a single contact probe CP. However, each of the current supply terminal and the voltage detection terminal may be brought into contact with a predetermined inspection position by two separate contact probes CP.

電力供給手段2は、検査対象となる配線パターンと他の配線パターンとの間(以下、検査対象間)に、絶縁検査を行うための所定の電圧を印加させる。
この電力供給手段2は、直流電源又は交流電源を用いることができ、特に限定されるものではなく、検査対象間に所定の電圧を印加させることができるものであれば全て用いることができる。また、電力供給手段2は、例えば、カレント・コントローラー(Current Controller)を利用することもできる。カレント・コントローラーを用いる場合では、カレント・コントローラーにより、所定の配線パターンに電流を供給して、検査対象間に所定の電圧を印加することになる。この電力供給手段2が印加することになる電圧は、上記の説明の如き200〜250Vに設定される。
The power supply unit 2 applies a predetermined voltage for performing an insulation test between a wiring pattern to be inspected and another wiring pattern (hereinafter, between inspection targets).
The power supply means 2 can use a DC power supply or an AC power supply, and is not particularly limited, and any power supply means 2 can be used as long as a predetermined voltage can be applied between inspection targets. Further, the power supply means 2 can use, for example, a current controller. When a current controller is used, a current is supplied to a predetermined wiring pattern by the current controller, and a predetermined voltage is applied between inspection objects. The voltage to be applied by the power supply means 2 is set to 200 to 250 V as described above.

電圧検出手段3は、検査対象間の電圧を検出する。この電圧検出手段3は、例えば、電圧計を用いることができるが特に限定されるものではなく、検査対象間の電圧を検出することができるものであればよい。この電圧検出手段3は、検査対象間に電力供給手段2により所定の電位差が生じるように、電力が印加され始めてから、検査対象間が所定電位差に到達した後の所定の時間経過後(所定のタイミング)までの間、検査対象間の電位を検出することができる。この電圧検出手段3が捉える電圧の変化量により、検査対象間のスパーク現象の有無を判定することができるようになる。   The voltage detection means 3 detects the voltage between inspection objects. For example, a voltmeter can be used as the voltage detection unit 3, but the voltage detection unit 3 is not particularly limited as long as it can detect a voltage between inspection objects. This voltage detection means 3 starts after power is applied so that a predetermined potential difference is generated by the power supply means 2 between the inspection objects, and after a predetermined time elapses after the predetermined potential difference is reached between the inspection objects (predetermined Until the timing), the potential between the inspection objects can be detected. The presence or absence of a spark phenomenon between inspection objects can be determined based on the amount of change in voltage captured by the voltage detection means 3.

電流検出手段4は、検査対象間の電流を検出する。この電流検出手段4は、例えば、電流計を用いることができるが特に限定されるものではなく、検査対象間に流れる電流値を検出することができればよい。この電流検出手段4の電流値と検査対象間の電圧値により、検査対象間の抵抗値を算出することができる。また、この抵抗値により、検査対象間の絶縁状態の良否を判定することになる。   The current detection means 4 detects a current between inspection objects. For example, an ammeter can be used as the current detection unit 4, but the current detection unit 4 is not particularly limited as long as it can detect a current value flowing between inspection objects. The resistance value between the inspection objects can be calculated from the current value of the current detection means 4 and the voltage value between the inspection objects. Moreover, the quality of the insulation state between test objects is determined by this resistance value.

電流供給端子8は、検査対象間の電流を供給するために、各配線パターンPとコンタクトプローブCPを介して接続される。この電流供給端子8は、電力供給手段2の上流側(正極側)と配線パターンPを接続する上流側電流供給端子81と、電力供給手段2の下流側(負極側)又は電流検出手段4と配線パターンPとを接続する下流側電流供給端子82を有している。   The current supply terminal 8 is connected to each wiring pattern P via a contact probe CP in order to supply a current between inspection targets. The current supply terminal 8 includes an upstream current supply terminal 81 that connects the upstream side (positive electrode side) of the power supply unit 2 and the wiring pattern P, and a downstream side (negative electrode side) of the power supply unit 2 or the current detection unit 4. A downstream current supply terminal 82 for connecting the wiring pattern P is provided.

図1で示される如く、この電流供給端子8の上流側電流供給端子81及び下流側電流供給端子82は、夫々の配線パターンPに対して設けられている。これらの上流側電流供給端子81と下流側電流供給端子82は、夫々に切替手段7のスイッチ素子SWを有しており、この切替手段7のスイッチ素子SWのON/OFF動作により、接続状態/未接続状態が設定されることになる。   As shown in FIG. 1, an upstream current supply terminal 81 and a downstream current supply terminal 82 of the current supply terminal 8 are provided for each wiring pattern P. Each of the upstream current supply terminal 81 and the downstream current supply terminal 82 has a switching element SW of the switching means 7, and the ON / OFF operation of the switching element SW of the switching means 7 causes the connection state / The unconnected state will be set.

この電流供給端子8は、スイッチ素子SWと直列接続される抵抗部R1又は抵抗部R4を有している。特に、上流側電流供給端子81に抵抗部R1を有することにより、スパーク現象が生じた場合の過電流が必ずこの抵抗部R1を経由して、検査対象間を流れることになり、この際に生じる電圧降下を電圧検出手段3が確実に検出することができるようになる。この抵抗部R1は、例えば、10〜100Ω程度の抵抗値を有する抵抗を採用することができる。   The current supply terminal 8 has a resistor part R1 or a resistor part R4 connected in series with the switch element SW. In particular, since the upstream current supply terminal 81 has the resistance portion R1, an overcurrent when a spark phenomenon occurs always flows between the inspection targets via the resistance portion R1, and occurs at this time. The voltage drop can be reliably detected by the voltage detection means 3. For example, a resistor having a resistance value of about 10 to 100Ω can be adopted as the resistor R1.

電圧検出端子9は、検査対象間の電圧を検出するために、各配線パターンPとコンタクトプローブCPを介して接続される。この電圧検出端子9は、電圧検出手段3の上流側(正極側)と配線パターンPを接続する上流側電圧検出端子91と、電圧検出手段3の下流側(負極側)と配線パターンPを接続する下流側電圧検出端子92を有してなる。図1で示される如く、この電圧検出端子9の上流側電圧検出端子91及び下流側電圧検出端子92は、夫々の配線パターンPに対して設けられている。これらの上流側電圧検出端子91と下流側電圧検出端子92は、電流供給端子8と同様、夫々に切替手段7のスイッチ素子SWを有しており、この切替手段7のスイッチ素子SWのON/OFF動作により、接続状態/未接続状態が設定されることになる。電圧検出端子91には、スイッチ素子SWと直列接続される抵抗部R2又は抵抗部R3を有していることが好ましい。この抵抗部R2又は抵抗部R3は、上記の抵抗部R1又は抵抗部R4と同じ構成を採用することができる。   The voltage detection terminal 9 is connected to each wiring pattern P via a contact probe CP in order to detect a voltage between inspection objects. This voltage detection terminal 9 connects the upstream side (positive side) of the voltage detection means 3 and the wiring pattern P to the upstream side voltage detection terminal 91, and the downstream side (negative side) of the voltage detection means 3 and the wiring pattern P. A downstream voltage detection terminal 92 is provided. As shown in FIG. 1, the upstream voltage detection terminal 91 and the downstream voltage detection terminal 92 of the voltage detection terminal 9 are provided for each wiring pattern P. Each of the upstream voltage detection terminal 91 and the downstream voltage detection terminal 92 has a switching element SW of the switching means 7 as in the case of the current supply terminal 8, and the switch element SW of the switching means 7 is turned ON / OFF. By the OFF operation, the connected / unconnected state is set. The voltage detection terminal 91 preferably has a resistor portion R2 or a resistor portion R3 connected in series with the switch element SW. The resistor R2 or the resistor R3 can adopt the same configuration as the resistor R1 or the resistor R4.

電流供給端子8と電圧検出端子9は、図1で示される如く、配線パターンPに導通接触する一本のコンタクトプローブCPに対して、4つの端子が配置されることになるとともに、各端子のON/OFF制御を行う4つのスイッチ素子SWが備えられることになる。
尚、図1では、上流側電流供給端子81の動作を制御するスイッチ素子を符号SW1とし、上流側電圧検出端子91の動作を制御するスイッチ素子を符号SW2とし、下流側電流供給端子82の動作を制御するスイッチ素子を符号SW3とし、下流側電圧検出端子92の動作を制御するスイッチ素子を符号SW4として示している。
As shown in FIG. 1, the current supply terminal 8 and the voltage detection terminal 9 are arranged with four terminals with respect to one contact probe CP in conductive contact with the wiring pattern P. Four switch elements SW that perform ON / OFF control are provided.
In FIG. 1, the switch element that controls the operation of the upstream current supply terminal 81 is denoted by SW1, the switch element that controls the operation of the upstream voltage detection terminal 91 is denoted by SW2, and the operation of the downstream current supply terminal 82 is represented. The switch element that controls the switching is denoted by reference numeral SW3, and the switch element that controls the operation of the downstream voltage detection terminal 92 is denoted by reference numeral SW4.

切替手段7は、上記した各コンタクトプローブCPに導通接続される複数のスイッチ素子SWから構成されている。この切替手段7は、後述する制御手段6からの動作信号により。ON/OFFの動作が制御されることになる。   The switching means 7 is composed of a plurality of switch elements SW that are conductively connected to the contact probes CP described above. This switching means 7 is based on an operation signal from the control means 6 described later. The ON / OFF operation is controlled.

電圧検出手段3と電流検出手段4が検出する電圧値や電流値は、後述する制御手段6へ、経過時間情報が付与されて(時系列的な情報として)送信される。   The voltage value and the current value detected by the voltage detection means 3 and the current detection means 4 are transmitted with the elapsed time information (as time-series information) transmitted to the control means 6 described later.

制御手段6は、検査対象となる配線パターンPを選出したり、電圧検出手段3からの電圧値を基にスパーク現象を検出したり、切替手段7の動作の指示信号を送信する。この制御手段6は、図1で示される如く、選出手段61、判定手段62、記憶手段63を備えていることが好ましい。   The control means 6 selects a wiring pattern P to be inspected, detects a spark phenomenon based on the voltage value from the voltage detection means 3, and transmits an operation instruction signal for the switching means 7. The control means 6 preferably includes a selection means 61, a determination means 62, and a storage means 63 as shown in FIG.

記憶手段63は、基板CBの配線パターンPに関する情報、この配線パターンPの検査点に関する情報、検出される検出値の情報が記憶される。この記憶手段63に絶縁検査に必要な情報が格納され、これらの情報を用いることによって、絶縁検査が行われることになるとともに、検出される各検出値が格納される。   The storage unit 63 stores information related to the wiring pattern P of the substrate CB, information related to the inspection points of the wiring pattern P, and information about detected values to be detected. Information necessary for the insulation inspection is stored in the storage means 63, and by using these pieces of information, the insulation inspection is performed and each detected value to be detected is stored.

選出手段61は、基板CBの複数の配線パターンPから検査対象となる配線パターンPを選出し、検査対象の配線パターンPを特定する。この選出手段61が検査対象の配線パターンPを特定することにより、順次、絶縁検査が行われる配線パターンが選出される。この選出手段61が行う検査対象の配線パターンの選出方法は、予め記憶手段63に検査対象となる配線パターンの順番が設定され、この順番に従って検査対象の配線パターンが選出される方法を例示することができる。この選出方法は、上記の如き方法を採用することもできるが、検査対象となる配線パターンが順序良く選出される方法であれば特に限定されない。   The selection means 61 selects the wiring pattern P to be inspected from the plurality of wiring patterns P on the substrate CB, and specifies the wiring pattern P to be inspected. When the selection means 61 specifies the wiring pattern P to be inspected, the wiring patterns to be subjected to the insulation inspection are sequentially selected. The method for selecting a wiring pattern to be inspected by the selection means 61 is exemplified by a method in which the order of wiring patterns to be inspected is set in the storage means 63 in advance, and the wiring pattern to be inspected is selected according to this order. Can do. This selection method can adopt the method as described above, but is not particularly limited as long as the wiring patterns to be inspected are selected in order.

この選出手段61が行う具体的な配線パターンの選出は、切替手段7を用いることにより実施される。例えば、切替手段7の各スイッチ素子SWのON/OFF制御を行うことにより、検査対象となる配線パターンを選出することができる。この実施形態の基板検査装置1では、検査対象となる配線パターンが電力供給手段2と接続されるための上流側電流供給端子81と接続されるように、スイッチ素子SWがONされることになる。また同時に、上流側電圧検出手段91とこの配線パターンが接続されるようにスイッチ素子SWがONされる。
例えば、図1で示される実施形態では、配線パターンP1を検査対象とする場合、選出手段61が、配線パターンP1に接続する上流側電流供給端子81と上流側電圧検出端子91を選出し、これら端子81、91のスイッチ素子SW1とスイッチ素子SW2をONさせるように促す信号を送信する。この信号を切替手段7が受信することにより、スイッチ素子SW1とスイッチ素子SW2が動作することになる。また、この場合、検査対象の配線パターン以外の配線パターン(残りの配線パターン)に対応するスイッチSW3とスイッチSW4がONされるように促す信号が送信される。
The selection of a specific wiring pattern performed by the selection unit 61 is performed by using the switching unit 7. For example, a wiring pattern to be inspected can be selected by performing ON / OFF control of each switch element SW of the switching means 7. In the substrate inspection apparatus 1 of this embodiment, the switch element SW is turned on so that the wiring pattern to be inspected is connected to the upstream current supply terminal 81 for connection to the power supply means 2. . At the same time, the switch element SW is turned on so that the upstream voltage detecting means 91 and this wiring pattern are connected.
For example, in the embodiment shown in FIG. 1, when the wiring pattern P1 is an inspection target, the selection means 61 selects the upstream current supply terminal 81 and the upstream voltage detection terminal 91 connected to the wiring pattern P1, and these are selected. Signals that prompt the user to turn on the switch elements SW1 and SW2 of the terminals 81 and 91 are transmitted. When the switching means 7 receives this signal, the switch element SW1 and the switch element SW2 operate. In this case, a signal that prompts the switch SW3 and the switch SW4 corresponding to the wiring patterns other than the wiring pattern to be inspected (remaining wiring patterns) to be turned on is transmitted.

上記の説明の如く、選出手段61によって、基板CBの複数の配線パターンPから検査対象となる配線パターンPが選択されることになる。この第一実施形態で示される基板検査装置1の選出手段61が選出する配線パターンPは、基板CB上に形成された複数の配線パターンから1本の配線パターンPが選出される。つまり、選出手段61により選出された1本の配線パターンPと、残り全ての配線パターンPとの間で絶縁検査が実施される。このように、配線パターンPが選出されることにより、絶縁検査を効率良く処理することができる。   As described above, the selection means 61 selects the wiring pattern P to be inspected from the plurality of wiring patterns P on the substrate CB. As the wiring pattern P selected by the selection means 61 of the substrate inspection apparatus 1 shown in the first embodiment, one wiring pattern P is selected from a plurality of wiring patterns formed on the substrate CB. That is, an insulation inspection is performed between one wiring pattern P selected by the selection means 61 and all the remaining wiring patterns P. Thus, by selecting the wiring pattern P, the insulation inspection can be processed efficiently.

判定手段62は、電圧検出手段3からの電圧値を基に、スパーク現象の発生を判定する。この判定手段62が行う判定は、時系列的に記憶される電圧値が電圧降下(電圧値が時系列に対してマイナスの変化)を捉えた場合に、スパーク現象が発生していると判定するように設定されている。つまり、この判定手段62は、電圧値の時間的変化量がマイナスとなった場合に、スパーク現象が生じたと認識するように設定される。尚、スパーク現象が検出されると、後述する表示手段10にその旨が連絡される。   The determination unit 62 determines the occurrence of the spark phenomenon based on the voltage value from the voltage detection unit 3. The determination performed by the determination unit 62 determines that a spark phenomenon has occurred when the voltage value stored in time series captures a voltage drop (the voltage value has a negative change with respect to the time series). Is set to That is, the determination means 62 is set so as to recognize that the spark phenomenon has occurred when the temporal change amount of the voltage value becomes negative. When a spark phenomenon is detected, the display means 10 described later is notified accordingly.

本発明の電圧検出手段3は、抵抗部R1よりも配線パターンPに近い位置で、一方端が導通接続されている。従来の絶縁検査中にスパーク現象を検出する場合に比して、抵抗部R1の両端にスパーク現象に起因する電圧降下が現れるようになる。このため、検査対象間の電位差が所定電位差に到達した後から実際の絶縁検査のために電流値を検出する所定のタイミングまで、確実に電圧の変化を検出することができるようになる。   The voltage detection means 3 of the present invention is conductively connected at one end at a position closer to the wiring pattern P than the resistance portion R1. Compared with the case where the spark phenomenon is detected during the conventional insulation test, a voltage drop due to the spark phenomenon appears at both ends of the resistance portion R1. For this reason, it is possible to reliably detect a change in voltage after the potential difference between the inspection objects reaches the predetermined potential difference until a predetermined timing for detecting the current value for the actual insulation inspection.

表示手段10は、絶縁検査の状態を表示する。この表示手段10は、スパーク現象の発見が表示されることになる。
以上が本発明に係る第一実施形態の基板検査装置1の構成の説明である。
The display means 10 displays the state of insulation inspection. This display means 10 displays the discovery of the spark phenomenon.
The above is description of the structure of the board | substrate inspection apparatus 1 of 1st embodiment which concerns on this invention.

この第一実施形態の基板検査装置1の動作を説明する。
まず、検査対象となる基板CBの配線パターンPの情報などが記憶手段63に格納される。また基板CBが所定の検査位置に配置され、基板CB上に形成される配線パターンP上の検査点にコンタクトプローブCPが配置される。
The operation of the substrate inspection apparatus 1 according to the first embodiment will be described.
First, information on the wiring pattern P of the substrate CB to be inspected is stored in the storage unit 63. Further, the substrate CB is arranged at a predetermined inspection position, and the contact probe CP is arranged at an inspection point on the wiring pattern P formed on the substrate CB.

基板CBが準備されると絶縁検査が開始される。まず、選出手段61が、検査対象となる配線パターンPを選出する。選出手段61が検査対象となる配線パターンを選出すると、この選出手段61は切替手段7へこの検査対象として選出された配線パターンPの上流側電流供給端子81と上流側電圧検出端子91が特定される。そして、この特定された上流側電流供給端子81と上流側電圧検出端子91を接続状態とするためのスイッチ素子SW1、SW2がONされるように、選出手段61から動作信号が切替手段7へ送信される。   When the substrate CB is prepared, an insulation test is started. First, the selection means 61 selects a wiring pattern P to be inspected. When the selection unit 61 selects a wiring pattern to be inspected, the selection unit 61 specifies the upstream current supply terminal 81 and the upstream voltage detection terminal 91 of the wiring pattern P selected as the inspection target to the switching unit 7. The Then, an operation signal is transmitted from the selection means 61 to the switching means 7 so that the switch elements SW1 and SW2 for connecting the specified upstream current supply terminal 81 and the upstream voltage detection terminal 91 are turned on. Is done.

切替手段7は、選出手段61からのスイッチ素子のON/OFF動作に関する信号を受信すると、この信号に従ってスイッチ素子SWのON/OFF制御が行われる。
例えば、配線パターンP1が検査対象の配線パターンとなる場合、配線パターンP1に対応する上流側電流供給端子81と上流側電圧検出端子91に接続されるスイッチ素子SW1、SW2がONとなる。またこのとき同時に、この配線パターンP1以外の配線パターンP2乃至配線パターンP4に接触されるコンタクトプローブCPが、夫々下流側電流供給端子82と接続状態となるために、夫々の下流側電流供給端子82のスイッチ素子SW4が、夫々ONとなるように制御される。
When the switching means 7 receives a signal relating to the ON / OFF operation of the switch element from the selection means 61, ON / OFF control of the switch element SW is performed according to this signal.
For example, when the wiring pattern P1 is a wiring pattern to be inspected, the switch elements SW1 and SW2 connected to the upstream current supply terminal 81 and the upstream voltage detection terminal 91 corresponding to the wiring pattern P1 are turned ON. At the same time, since the contact probes CP that are in contact with the wiring patterns P2 to P4 other than the wiring pattern P1 are connected to the downstream current supply terminals 82, the downstream current supply terminals 82 are connected. The switch elements SW4 are controlled so as to be turned on.

図2は、本発明に係る基板検査装置の動作状態を示す一実施形態である。この図2で示される動作状態では、上記の説明の如く、配線パターンP1が検査対象として選出されている。このため、配線パターンP1は、スイッチ素子SW1とスイッチSW2がONされており、上流側電流供給端子81と上流側電圧検出端子91と接続されている。このとき、検査対象以外の配線パターンP2乃至配線パターンP4は、スイッチ素子SW4がONされて、下流側電流供給端子82が夫々接続されている。尚、スイッチ素子SW3は、OFF状態のままである。   FIG. 2 is an embodiment showing an operation state of the substrate inspection apparatus according to the present invention. In the operation state shown in FIG. 2, as described above, the wiring pattern P1 is selected as an inspection target. For this reason, the switch pattern SW1 and the switch SW2 are turned on in the wiring pattern P1, and the upstream current supply terminal 81 and the upstream voltage detection terminal 91 are connected. At this time, in the wiring patterns P2 to P4 other than the inspection target, the switch element SW4 is turned on, and the downstream current supply terminals 82 are respectively connected. Note that the switch element SW3 remains in the OFF state.

上記の如きスイッチ素子SWが、ON又はOFF制御されると、検査対象間の電位差が所定の電位差となるように、検査対象の配線パターンP1に電流が印加される。   When the switch element SW as described above is controlled to be ON or OFF, a current is applied to the wiring pattern P1 to be inspected so that the potential difference between the inspection targets becomes a predetermined potential difference.

このとき、電圧検出手段3は、電力供給手段2から電力が供給されている間、検出する電圧値を制御手段6へ送信している。制御手段6は、電圧値を受け取ると、判定手段62において、電圧降下が生じているかどうかを判定する。このとき、電圧値が時系列的に減少していれば、判定手段62はスパーク現象が発生した判定をし、その旨が表示手段10へ送られて表示されることになる。   At this time, the voltage detection unit 3 transmits a voltage value to be detected to the control unit 6 while power is supplied from the power supply unit 2. When the control unit 6 receives the voltage value, the determination unit 62 determines whether a voltage drop has occurred. At this time, if the voltage value decreases in time series, the determination unit 62 determines that the spark phenomenon has occurred, and sends a message to that effect to the display unit 10 for display.

図3ではスパーク現象が生じた場合の例を示しており、電圧降下が生じた箇所Aにおいてスパーク現象が生じている。図3では、時刻t0において、本発明の基板検査装置1の電力供給手段2が、検査対象間に所定の電位差を印加するための電力の供給を行う。より具体的には、例えば、電力供給手段2が電流を供給することにより、検査対象間の電位差を大きくすることができる。なお、図3では、電圧検出手段3が検出する電圧値を符号Vpで示しており、電力供給手段2が供給する電圧値を符号Vsとして参考までに記載している。   FIG. 3 shows an example in the case where a spark phenomenon occurs, and the spark phenomenon occurs at a location A where a voltage drop has occurred. In FIG. 3, at time t0, the power supply means 2 of the substrate inspection apparatus 1 of the present invention supplies power for applying a predetermined potential difference between inspection targets. More specifically, for example, when the power supply unit 2 supplies current, the potential difference between the inspection objects can be increased. In FIG. 3, the voltage value detected by the voltage detection unit 3 is indicated by a symbol Vp, and the voltage value supplied by the power supply unit 2 is described as a symbol Vs for reference.

このとき、電圧印加開始時t0から時刻t1までは、検査対象間の電圧が所定の電圧に到達するまでの期間であり、時刻t3にて絶縁検査が実施されることになる。この時刻t1から時刻t3までは、検査対象間の電圧が所定の電圧が到達してから、所定時間経過後に絶縁検査が実施されるように設定されている。この期間において、本発明は、正確にスパーク現象を検出することができる。この期間において、例えばカレントリミット回路により、電流値が制限されている場合には、この回路の存在により従来では検出できなかった小さな過電流のスパーク現象が生じた場合であっても、電圧降下部5を小さな過電流が通過することによって、確実に検出することができるからである。   At this time, the period from the voltage application start time t0 to the time t1 is a period until the voltage between the inspection objects reaches a predetermined voltage, and the insulation inspection is performed at the time t3. From time t1 to time t3, the voltage between the inspection objects is set so that the insulation inspection is performed after a predetermined time has elapsed after the predetermined voltage has reached. In this period, the present invention can accurately detect the spark phenomenon. During this period, when the current value is limited by, for example, a current limit circuit, even if a small overcurrent spark phenomenon that could not be detected by the presence of this circuit occurs, This is because 5 can be reliably detected by passing a small overcurrent.

1・・・・基板検査装置
2・・・・電力供給手段
3・・・・電圧検出手段
5・・・・電圧降下部
6・・・・制御手段
7・・・・選出手段
8・・・・電流供給端子
9・・・・電圧検出端子
CB・・・単位基板
DESCRIPTION OF SYMBOLS 1 ... Board inspection apparatus 2 ... Power supply means 3 ... Voltage detection means 5 ... Voltage drop unit 6 ... Control means 7 ... Selection means 8 ... -Current supply terminal 9-Voltage detection terminal CB-Unit substrate

Claims (1)

基板に形成される複数の配線パターン間の絶縁検査を行う基板検査装置であって、
前記複数の配線パターンから検査対象となる一つの配線パターンを第一検査部として選出するとともに、該第一検査部以外の検査対象となる全ての配線パターンを第二検査部として選出する選出手段と、
前記第一検査部と前記第二検査部との間に所定の電位差を設定するために、前記第二検査部に接続されるとともに該第二検査部に電圧を印加する電源手段と、
前記第一検査部と第二検査部の間の電圧を検出する検出手段と、
前記検出手段が検出する電圧に電圧降下の発生が生じた場合に、前記第一検査部と第二検査部に不良が存在するとして判定する判定手段を有し、
前記選出手段は、導通状態をON/OFFとする切替部と、前記切替部と直列接続される電圧降下部を備えてなり、
前記検出手段は、一方端が前記第一検査部と前記抵抗部との間に導通接続されていることを特徴とする基板検査装置。
A substrate inspection apparatus for performing an insulation inspection between a plurality of wiring patterns formed on a substrate,
A selection means for selecting one wiring pattern to be inspected from the plurality of wiring patterns as a first inspection unit and selecting all wiring patterns to be inspected other than the first inspection unit as a second inspection unit; ,
In order to set a predetermined potential difference between the first inspection unit and the second inspection unit, a power supply means connected to the second inspection unit and applying a voltage to the second inspection unit;
Detecting means for detecting a voltage between the first inspection unit and the second inspection unit;
When a voltage drop occurs in the voltage detected by the detection unit, the determination unit includes a determination unit that determines that a defect exists in the first inspection unit and the second inspection unit,
The selection means includes a switching unit that turns ON / OFF the conduction state, and a voltage drop unit that is connected in series with the switching unit,
One end of the detection means is conductively connected between the first inspection section and the resistance section.
JP2013126741A 2013-06-17 2013-06-17 Substrate testing device Pending JP2015001470A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013126741A JP2015001470A (en) 2013-06-17 2013-06-17 Substrate testing device
KR1020140070473A KR20140146535A (en) 2013-06-17 2014-06-11 Circuit board inspection apparatus
CN201410261002.6A CN104237669A (en) 2013-06-17 2014-06-12 Substrate testing device
TW103120590A TW201500743A (en) 2013-06-17 2014-06-13 Circuit board inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013126741A JP2015001470A (en) 2013-06-17 2013-06-17 Substrate testing device

Publications (1)

Publication Number Publication Date
JP2015001470A true JP2015001470A (en) 2015-01-05

Family

ID=52226143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013126741A Pending JP2015001470A (en) 2013-06-17 2013-06-17 Substrate testing device

Country Status (4)

Country Link
JP (1) JP2015001470A (en)
KR (1) KR20140146535A (en)
CN (1) CN104237669A (en)
TW (1) TW201500743A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200249276A1 (en) * 2019-02-01 2020-08-06 Intel Corporation Techniques in ensuring functional safety (fusa) systems
CN113533909A (en) * 2020-04-15 2021-10-22 雅马哈精密科技株式会社 Inspection apparatus and inspection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953645B2 (en) 2021-03-18 2024-04-09 Richtek Technology Corporation Foreign object detection method and power side capable of detecting foreign object
TWI777703B (en) * 2021-03-18 2022-09-11 立錡科技股份有限公司 Foreign object detection method and power side capable of detecting foreign object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202016A (en) * 1998-01-16 1999-07-30 Sony Chem Corp Method and apparatus for inspecting circuit board
JP2003172757A (en) * 2001-09-26 2003-06-20 Nidec-Read Corp Insulation inspection device and insulation inspection method of circuit board
JP2008089485A (en) * 2006-10-04 2008-04-17 Nidec-Read Corp Insulation inspecting device and insulation inspecting method
JP2009109379A (en) * 2007-10-31 2009-05-21 Hioki Ee Corp Insulation inspecting apparatus
JP2010249802A (en) * 2009-03-26 2010-11-04 Daikin Ind Ltd Opening/short circuit inspection method of external terminal in integrated circuit, and opening/short circuit inspection device of external terminal in integrated circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3953087B2 (en) * 2005-10-18 2007-08-01 日本電産リード株式会社 Insulation inspection device and insulation inspection method
JP2008002823A (en) * 2006-06-20 2008-01-10 Nidec-Read Corp Substrate inspecting device and substrate inspection method
JP4925042B2 (en) * 2006-11-14 2012-04-25 日本電産リード株式会社 Insulation inspection equipment
JP4664334B2 (en) * 2007-07-20 2011-04-06 東京エレクトロン株式会社 Inspection method
JP5391869B2 (en) * 2009-06-26 2014-01-15 日本電産リード株式会社 Board inspection method
JP5496620B2 (en) * 2009-11-25 2014-05-21 日置電機株式会社 Insulation inspection device and insulation inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202016A (en) * 1998-01-16 1999-07-30 Sony Chem Corp Method and apparatus for inspecting circuit board
JP2003172757A (en) * 2001-09-26 2003-06-20 Nidec-Read Corp Insulation inspection device and insulation inspection method of circuit board
JP2008089485A (en) * 2006-10-04 2008-04-17 Nidec-Read Corp Insulation inspecting device and insulation inspecting method
JP2009109379A (en) * 2007-10-31 2009-05-21 Hioki Ee Corp Insulation inspecting apparatus
JP2010249802A (en) * 2009-03-26 2010-11-04 Daikin Ind Ltd Opening/short circuit inspection method of external terminal in integrated circuit, and opening/short circuit inspection device of external terminal in integrated circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200249276A1 (en) * 2019-02-01 2020-08-06 Intel Corporation Techniques in ensuring functional safety (fusa) systems
US10901035B2 (en) * 2019-02-01 2021-01-26 Intel Corporation Techniques in ensuring functional safety (fusa) systems
CN113533909A (en) * 2020-04-15 2021-10-22 雅马哈精密科技株式会社 Inspection apparatus and inspection method

Also Published As

Publication number Publication date
TW201500743A (en) 2015-01-01
KR20140146535A (en) 2014-12-26
CN104237669A (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP6252106B2 (en) Contact maintenance method and inspection device
US9606162B2 (en) Insulation inspection method and insulation inspection apparatus
JP4369949B2 (en) Insulation inspection device and insulation inspection method
KR101112696B1 (en) Circuit board inspection method
JP2015001470A (en) Substrate testing device
JP2008203077A (en) Circuit inspection device and method
JP2011089858A (en) Method of maintaining inspection tool and substrate inspection apparatus
CN103543389A (en) Insulation inspection method and insulation inspection apparatus
JP6221281B2 (en) Insulation inspection method and insulation inspection apparatus
JP5425709B2 (en) Insulation inspection device and insulation inspection method
JP4928316B2 (en) Insulation inspection equipment
JP5474685B2 (en) Pseudo-discharge generator and circuit board inspection device
JP2008076266A (en) Apparatus and method for inspecting substrate
JP6255833B2 (en) Substrate inspection method and substrate inspection apparatus
JP2010249664A (en) Circuit board inspection device and circuit board inspection method
JP4999143B2 (en) Board inspection equipment
JP6219074B2 (en) Insulation inspection equipment
JP2012013652A (en) Circuit board inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160413

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228